Prepared in cooperation with the PUERTO RICO DEPARTMENT OF NATURAL AND ENVIRONMENTAL RESOURCES AND THE JOBOS BAY NATIONAL ESTUARINE RESEARCH RESERVE

# Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico

Scientific Investigations Report 2010-5022



## Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico

By Eve L. Kuniansky and José M. Rodríguez

Prepared in cooperation with the Puerto Rico Department of Natural and Environmental Resources and the Jobos Bay National Estuarine Research Reserve

Scientific Investigations Report 2010–5022

U.S. Department of the Interior U.S. Geological Survey

#### **U.S. Department of the Interior**

KEN SALAZAR, Secretary

### **U.S. Geological Survey**

Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2010

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS

For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Kuniansky, E.L., and Rodríguez, J.M., 2010, Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico: U.S. Geological Survey Scientific Investigations Report 2010-5022, 106 p.

### **Acknowledgments**

The authors thank Angel Dieppa, Puerto Rico Department of Natural and Environmental Resources-Jobos Bay National Estuarine Research Reserve and others at the Reserve who assisted with data collection at the site.

The authors also wish to thank the following USGS employees who contributed substantially to this study and report. Jesús Rodríguez-Martínez developed the geologic information provided on illustrations, plates, and appendixes, and prepared all of the geologic setting and part of the hydrogeologic setting sections. Carole Johnson and Eric White of the USGS, Branch of Geophysics collected and processed the continuous resistivity profiling (CRP) data. Francisco Maldonado assisted with illustrations and Marilyn Santiago provided assistance with geographic information system datasets. Internal reviews of this manuscript were provided by Fernando Gómez-Gómez, Claudia Faunt, and Alyssa Dausman.

## **Contents**

| Acknowledgments                                                            | iii |
|----------------------------------------------------------------------------|-----|
| Abstract                                                                   |     |
| Introduction                                                               | 2   |
| Purpose and Scope                                                          | 2   |
| Description of the Study Area                                              | 5   |
| Hydrologic Setting                                                         | 5   |
| Rainfall, Evapotranspiration, and Net Recharge                             | 7   |
| Streamflow Estimates                                                       | 7   |
| Infiltration Estimates                                                     | 9   |
| History of Water Resources Development and Changes in Irrigation Practices | 11  |
| Land Use                                                                   | 11  |
| Surface-Water Use                                                          | 11  |
| Groundwater Use                                                            | 15  |
| Geologic Setting                                                           | 15  |
| Hydrogeologic Setting                                                      | 16  |
| Hydraulic Properties                                                       | 17  |
| Groundwater Flow Patterns                                                  |     |
| Simulation of Groundwater Flow                                             | 23  |
| Model Conceptualization and Construction                                   | 23  |
| Boundary Conditions                                                        | 27  |
| Model Calibration Strategy                                                 | 30  |
| Sensitivity Testing and Analysis                                           | 44  |
| Effects of Water-Resources Development                                     | 50  |
| Alternative Strategies for Groundwater Management                          |     |
| Limitations of the Model                                                   |     |
| Summary                                                                    | 62  |
| Selected References                                                        | 63  |
| Appendix                                                                   | 67  |
| Plates                                                                     | 92  |

## Figure

| Map showing the location of the study area and the Jobos Bay National<br>Estuarine Research Reserve and extent of deposits of the South Coast<br>aquifer, Puerto Rico                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graph showing comparison of (A) annual and (B) monthly rainfall at the Aguirre<br>Central National Weather Service Station, and (C) groundwater level at the<br>USGS Piezometer C observation well             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Map showing locations of geographic features, hydrologic features, and streamflow measurements sites in the study area.                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| from the distribution of flood-irrigation areas.                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| in the study area during 2002                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| from 1985 to 2005                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| South Coast aquifer in the vicinity of Salinas and Bahía de Jobos                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing generalized distribution of hydraulic conductivity in the<br>South Coast aquifer in the vicinity of Salinas and Bahía de Jobos between<br>the Río Jueyes and Río Guamaní                           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing the potentiometric surface in the Río Jueyes to Río Guamaní part of the South Coast aquifer during March 1986.                                                                                     | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing the potentiometric surface in the South Coast aquifer in the vicinity of Salinas during July 2002.                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing the potentiometric surface in the South Coast aquifer in the vicinity of Salinas during July 2004.                                                                                                 | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing finite difference grid and boundary conditions for model layers<br>1 through 5                                                                                                                     | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing specified altitudes for top of model layers 1 and 2.                                                                                                                                               | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing specified altitudes for bottom of model layers 1 through 5                                                                                                                                         | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing simulated potentiometric surface for model-calibrated conditions during March 1986                                                                                                                 | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Observed and simulated water levels between 1986 and 2004 at selected wells within the study area                                                                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing simulated potentiometric surface for model-calibrated conditions during 2002.                                                                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing simulated potentiometric surface for model-calibrated conditions during 2004 and posted residuals.                                                                                                 | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing final calibrated horizontal hydraulic conductivity values assigned<br>to each of the five model layers for the South Coast aquifer between the<br>Río Jueyes and Río Guamaní, southern Puerto Rico | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing final storage values assigned to each of the five model layers for<br>the South Coast aquifer between the Río Jueyes and the Río Guamaní,<br>southern Puerto Rico                                  | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Map showing recharge rates assigned to uppermost active layer (layer 1 or 2)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                | Estuarine Research Reserve and extent of deposits of the South Coast<br>aquifer, Puerto Rico.<br>Graph showing comparison of (A) annual and (B) monthly rainfall at the Aguirre<br>Central National Weather Service Station, and (C) groundwater level at the<br>USGS Piezometer C observation well.<br>Map showing locations of geographic features, hydrologic features, and streamflow<br>measurements sites in the study area.<br>Spatial extent of sugar-cane cultivation in the study area during 1986 as inferred<br>from the distribution of flood-irrigation areas.<br>Distribution of active agricultural areas with microdrip and center-pivot irrigation<br>in the study area during 2002.<br>Graph showing irrigation water deliveries from Canal de Patillas and rainfall<br>from 1985 to 2005.<br>Map showing sand and gravel percentage and interpretative structure in the<br>South Coast aquifer in the vicinity of Salinas and Bahía de Jobos<br>Map showing generalized distribution of hydraulic conductivity in the<br>South Coast aquifer in the vicinity of Salinas and Bahía de Jobos between<br>the Rio Jueyes and Rio Guamaní.<br>Map showing the potentiometric surface in the Río Jueyes to Río Guamaní<br>part of the South Coast aquifer during March 1986.<br>Map showing the potentiometric surface in the South Coast aquifer in the vicinity<br>of Salinas during July 2002.<br>Map showing the potentiometric surface in the South Coast aquifer in the vicinity<br>of Salinas during July 2004.<br>Map showing finite difference grid and boundary conditions for model layers<br>1 through 5.<br>Map showing specified altitudes for top of model layers 1 and 2.<br>Map showing simulated potentiometric surface for model-calibrated conditions<br>during March 1986.<br>Observed and simulated potentiometric surface for model-calibrated conditions<br>during 2002.<br>Map showing simulated potentiometric surface for model-calibrated conditions<br>during 2004 and posted residuals.<br>Map showing simulated potentiometric surface for model-calibrated conditions<br>during 2004 and posted residuals.<br>Map showing simulated potentiometric surface for model-calibrated condition |

| 20. | Sensitivity analysis based on transient simulation using the residual standard deviation from water-level hydrographs                                                                                                                                                                                                                                                                                                                 | .49 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 21. | Calibrated transient model simulated water budget for annual stress periods 1986 through 2004.                                                                                                                                                                                                                                                                                                                                        | .52 |
| 22. | Graph showing model simulated flow to the mangroves (part of the general-head<br>boundary cells in model layer 2) in the Jobos Bay National Estuarine Research<br>Reserve near Salinas, Puerto Rico (A) as obtained in calibrated transient model<br>and (B) flux to mangroves with a 10-year stress period added while maintaining<br>2004 pumping rates with average precipitation and with 75 percent of average<br>precipitation. | .53 |
| 23. | Graph showing model simulated groundwater flux to the mangrove area in the<br>Jobos Bay National Estuarine Research Reserve and required water from<br>sources for each of the groundwater management strategies tested                                                                                                                                                                                                               | .56 |
| 24. | Map showing model-simulated potentiometric surface in the South Coast<br>aquifer after 10-years of average rainfall recharge and 2004 pumpage<br>with artificial recharge by use of injection wells located north of Jobos<br>Bay National Estuarine Research Reserve boundary, Salinas, Puerto Rico<br>(alternative 1).                                                                                                              | .57 |
| 25. | Map showing model-simulated potentiometric surface in the South Coast<br>aquifer for 2014 following 10 years of average recharge and 2004 pumpage<br>rates, and incorporating artificial recharge applied over agricultural areas<br>north of Jobos Bay National Estuarine Research Reserve, Salinas,<br>Puerto Rico. (alternative 2).                                                                                                | .58 |
| 26. | Map showing the model-simulated potentiometric surface in the South Coast<br>aquifer for 2014 following 10 years of average recharge and 2004 pumpage<br>rates, except at wells located in the area bounded by Canal de Patillas,<br>Jobos Bay National Estuarine Research Reserve, Hacienda Magdalena,<br>and Cerro Aguirre (alternative 3).                                                                                         | .59 |
| 27. | Map showing model-simulated potentiometric surface in the South Coast<br>aquifer for 2014 following 10 years of average recharge and a 50 percent<br>reduction in 2004 pumpage rates from agricultural use wells<br>(alternative 4)                                                                                                                                                                                                   |     |
| 28. | Map showing model-simulated potentiometric surface in the South Coast<br>aquifer for 2014 following 10 years of average recharge incorporating<br>artificial recharge applied over an area of about 587 acres north of the<br>Jobos Bay National Estuarine Research Reserve and a 50 percent<br>reduction in 2004 pumpage rates from agricultural use wells<br>(alternative 5).                                                       |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |

## Table

| 1. | Drainage area of principal streams in the study area                                                                                                     | 5  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Miscellaneous streamflow measurements or observations along<br>Canal de Patillas and Río Nigua.                                                          | 8  |
| 3. | Estimated streamflow infiltration into the alluvial aquifer, 1986 to 2004                                                                                | 10 |
| 4. | Estimates of agricultural areas and water requirements for 1986, 1991,<br>and 2002, in the vicinity of Salinas and Jobos areas, Puerto Rico              | 14 |
| 5. | Estimated horizontal hydraulic conductivity from specific-capacity data                                                                                  | 18 |
| 6. | Composite scaled sensitivity for selected parameters, steady-state simulation for existing conditions in 1986.                                           | 45 |
| 7. | Model derived water budget for the steady-state simulation for 1986                                                                                      | 50 |
| 8. | Summary of years where irrigation return flow occurs, precipitation conditions are less than average, and model simulated water budget indicates estuary |    |
|    | water enters the South Coast aquifer.                                                                                                                    | 54 |

## Appendix

| 1.   | Estimated average annual rates of groundwater withdrawals in the Río Jueyes to Río Guamaní part of the South Coast aquifer from 1986 to 2004                                                                                                                                     | 68 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2a.  | Lithologic description for test boring SC-2 at Salinas, Puerto Rico,<br>March 16-17, 1987                                                                                                                                                                                        | 70 |
| 2b.  | Lithologic description for test boring SC-3 at Guayama, Puerto Rico,<br>March 19-20, 1987                                                                                                                                                                                        | 71 |
| 3.   | General information for wells in the South Coast aquifer between the<br>Río Jueyes and Río Guamaní used in this study                                                                                                                                                            | 72 |
| 4. L | ithologic and construction data for the JBNERR East 1 and 2 and JBNERR West 1 and 2 piezometer nests installed near the northern boundary of the Jobos Bay Nationa Estuarine Research Reserve. JBNERR 1 and JBNERR 2 reference nos. are 184 and 185, respectively, in appendix 3 |    |
| 5.   | Zoned recharge values used for transient calibration                                                                                                                                                                                                                             | 82 |
| 6a.  | Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004                                                                                                                                                                 | 85 |
| 6b.  | Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004                                                                                                                                                                 | 88 |
| 6c.  | Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004                                                                                                                                                                 | 90 |

## Plate

| 1.  | Transects along the study area used in constructing fence diagrams                                                                                                              | 93  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.  | Part of the South Coast aquifer between the Río Jueyes and Río Guamaní<br>in south central Puerto Rico for which a digital groundwater flow model                               |     |
|     | was developed                                                                                                                                                                   | 94  |
| 3.  | Generalized surficial geology in the south coastal plain from Río Jueyes to<br>Río Guamaní area, Puerto Rico                                                                    | 95  |
| 4.  | Fence diagrams showing the spatial variation in thickness of undifferentiated gravel and sand units of the fan-delta deposits in the study area.                                | 96  |
| 5.  | The altitude of the top of the permeable aquifer deposits (equivalent to the base of semi-confining clay and silt deposits).                                                    | 97  |
| 6a. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>1A through 1B              | 98  |
| 6b. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>2A through 2E.             | 99  |
| 6c. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>2F through 2J.             | 100 |
| 6d. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>3A through 3F              | 101 |
| 6e. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>3G through 3K              | 102 |
| 6f. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>4A through 4E.             | 103 |
| 6g. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>5A through 5E <sup>´</sup> | 104 |
| 6h. | Transects of Continuous Resistivity Profiles and corresponding Interpretation<br>of the distribution of resistivity with depth along survey lines<br>6A through 6D              | 105 |
| 7.  | Estimated spatial distribution of the base of the South Coast aquifer within the study area.                                                                                    |     |
|     |                                                                                                                                                                                 |     |

## **Conversion Factors, Datum, and Acronyms**

| Multiply                                          | Ву                   | To obtain                                             |
|---------------------------------------------------|----------------------|-------------------------------------------------------|
|                                                   | Length               |                                                       |
| inch (in.)                                        | 2.54                 | centimeter (cm)                                       |
| foot (ft)                                         | 0.3048               | meter (m)                                             |
| mile (mi)                                         | 1.609                | kilometer (km)                                        |
|                                                   | Area                 |                                                       |
| acre                                              | 4,047                | square meter (m <sup>2</sup> )                        |
| acre                                              | 0.4047               | hectare (ha)                                          |
| square mile (mi <sup>2</sup> )                    | 2.590                | square kilometer (km <sup>2</sup> )                   |
|                                                   | Volume               |                                                       |
| acre-foot (acre-ft)                               | 1,233                | cubic meter (m <sup>3</sup> )                         |
| acre-foot (acre-ft)                               | 0.001233             | cubic hectometer (hm <sup>3</sup> )                   |
|                                                   | Flow rate            |                                                       |
| gallon per minute (gal/min)                       | 0.06309              | liter per second (L/s)                                |
| acre-foot per year (acre-ft/yr)                   | 1,233                | cubic meter per year (m <sup>3</sup> /yr)             |
| foot per day (ft/d)                               | 0.3048               | meter per day (m/d)                                   |
| foot per year (ft/yr)                             | 0.3048               | meter per year (m/yr)                                 |
| cubic foot per second (ft <sup>3</sup> /s)        | 0.02832              | cubic meter per second (m <sup>3</sup> /s)            |
| million gallons per day (Mgal/d)                  | 0.04381              | cubic meter per second (m <sup>3</sup> /s)            |
| inch per year (in/yr)                             | 25.4                 | millimeter per year (mm/yr)                           |
|                                                   | Specific capacity    |                                                       |
| gallon per minute per foot [(gal/min)/ft)]        | 0.2070               | liter per second per meter<br>[(L/s)/m]               |
| Transr                                            |                      |                                                       |
| foot squared per day (ft²/d)                      | 0.09290              | meter squared per day (m <sup>2</sup> /d)             |
|                                                   |                      |                                                       |
| parts per million (ppm)                           | 1                    | milligrams per liter (mg/L)                           |
| S                                                 | Specific Conductance |                                                       |
| $\mu$ S/cm (microsiemens per centimeter at 25 °C) | 0.55 to 0.75 **      | milligrams per liter (mg/L) of total dissolved solids |

"Transmissivity and Conductance: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness  $[(ft^3/d)/ft^2]ft$ . In this report, the mathematically reduced form, foot squared per day  $(ft^2/d)$ , is used for convenience.

\*\*Range in multiplier is typical for natural waters (Hem, 1985).

Altitude, as used in this report, refers to distance above the vertical datum.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

#### °C=(°F-32)/1.8

Vertical coordinate information is refered to local mean sea level. Horizontal information is referenced to the Puerto Rico Datum, 1940 Adjustment.

#### Acronyms

| CRP    | Continuous resistivity profiling                              |
|--------|---------------------------------------------------------------|
| GPS    | Global positioning system                                     |
| JBNERR | Jobos Bay National Estuarine Research Reserve                 |
| NOAA   | National Oceanographic and Atmospheric Administration         |
| NWS    | National Weather Service                                      |
| PRDNER | Puerto Rico Department of Natural and Environmental Resources |
| USGS   | U.S. Geological Survey                                        |

## Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico

By Eve L. Kuniansky and José M. Rodríguez

### Abstract

Since 1990, about 75 acres of black mangroves have died in the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico. Although many factors can contribute to the mortality of mangroves, changes in irrigation practices, rainfall, and water use resulted in as much as 25 feet of drawdown in the potentiometric surface of the aquifer in the vicinity of the reserve between 1986 and 2002. To clarify the issue, the U.S. Geological Survey, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, conducted a study to ascertain how aquifer development and changes in irrigation practices have affected groundwater levels and groundwater flow to the Mar Negro area of the reserve.

Changes in groundwater flow to the mangrove swamp and bay from 1986 to 2004 were estimated in this study by developing and calibrating a numerical groundwater flow model. The transient simulations indicate that prior to 1994, high irrigation return flows more than offset the effect of reduced groundwater withdrawals. In this case, the simulated discharge to the coast in the modeled area was 19 million gallons per day. From 1994 through 2004, furrow irrigation was completely replaced by micro-drip irrigation, thus eliminating return flows and the simulated average coastal discharge was 7 million gallons per day, a reduction of 63 percent. The simulated average groundwater discharge to the coastal mangrove swamps in the reserve from 1986 to 1993 was 2 million gallons per day, compared to an average simulated discharge of 0.2 million gallons per day from 1994 to 2004. The average annual rainfall for each of these periods was 38 inches. The groundwater discharge to the coastal mangrove swamps in the Jobos Bay National Estuarine

Research Reserve was estimated at about 0.5 million gallons per day for 2003-2004 because of higher than average annual rainfall during these 2 years.

The groundwater flow model was used to test five alternatives for increasing groundwater discharge to the coastal mangrove swamps to approximately 1.4 million gallons per day: (1) artificially recharging the aquifer with injection wells or (2) by increasing irrigation return flow by going back to furrow irrigation; (3) termination of groundwater withdrawals near the mangroves; (4) reduction of groundwater withdrawals at irrigation wells by 50 percent; and (5) a combination of alternatives 2 and 4 increasing irrigation return flows and decreasing irrigation withdrawals. Each alternative assumed average climatic conditions and groundwater withdrawals at 2004 rates. Alternative 1 required 1.5 million gallons per day of injected water. Alternative 2 required flooding 958 acres with a rate of 1.84 million gallons per day if no crops are grown. Alternative 3 required the termination of 2.44 million gallons per day of withdrawals to achieve 1.34 million gallons per day of discharge to the mangroves. Alternative 4 did not achieve the objective with only 0.80 million gallons per day simulated discharge to the mangroves, while requiring a 1.26 million gallon per day reduction in groundwater withdrawals. Alternative 5 required flooding fields with additional 1.13 million gallons of day and the same reduction in groundwater withdrawals, but did achieve the objective of about 1.4 million gallons per day discharge to the mangroves. Alternative 1, incorporating injection wells near the reserve required the least amount of water to raise groundwater levels and maintain discharge of 1.4 million gallons per day through the mangroves.

### Introduction

The Jobos Bay National Estuarine Research Reserve (JBNERR), commonly known as Jobos Bay Estuary, is one of 26 estuarine areas under the National Estuarine Research System designated by the National Oceanographic and Atmospheric Administration (NOAA) in 1981. The JBNERR is located near Salinas on the north side of Jobos Bay (labeled in Spanish as Bahía de Jobos on figures and plates herein) on the south coast of Puerto Rico (fig. 1. and plate 1). The reserve was established under the Coastal Zone Management Act of 1972, and is managed by the Puerto Rico Department of Natural and Environmental Resources (PRDNER) in cooperation with the NOAA Office of Ocean and Coastal Resource Management. The JBNERR covers 2,833 ac (acres) of mangrove forest and diverse habitats from the landward transition zone of coastal fan-delta and alluvial deposits to offshore cays in the Caribbean Sea. The habitats represented at the JBNERR include salt flats and mudflats, shallow lagoons, fringing reefs, several offshore cays, and a diverse mangrove forest lying mostly within 15 islets.

Since about 1990, about 75 ac of mature black mangroves have died in the part of the JBNERR near Mar Negro (plate1). In the affected area, not only have mature mangroves died, but the density of new seedlings has been reduced and their growth seriously inhibited (Angel Dieppa, Puerto Rico Department of Natural and Environmental Resources Jobos Bay National Estuarine Research Reserve, oral commun., 2005). The area with the affected mangroves lies immediately south of intensively cultivated agricultural land within the Salinas fan delta (fig. 1). Mangrove mortality can be caused by many factors, including hurricanes, storms, tsunamis, droughts, hydrologic changes, erosion and subsidence, hypersalinity, and pollution (Jimenez and others 1985). Additionally, naturally occurring events such as hurricanes can lead to the expansion and contraction of the areas of red versus black mangroves (Cintrón and others, 1978; Pool and others, 1977). However, the affected mangrove stand is over 30 years old and its proximity to farms bordering the JBNERR may indicate that the hydrology within the stand has changed as a result of changes in irrigation practices, water use, and rainfall. The most important change in agriculture in the Salinas fan-delta area has been the abandonment of sugarcane mono-culture, practiced from the early 1900s to the 1990s, and its replacement by the cultivation of diversified crops such as corn, sorghum, and truck farm crops. In addition, furrow irrigation was replaced by more efficient watering techniques such as micro-drip irrigation in truck farm crops and irrigation by centerpivot overhead sprinklers in corn and sorghum crops. As a result of these changes, surface-water-derived irrigation deliveries within the Salinas fan delta decreased from a maximum of 9,400 ac-ft/yr (acre-feet per year) in 1950 to 6,000 ac-ft/yr in 1986, and decreased further to about 1,700 ac-ft in 2004 after sugarcane cultivation had ceased in the area. Micro-drip irrigation systems apply water more efficiently to the root zone of the plants than furrow irrigation; however, only a small percentage of the water applied through micro-drip irrigation recharges the aquifer. This is in contrast to the furrow irrigation method in which as much as an estimated 30 percent of the water applied at land surface recharges the aquifer (Bennett, 1976; Kuniansky and others, 2004).

As indicated by data from the U.S. Geological Survey (USGS) piezometer C observation well, the potentiometric surface in the Salinas fan aquifer generally declined from 1993 to 1997, primarily because of (1) reduced recharge to the local aquifer with the cessation of sugarcane cultivation; (2) below-average rainfall during 1993 to 1995; and (3) relatively constant groundwater withdrawals for public supply, agricultural, and industrial use (fig. 2). By 1995, groundwater levels in the Salinas fan were below those of 1986 by as much as 25 ft (feet) (Torres-González and Gómez-Gómez, 1987; Rodríguez, 2005). Groundwater levels recovered in 1999 from above normal rainfall and then continued to decline and did not recover to conditions similar to 1986 until an extreme rainfall event occurred in November 2003 (fig. 2). Thus, it is reasonable to assume that the aquifer head within the affected mangrove area was also lowered, from 3 to 5 ft above mean sea level in 1986 to below mean sea level by 1995 until about November 2003. The relative effect that these changes in land/agricultural use, irrigation practices, and resultant lowering of the potentiometric surface may have had on the ecological health of the black mangrove forest is unknown. As part of the mission of the USGS in regards to management of water and biological resources, the USGS, in cooperation with the PRDNER, conducted a study to ascertain how aquifer development and changes in irrigation practices have impacted groundwater levels and groundwater flow to the Mar Negro area of JBNERR (plate 1).

#### Purpose and Scope

The purpose of this report is to document changes in irrigation practices and aquifer development in the vicinity of the JBNEER and to quantify changes in groundwater discharge into the JBNERR. These objectives were accomplished by collecting, synthesizing, and analyzing data, and developing a numerical groundwater flow model calibrated to transient conditions from 1986 through 2004. The period chosen covers a range of hydrologic conditions, such as flooding and droughts, and the switch

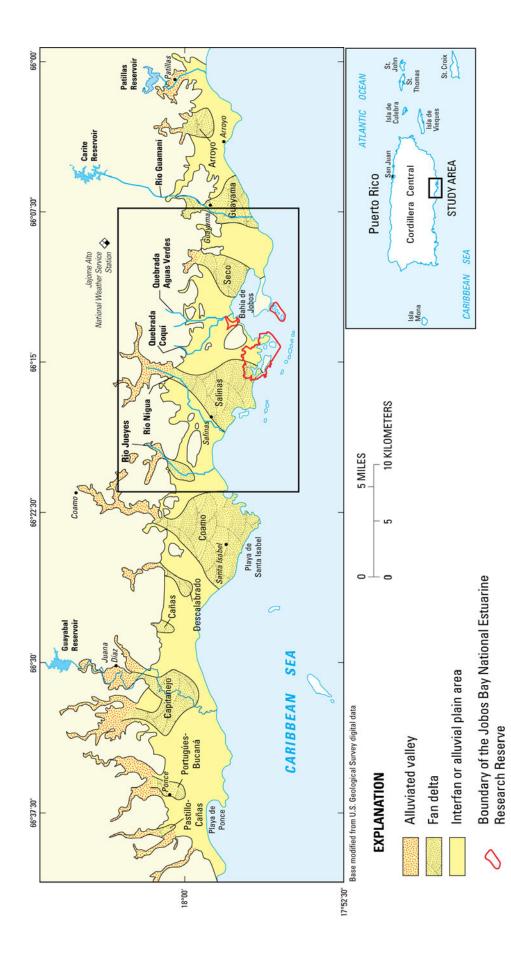
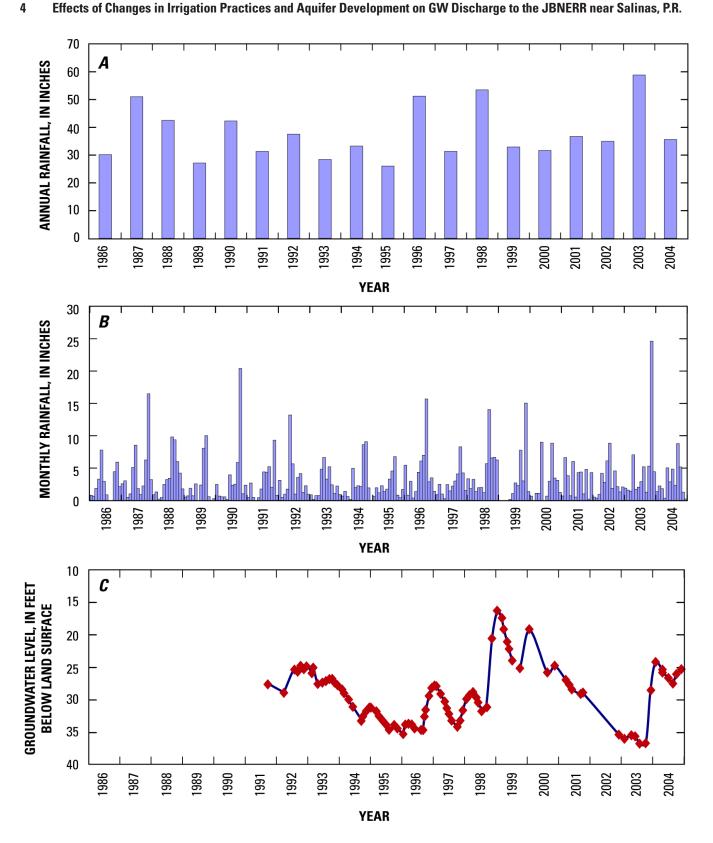




Figure 1. Location of the study area and the Jobos Bay National Estuarine Research Reserve and extent of deposits of the South Coast aquifer, Puerto Rico (modified from Renken and others, 2002).



Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.

Figure 2. Comparison of (A) annual and (B) monthly rainfall at the Aguirre Central National Weather Service Station, and (C) groundwater level at the USGS Piezometer C observation well.

from furrow to micro-drip irrigation practices. Most of the study was concentrated on the Salinas fan delta along the Río Nigua, north of the JBNERR.

This report documents the hydrologic setting and geologic setting; freshwater discharge in the estuary and freshwater/seawater interface locations, determined with continuous resistivity profiling (CRP); historical changes in land use, surface-water use, and groundwater use; digital model development and calibration; and alternative water-management strategies. Three alternative water-management strategies were tested with the calibrated model: (1) artificially recharging the aquifer, (2) reducing groundwater withdrawals, and (3) a combination of both alternatives 1 and 2. These strategies were designed to maintain drawdown within the wetlands to at or above mean sea level throughout the mangrove forest, including periods of below average rainfall and increased discharge through the mangrove swamp to near predevelopment average rates.

Data in this report are presented in English customary units excluding the CRP data. The CRP data were collected during the surveys and presented in this report in International System (SI) units.

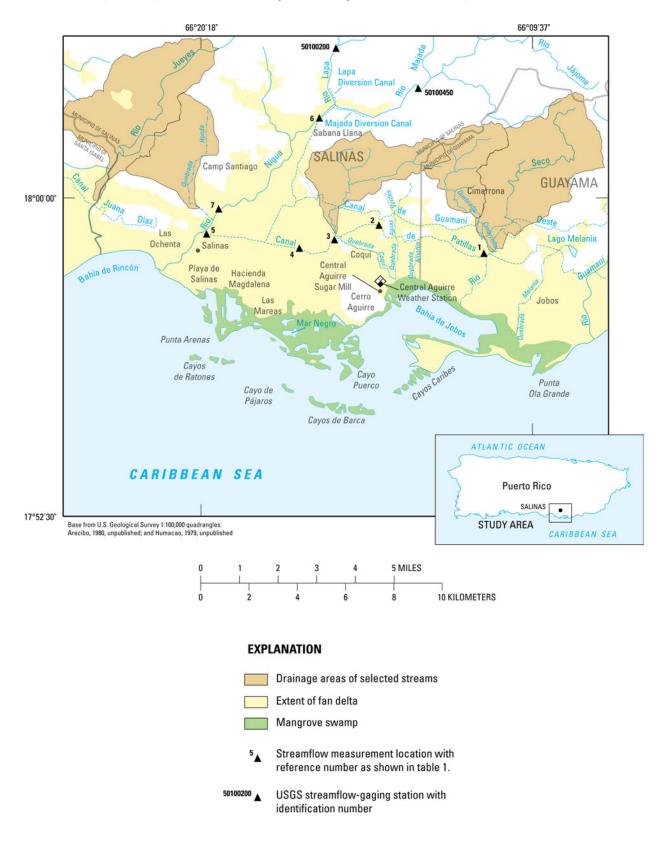
#### **Description of the Study Area**

The study area, which includes the Salinas fan delta and alluvial deposits, is in the eastern part of the South Coastal Plain of Puerto Rico, about 20 mi (miles) east of Ponce within the municipios of Salinas and Guayama (fig. 1). The principal aquifer in the study area is part of the South Coast aquifer (Gómez-Gómez, 1987 and 1991; Renken and others, 2002), which is composed of fandelta, interfan, and alluvial valley deposits (called the aquifer for the remainder of this report (fig. 1)). Near the coastline, the study area is characterized by the presence of a series of interconnected environments: mangrove swamps, coastal lagoons, and salt and tidal flats (fig. 3). The study area (fig. 1) has an area of 36 square miles (mi<sup>2</sup>) and is bordered to the north by foothills of the Cordillera Central mountain range, to the south by the Caribbean Sea, the Río Jueyes to the west, and the Río Guamaní to the east. The altitude of the alluvial valley and fan deltas ranges from sea level to approximately 130 ft above sea level along the northern edge of the foothills.

The study area is on the leeward side of the island and is characterized by a parched vegetative cover except in agricultural areas. All major streams in the study area flow only during major rainfall events. The Canal de Patillas and Canal de Guamaní are the major surfacewater irrigation canals in the Río Jueyes to Río Guamaní area (fig. 3). These canals are part of a more extensive irrigation infrastructure that includes the Guayabal reservoir (fig. 1) and Canal de Juana Díaz, both west of the study area; the Patillas (fig. 1) and Melanía reservoirs, which supply the Canal de Patillas and Canal Guamaní, respectively; and the Carite reservoir (fig.1), which also supplies the Canal de Guamaní.

### **Hydrologic Setting**

The South Coast Plain is warmer and drier than the rest of the island and lies within the rain shadow of the east-west trending Cordillera Central mountain range to the north. Annual average rainfall increases from the southern coast northward toward the Cordillera Central mountain range. As in the rest of the South Coast Plain, rainfall distribution is seasonal, with distinct wet and dry seasons. However, large storm systems can move toward Puerto Rico from the south and create higher than average rainfall and flooding over the south coast, as occurred in 1985 and 2003 (fig. 2*A*). Evapotranspiration from the aquifer is restricted to less than 1 mi (mile) from the coast, where the water table is at or near the ground surface.


The principal streams in the study area from west to east are the Río Jueyes, Río Nigua (also referred as Río Nigua de Salinas), Río Seco, and Río Guamaní; the minor streams include the Quebrada Honda, Quebrada Coquí, and Quebrada Cimarrona (fig. 3). The Río Nigua and Río Guamaní intermittently flow southward from the mountains across the coastal plain toward the sea. The Río Jueyes and Río Seco along with Quebrada Honda, Quebrada Coquí, and Quebrada Cimarrona flow only during extreme rainfall events. The drainage areas of these streams are presented in table 1.

**Table 1.**Drainage area of principal streams in the studyarea.

| Description        | Drainage area (mi²) |
|--------------------|---------------------|
| Rio Jueyes         | 7.82                |
| Rio Seco           | 7.85                |
| Quebrada Honda     | 3.51                |
| Quebrada Coqui     | 4.73                |
| Quebrada Cimarrona | 2.93                |
| Río Lapa           | 9.92                |
| Río Majada         | 16.7                |

In the study area and along the rest of the South Coast Plain, streams lose water to the aquifer. As a result, most streams lose their base flow and part of their stormflow to the aquifer in their middle and upper reaches, and do not flow across the entire coastal plain except shortly after rainfall-runoff events. Near the coast, the water table occasionally rises above the altitude of

#### 6 Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.



the stream channel beds and groundwater discharge to the streams occurs.

In addition to streams, a series of irrigation canals were constructed to convey surface water to the agricultural areas. The most important irrigation canals in the study area are the Patillas and Guamaní Canals. The Canal de Patillas conveys water from Lago Patillas (fig. 1), located north of the town of Patillas, east of the study area. Water for the Canal de Guamaní is diverted from Lago Carite (fig. 1)—located in the headwaters of the Río de la Plata on the northern side of the Cordillera Central—to the Río Guamaní in Guayama in the eastern part of the study area.

#### **Rainfall, Evapotranspiration, and Net Recharge**

The mean annual rainfall at a National Weather Service (NWS) station within the study area (Central Aguirre NWS station 660152) is about 40 in. (inches), compared to about 77 in. at 2,388 ft (feet) altitude in the Cordillera Central (Jájome Alto NWS station 664867) and about 53 in. at San Juan on the north coast (NWS station 668812). The mean monthly rainfall at the Central Aguirre National Weather Service (NWS) station ranges from 1.17 to 6.89 in. (National Oceanic and Atmospheric Administration, 2005). The dry season occurs from December to April, with March usually being the driest month (fig. 2B). The wet season occurs from May to November, with October being the wettest month. Monthly rainfall during 2002-2003 was below average during the first 10 months, followed in November 2003 by an extremely wet storm event (Rodríguez, 2006). The mean monthly temperature from 1955 to 2004 at the Central Aguirre NWS station ranged from 30 °C in January to 32 °C in August.

Evapotranspiration data were not collected as part of this study. However, Bennett (1976) obtained a maximum evapotranspiration rate of about 65 in/yr (inches per year) from a regional electric analog model of the South Coast aquifer when the water table is at or near the land surface. According to Bennett (1976), evapotranspiration decreases linearly to 0 in/yr once the depth to water table exceeds 6 ft below land surface. The depth to the water table throughout most of the study area exceeds 6 ft below land surface, except near the coast. Thus, substantial evapotranspiration rates from the aquifer may be restricted to areas along the coast where the water table is near or at the land surface—mangrove swamps, tidal flats, and salt flats.

Net areal recharge ("net recharge" herein) is the amount of precipitation that recharges an aquifer and equals precipitation minus surface runoff and evapotranspiration. Infiltration of surface-runoff is an intermittent process associated with rainfall; most runoff drains into streams and a small percentage infiltrates

the soil zone. In contrast, evapotranspiration is a more continuous process that occurs from the soil zone through the plant root zone. Evapotranspiration from the soil zone greatly reduces net recharge. Giusti (1971) and Ramos-Ginés (1994) estimated that, on average, 10 percent of rainfall in the adjacent Coamo and the Santa Isabel-Juana Díaz areas is net recharge to the aquifer. However, McClymonds and Díaz (1972) speculated that greater than 10 percent of the rainfall may recharge the water table during wet years, and that less than 10 percent of the rainfall may recharge the water table during dry years. Kuniansky and others (2004) refined the estimate of net recharge through transient calibration of a digital groundwater flow model of the contiguous Santa Isabel area directly west of the current study area (fig. 1). The net recharge estimates from Kuniansky and others (2004) are 4 percent (30 in.) of the annual rainfall for dry years, 12 percent (40 in.) of the annual rainfall for wet years, and 8 percent (30-40 in.) of annual rainfall for average years.

#### **Streamflow Estimates**

Miscellaneous and instantaneous streamflow measurements were made at various sites and dates along the Canal de Patillas during this and earlier studies (table 2, fig.3). The measured streamflow ranged from 0 to 5.39 ft<sup>3</sup>/s (cubic feet per second). The variation in streamflow may be ascribed to several causes: (1) nonuniform deliveries from Lago Patillas, (2) diversions by farmers for irrigation along the canal trajectory, and (3) losses by evapotranspiration and infiltration into the aquifer.

The only streams with long-term continuous streamflow data in the study area are the Río Lapa near Rabo del Buey (fig. 3; station 50100200) and the Río Majada at La Plena (station 50100450). Both streamgaging stations are near the foothills of the Cordillera Central mountain range, north of the coastal plain, where the streams are perennial; no reservoirs are present within these stream courses. Analysis of the flow record was made by hydrograph separation using the computer code PART (Rutledge, 1993) and mean daily discharge data; the data files were retrieved from the USGS National Water Information System web server on August 30, 2005. The average base flows estimated for 1989 to 2002 at the Río Lapa and Río Majada stations are 2.55 ft<sup>3</sup>/s and 3.69 ft<sup>3</sup>/s, respectively. At the Río Lapa station, the mean daily flow was higher than the mean daily base flow during 51 percent of the days, with a maximum mean daily flow of 1,900 ft<sup>3</sup>/s. At the Río Majada station, the mean daily flow was higher than the mean daily base flow during 59 percent of the days with a maximum mean daily flow of 2,270 ft<sup>3</sup>/s. Because the period of record is only of 14 years, another frequency

| Nigua.                     |
|----------------------------|
| d Río                      |
| de Patillas and            |
| e Pai                      |
| nal d                      |
| Car                        |
| along                      |
| vations                    |
| r obser                    |
| measurements or            |
| Miscellaneous streamflow I |
| Table 2.                   |

[All values are in cubic foot per second ( $ft^3/s$ ) and a blank in a column indicates no measurement or observation made that date. Locations are shown on figure 3]

| Reference<br>number     | Station description                                                                     |                           |                     |          | Date      | Date of measurement or observation | ent or observ | ation                                                       |           |           |           |
|-------------------------|-----------------------------------------------------------------------------------------|---------------------------|---------------------|----------|-----------|------------------------------------|---------------|-------------------------------------------------------------|-----------|-----------|-----------|
|                         |                                                                                         | 3/19/1986                 | 10/31/2001 7/9/2002 | 7/9/2002 | 2/23/2005 | 3/23/2005                          | 4/28/2005     | 3/23/2005 4/28/2005 6/21/2005 7/12/2005 8/25/2005 9/13/2005 | 7/12/2005 | 8/25/2005 | 9/13/2005 |
| 1                       | Canal de Patillas at Hwy 713                                                            | 5.03                      | 8.60                |          |           |                                    |               |                                                             |           |           |           |
| 2                       | Canal de Patillas at Hwy 706                                                            | 4.05                      |                     | 3.75     | 2.03      | 4.1                                | 5.39          |                                                             |           |           |           |
| 3                       | Canal de Patillas at Sabater                                                            | 3.89                      | 5.62                | 3.36     | 2.05      | 3.53                               | 4.64          |                                                             | 3.64      | 2.94      | 2.15      |
| 4                       | Canal de Patillas at Fortuna                                                            | $\overset{\circ}{\omega}$ |                     | 2.22     | 1.67      | 2.85                               | 4.32          |                                                             | 3.58      | 2.98      | 0.85      |
| 5                       | Canal de Patillas at Salinas                                                            | 0                         |                     | 0.51     | 0.61      | 1.21                               | 2             |                                                             | 2.88      | 1.9       | 0.32      |
| 9                       | R. Nigua at Sabana Llana                                                                |                           |                     |          | 3.19      | 1.14                               | 0.61          | 3.45                                                        | 27.4      | 8.17      | 3.75      |
| 7                       | R. Nigua at Camp Santiago <sup>1</sup>                                                  |                           |                     |          | Dry       | Dry                                | Dry           | Dry                                                         | Flowing   | Dry       | Dry       |
| <sup>1</sup> Observatic | <sup>1</sup> Observation at R. Nigua at Camp Santiago on 10/03/05 (1600 hours): no flow | /05 (1600 hours           | ): no flow          |          |           |                                    |               |                                                             |           |           |           |

statistic to consider is the percent of time daily base flow equaled or exceeded the 1989-2002 estimated average base flow, which was 61 and 21 percent of the days at the Río Lapa and Río Majada stations, respectively.

The estimated annual base flow for Río Majada and Río Lapa for 1986-1988 and 2003-2004, shown in table 3, are based on linear regressions of annual rainfall data from the NWS Jájome Alto station (664867). The regression equation for calculating base flow in inches over the Río Majada basin is:

$$BF_{M} = -5.62 + 0.1299R_{I} \tag{1}$$

Where  $BF_M$  is the estimated or predicted value of base flow over the Río Majada drainage area in inches and  $R_j$  is the annual rainfall in inches at Jájome Alto. This regression had an R<sup>2</sup> value of 0.62 and an F-significance of 0.00126. Thus, this regression explains 62 percent of the variation in base flow and should not be rejected because the F-significance is small. The regression equation for calculating base flow in inches over the Río Lapa basin is:

$$BF_L = -8.21 + 0.1751R_J \tag{2}$$

Where  $BF_L$  is the estimated or predicted value of base flow over the Río Lapa drainage area in inches and  $R_J$ is the annual rainfall in inches at Jájome Alto. This regression has an R<sup>2</sup> value of 0.69 and an F-significance of 0.00039. Thus, this regression explains 69 percent of the variation in base flow and should not be rejected because the F-significance is small. The regression equation for the Río Lapa basin is statistically better than the regression equation for the Río Majada basin. The base flow in inches in table 2 for 1989 to 2002 was also determined using the PART program and daily discharge data retrieved on August 30, 2005.

#### **Infiltration Estimates**

Estimates of streamflow infiltration rates for the study area contain a large degree of uncertainty because the Río Lapa and Río Majada stations are the only continuous discharge measurement sites within the study area boundaries and are tributaries of the Río Nígua. Infiltration rates have not been determined during stormflow for Río Seco and Río Jueyes when these ephemeral streams flow across the coastal plain and discharge into the ocean. It is reasonable to assume, however, that infiltration rates (in cubic feet per second per mile of stream) for these streams are similar to those for Río Nigua, based on similarities in channel gradient and streambed deposits.

The first estimates of infiltration from the streams in the study area to the aquifer were made by McClymonds and Díaz (1972), who estimated an infiltration rate during February 1962 from the Río Nígua, mainly from base flow, of at least 5 ft<sup>3</sup>/s. The Río Seco and two minor creeks, Quebrada Cimarrona and Quebrada Coquí, flow throughout the year in the hills north of the coastal plain with a combined average flow ranging from about 4 to 6 ft<sup>3</sup>/s (McClymonds and Díaz,1972). According to McClymonds and Díaz (1972), all of this flow is absorbed into the groundwater flow system along the southern margin of these hills where the alluvium thickens. McClymonds and Díaz (1972) estimated an average infiltration rate from Río Guamaní to the South Coast aquifer for June of 1962 of about 1  $ft^3/s$ , mainly from base flow. Based on seepage run data collected during November 1961 and March 1962 in the streams that discharge into Jobos Bay, the groundwater discharge to the surface water and then to the bay was estimated as 13.8 ft<sup>3</sup>/s (McClymonds and Díaz, 1972). During those years, however, sugarcane was intensively cultivated and surface-water deliveries for irrigation may have contributed additional infiltration from irrigation return flow.

The long-term continuous streamflow data in combination with miscellaneous discharge measurements indicate that base flow infiltrates into the aquifer between streamgaging stations 6 and 7 on the Río Nigua (fig. 3 and table 2). On August 25, 2005, intense rainfall events generated flow exceeding 8 ft<sup>3</sup>/s at station 6 while station 7 remained dry, indicating that the infiltration rate was at least 8 ft<sup>3</sup>/s between the streamgaging stations. On July 12, 2005, flow at station 6 was 27.4 ft<sup>3</sup>/s and (unmeasured) flow was observed at station 7, indicating that the infiltration rate was less than 27 ft<sup>3</sup>/s. Most of the infiltration from the Río Nigua into the aquifer occurs upstream from the bridge on Highway 1 at the entrance to Camp Santiago (or generally north of latitude 18°00'54", plate 1). A pool of standing or slowly moving water is usually present in the channel of the Río Nigua downstream from the bridge on Highway 1 near the coast where the river intersects the water table.

A conservative estimate of the infiltration to the aquifer along the course of the Río Nigua is equal to the sum of the base flows at USGS stations 50100200 and 50100450 (table 3). The sum of the average base flows for both of these tributaries is 8 ft<sup>3</sup>/s.

The estimates for the infiltration to the aquifer from the other streams in the study area for 1986 to 2004 are based on the assumption that the base flow, expressed in inches per year, is half the average base flow over the Río Lapa and Río Majada drainage basins. Because the altitudes of the drainage areas of the other streams in the study generally are lower than those of the Río Lapa and the Río Majada, these lower drainage areas

#### Table 3. Estimated streamflow infiltration into the alluvial aquifer, 1986 to 2004.

[in., inches; ft<sup>3</sup>/s, cubic foot per second]

| Calendar<br>Year | Basei<br>(in/a    |                   |                    | Annual infiltration to aquifer (ft <sup>3</sup> /s) |          |            |                       |                   |       |
|------------------|-------------------|-------------------|--------------------|-----------------------------------------------------|----------|------------|-----------------------|-------------------|-------|
|                  | Río Lapa          | Río<br>Majada     | Along<br>Río Nigua | Quebrada<br>Coquí                                   | Río Seco | Río Jueyes | Quebrada<br>Cimarrona | Quebrada<br>Honda | Total |
| 1986             | <sup>1</sup> 6.37 | <sup>2</sup> 5.20 | 11.05              | 1.01                                                | 1.67     | 1.67       | 0.62                  | 0.75              | 16.77 |
| 1987             | <sup>1</sup> 8.49 | <sup>2</sup> 6.77 | 14.53              | 1.33                                                | 2.21     | 2.20       | 0.82                  | 0.99              | 22.08 |
| 1988             | <sup>1</sup> 5.94 | <sup>2</sup> 4.88 | 10.34              | 0.94                                                | 1.56     | 1.56       | 0.58                  | 0.70              | 15.68 |
| 1989             | 2.16              | 1.44              | 3.35               | 0.31                                                | 0.52     | 0.52       | 0.19                  | 0.23              | 5.12  |
| 1990             | 10.71             | 4.66              | 13.56              | 1.34                                                | 2.22     | 2.21       | 0.83                  | 0.99              | 21.15 |
| 1991             | 1.77              | 1.77              | 3.47               | 0.31                                                | 0.51     | 0.51       | 0.19                  | 0.23              | 5.22  |
| 1992             | 3.84              | 3.76              | 7.43               | 0.66                                                | 1.10     | 1.09       | 0.41                  | 0.49              | 11.18 |
| 1993             | 2.04              | 1.90              | 3.83               | 0.34                                                | 0.57     | 0.57       | 0.21                  | 0.25              | 5.77  |
| 1994             | 0.43              | 0.36              | 0.76               | 0.07                                                | 0.11     | 0.11       | 0.04                  | 0.05              | 1.14  |
| 1995             | 1.80              | 0.92              | 2.45               | 0.24                                                | 0.39     | 0.39       | 0.15                  | 0.18              | 3.80  |
| 1996             | 2.64              | 3.15              | 5.80               | 0.50                                                | 0.84     | 0.83       | 0.31                  | 0.37              | 8.65  |
| 1997             | 1.65              | 2.53              | 4.32               | 0.36                                                | 0.60     | 0.60       | 0.23                  | 0.27              | 6.38  |
| 1998             | 7.34              | 7.03              | 14.01              | 1.25                                                | 2.08     | 2.07       | 0.78                  | 0.93              | 21.12 |
| 1999             | 6.62              | 8.25              | 14.99              | 1.30                                                | 2.15     | 2.14       | 0.80                  | 0.96              | 22.34 |
| 2000             | 5.40              | 4.00              | 8.87               | 0.82                                                | 1.36     | 1.35       | 0.51                  | 0.61              | 13.52 |
| 2001             | 1.27              | 1.41              | 2.66               | 0.23                                                | 0.39     | 0.39       | 0.14                  | 0.17              | 3.98  |
| 2002             | 1.24              | 0.79              | 1.88               | 0.18                                                | 0.29     | 0.29       | 0.11                  | 0.13              | 2.88  |
| 2003             | <sup>1</sup> 9.26 | <sup>2</sup> 7.34 | 15.80              | 1.45                                                | 2.40     | 2.39       | 0.90                  | 1.07              | 24.01 |
| 2004             | <sup>1</sup> 8.13 | <sup>2</sup> 6.5  | 13.94              | 1.27                                                | 2.11     | 2.11       | 0.79                  | 0.95              | 21.17 |
| Average          | 4.58              | 3.82              | 8.05               | 0.73                                                | 1.22     | 1.21       | 0.45                  | 0.54              | 12.21 |

<sup>i</sup>These years were estimated by linear regression (base flow in inches at Río Lapa) = -8.21+0.1751 multiplied by (the annual rainfall at Jajome Alto in inches).

<sup>2</sup>These years were estimated by linear regression (base flow in inches at Río Majada) = -5.62 + 0.1299 multiplied by (the annual rainfall at Jajome Alto in inches)

may only receive half as much rainfall as the mountains, as indicated on areal precipitation maps (*http://www.climatesource.com/pr/fact\_sheets/fact\_precip\_pr.html*, accessed July 2, 2009). The annual estimated infiltration rates are shown in table 3 for Río Jueyes and Río Seco, along with Quebrada Honda, Quebrada Coquí, and Quebrada Cimarrona. The total estimated annual infiltration of the streams ranges from 1.15 to 24.0 ft<sup>3</sup>/s

from 1986 to 2004 and averages 12.2  $ft^3/s$ .

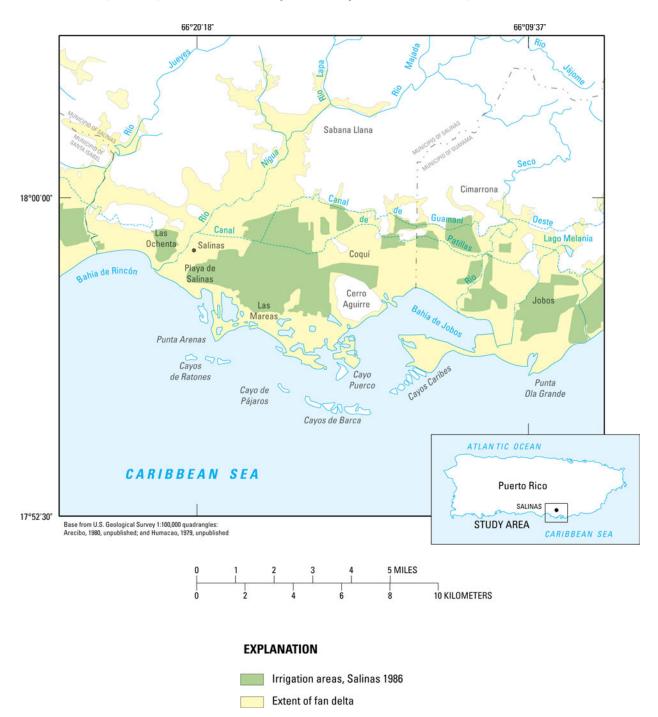
These estimates may be conservative because they are derived from base flow data, and daily base flow is exceeded on the monitored streams over 20 percent of the time. The average estimated infiltration, however, is similar to the previous estimates of McClymonds and Díaz (1972).

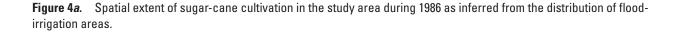
## History of Water Resources Development and Changes in Irrigation Practices

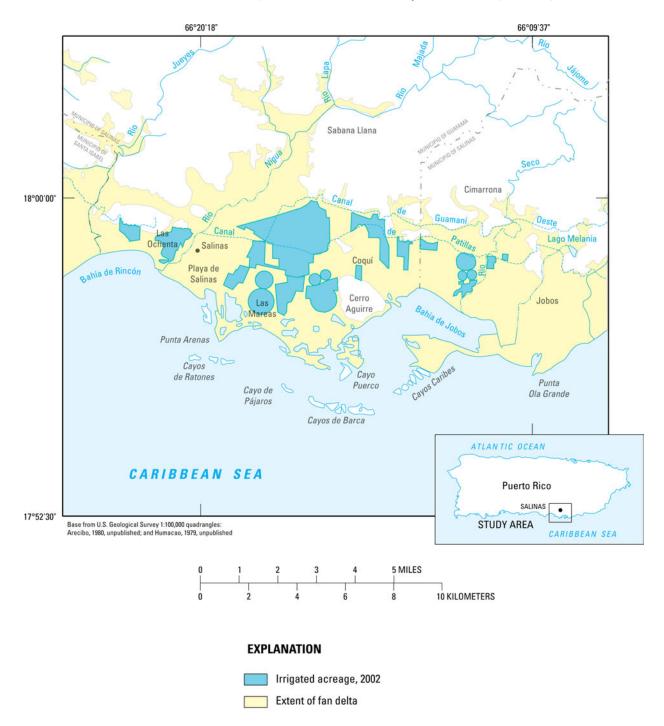
The historical changes in water resources development and agricultural practices near Salinas are representative of the entire South Coastal Plain. The hydrology of the South Coast aquifer, including the study area, has been progressively modified from its predeveloped state since the early 1800s, when the first diversion canals were constructed to capture base flow from the principal streams for irrigation of sugarcane fields (Gómez-Gómez, 1991). The most important changes, however, occurred between 1910 and 1935 as sugarcane cultivation expanded. A substantial investment was made to provide the South Coastal Plain with a network of irrigation canals and reservoirs to supply water to thousands of previously uncultivated acres. As part of the overall effort, two tunnels were constructed to allow inter-basin transfer of surface water across the insular hydrologic divide. Although ground was first used as a complementary source for irrigation in the early 1900s, the aquifer was not developed on a large scale until electricity and deep turbine pumps became available in the 1930s. Increasing sugarcane irrigation during these years caused groundwater withdrawals to peak at 95 million gallons per day (Mgal/d) or 106,500 ac-ft/yr in 1947 along the South Coastal Plain (Gómez-Gómez, 1991). After 1947, surface-water diversions began to decline as sugarcane, the principal surfacewater-irrigated crop, decreased in acreage. This decline was followed by an increase in groundwater use for drip irrigation of truck-farm crops in the 1970s.

The history of water-resource development in the study area discussed herein was reconstructed by Quiñones-Aponte and others (1996) using mostly unpublished documents from the Engineering Department of the Central Aguirre sugar mill at Salinas (formerly known as Luce and Co.), the Puerto Rico Electric Power Authority at Guayama, and the Puerto Rico Aqueduct and Sewer Authority. Complementary information about the history of the water-resources development in the study area was also obtained from McClymonds and Díaz (1972).

#### Land Use


Sugar cane cultivation along the coastal plain and processing at the Central Aguirre sugar mill were the main land use and economic activity in the study area until the mid 1970s (Quiñones-Aponte and others, 1996). Beginning in the 1970s, petrochemical and pharmaceutical industries were established in Guayama and became the main source of economic activity. In the 1980s, sugarcane production decreased, although it was still an important economic activity as evidenced by the substantial portion of the study area under furrow irrigation during 1986 (fig. 4*A*). Beginning in the 1990s, agricultural activity started diversifying in the study area. Sugar cane cultivation ceased by about 1993 and the commercial production of vegetables and fruits had become commonplace by the early 2000s. This type of land use was incompatible with substantial surface-water deliveries from Canal de Patillas (fig. 4*B*; Quiñones-Aponte and others, 1996; Rodríguez, 2006). Additionally, large tracts of agricultural land were subdivided into smaller farms, some of which have since been used for suburban development or left fallow.


Land use in the Salinas Fan area during 2002 (the last year data are available) was distributed as follows: agricultural land use, which includes cropland, confined poultry feeding operations, and pasture land, approximately 35 percent; uncultivated land, 51 percent; urbanized land, 13 percent, of which only half was serviced by municipal sewer systems; and industrial land, 1 percent. About 35 percent of the active agricultural land is solely used to cultivate plantains and bananas.


Estimates of water use (both surface and ground water) required for irrigated crop acreages for 1986, 1991-92 and 2002 are provided in table 4. The estimates in table 4 for 1986 and 2002 apply to the areas shown on figures 4*A*-*B*. The estimates for 1991-92 are from crop area estimates provided by O.M. Ramos, (U.S. Forest Service, written commun., 2003). The demands estimated in table 3 were fulfilled, in part, by surface water imported to the area through irrigation canals.

#### Surface-Water Use

In 1861, the Lapa and Majada diversion canals (fig. 3), with maximum capacity of 13  $ft^3/s$ , began conveying water from the Río Lapa and the Río Majada to farms northeast of Salinas. Large-scale use of surface water for irrigation in the study area began in 1914 with water deliveries from the Patillas and Carite reservoirs east of the study area. Initially, the Patillas and Guamaní Canals (the main irrigation canal systems) delivered about 65,000 ac-ft/yr of water to the agricultural areas. Surface-water deliveries remained fairly constant at approximately 65,000 ac-ft/yr from 1914 to the mid 1930s, decreased to 51,000 ac-ft/yr by late 1940s and later increased to an average delivery of 61,000 ac-ft/yr by late 1950s. Water deliveries remained fairly constant from the late 1950s until the mid 1960s, and declined substantially to 32,000 ac-ft/yr by 1986. Of the two diversion canals (Lapa and Majada), only the Majada diversion canal was in operation as of 1986, with an estimated average flow of 1 ft<sup>3</sup>/s. Deliveries solely







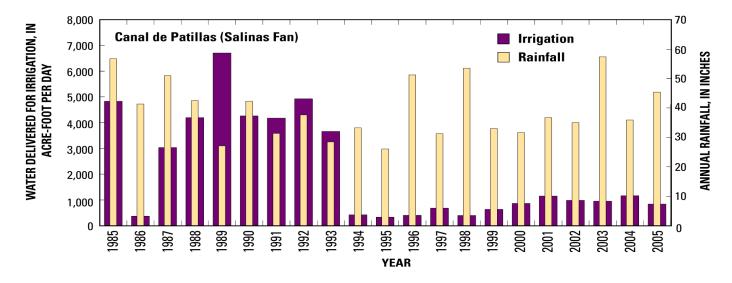



Figure 4c. Irrigation water deliveries from Canal de Patillas and rainfall from 1985 to 2005

**Table 4.** Estimates of agricultural areas and water requirements for 1986, 1991, and 2002, in the vicinity of Salinas and Jobos areas, Puerto Rico.

| Description                         | Year(s) |       | ıl area<br>ivated | Crop water application rate |                               |                       | Source of estimates                                                                                                                      |  |  |
|-------------------------------------|---------|-------|-------------------|-----------------------------|-------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                     |         | Acres | Square<br>miles   | Feet<br>per year            | Million<br>gallons<br>per day | Acre-feet<br>per year |                                                                                                                                          |  |  |
| Sugarcane                           | 1986    | 9,290 | 14.5              | 4                           | 33.2                          | 37,160                | Field survey (Torres-González and Gómez-<br>Gómez,1987; Quiñones-Aponte and Gómez-<br>Gómez,1987)                                        |  |  |
| Sugarcane<br>(active/<br>abandoned) | 1991    | 5,214 | 8.1               | 4                           | 18.6                          | 20,856                | Estimates of 1991-92 Landsat Thematic Mapper<br>(Helmer and others, 2002; reclassification of<br>Landsat Thematic Mapper Imagery by O.M. |  |  |
| Row crops                           |         | 1,176 | 1.8               | 2                           | 2.1                           | 2,352                 | Ramos, U.S. Forest Service, written commun., 2003)                                                                                       |  |  |
| Pasture/hay                         |         | 4,747 | 7.4               | 1                           | 4.2                           | 4,747                 |                                                                                                                                          |  |  |
| Row crops                           |         | 4,000 | 6.3               | 2                           | 7.1                           | 8,000                 |                                                                                                                                          |  |  |
| Pasture/hay                         | 2002    | 542   | 0.8               | 1                           | 0.5                           | 542                   | Field survey (Rodríguez, 2006)                                                                                                           |  |  |

from Canal de Patillas to farms within the Salinas fan averaged about 4,000 ac-ft/yr from 1985 to 1993, and dropped sharply to an average of 645 ac-ft/yr from 1993 to 2002 (fig. 4C).

#### **Groundwater Use**

In the early 1900s, the feasibility of using groundwater was directly related to the availability of steam-driven centrifugal pumps and total withdrawals were about 8 Mgal/d between 1905 and 1910 (Quiñones-Aponte and others, 1996). The groundwater withdrawal capacity of these pumps, however, was limited to shallow depths, generally less than 40 ft below land surface. In the mid-1920s, groundwater withdrawals increased to about 28 Mgal/d when these pumps were replaced by more efficient kerosene-driven pumps; by in the 1930s, the kerosene-driven pumps were replaced by electrically driven deep turbine pumps. Total estimated groundwater withdrawals were about 33 Mgal/d in the early 1970s. After 1970, groundwater withdrawal by different use types became more readily available. Groundwater withdrawals for public supply have been mostly constant from 1986 to 2002, 3.98 and 4.5 Mgal/d, respectively. By 2002, agricultural groundwater withdrawals in the study area declined to about 6 Mgal/d as a result of the switch to more efficient irrigation practices in the 1990s. In 2002, total groundwater withdrawals in the study area were estimated at 11.4 Mgal/d. The construction of shallow domestic wells, which is a widespread practice, contributed to the constant groundwater withdrawals for public supply from 1986 to 2002.

The construction of drainage canals was necessary to lower the water table in water-logged areas and reclaim land for cultivation, particularly along the coastal wetlands. The water-logged areas result from poorly drained soils, combined with a high water table in areas of surplus irrigation water. In the 1940s, additional coastal dewatering structures were built primarily as part of malaria control programs.

The replacement of sugarcane cultivation with truck-farm crops, sorghum, and corn, and the concurrent change from furrow to micro irrigation not only modified groundwater withdrawal patterns but also substantially reduced recharge to the aquifer from irrigation return flow provided by furrow application of surface waters. Nearly all of the water applied by micro irrigation is transpired by the crops, resulting in zero irrigation return flow (Yamauchi, 1984; Kuniansky and others 2004).

Although groundwater withdrawals for irrigation have decreased since the 1970s within the study area, the potentiometric surface in coastal portions of the aquifer has been lowered by reduced irrigation return flow to the aquifer and increasing groundwater withdrawals for public supply and industrial use, as indicated by the cones of depression delineated by Rodríguez (2006). Additionally, local groundwater withdrawals may have contributed to deteriorating water quality by causing deeper groundwater with high dissolved solids concentrations and saline waters near the coast to migrate toward pumping wells. Evidence of saline-water encroachment has been detected within the study area by Díaz (1974) and Rodríguez (2006). Annual pumpage data compiled for the current study is provided in appendix 1.

### **Geologic Setting**

The study area is mostly underlain by 10to 200-ft-thick fan delta and alluvial deposits predominantly Quaternary in age (plate 3). These deposits overlie highly faulted, undifferentiated volcanic breccias, lava, volcanogenic sandstone and siltstone (volcaniclastic), minor limestone, local minor igneous intrusive and hydrothermally altered rocks of Cretaceous to early Tertiary age (Krushensky and Schellekens, 2001; Renken and others, 2002). These older rocks extend southward to the coast beneath the fan-delta deposits. Generally, a weathered bedrock layer (regolith) of varying thickness is present between the older rocks and the overlying fan-delta deposits, particularly along the northern part of the study area, near the foothills, and at sites where horst and graben-type structures are present (plate 3). The bedrock locally protrudes above the fan-delta deposits near the foothills and in the vicinity of the Central Aguirre sugar mill near the coast due to normal faulting, differential erosion, or both. Fracturing in the bedrock is locally intense, as indicated by logs for boreholes drilled as part of the feasibility study for the proposed Aguirre Nuclear Power Plant (Puerto Rico Water Resources Authority, 1972). The fan-delta and alluvial deposits include thick to very thick, crudely stratified, clast-supported conglomerates; and horizontal and planar cross-stratified gravels (boulders, cobbles, and pebbles), sand, and thickly bedded to massive silt and clay (Renken and others, 2002). These lithologic facies may be present as thick horizontal beds, but also may be present as channel-fill deposits enclosed within thickly bedded and massive silt and clay deposits as defined in unpublished USGS lithologic logs and field reconnaissance notes, and defined by Renken and others (2002, plates 1 and 4). Generally, the coarsestgrained deposits (gravel and sand) are found in the proximal facies of the fan-delta deposits in the upper part of the coastal plain and in the vicinity of streams. In general, the fan-delta sequence thickens toward the coast and its thickness may range from about 10 ft at the northern edge of the coastal plain to as much as 200 ft at the seaward edge of the sequence. The fan-delta

deposits are represented by time-equivalent units that extend an undetermined distance offshore, as indicated by surface-resistivity data collected inland, continuous resistivity profiles (CRP, discussed in more detail in the Hydrogeology section) collected offshore near the coastline, and lithologic data available from the USGS files and collected as part of the geologic assessment for the proposed Aguirre Nuclear Power Plant (Puerto Rico Water Resources Authority, 1972). The sequence of fandelta deposits thickens or thins at sites where horst and graben-type structures, caused by normal faulting, are present in the underlying Cretaceous and early Tertiary rocks, as described in litholigic logs for wells 46 (SC-2) and 89 (SC-3) (appendix 2, locations shown on plate 3). The lithologic logs of wells SC-2 and SC-3 were drilled in the study area as part of a regional hydrogeologic study of the South Coast aquifer (Gómez-Gómez, 1987; Renken and others 2002). At SC-2, drilled in the downthrown (graben) side of a normal fault, the fandelta deposits at the base of the sedimentary sequence may be of Miocene age with a thickness that exceeds 400 ft. At SC-3, drilled on the upthrown (horst) side of a normal fault, the Cretaceous and early Tertiary basement was encountered at a depth of about 200 ft below land surface (lithologic log SC-3, app. 2).

Along the coast, the surface of the fan-delta sequence is separated from the Caribbean Sea by a narrow land-marine transition zone of marsh and mangrove swamps, tidal and supratidal salt flats, and beach deposits. In the Jobos Bay area, mangroves, marshes, and tidal flats are mostly restricted to those areas protected by offshore, fringing reefs. Within the marsh and mangrove swamp area, the fan-delta deposits are mostly overlain by organically rich clay deposits. These deposits were defined near the coast during construction of two piezometers-JBNERR East and JBNERR West at wells 185 and 184, respectively (plate 2 and app. 3). At both piezometer sites, two separate main zones were identified, each having medium- to coarse-grained gravel with a coarse sand matrix, and both bounded by a predominantly clay and silt sequence (app. 4).

The inland (northward) extent of the gravel zones present in the vicinity of piezometers JBNERR East and West is unknown. The offshore time-equivalent fan-delta deposits near these piezometers resulted from deposition during low sea level stands, the last occurring approximately 10,000 to 14,000 years ago, when the subaerially exposed fan-delta plain extended further southward. The time-equivalent offshore fan-delta deposits are overlain by modern inner shelf deposits that may extend from the shoreline to water depths of 60 to 100 ft. These inner shelf deposits are separated into nearshore, shelf platform, and shelf basin areas (Renken and others, 2002). Nearshore, these inner shelf deposits consist primarily of terrigenous fine sand. The shelf-platform zone consists of a layer of gravel-to-silt size bioclastic detritus underlain by a cemented hardground surface. The shelf basin acts as a depocenter for terrigenous sediment and carbonate detritus from contiguous fringing reefs. All of these inner shelf deposits may be considered to be the modern, active part of the modern fan-delta depositional system that partially isolated the underlying older fandelta deposits already described.

### **Hydrogeologic Setting**

Fan-delta and alluvial deposits constitute the South Coast aquifer in the study area. The regolith zone in conjunction with fractures in the underlying Cretaceous and Early Tertiary basement can be considered an aquifer of secondary importance, although it may be the only groundwater source along the foothills and other areas where the alluvium is thin or absent. The less permeable regolith and underlying fractured bedrock may be hydraulically connected with the South Coast aquifer in areas not separated by silt and clay.

The fan-delta and alluvial deposits in the study area compose a highly heterogeneous aquifer characterized by multiple water-bearing, impermeable, and semipermeable units with gravel and sand facies constituting the main water-bearing units. The thickness of the gravel and sand facies is highly variable and mainly controlled by the position of the horst and graben structures and high energy streams, particularly the Río Nigua. The fence diagram shown in plate 4 indicates that the combined thickness of gravel and sand facies may range from 10 ft in the northern part of the study area to as much as 110 ft along the southern border of the study area. In the vicinity of streams such as Río Nigua, the combined gravel and sand facies locally may range in thickness from 80 to 100 ft. Although clay and silt deposits have poor hydraulic properties, they function as leaky confining beds to contiguous gravel and sand deposits throughout the study area, particularly along the coastal area near Jobos Bay. For example, lithologic and water-level data collected at the two piezometer nests along the northern boundary of the JBNERR indicate confined groundwater conditions exist in the immediate vicinity of Mar Negro and the Bosque de Jagueyes areas. The thickness of surficial clay and silt in the study area, as determined from drillers' logs, ranges from less than 5 ft to a maximum of 70 ft. The base of this clay-silt unit was used to define the altitude of the top of the more permeable sediments that constitute the aquifer (plate 5). Throughout the northern part of the coastal plain and near major streams, the clay-silt unit is thin or absent and the aquifer is unconfined.

The lithologic logs of wells SC-2 and SC-3 (app. 2), indicate that the sediments become increasingly consolidated with depth; therefore, the permeability

may decrease with depth. The gravel and sand become increasingly cemented by silica, calcite, clay, and silt. The most permeable zone in these two wells is less than about 200 ft below land surface.

Fresh groundwater-bearing gravel and sand units extend offshore, as indicated by hydrogeologic data collected during the installation of piezometers along the coastal margin near Mar Negro and the Bosque de los Jagueyes, and by results obtained from CRP surveys conducted as part of this study offshore between Punta Arenas and the mouth of Río Seco, including Jobos Bay. Brackish and fresh-water-bearing gravels were encountered at JBNERR West and JBNERR East piezometer nest sites (wells 184 and 185, plate 2), as discussed earlier. The specific conductances measured in the permeable deposits of the shallow piezometers were 13,000 and 8,000 µS/cm (microsiemens per centimeter) at 25 °C at the JBNERR East and JBNERR West sites, respectively. The specific conductances measured in the permeable deposits of the deep piezometers were 5,600 and 817 µS/cm at 25 °C at the JBNERR East and JBNERR West sites, respectively. No apparent resistivity values equal to or less than 3.0  $\Omega$ ·m (ohm-meters), representative of saline groundwater, were obtained from the direct current (DC) resistivity surveys conducted along the coastal margin near the Mar Negro and Bosque de los Jagueyes.

The CRP survey lines along the coast and the interpreted vertical resistivity distribution obtained along each transect are shown on plates 6A-H. In each section, resistivity values equal and greater than 1  $\Omega$ ·m represent freshwater, a value of 0.4 represents sea water, and values between 0.4 and 1.0  $\Omega$ ·m may represent a mixture of fresh groundwater and sea water. The vertical resistivity distributions shown on some of the plates indicate that the inland freshwater-bearing units extend offshore and that freshwater, sea water, and mixed (brackish) groundwater discharge may occur at some sites on the sea bed. The possibility exists, however, that seawater may be encroaching upon the aquifer.

The offshore extent of the freshwater-bearing units is unknown, but CRP surveys (plates 6C, section lines 2F and 2J, respectively) indicate that the freshwaterbearing zones detected beneath Jobos Bay may extend underneath Punta Pozuelo. Similarly, the freshwaterbearing zones may extend southward of the Mar Negro area as indicated by section lines 2A-E in plate 6B. The freshwater-bearing zones, in general, are overlain by a diffuse zone that results from the mixing of fresh groundwater and seawater. Brackish to fresh submarine groundwater discharge may be occurring at some sites in the Mar Negro area, according to the interpretation of the CRP data (plates 6D-E; section lines 3C-I). The freshwater zones beneath Jobos Bay are generally more continuous and extend from 20 to greater than 80 ft below sea level (about the maximum penetration depth

of the CRP method). The freshwater-bearing zones in the Mar Negro area are generally fragmented and the CRP data indicate that most of these zones may be present below the penetration depth of the CRP method, although some are present locally from 30 to 50 ft below sea level. West of Mar Negro, the freshwaterbearing units are mostly continuous and extend 23 ft below sea level (plates 6A and 6G). The continuous and widespread character of the freshwater-bearing units east of the Mar Negro area, in Jobos Bay, is probably due to paleochannel deposits of the Río Seco, Quebrada Amorós, and Quebrada Aguas Verdes that were submerged during the last sea level rise at the end of the last ice age (between 10,000 and 12,000 years ago; Renken and others, 2002). The submerged parts of these streams might be rich in sand and gravel deposits that were enveloped by clay and silt deposits as a result of sea level rise. These submerged paleochannels might be hydraulically connected with the up dip sediments along the current streams. Thus, upward seepage from the aquifer is likely to occur beneath parts of Jobos Bay (plates 6C, 6F, and 6H).

The base altitude of the aquifer within the study area (plate 7) is considered to be the base of the permeable units in the study area. The altitude and lithologic data used to delineate the bottom of the aquifer was obtained from drillers' logs in the USGS files and published studies within the area by the USGS and Commonwealth agencies. The base of the aquifer is the top of underlying impermeable or low-permeability rocks, including volcanic and volcaniclastic rocks, lithified conglomeratic sandstone, claystone-shale, siltstone, and minor limestone. Although of lesser importance than the lithologic character of the rocks, most of the wells in the study area have completion depths that are less than 250 ft below land surface, indicating that most water-producing zones are at less than 250 ft below land surface. The general southward dip of this basal surface is locally interrupted by lows and highs that result mainly from the presence of the horst and graben-type structures discussed earlier in the geology discussion. The base altitude of the aquifer in the offshore areas was approximated from previous studies (Puerto Rico Water Resources Authority, 1972; Renken and others, 2002).

#### **Hydraulic Properties**

Multiwell aquifer test results in the study area are sparse and limited to a few sites (Quiñones-Aponte, 1989). Consequently, the hydraulic conductivity of the entire aquifer in the study area cannot be determined by extrapolating the few multiwell aquifer test results given the depositional heterogeneity of the fan-delta deposits.

Analytical solutions for flow to wells under water-table or confined conditions were used to obtain

#### 18 Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.

estimates of transmissivity from specific-capacity data using the methods described by Theis and others (1963). The horizontal hydraulic conductivity ( $K_h$ ) was then calculated at each well by dividing the estimated transmissivity by the total saturated thickness of the aquifer penetrated by a particular well as reported mostly by water-well drillers (table 5).

The calculated horizontal hydraulic conductivity estimates ranged from 2 to 500 ft/d (feet per day). The hydraulic conductivity values are greatest in those areas where coarse-grained deposits such as gravels and sands predominate (figs. 5 and 6). The percentage of sand and gravel is calculated as the reported total thickness of sand and gravel penetrated by water wells divided by total well depth. The largest percentages of sand and gravel are in areas along the graben structures, paleochannels, and in the vicinity of relatively high energy streams, such as the Río Nigua.

Quiñones-Aponte (1989) estimated a storage coefficient of 0.0003 from an aquifer test conducted in

the southeastern section of the Salinas fan. This value is representative of semi-confined to confined beds present in the coastal portions of the study area. Specific yield values ranging from 0.1 to 0.2, representative of unconfined conditions, were assumed to prevail in the upper fan-delta areas where semi-confined and confined beds are not present.

The great heterogeneity of the aquifer in the study area results from the predominant fan-deltaic depositional environment. It is reasonable to assume that the aquifer in the study area must have some vertical anisotropy, in which the horizontal hydraulic conductivity ( $K_h$ ) would be greater than the vertical hydraulic conductivity ( $K_v$ ). Bennett and Giusti (1971) constructed a three-layer electric analog model of the South Coast aquifer using a  $K_v$  to  $K_h$  ratio of 1:1,000 between model layers representing an aquifer thickness of 30 to 100 ft. Ratios of  $K_v$  to  $K_h$  of 1:10 were used in a digital model study of the Santa Isabel fan delta immediately west of the study area between model

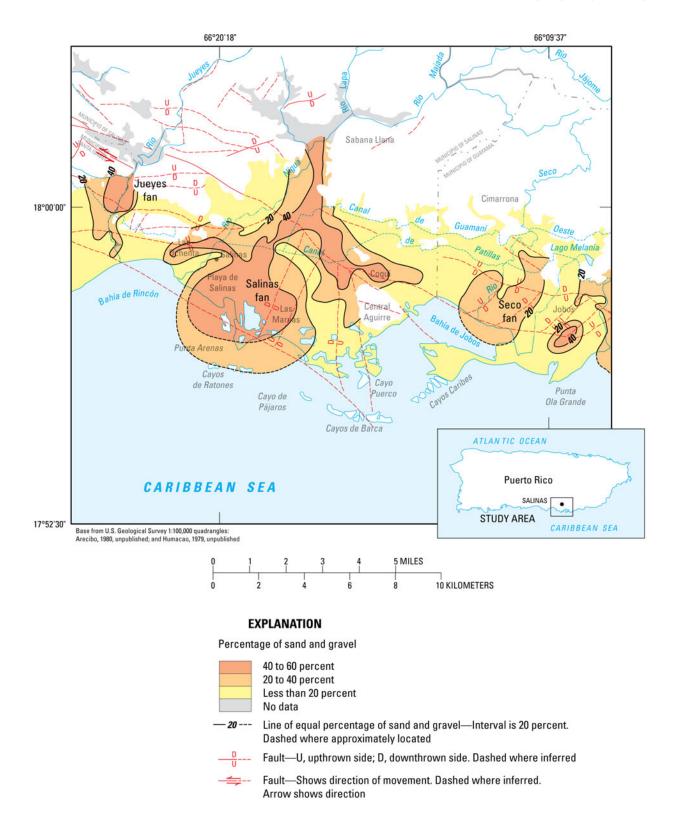
#### Table 5. Estimated horizontal hydraulic conductivity from specific-capacity data.

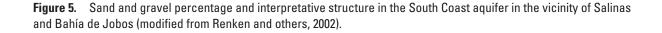
[Number within parenthesis as in appendix 3. Number in bold is the depth to the aquifer base. USGS ID, U.S. Geological Survey identification number; ft, foot; gal/min, gallon per minute; gal/min/ft; gallons per minute per foot; ft/d, foot per day; (u), unconfined; (c), confined]

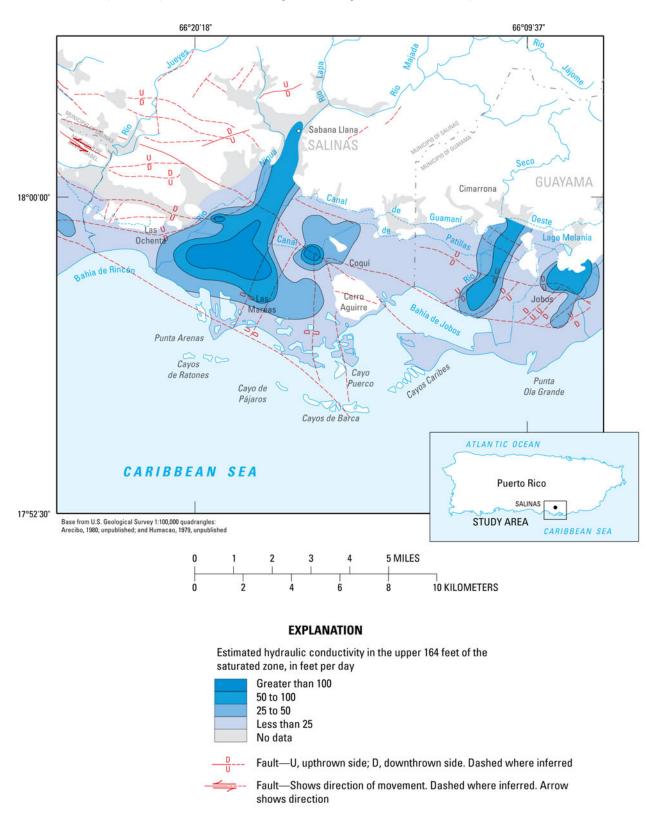
| Well name and reference number | USGS ID         | Test<br>duration,<br>(days) | Well<br>depth<br>(ft) | Depth<br>to water<br>(static),<br>(ft) | Discharge<br>(Q),<br>(gal/min) | Pumping<br>water<br>level,<br>(ft) | Specific<br>capacity, in<br>(gal/min/ft) | Hydraulic<br>conductivity<br>(k) <sup>1</sup><br>(ft/d) |
|--------------------------------|-----------------|-----------------------------|-----------------------|----------------------------------------|--------------------------------|------------------------------------|------------------------------------------|---------------------------------------------------------|
| Benito 1 (1)                   | 175854066114900 | 0.58                        | 60                    | 1                                      | 350                            | 59                                 | 6.0                                      | 20 (u)                                                  |
| San Felipe (old) (2)           | 175816066125400 | 0.125                       | 54                    | 0                                      | 125                            | 53                                 | 2.4                                      | 10(c)                                                   |
| PRASA<br>Coqui #1 (3)          | 175826066134400 | 0.208                       | 80                    | 17                                     | 156                            | 29                                 | 13.0                                     | 60(c)                                                   |
| Templo Glove (4)               | 175830066135400 | 1                           | 80                    | 18                                     | 150                            | 28                                 | 15.0                                     | 70(c)                                                   |
| Aguirre Sugar 9 (6)            | 175810066145300 | 0.33                        | 128                   | 11                                     | 1200                           | 20                                 | 133.3                                    | 200(u)                                                  |
| PRWRA 1 (7)                    | 175824066142300 | 0.33                        | 250                   | 5                                      | 800                            | 50                                 | 17.8                                     | 10(u)                                                   |
| Cautiño 3 (11)                 | 175822066104300 | 0.125                       | 130                   | 12                                     | 550                            | 20                                 | 68.8                                     | 80(u)                                                   |
| Josefa Norte (16)              | 175732066091900 | 0.17                        | 100/ <b>86</b>        | 8                                      | 420                            | 30                                 | 19.1                                     | 40(u)                                                   |
| La Ana at<br>Josefa (17)       | 175756066095700 | 0.17                        | 195/ <b>175</b>       | 15                                     | 500                            | 50                                 | 14.3                                     | 20(u)                                                   |
| PRASA<br>Pte Jobos (18)        | 175724066095600 | 0.54                        | 150                   | 4                                      | 125                            | 70                                 | 1.9                                      | 2(u)                                                    |
| Merced Batt<br>Well 2 (23)     | 175648066081600 | 1                           | 110/ <b>65</b>        | 2                                      | 222                            | 13                                 | 20.2                                     | 60(u)                                                   |
| Melania (31)                   | 175755066084800 | 0.33                        | 105                   | 11.5                                   | 1040                           | 28                                 | 63.0                                     | 100(u)                                                  |
| Reunion 3 (32)                 | 175735066085900 | 0.5                         | 132/ <b>48</b>        | 15                                     | 300                            | 60                                 | 6.7                                      | 30(u)                                                   |
| Phillips #7 (33)               | 175718066083900 | 0.25                        | 151/ <b>100</b>       | 16                                     | 400                            | 29                                 | 30.8                                     | 90(c)                                                   |
| Fibers 1 (34)                  | 175754066084100 | 1.08                        | 120/ <b>114</b>       | 26                                     | 210                            | 60                                 | 6.2                                      | 20(c)                                                   |
| Phillips<br>Dom #2 (35)        | 175716066083400 | 0.25                        | 150                   | 21                                     | 225                            | 96                                 | 3.0                                      | 6(c)                                                    |

#### Table 5. Estimated horizontal hydraulic conductivity from specific-capacity data.—Continued

[Number within parenthesis as in appendix 3. Number in bold is the depth to the aquifer base. USGS ID, U.S. Geological Survey identification number; ft, foot; gal/min, gallon per minute; gal/min/ft; gallons per minute per foot; ft/d, foot per day; (u), unconfined; (c), confined]


| Well name and<br>reference number | USGS ID         | Test<br>duration,<br>(days) | Well<br>depth<br>(ft) | Depth<br>to water<br>(static),<br>(ft) | Discharge<br>(Q),<br>(gal/min) | Pumping<br>water<br>level,<br>(ft) | Specific<br>capacity, in<br>(gal/min/ft) | Hydraulic<br>conductivity<br>(k)¹<br>(ft/d) |
|-----------------------------------|-----------------|-----------------------------|-----------------------|----------------------------------------|--------------------------------|------------------------------------|------------------------------------------|---------------------------------------------|
| PRASA<br>Fibers 3 (38)            | 175735066090500 | 0.25                        | 150                   | 11                                     | 450                            | 84                                 | 6.2                                      | 10(c)                                       |
| Aguirre 3 (41)                    | 175804066150700 | 1                           | 150                   | 6                                      | 1900                           | 28                                 | 86.4                                     | 200(c)                                      |
| Caraballo (43)                    | 175856066151000 | 0.25                        | 140                   | 21                                     | 1000                           | 42                                 | 47.6                                     | 50(u)                                       |
| Esperanza #1 (44)                 | 175810066153500 | 0.25                        | 150                   | 4                                      | 225                            | 15                                 | 20.5                                     | 40(c)                                       |
| Magdalena #2 ((49)                | 175855066161400 | 0.25                        | 150/ <b>128</b>       | 45                                     | 920                            | 54                                 | 102.2                                    | 300 (c)                                     |
| Salinas Airfield (53)             | 175819066160600 | 1                           | 90/ <b>85</b>         | 25                                     | 60                             | 25.8                               | 75.0                                     | 400 (c)                                     |
| Salinas 1(54)                     | 175851066174600 | 1                           | 120                   | 16                                     | 550                            | 20                                 | 137.5                                    | 200(u)                                      |
| Salinas 2 (55)                    | 175850066174500 | 1                           | 120                   | 18                                     | 670                            | 22                                 | 167.5                                    | 300(u)                                      |
| Antonneti #1 (56)                 | 175821066182100 | 0.25                        | 60/ <b>23</b>         | 8                                      | 440                            | 11.5                               | 125.7                                    | 400(u)                                      |
| Margarita #3 (57)                 | 175839066180700 | 0.25                        | 154/ <b>95</b>        | 11                                     | 748                            | 24                                 | 57.5                                     | 100(u)                                      |
| U.S. Army #1 (59)                 | 175928066171500 | 0.25                        | 165/ <b>151</b>       | 27                                     | 370                            | 29.5                               | 148.0                                    | 200(u)                                      |
| Vélez #1 (61)                     | 175928066174000 | 0.25                        | 107/ <b>70</b>        | 6                                      | 465                            | 17                                 | 42.3                                     | 100(u)                                      |
| Pueblito (62)                     | 175905066172000 | 0.33                        | 126                   | 14                                     | 480                            | 27                                 | 36.9                                     | 50(u)                                       |
| Pozas Test #1 (66)                | 175848066190100 | 0.25                        | 168                   | 0.5                                    | 460                            | 51.5                               | 9.0                                      | 10(c)                                       |
| Sabater Viejo (67)                | 175926066141100 | 0.17                        | 200/ <b>30</b>        | 20                                     | 180                            | 72                                 | 3.5                                      | 50(u)                                       |
| Godreau 6 (71)                    | 175921066165500 | 0.33                        | 150                   | 35                                     | 1600                           | 54                                 | 84.2                                     | 200(c)                                      |
| Godreau 5 (72)                    | 175931066160100 | 0.25                        | 146/ <b>144</b>       | 38                                     | 450                            | 45                                 | 64.3                                     | 200(c)                                      |
| U.S. Army #2 (73)                 | 175952066162400 | 0.25                        | 165/ <b>85</b>        | 43                                     | 96                             | 53                                 | 9.6                                      | 60(c)                                       |
| Porrata (74)                      | 17594366150600  | 0.25                        | 272/128               | 53                                     | 380                            | 106                                | 7.2                                      | 20 (c)                                      |
| Sostre #2 (80)                    | 175959066201200 | 0.5                         | 236/123               | 70                                     | 340                            | 102                                | 10.6                                     | 30(u)                                       |
| Sostre #1 (81)                    | 175956066205400 | 0.25                        | 146/ <b>102</b>       | 45                                     | 800                            | 61.5                               | 48.5                                     | 200(c)                                      |
| Coco 1 (82)                       | 180044066153500 | 0.75                        | 120                   | 25                                     | 120                            | 91                                 | 1.8                                      | 5(c)                                        |
| Theater 1 (86)                    | 180023066175400 | 0.71                        | 80                    | 58                                     | 15                             | 97                                 | 0.4                                      | 3(u)                                        |
| Aguirre<br>Sugar 1A (93)          | 175747066075800 | 0.125                       | 107/ <b>93</b>        | 4                                      | 153                            | 9                                  | 30.6                                     | 50(u)                                       |
| Godreau 7 (94)                    | 175903066165000 | 1                           | 140                   | 11                                     | 1350                           | 49                                 | 35.5                                     | 70(c)                                       |
| Amadeo<br>Gonzalez (95)           | 175933066161800 | 2                           | 175                   | 62                                     | 735                            | 96                                 | 21.6                                     | 30(u)                                       |
| Jauca 2b (98)                     | 175820066215000 | 0.125                       | 100/78                | 9.5                                    | 48                             | 17                                 | 6.4                                      | 30(c)                                       |
| U.S. Army #2<br>(C. Sant) (100)   | 175924066171500 | 0.17                        | 175                   | 28                                     | 720                            | 47                                 | 37.9                                     | 40(u)                                       |
| U.S. Army<br>Test #1 (101)        | 175942066170100 | 2.17                        | 57/ <b>42</b>         | 25                                     | 14                             | 39.5                               | 1.0                                      | 10(u)                                       |
| Bomba<br>Pozas #2 (103)           | 175917066194300 | 0.4                         | 160/ <b>136</b>       | 3                                      | 450                            | 44                                 | 11.0                                     | 10(u)                                       |
| San José #1 (107)                 | 175957066200800 | 0.33                        | 117                   | 63.8                                   | 330                            | 93.8                               | 11.0                                     | 30(u)                                       |
| Santiago<br>Batt #1 (108)         | 175954066210500 | 0.25                        | 53/ <b>39</b>         | 20                                     | 130                            | 40                                 | 6.5                                      | 90(c)                                       |


#### 20 Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.


#### Table 5. Estimated horizontal hydraulic conductivity from specific-capacity data.—Continued

[Number within parenthesis as in appendix 3. Number in bold is the depth to the aquifer base. USGS ID, U.S. Geological Survey identification number; ft, foot; gal/min, gallon per minute; gal/min/ft; gallons per minute per foot; ft/d, foot per day; (u), unconfined; (c), confined]

| Well name and reference number                                            | USGS ID          | Test<br>duration,<br>(days) | Well<br>depth<br>(ft) | Depth<br>to water<br>(static),<br>(ft) | Discharge<br>(Q),<br>(gal/min) | Pumping<br>water<br>level,<br>(ft) | Specific<br>capacity, in<br>(gal/min/ft) | Hydraulic<br>conductivity<br>(k) <sup>1</sup><br>(ft/d) |
|---------------------------------------------------------------------------|------------------|-----------------------------|-----------------------|----------------------------------------|--------------------------------|------------------------------------|------------------------------------------|---------------------------------------------------------|
| Santiago #2<br>DW (109)                                                   | 175959066210200  | 0.67                        | 200                   | 0                                      | 140                            | 30                                 | 4.7                                      | 7(c)                                                    |
| PREPA #4 (113)                                                            | 175835066145700  | 1                           | 196                   | 56.4                                   | 873                            | 79.7                               | 37.5                                     | 40(u)                                                   |
| PREPA #6 (114)                                                            | 175825066142500  | 1                           | 260/ <b>195</b>       | 38                                     | 952                            | 77                                 | 24.4                                     | 40(c)                                                   |
| PREPA #7 (115)                                                            | 175845066142800  | 1                           | 112                   | 15.3                                   | 471                            | 32                                 | 28.2                                     | 50(u)                                                   |
| PREPA #9 (116)                                                            | 175810066151400  | 2                           | 275                   | 44                                     | 710                            | 91                                 | 15.1                                     | 20(c)                                                   |
| Phillips 11 (117)                                                         | 175715066084500  | 0.5                         | 125/ <b>48</b>        | 27                                     | 400                            | 83                                 | 7.1                                      | 90 (c)                                                  |
| PRASA<br>Fibers 2 (118)                                                   | 175738066084500  | 0.25                        | 100/ <b>72</b>        | 30                                     | 325                            | 72                                 | 7.7                                      | 30(c)                                                   |
| Reunión 2 (119)                                                           | 175721066085500  | 0.25                        | 125/ <b>75</b>        | 30                                     | 325                            | 72                                 | 7.7                                      | 50(c)                                                   |
| Fibers 2 (120)                                                            | 175755066085200  | 1                           | 100/ <b>30</b>        | 22                                     | 205                            | 50                                 | 7.3                                      | 20(c)                                                   |
| PRASA Pte Jobos<br>(old) (121)                                            | 175735066095900  | 1                           | 148                   | 6                                      | 125                            | 100                                | 1.3                                      | 2(c)                                                    |
| Hormigonera<br>Bruja (122)                                                | 175755066105000  | 0.25                        | 100                   | 16.5                                   | 180                            | 33                                 | 10.9                                     | 40(u)                                                   |
| Central<br>Guamani #2 (123)                                               | 175752066105300  | 0.25                        | 153/ <b>130</b>       | 8                                      | 1250                           | 23                                 | 83.3                                     | 200(u)                                                  |
| Cora #1 (124)                                                             | 175757066103900  | 0.25                        | 155                   | 27                                     | 150                            | 32                                 | 30.0                                     | 60(c)                                                   |
| PRASA<br>Villodas (126)                                                   | 175841066104500  | 0.5                         | 143/ <b>31</b>        | 26                                     | 55                             | 52                                 | 2.1                                      | 70(c)                                                   |
| PRASA<br>Perpetuo (127)                                                   | 175822066134900  | 1.5                         | 118                   | 0                                      | 635                            | 22                                 | 28.9                                     | 70(c)                                                   |
| González #2 (132)                                                         | 175959066141500  | 0.125                       | 51                    | 6                                      | 75                             | 27                                 | 3.6                                      | 10(u)                                                   |
| PRWRA 5 (133)                                                             | 175924066142300  | 1                           | 305/ <b>45</b>        | 25                                     | 500                            | 41.5                               | 30.3                                     | 300(c)                                                  |
| A-01 TW (134)                                                             | 175721066090200  | 0.08                        | 101                   | 15.4                                   | 20                             | 25                                 | 2.1                                      | 7(c)                                                    |
| Cautino 7 (135)                                                           | 175908066081800  | 0.25                        | 72                    | 3                                      | 25                             | 19.5                               | 1.5                                      | 3(u)                                                    |
| Aguirre<br>Sugar 10 (136)                                                 | 175810066145100  | 0.33                        | 55                    | 4.5                                    | 920                            | 14                                 | 96.8                                     | 500(c)                                                  |
| Coqui 5 (137)                                                             | 1758160066133100 | 0.33                        | 150                   | 2.15                                   | 1450                           | 44.15                              | 34.5                                     | 60(c)                                                   |
| Juana #2 (138)                                                            | 175823066101300  | 0.33                        | 129                   | 13                                     | 1045                           | 21.3                               | 125.9                                    | 200(u)                                                  |
| PRASA (139)                                                               | 175823066084500  | 1                           | 58                    | 30                                     | 325                            | 72                                 | 7.7                                      | 50(u)                                                   |
| PRASA (140)                                                               | 175742066082900  | 0.5                         | 67                    | 27                                     | 400                            | 83                                 | 7.1                                      | 30(u)                                                   |
| Reunión<br>DW 1 (141)                                                     | 175756066082900  | 0.33                        | 118                   | 12                                     | 1000                           | 21.5                               | 105.3                                    | 100(u)                                                  |
| Salinas 4 (142)                                                           | 175922066171200  | 0.33                        | 180                   | 49                                     | 300                            | 53                                 | 75.0                                     | 20(u)                                                   |
| PRASA<br>Campamento (143)                                                 | 175930066165600  | 1                           | 140                   | 72                                     | 200                            | 88                                 | 12.5                                     | 30(u)                                                   |
| Godreau 3A (144)                                                          | 175913066163500  | 0.33                        | 102                   | 39                                     | 520                            | 61.5                               | 23.1                                     | 60(u)                                                   |
| <sup>1</sup> Derived from T values estimated from Theis and others (1963) |                  |                             |                       |                                        |                                |                                    |                                          |                                                         |







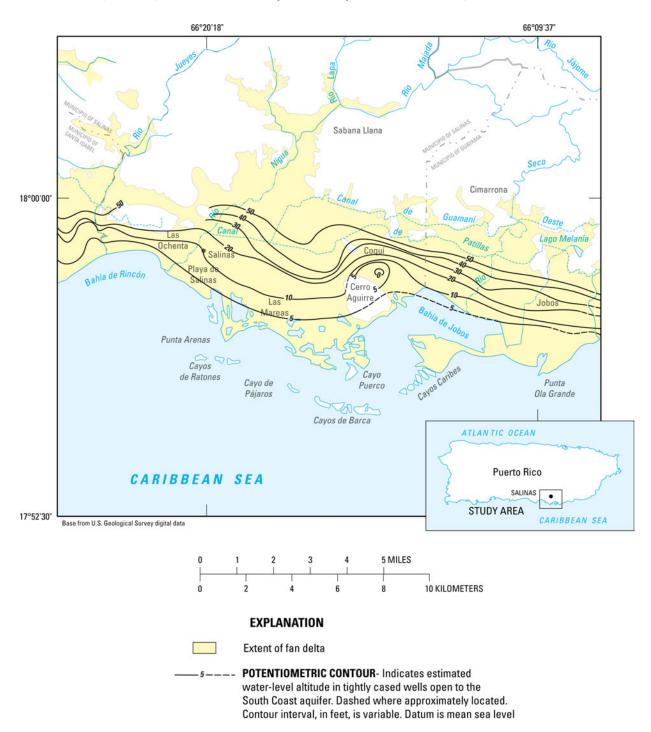
**Figure 6.** Generalized distribution of hydraulic conductivity in the South Coast aquifer in the vicinity of Salinas and Bahía de Jobos between the Río Jueyes and Río Guamaní (modified from Renken and others, 2002).

(Kuniansky and others, 2004). For this study, the ratio of  $K_v$  to  $K_h$  of 1:10 was initially used because these are more representative of the predominant unconsolidated to poorly consolidated deposits in the Río Nigua area (Bouwer, 1978; Fetter, 1994).

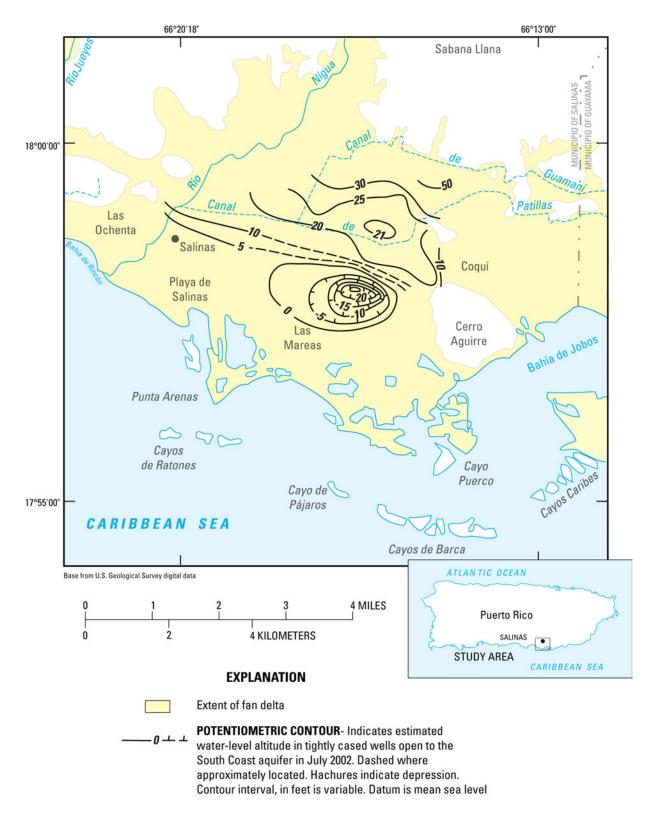
#### **Groundwater Flow Patterns**

The configuration of the potentiometric surface during March 1986 (Torres-González and Gómez-Gómez, 1987; Quiñones-Aponte and Gómez-Gómez, 1987) in the Salinas to Guayama area generally reflects topography (fig. 7) except for a single cone of depression north of Central Aguirre. The potentiometric surface indicates that inferred direction of groundwater flow was mainly toward the coast in the Salinas and Río Seco alluvial fan-deltas (fig. 1). Reductions in groundwater withdrawals combined with above-average precipitation conditions during the mid 1980s caused the water table to recover from previous levels.

Below-average rainfall during 12 years between 1986 and 2004 in conjunction with a general reduction in surface-water irrigation deliveries from Canal de Patillas and Canal Guamaní (fig. 2) have contributed to aquifer storage depletion and lowering of water levels in the aquifer. As a result, the potentiometric surface in July 2002 (Rodríguez, 2005) was about 15 ft lower than in 1986. Two cones of depression were inferred from the potentiometric-surface map during July 2002 (fig. 8), the largest of which extended over about 700 ac west of Central Aguirre. By May 2004, however, groundwater levels in the area had rebounded 6 to 13 ft (fig. 9) and both cones of depression were no longer present. The water-level recovery is most likely a result of infiltration from a severe storm and associated flooding during November 2003. Central Aguirre received 25 in. of rainfall that month, an event with a 25-year frequency of occurrence. The soils and deposits were permeable enough to allow the excess water to infiltrate.


### **Simulation of Groundwater Flow**

The groundwater flow in part of the South Coast aquifer between the Río Jueyes and Río Guamaní area was simulated with a numerical groundwater flow model to evaluate how changing irrigation practices affected water levels, flow to the coast, and how future groundwater withdrawals may affect the aquifer. Specifically, the numerical simulations were used to determine: (1) how the change from furrow to drip irrigation systems have affected groundwater flow; (2) how future changes in groundwater withdrawals may affect groundwater levels in the study area; and (3) how changes in groundwater discharge to part of the JBNERR in the area of the affected black mangroves.


The groundwater flow system was simulated using the MODFLOW88/96 and MODFLOW-2000 computer codes for simulating groundwater flow of uniform density (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996; Harbaugh and others, 2000; Hill and others, 2000). The model was initially constructed in MODFLOW88/96, using the hydrogeologic framework presented in previous sections. Model construction was followed by conducting a parameter sensitivity analysis. The model data files were then converted to MODFLOW-2000 for use of parameter estimation and calibrated in steady-state to groundwater levels from March-April 1986 and estimated water-balance conditions in 1986. Transient (time-varying) simulations were run for the 1986 to 2004 period using public supply and irrigation groundwater withdrawal rates and streamflow infiltration rate estimates previously discussed (table 3 and apps. 1 and 5). Hydraulic conductivity parameters and zones were adjusted based on parameter estimation until satisfactory matches to estimated ranges were achieved and were in general agreement with the hydrogeologic framework previously described.

#### **Model Conceptualization and Construction**

A previous digital groundwater flow model (Ouiñones-Aponte and others, 1996) covered more of the South Coast aquifer than the current model and had three layers. The top layer simulated leakage in the coastal part of the aquifer including the clayey zone along the coast that partially confines the aquifer; the second layer represented the principal groundwater flow zone tapped by wells; and the third layer represented the fractured bedrock. The groundwater model used in the present study differs from the model just described in that the current model does not include the fractured rock (regolith) beneath the unconsolidated deposits and five layers are used to represent freshwater flow in the hydrogeologic units that constitute the South Coast aquifer between the Río Jueyes and the Río Guamaní. The top model layer represents the inland-most part of the aquifer, which is unconfined and where most of the streams and irrigation canal infiltration recharges the aquifer. The lower four model layers represent the unconsolidated fan-delta, interfan, and alluvial deposits, all of which are confined. The lateral extent of each model layer was estimated from the surface geology and the base (bottom) altitude of the more permeable alluvial materials of the South Coast aquifer (plates 3 and 7). The active areas and boundary conditions for each layer are shown on figure 10. The model



**Figure 7.** Potentiometric surface in the Río Jueyes to Río Guamaní part of the South Coast aquifer during March 1986 (modified from Torres and Gomez, 1987).



**Figure 8.** Potentiometric surface in the South Coast aquifer in the vicinity of Salinas during July 2002 (modified from Rodriguez, 2005).

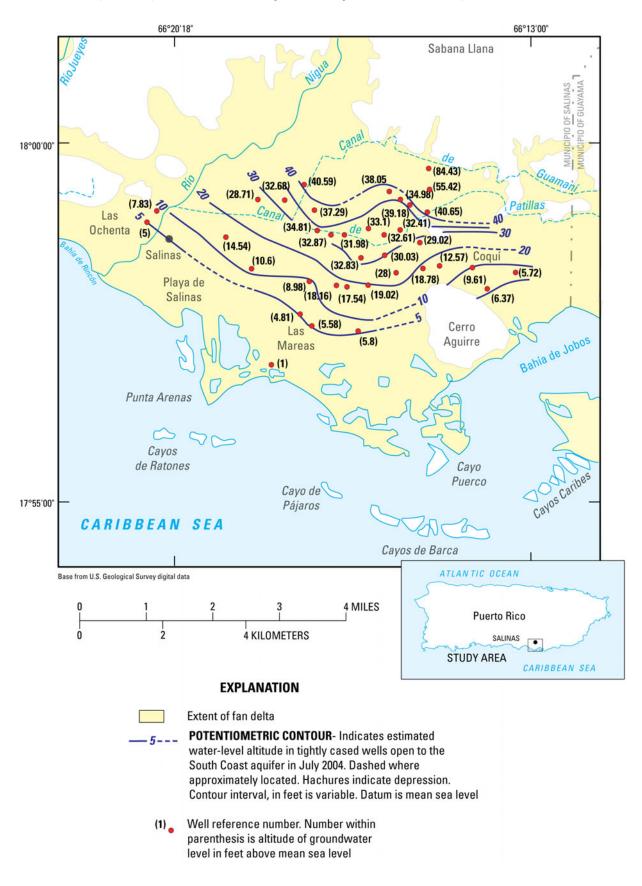
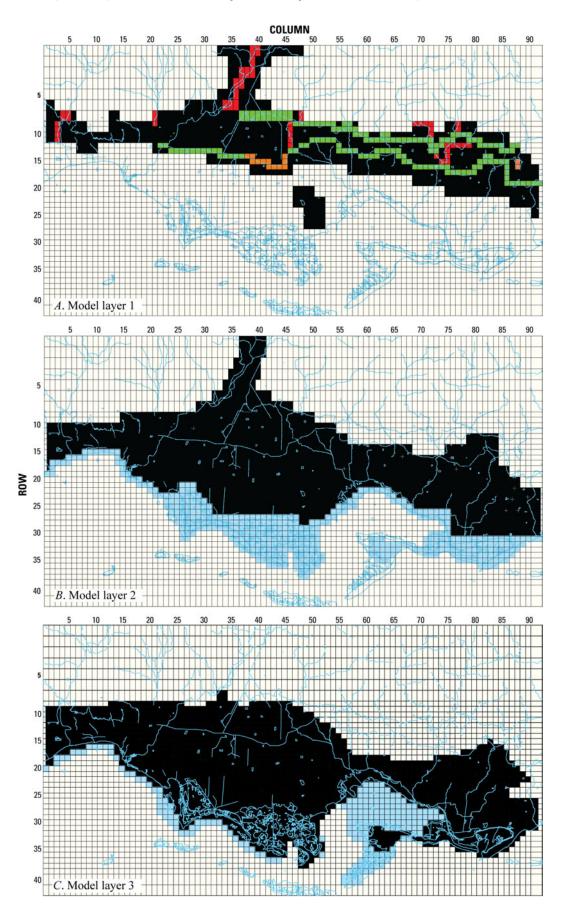



Figure 9. Potentiometric surface in the South Coast aquifer in the vicinity of Salinas during July 2004.

layers used to represent the aquifer were necessary to accurately represent the hydraulic conductivity contrasts indicated by the fence diagram (plate 4). The model grid is variably spaced, with finer spacing (802.25 ft) used near the area of interest at the coast and wider spacing (1,640.5 ft) used along the southern and eastern edges of the grid as well as the inland part of the study area (fig. 10 and plate 2).

Throughout the entire modeled area, layers 1 and 2 form the top of the aquifer. The northern extent of laver 1 is based on the northern extent of Quaternary fandelta and alluvial deposits. Northwest of Jobos Bay, a small isolated hill (Cerro Aguirre) in the Salinas area is also included as a low permeability unit in layer 1 (fig. 10A). Layer 2 is active underneath much of layer 1 (fig. 10B), including inland areas beneath the Río Nigua, Río Lapa, and Río Majada; layer 2 is inactive north of the coastal plain where its top coincides with the top of bedrock. Layer 3 is a relatively thin layer, mostly 20-ft thick throughout, used because the clays beneath the mangrove swamp extend beneath layer 2 in part of the modeled area (fig. 10C). Layer 3 extends offshore into Jobos Bay where CRP data indicated possible upward freshwater discharge to the bay. The base of model laver 4 extends to the base of the aquifer, except where layer 5 is active. Model layer 5 was added to include the deepest and thickest parts of the South Coast aquifer within the Río Nigua fan-delta at Salinas, in the graben where the top of bedrock is the deepest.

The MODFLOW computer code assumes all layers are horizontal, even when a deformed grid is used. The tops and bottoms of model layers are used to calculate thickness and cross-sectional areas of model cell sides, which allows the user to verify (1) whether the simulated aguifer head is below the top of a layer for nonlinear unconfined or convertible model layers, and (2) computations associated with wet/dry functions if these options are used in the model (McDonald and Harbaugh, 1988). When thinly saturated unconfined aquifers are represented in a model, however, it can be difficult to obtain model convergence and mathematical simplification of the problem may be required (Kuniansky and Danskin, 2003). MODFLOW88/96 and MODFLOW-2000 were not designed to fully simulate flow in the unsaturated zone of an aquifer. An initial attempt was made to use an unconfined layer for layer 1 and a convertible layer for layer 2, which resulted in convergence problems. Consequently all layers were simulated as being confined to simplify the mathematical approximation of the system as a linear and more numerically stable problem. In order to constrain the transmissivity calculated by the model for layers 1 and 2 along the upper reaches of the Río Nigua basin, maximum thicknesses of 20 and 25 ft were assigned to layers 1 and 2, respectively. The saturated thickness of alluvial sediments along the upper reach of the Río


Nigua is unknown. As previously indicated, the northern part of the South Coast aquifer in the modeled area (model layer 1) is unconfined and composed of highly permeable deposits, allowing streams with headwaters in the mountains to readily recharge the aquifer in this area. The top and bottom altitudes of layers 1 and 2 used in the model in the upper reach of the Río Nigua are unknown. The altitudes of the top of layer 1 and bottom of layers 1 and 2, therefore, were calculated by assigning land surface altitude as the top of layer 1, subtracting 20 ft to obtain the bottom altitude for layer 1, and subtracting 45 ft to obtain the bottom altitude for layer 2 in the upper reach of the Río Nigua, where borehole data were not available (figs. 11 and 12). The spatial discretization of the bottom altitude for all layers is shown in figure 12. In MODFLOW, the top of each layer is assumed to be equal in altitude to the base of the layer above it.

The top of layers 1 and 2 was set to land surface altitude, as estimated from digital elevation models from USGS 1:20,000 scale topographic maps (M. Santiago, U.S. Geological Survey, written commun., 2006) as shown on figure 11 except at Cerro Aguirre northeast of Jobos Bay, and along parts of the northern edge of the modeled area. In general, the potentiometric surface is below land surface in the hills. Although there were insufficient data to estimate the water-table surface altitude from land surface altitude, the water table was assigned a value that would constrain the storage properties to reasonable values for transient simulation, as discussed later.

# **Boundary Conditions**

Boundary conditions along the top of the model grid are as follows: net recharge is applied to the top active model layer (layers 1 and 2). Net recharge is the amount of infiltration from precipitation and irrigation return flow minus evapotranspiration and surface runoff, and represents effective recharge to the saturated part of the aquifer. The spatial distribution of net aquifer recharge was based on the irrigation method used in local agricultural enterprises. Irrigation return flow from lands planted with sugarcane (using furrow irrigation) represents the highest rate of net recharge in the modeled area until 1993 when sugarcane cultivation ceased. By 2002, about 4,500 ac were used for agricultural purposes, a decrease of 4,800 ac compared to 1986 (fig. 4A-B), and drip or overhead irrigation (sprinklers and center pivot) were used for all cultivated acreage.

The Patillas and Guamaní irrigation canals are simulated in layer 1 using the River package (RIV) of MODFLOW (McDonald and Harbaugh, 1988). Along a segment of Canal de Patillas in the Salinas alluvial fan, injection wells were used to simulate infiltration



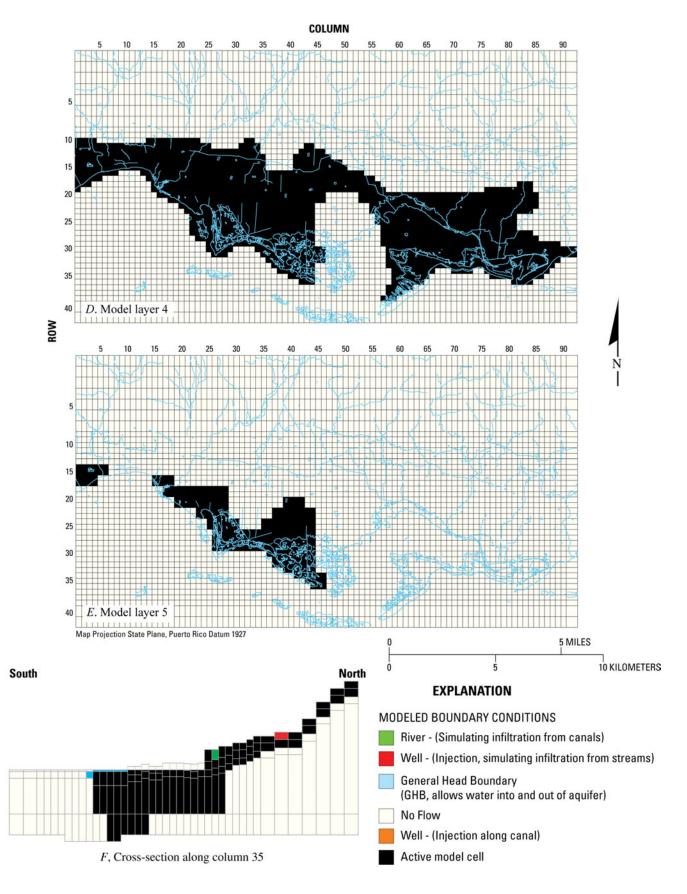



Figure 10. Finite difference grid and boundary conditions for model layers 1 through 5.

from the canal to the aquifer as estimated with stable isotopes of deuterium and oxygen-18 (Gómez-Gómez, 1991; Rodríguez, 2006). The altitude of the canal stage (RSTAGE in the River Package; McDonald and Harbaugh, 1988) was obtained from USGS 1:20,000 scale topographic maps and interpolated along the canals. The RSTAGE along the northern canal (Canal de Guamaní Oeste) ranges from 228 above mean sea level at the eastern end of the modeled area to 104 ft at the western end of the canal in the Salinas fan. The RSTAGE on the southern canal (Canal de Patillas) ranges from 97 ft above mean sea level at the eastern end of the canal to 39 ft at the western end of the canal. However, the maximum loss to the aquifer by each canal cell is constrained by setting the river bottom altitude (RBOT in the River Package; McDonald and Harbaugh, 1988) to 1 ft lower than the assigned RSTAGE. The riverbed conductance term is set such that the loss per reach is fixed for each reach by taking the total estimated loss along all of the reaches and dividing this by the number of model cells for simulating the reach. In this way, the maximum rate of inflow to the aquifer is constrained, but outflow from the aquifer to the canal is not constrained. The river cell conductance term for most of the canal model cells was set to 360  $ft^2/d$  (square feet per day), in order to constrain the maximum leakage to the aquifer from the canals, when the simulated aquifer head drops below the canal bottom specified by the term RBOT. A few conductance terms along the Canal de Patillas were set to 4,940 ft<sup>2</sup>/d where higher canal losses were thought to occur as indicated previously. The maximum canal losses are constrained to be less than 2 ft<sup>3</sup>/s once the simulated aquifer head drops below the RBOT set for the RIV cells.

The estimated average annual streamflow infiltration (table 3) was injected into the aquifer using injection wells denoted as red cells in figure 10A. Injection wells were also placed along the part of the irrigation canal and Lago Melania, where water infiltrates the aquifer (orange cells, fig. 10A).

The General-Head boundary (GHB) package of MODFLOW (McDonald and Harbaugh, 1988) was used to simulate head-dependent flow to or from the mangrove swamp and coast, which is along the southern boundary of layer 2. The general head altitude was set to 0 ft (mean sea level) and the initial conductance was set at 67,280 ft<sup>2</sup>/d (k<sub>z</sub> was assumed to be 1 ft/d and the thickness of bed sediment 1 ft). General head boundary conditions were applied to the top of model layer 3 in Jobos Bay (as in layer 2) to adequately model those areas where the CRP data indicated freshwater discharge may be occurring to the bay (plates 6*A*-*H*; fig. 10B-*C*).

Groundwater withdrawals from the aquifer were simulated with the well package (WEL) (McDonald and Harbaugh, 1988). Pumpage was applied for the steadystate and transient simulations in layers 2 through 5 based on the screened interval penetrated by the wells (app. 3).

All of the lateral boundaries of the model are no-flow boundaries. The lateral no-flow boundaries along the coast were set at the estimated freshwater/ seawater interface. This method of no-flow boundary was described by Reilly (2001). The no-flow boundary on the bottom of the system is either along the base of the permeable fan-delta and alluvial deposits, which overlies bedrock with low permeability, or at the estimated freshwater/seawater interface. The location of the freshwater/seawater interface was estimated from the freshwater lens thickness published by Renken and others (2002), Ghyben-Herzberg approximation (Bear, 1979), and the CRP data collected for the current study.

#### Model Calibration Strategy

Because water-use data and irrigation surveys prior to the one conducted in 1986 are less accurate than data collected during and after 1986, the process of model calibration began with developing a steadystate simulation based on the 1986 data to be used as an initial condition for transient simulation for 1986 to 2004. In March 1986, a synoptic survey of hydrologic conditions was conducted that included flow in streams and canals, groundwater withdrawals, and aquifer water-level measurements from non-pumping wells (Torres-González and Gómez-Gómez, 1987; Ouiñones-Aponte and Gómez-Gómez, 1987). For transient calibration, annual stress periods were set up from 1986 through 2004. Pumpage and irrigation survey data were not available to develop transient data at a monthly resolution.

It is necessary to understand the accuracy and uncertainty of the data used for model calibration when calibrating a groundwater flow model. The match between simulated and observed data should not be expected to be closer than the accuracy of the data. Matching inaccurate observations exactly is termed "over fitting." It is also important to have estimates of fluxes to and from the groundwater system when calibrating a groundwater flow model in order to have a unique set of model parameters.

At best, the accuracy of water-level measurements for 1986 is  $\pm 2$  ft at wells where the land-surface altitude is less than about 50 ft above mean sea level, and  $\pm 15$ ft at wells where the land-surface altitude is greater than about 50 ft. In both cases, the accuracy for waterlevel measurements is equivalent to half the contour interval of the topographic map used by Torres-González and Gómez-Gómez (1987). Of the 66 water level measurements for 1986, about 18 are from wells where the land-surface altitude exceeded 50 ft above mean sea level. Thus, 48 measurements have an accuracy of

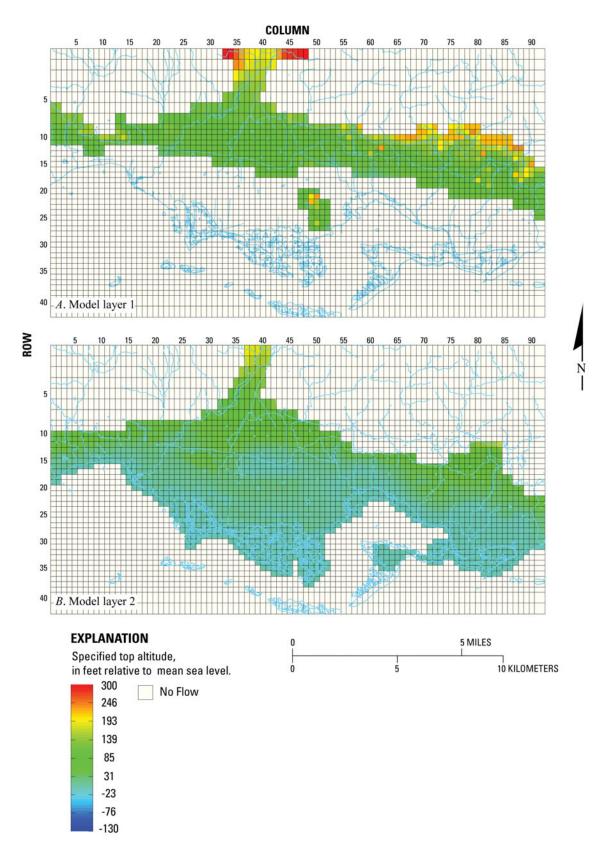
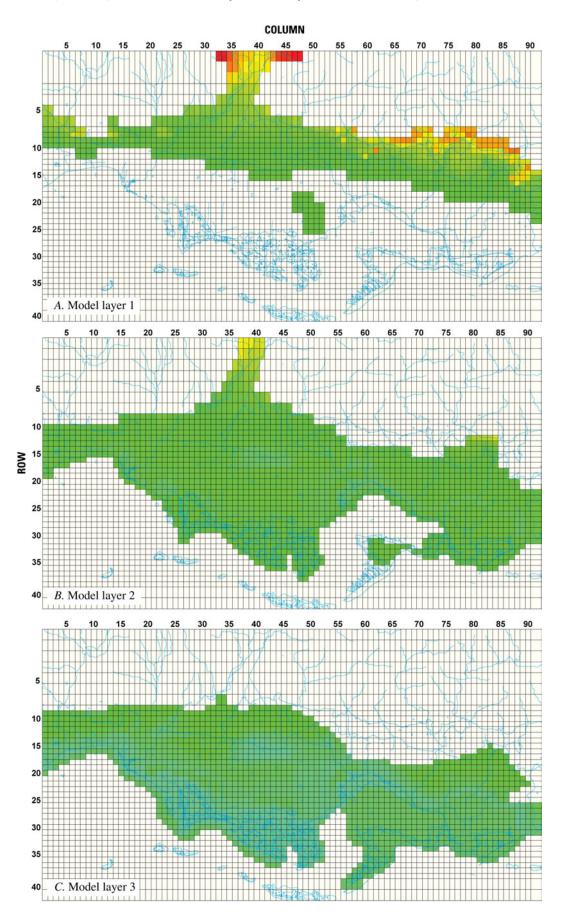




Figure 11. Specified altitudes for top of model layers 1 and 2.



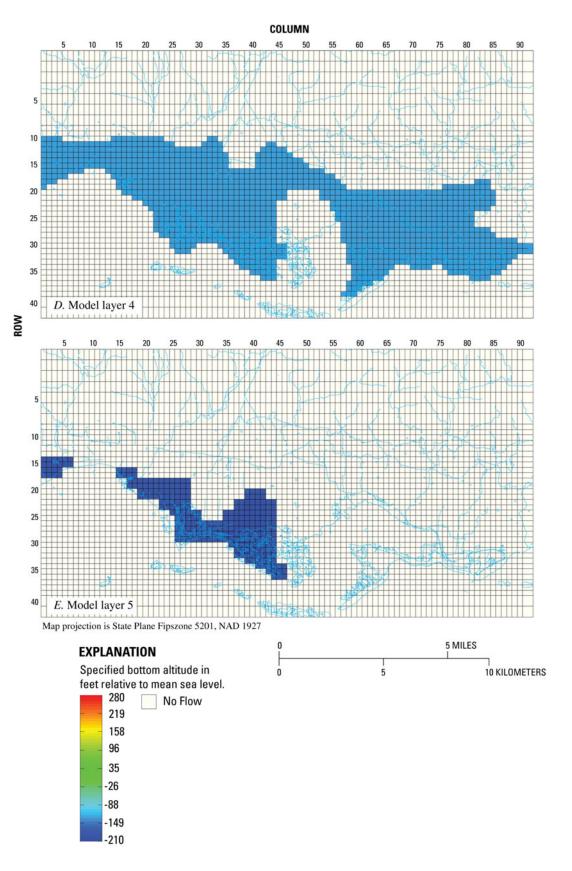



Figure 12. Specified altitudes for bottom of model layers 1 through 5.

 $\pm 2$  ft and 18 measurements have an accuracy of  $\pm 15$  ft. The observed water-level data ranged from -18 below to 88 ft above mean sea level. Thus, the mean accuracy of the water-level observations is 5.5 ft and the standard deviation of the accuracy is 5.8 ft. There is also some error in the location of the water levels for 1986, as these were located without the benefit of modern global positioning systems (GPS). Thus, the initial condition steady-state calibration would be over fitted to the water-level data if the standard deviation of observed minus simulated water level is 6 ft or less. Because of the additional potential errors in well location for the 1986 data and the fact that the observed water levels were collected in March and the simulated water levels represent average annual conditions, it was concluded that a good fit to the observed water-level data could have a standard deviation of approximately 12 ft; this is twice the accuracy standard deviation, which would indicate that approximately two thirds of the residual errors are less than 12 ft.

Another useful statistic, which is dimensionless, is the standard deviation of residuals divided by the range in the data. This statistic is useful because the range of the observed water-level data used for calibration is accounted for. Generally, if the range of water-level data is large, there is usually a larger standard deviation in residual error. Thus, a good fit to the data would be reflected in a ratio of approximately 1/10 or less.

There is uncertainty in the estimates of spatially distributed recharge, irrigation return flow, and groundwater withdrawals for both irrigation, and public supply, which has no requirement for accurate metering. For this model, the initial estimates of net aquifer recharge were based on the previous model study and calibration of the adjacent area (Kuniansky and others, 2004). Irrigation return flow of as much as 30 percent was also applied to areas formerly in sugarcane crops as estimated by Kuniansky and others (2004). Irrigation withdrawals were considered to be less accurate than public and industrial withdrawals; because irrigation withdrawals are estimated from crop water requirements minus precipitation and surface-water application, whereas public and industrial withdrawals are generally metered. The estimates of streamflow infiltration for this model are considered reasonable, but conservative, as they are based on estimates of daily base flow and precipitation data (table 3).

The range in horizontal hydraulic conductivity of the sediments is probably the best understood property for the upper 200 ft of the aquifer, and areally ranges from 2 to 500 ft/d. The distribution of hydraulic conductivity if sorting from low to high is as follows; 10 percentile of 7 ft/d, 25 percentile of 20 ft/d, 50 percentile of 50 ft/d, 75 percentile of 90 ft/d, and 90 percentile of 200 ft/d (table 5). The spatial distribution of hydraulic conductivity values for the model should reflect the mapped hydraulic conductivity shown in figure 6. This map mimics the areal distribution of sand and gravel percentages in figure 5, with larger hydraulic conductivities in fan-delta deposits and areas of higher sand and gravel percentages and low conductivities in the inter-fluvial areas between the fan-delta lobes (Renken and others, 2002).

For the steady-state initial calibration condition, the initial hydraulic conductivity was set to the midrange value for zones of hydraulic conductivity (fig. 6). Additionally, the ranges in recharge were tested and some of the initial pumping estimates (as reported for conditions during March 1986) were also reviewed and modified as necessary.

Sensitivity analysis was performed to gain some insight into which parameters and stresses could be evaluated with parameter estimation. Only parameters for which the observed data set is sensitive can be estimated with parameter estimation. MODFLOW-2000 with parameter estimation was used to test different zoning schemes of hydraulic conductivity or net aquifer recharge.

Because the groundwater flow equation is based on Darcy's law, recharge (flux) and hydraulic conductivity are usually correlated in the parameter estimation process and cannot be estimated simultaneously without better prior information (tighter bounds on the estimated parameters or stresses) about recharge and irrigation return flow than previously mentioned. The prior information functions for hydraulic conductivity adequately constrained these parameter estimates. As a result of parameter correlation and poor prior information for net aquifer recharge and groundwater withdrawals, attempts to estimate hydraulic conductivity and recharge parameters simultaneously with MODFLOW-2000 resulted in what appear to be unreasonable recharge rates for the steady-state initial condition. Thus, a combination of trial and error and parameter estimation was utilized in model calibration for steady-state conditions.

Once the steady-state simulation was calibrated, with a good fit achieved between observed and simulated water levels, the simulated water levels were used as the initial condition for the transient simulation (1986-2004). Some modifications to the hydraulic conductivity and storage coefficients were made to improve the transient model match to data from seven observation wells. If hydraulic conductivity was modified, then the initial steady-state model was run with the new hydraulic conductivity value, the residuals for the steady-state simulation were examined, and a new initial condition was generated.

During the calibration process, the initial estimate of irrigation withdrawals from 1986 to 1993 was reduced by 20 percent to obtain a better fit for the simulated water-level hydrographs. The original estimate for all other groundwater withdrawals was not modified.

Water-level observations and the simulated residual errors for the March 1986, July 2002, and May 2004 potentiometric maps are provided in appendix 6. The final calibrated initial condition for the 1986 data had a mean residual error of -0.75 ft, a residual standard deviation of 9.52 ft, and the standard deviation divided by the range in observed data of 0.09, which was considered satisfactory. The simulated 1986 potentiometric surface with posted residuals are shown in figure 13. A positive error means that the simulated water level is too low and a negative error means that the simulated water level is too high.

For the transient simulation, seven observation well hydrographs with a daily water level were available to fit simulated water levels. The hydrographs for observed and simulated water levels are shown in figure 14; the simulation had annual stress periods with multiple time steps. The residual error is interpolated in time for the simulated value to be compared to the observed daily value. The mean residual error for all of the hydrographs observations in figure 14 is 6.01 ft. The residual standard deviation is 7.36 ft and the standard deviation divided by the range of the data is 0.076. The calibration statistics are similar to the calibration statistics for 1986 potentiometric map data, and the results were within the calibration criteria considered acceptable. In general, the simulated water levels are lower than the observed water levels in the hydrographs, resulting in the positive mean residual error. Only four of the hydrographs (fig. 14A-D) have water-level data through the 2003 storm event. Although the simulated water levels are generally lower than the observed water levels, the increases in simulated and observed water levels following the November 2003 storm event are similar.

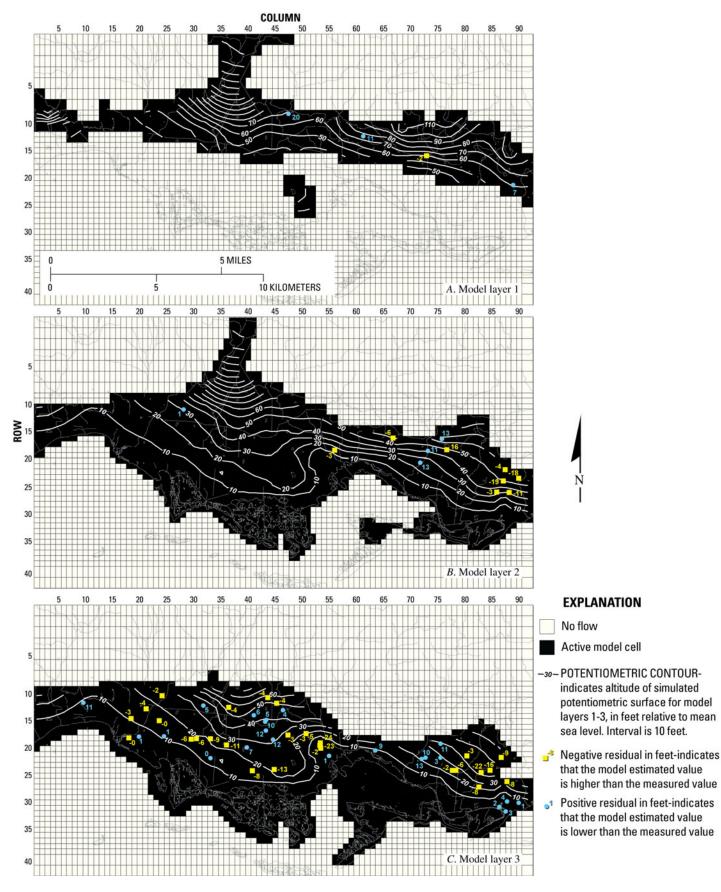
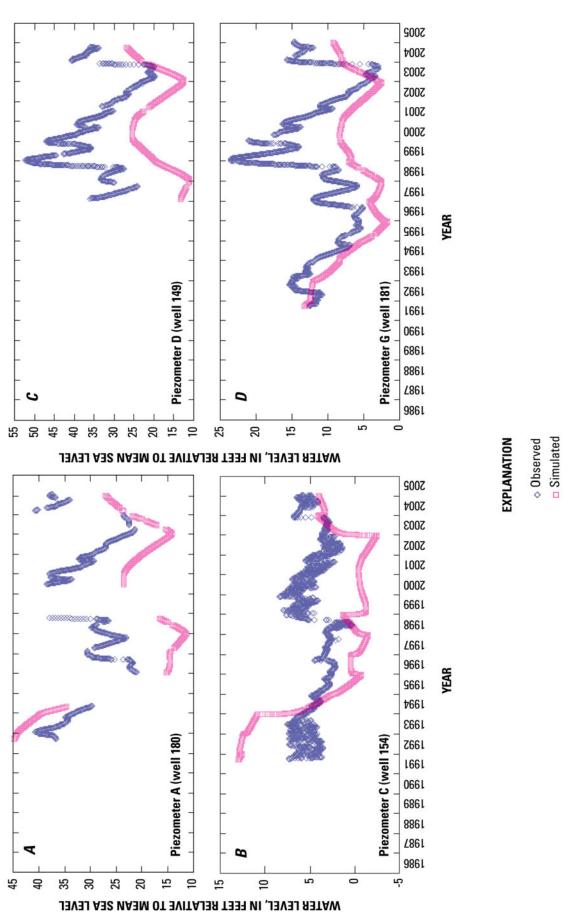
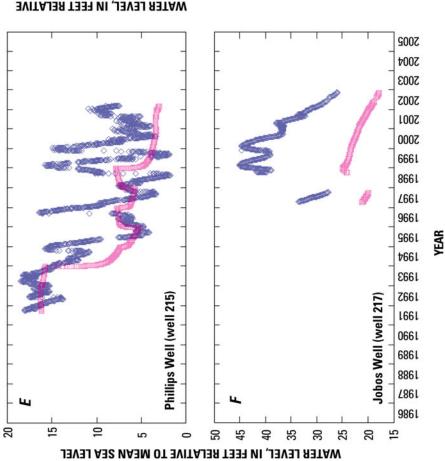
The simulated water-level map for 2002 and posted residuals (fig. 15) indicate a worse fit than the fit to the 1986 data, but one that is within the established calibration criteria. As with the 1986 steady-state simulation, the 2002 simulated values are again lower than the observed values. The observed water levels for 2002 represent conditions during July, whereas the simulated water levels represent average conditions for 2002. The mean residual error was 12.76 ft, the residual standard deviation was 16.53 ft, and the standard deviation divided by the range in observed data was 0.13.

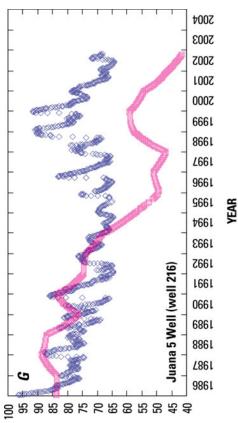
The simulated water-level map for 2004 and posted residuals (fig. 16) indicate a fit that is within the calibration criteria, and closer in magnitude to the fit obtained for the 1986 data than for the 2002 data. The observed water levels represent data collected during May, whereas the simulated water levels represent average conditions for 2004. The mean residual error was 3.07 ft, the residual standard deviation was 9.49 ft, and the standard deviation divided by the range in observed data was 0.11.

The final horizontal hydraulic conductivity,  $K_{\mu}$ , assigned to each layer are shown in figure 17. Over the coastal plain, the range in  $K_h$  is 1 to 200 ft/d. In the upper reaches of the Río Nigua and its tributaries, the Río Lapa and Río Majada, high K<sub>h</sub> values of 200 and 400 ft/d are assigned to layers 1 and 2. The vertical hydraulic conductivity  $(K_y)$  was set equal to one tenth of  $K_{h}$  value except in areas beneath the two high  $K_{h}$ zones along the upper reaches of the Río Nigua and its tributaries (Río Lapa and Río Majada) where coarsegrained deposits of sand, gravel, and cobbles constitute the permeable aquifer unit. For these two high  $K_{h}$  zones,  $K_{\mu}$  is set equal to half of  $K_{\mu}$ . The spatial distribution of  $K_{\mu}$ zones assigned to each layer reflects the information in the borehole lithologic descriptions and the depositional framework of higher K<sub>1</sub> zones along the major streams, which create the fan-delta deposits within the South Coast aquifer, and lower  $K_{h}$  zones in the inter-fluvial areas.

It was necessary to include aquifer storage properties in the transient simulation only, and these properties mainly affect the amplitude of the hydrographs shown on figure 14. In MODFLOW-2000, a constant specific storage value, rather than multiple storage coefficients, was assigned to the model layers. The storage coefficient (S) can be defined as the volume of water that an aquifer releases or uptakes per unit surface area of aquifer per unit change of head. The storage coefficient of an unconfined aquifer is approximately equal to the specific yield  $(S_v)$ , which is generally related to the amount of water that can be released by gravity drainage. S<sub>u</sub> is usually less than the porosity, as a result of some water adhering to the sediment grains, but can approach the porosity of coarse-grained material.  $S_{y}$  can range from 0.07 for sandy clay to 0.35 for gravelly sand (Johnson, 1967). In confined aquifers, the storage coefficient is related to the compressibility of the aquifer and fluid and the thickness of the aquifer. Storage coefficients for confined aquifers generally range from 0.00001 to 0.001 (Bouwer, 1978; Fetter, 1994). Specific storage  $(S_s)$  is related to the storage coefficient by  $S = S_s b$ , where  $S_s$  is the volume of water an aquifer releases or uptakes per unit volume of an aquifer per unit change of head and b is the thickness of the aquifer. Specific storage is also known as the elastic storage coefficient and is a function of the density of water, the constant for the acceleration of gravity, the compressibility of the aquifer skeleton, porosity, and the compressibility of water. Specific storage has a dimension of inverse length  $(L^{-1})$  and is generally greater than  $10^{-6}$  ft<sup>-1</sup> and less than  $10^{-4}$  ft<sup>-1</sup>.

Because all model layers were simulated as confined, the specific storage for layer 1 was set to 0.0025, such that this would result in a storage



Figure 13. Simulated potentiometric surface for model-calibrated conditions during March 1986.







#### AVITER LEVEL, IN FEET RELATIVE TO MEAN SEA LEVEL



# EXPLANATION

Observed
 Simulated

#### 40 Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.

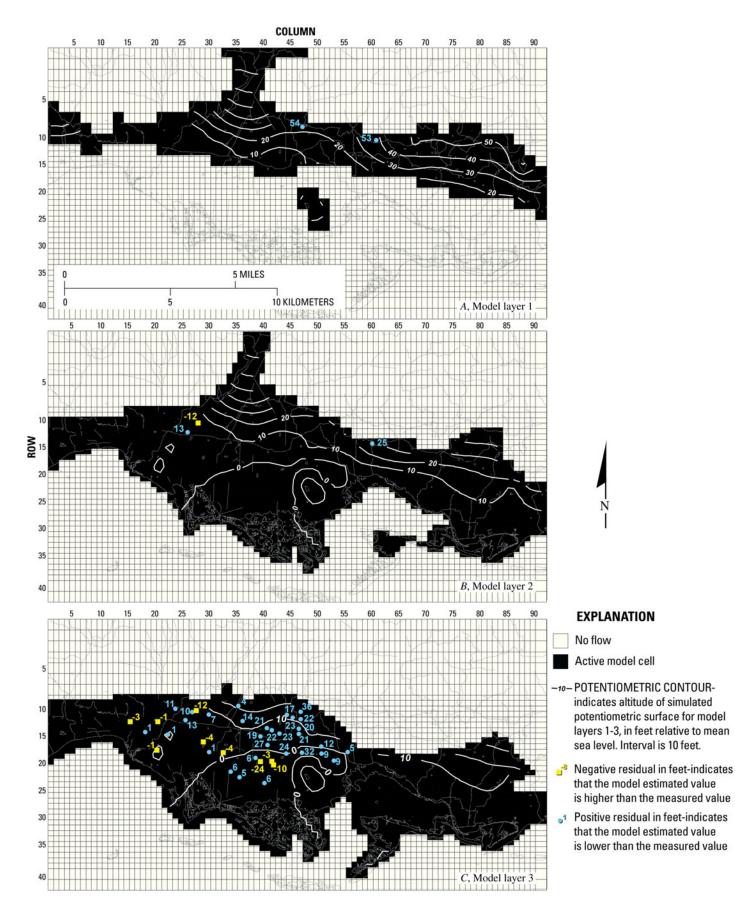



Figure 15. Map showing simulated potentiometric surface for model-calibrated conditions during 2002.

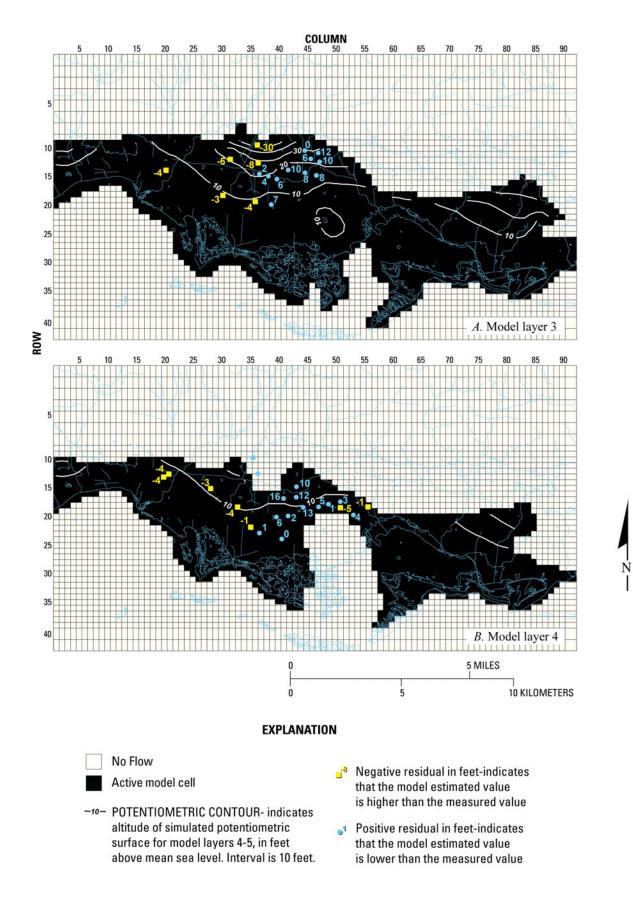
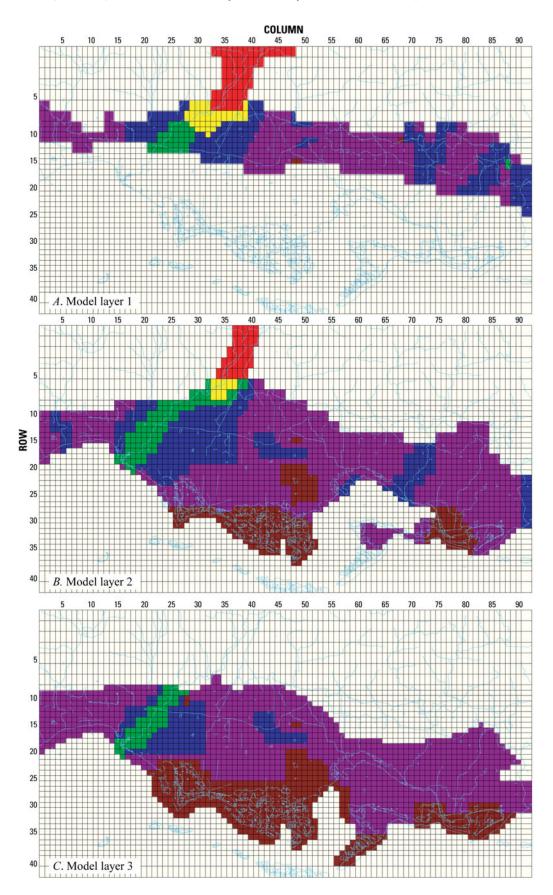
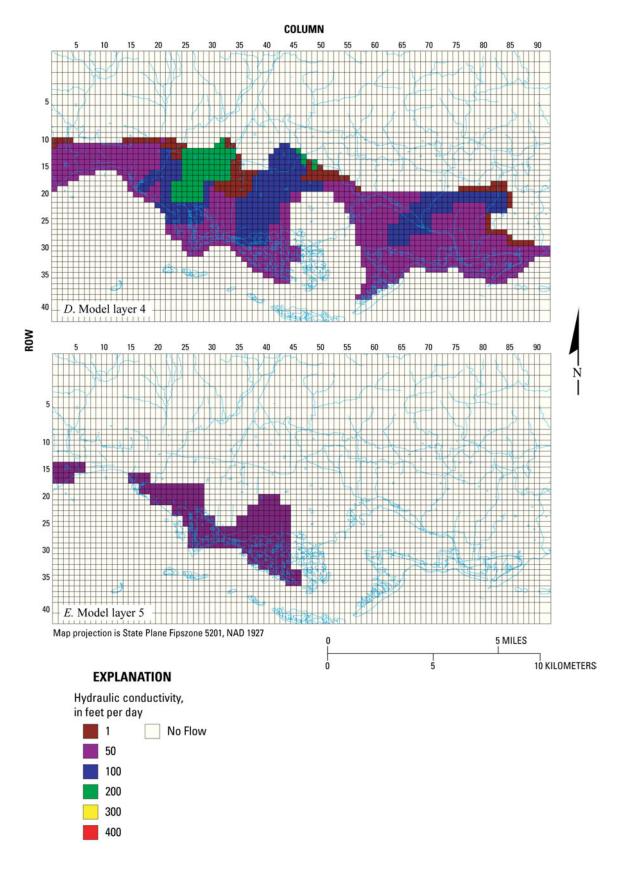





Figure 16. Simulated potentiometric surface for model-calibrated conditions during 2004 and posted residuals.

#### 42 Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.





**Figure 17.** Final calibrated horizontal hydraulic conductivity values assigned to each of the five model layers for the South Coast aquifer between the Río Jueyes and Río Guamaní, southern Puerto Rico.

coefficient value closer to a specific yield of 0.05 over most of the layer (the specific storage times a thickness of 20 ft). Figure 18A, shows the range of storage coefficients assigned to each cell in model layer one, which range from 0.05 to 0.325. As mentioned earlier, the altitude of the top of layer 1 was set to a value below land surface altitude in hilly areas to constrain the storage property to 0.325 or less, which is the upper reasonable limit for specific yield in an unconfined system (Johnson, 1967; Bouwer, 1978). Specific storage was set to 0.0005 for layer 2, and 0.00001 for layers 3 through 5. Specific storage values were set at the upper range of specific storage in confined aquifers for layer 2 because these are fairly recent alluvial sedimentary deposits, which are more elastic than indurated sedimentary rock. Additionally, the thin clay and silt lenses within these deposits increase the elastic storage within this layer. The deeper sediments (represented by layers 3 through 5) were assigned specific storage values that are more typical of confined aquifers. Because the storage coefficient for each model cell is calculated by multiplying specific storage by layer thickness, the value of the storage coefficient varies as the thicknesses of the layers are not constant. The range, however, is not wide because most of the layers have almost constant thickness. Layers 1 and 2 have the widest range in thickness as the top and bottom of these layers are based on land surface altitude and the estimated altitude of the base of the unconsolidated clay/silt zone overlying the bedrock unit. Additionally, layer 2 was set to be only 5 ft thick beneath the mangroves along the coast.

# **Sensitivity Testing and Analysis**

Groundwater modeling results are affected by various modeling parameters, stresses, and assumptions, including the (1) geometry of the hydrogeologic units, (2) vertical and horizontal spacing of the model grid, (3) types and locations of model boundaries, (4) magnitudes and areal distributions of stresses such as groundwater recharge and withdrawals, (5) conductance of river and general head boundary cells, and (6) horizontal and vertical hydraulic conductivities of aquifers and confining units. Transient simulation results are affected by the time-step size, number of stress periods, or the storativity of the aquifers and confining units. Ideally, a complete sensitivity analysis would determine model sensitivity to all of these parameters and assumptions, but only model sensitivity to the parameters and stresses were determined for this model. For this study, the model response tested for goodness of fit is the simulated water level, because most fluxes to or from the system are calculated or reported values. This model is considered sensitive to a parameter or stress when a small change

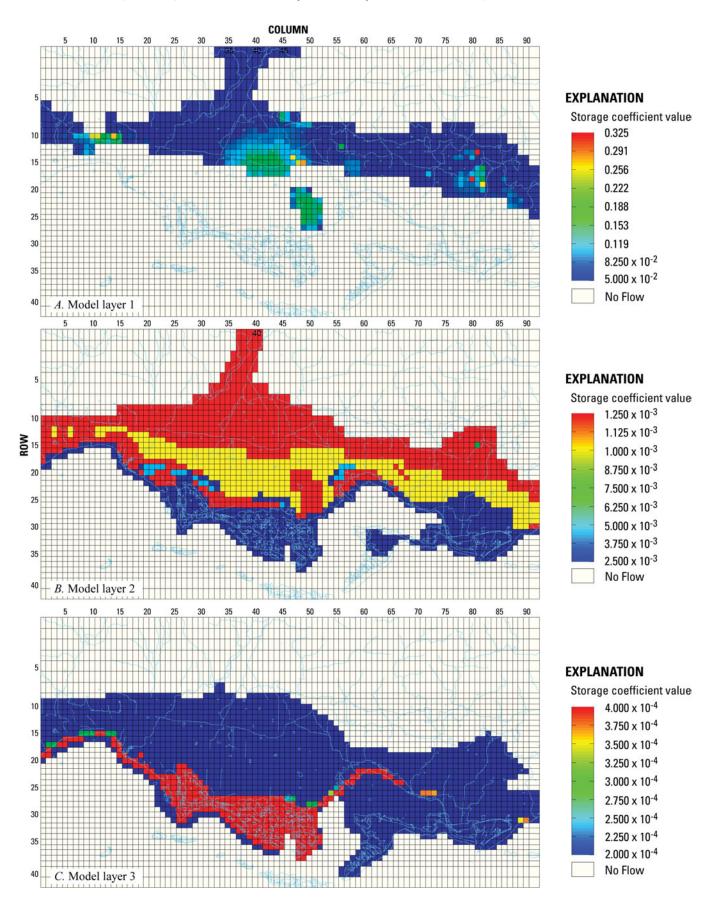
(perturbation) of the model-assigned parameter or stress causes a large change in the simulated water level. Sensitivity analysis is useful for indicating where errors in the calibrated set of parameters and stresses are most likely, or the simulated groundwater head is sensitive to the parameter or stress. If the model is sensitive to changes in the parameter or stress, the calibrated value is more likely to be accurately estimated through simulation. If the model is insensitive to changes in a parameter or stress, then it is not known if the calibrated value is close to the actual value, and that parameter or stress cannot be estimated through simulation or automated parameter estimation.

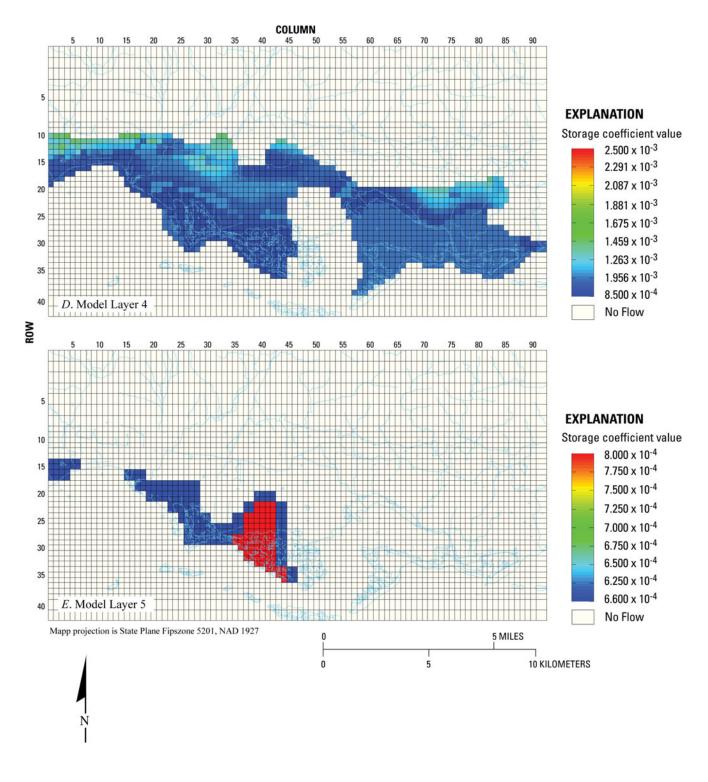
This model was calibrated using a combination of parameter estimation and trial-and-error analysis. Automated parameter estimation was used with the steady-state model. Composite-scaled sensitivity analysis was performed for some of the parameters for the steady-state data (table 6). The compositescaled sensitivity is a dimensionless measure of the change in calculated head with respect to the value of a parameter, and is independent of the actual values of the observations (Hill, 1998). Composite-scaled sensitivities are calculated for each parameter using the scaled sensitivities for all observations, and indicate the total amount of information provided by the observations and the parameter. When the sensitivity process is used with the final set of parameters incorporated in the calibrated model, the sensitivities indicate which parameters will result in the greatest change in observation types. For the steady-state model, only 66 water-level observations were available. Thus, the sensitivity testing provides information on how the parameters and stresses affect water levels. Although 18 of the measurements were  $\pm 15$  ft and 48 were  $\pm 2$  ft, weighting was not used in the sensitivity analysis. Weighting is critical for calibration and sensitivity analysis if there are different observation types, such as flux observations, water levels, or waterlevel differences (Hill, 1998). For this model, all of the observations available were water levels because the fluxes are all calculated or reported. Therefore, weighting the observations does not provide more information about sensitivity, although weighting would have given the appearance of better calibration statistics because the worst residual errors were at wells with the lowest associated accuracy. The larger the composite scaled sensitivity number, the greater the model sensitivity to that parameter. The parameters in table 6 are sorted from largest to smallest compositescaled sensitivity.

For the steady state simulation, recharge was applied to the highest active area in three zones—1 (furrow irrigation area in green - zone 2), 2 (net

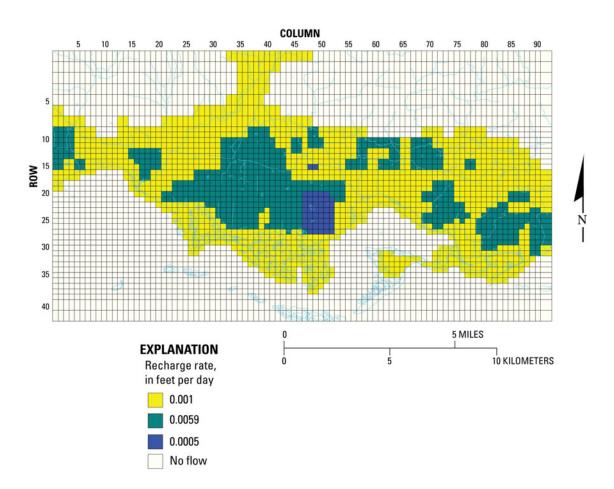
| Parameter name | Description                                  | Composite scaled sensitivity |
|----------------|----------------------------------------------|------------------------------|
| rch2           | Net recharge zone 2 (furrow irrigation area) | 23.60                        |
| kx2            | Horizontal hydraulic conductivity zone 2     | 16.84                        |
| kx3            | Horizontal hydraulic conductivity zone 3     | 9.69                         |
| rch1           | Net recharge zone 1                          | 7.35                         |
| kx4            | Horizontal hydraulic conductivity zone 4     | 4.57                         |
| kx5            | Horizontal hydraulic conductivity zone 5     | 1.31                         |
| kz1            | Vertical hydraulic conductivity zone 1       | 0.92                         |
| kz2            | Vertical hydraulic conductivity zone 2       | 0.37                         |
| kx6            | Horizontal hydraulic conductivity zone 6     | 0.30                         |
| kx1            | Horizontal hydraulic conductivity zone 1     | 0.26                         |
| rch4           | Net recharge zone 4 (hill in coastal plain)  | 0.22                         |
| kz3            | Vertical hydraulic conductivity zone 3       | 0.08                         |
| kz4            | Vertical hydraulic conductivity zone 4       | 0.07                         |
| kz5            | Vertical hydraulic conductivity zone 5       | 0.00                         |
| kz6            | Vertical hydraulic conductivity zone 6       | 0.00                         |

Table 6. Composite scaled sensitivity for selected parameters, steady-state simulation for existing conditions in 1986.


recharge from rainfall area in yellow - zone 1) and 3 (net recharge at Cerro Aguirre area in blue – zone 4) (fig. 19). Two recharge areas are most important—areas of net recharge with no irrigation (zone 1 in yellow) and the areas with furrow irrigation (zone 2 in green) (fig. 19). Of lesser importance is recharge to (zone 4) Cerro Aguirre, where the bedrock projects above the alluvial plain. The bedrock unit in this area has a lower permeability that that of surrounding areas and it was assigned a net recharge equal to half the net recharge for the non-irrigated area.


The parameters with the greatest composite-scaled sensitivity, in order of decreasing sensitivity, are net recharge to zone 2 (furrow irrigation area),  $K_x$  for zone 2,  $K_x$  for zone 3, net recharge to zone 1 (net recharge from precipitation over most of the area),  $K_x$  for zone 4, and  $K_x$  for zone 5 (table 6). The steady-state simulation is fairly insensitive to  $K_z$  in general,  $K_x$  for zones 1 and 6, and net recharge in zone 4.

Sensitivity analysis was performed by perturbing zoned parameters and stresses for the transient simulation. Results of the analysis show the residual standard deviation between observed and simulated water-levels as a function of multipliers applied to the calibrated value (fig. 20). The model was most sensitive to the reduction of horizontal hydraulic conductivity of zone 2 (fig. 20A), which represents the lower permeability sediments between the higher permeability fan-delta deposits. A  $K_x$  of 50 ft/d was assigned to zone 2, because increases beyond this value did not affect simulated heads. The model was fairly insensitive to most other hydraulic conductivity parameters, and was least sensitive to the assigned vertical hydraulic conductivity ( $K_z$ ).


For the transient simulation, recharge decreased beginning in 1986 as the furrow irrigation return flows diminished and then ceased after 1993 (app. 5). From 1993 to 2004, net recharge was limited to rainfall; infiltration from streams and canals were considered separately in the sensitivity analysis. The transient simulation is mostly sensitive to recharge in zone 1 (fig. 20*B*), which represents recharge from rainfall in the area without furrow irrigation in the upper part of the coastal plain. The transient simulation was somewhat sensitive to reductions in the storage of layer 2, as this layer is composed of poorly compacted and coarser sediments, and it is reasonable to assume that its storage value is in the upper range.

The transient simulation was highly sensitive to reductions below 1.0 and increases above 1.4 times the calibration value of infiltration from the Río Nigua (fig. 20*C*). In general, the transient simulation was not significantly sensitive to infiltration from other streams (simulated as injection wells) and conductance of canals and general head boundaries.





**Figure 18.** Final storage values assigned to each of the five model layers for the South Coast aquifer between the Río Jueyes and the Río Guamaní, southern Puerto Rico.



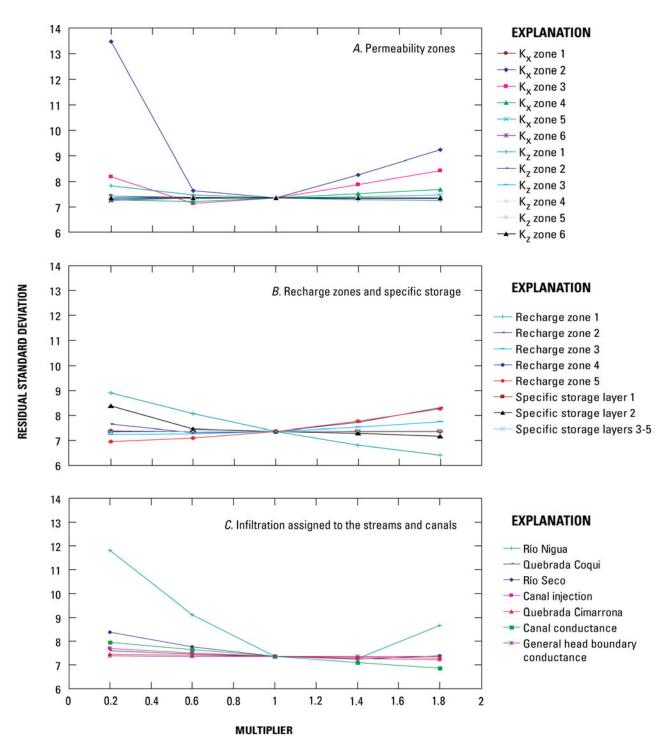



Figure 20. Sensitivity analysis based on transient simulation using the residual standard deviation from water-level hydrographs.

## **Effects of Water-Resources Development**

The effect that changes in water-resources development have on the groundwater flow system in the study area is best described by examining changes in water budgets derived from the groundwater flow model. The model-derived water budget for the steady-state simulation is shown in table 7 and the water budget for the calibrated transient (1986-2004) simulation is shown in figure 21.

The initial steady-state simulation of 1986 represents a wetter than average year in which streamflow infiltration was higher than average (16.78)  $ft^{3}/d$ , table 3). Annual rainfall at the Jájome Alto rainfall station was 83 in., which is greater than the average annual rainfall of 77 in. at this station. Unfortunately, there were too many days of missing record at the Aguirre Central rain gage in 1986 to obtain the measured annual total. However, based on data from other rainfall stations in the area, the estimated annual rainfall for 1986 at the Aguirre Central rain gage was 41 in., which is comparable to the average annual rainfall of 40 in. Additionally, 1985 was a relatively wet year in which 57 in. of rainfall was measured at the Aguirre Central rain gage. As a result, the water level in the aquifer was fairly high in 1986 for the initial condition, and as simulated by the model, there was upward flow from the aquifer to the coastal swamps and the Jobos Bay, representing as much as 63 percent of the simulated aquifer discharge (24.61 Mgal/d) through the general head boundary cells (table 7). The remaining 37 percent of discharge from the aquifer (14.40 Mgal/d) was from groundwater withdrawals, with minor flow into some of the canals simulated with the river package (0.23)Mgal/d). Net areal recharge represented 67 percent of inflow (26.22 Mgal/d), streamflow infiltration represented 30 percent of the inflow (11.96 Mgal/d), and the canals simulated with the river package provided 3 percent of the inflow (1.05 Mgal/d).

The transient model water budgets show the rates of flow to and from sources and sinks at the end of each annual stress period (fig. 21). In general, there is greater total flow through the system from 1986 through 1993 as a result of the irrigation return flow. The average net aquifer recharge rate applied to the model from 1986 through 1993 was 21 Mgal/d, which decreased to an average of only 6 Mgal/d from 1994 through 2004 as a result of the switch from furrow irrigation to more efficient irrigation practices discussed earlier. Although irrigation withdrawals were greatest during the period of furrow irrigation, some of the irrigation water was supplied from surface-water sources outside of the model area by way of the irrigation canals; therefore, the irrigation return flow more than offset the irrigation pumpage. The average groundwater withdrawal rate for all pumpage was estimated at 15 Mgal/d for 1986

**Table 7.**Model derived water budget for the steady-statesimulation for 1986.

[Mgal/d, million gallons per day]

| Description                                   | Inflow<br>(Mgal/d) | Outflow (Mgal/d) |
|-----------------------------------------------|--------------------|------------------|
| Recharge                                      | 26.22              | 0.00             |
| River Cells assigned to the irrigation canals | 1.05               | 0.23             |
| General Head Boundary Cells                   | 0.00               | 24.61            |
| Wells<br>(Streamflow Infiltration)            | 11.96              | 0.00             |
| Wells (Withdrawal)                            | 0.00               | 14.40            |
| Total                                         | 39.23              | 39.23            |

through 1993 and 10 Mgal/d for 1994 through 2004 as a result of the decreased irrigation withdrawals. The change in irrigation practices primarily affected recharge and freshwater discharge to the coast, reducing both after 1993. The simulated average discharge to the coast was 19 Mgal/d prior to 1994 and 7 Mgal/d from 1994 through 2004, a reduction of 63 percent. The average annual rainfall at the Aguirre Central raingage was 38 in. for both 1986 through 1993 and 1994 through 2004. Therefore, the difference in the modeled water budgets for these two periods is probably related to the cessation of furrow irrigation rather than a difference in rainfall between periods.

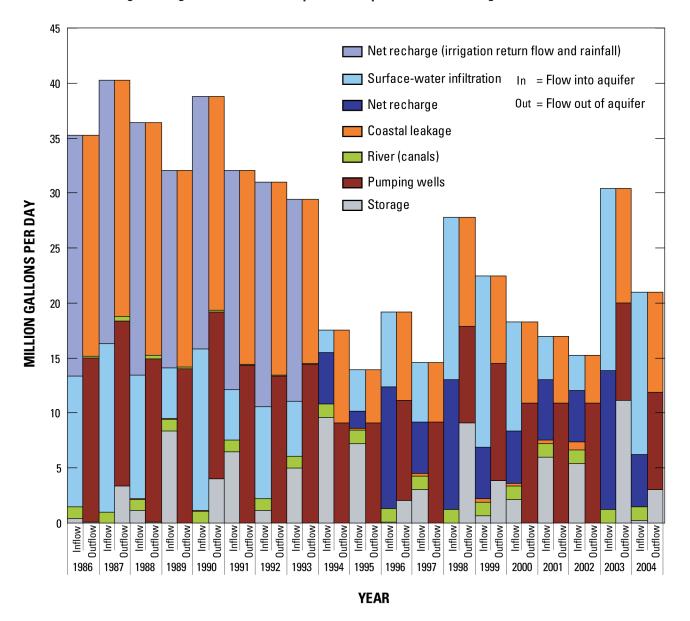
Although the water budget for the entire model volume is revealing, it does not provide information specific to the changes in groundwater leakage for the mangrove swamp in the JBNERR area. Figure 22*A* shows the rates of flow between model layer 2 and the general head boundary cells at the end of each stress period for the JBNERR at Mar Negro. Groundwater discharge is generally small (less than 1.2 Mgal/d) because most of the pumping wells are near the center of the Salinas fan delta, which is near the JBNERR, and because water from the estuary may infiltrate the aquifer during some years, as indicated by the model (fig. 22*A*). Flow from the estuary to the aquifer only occurs after furrow irrigation ceases and both annual rainfall and streamflow infiltration are below average (table 8).

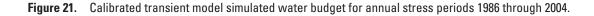
An additional transient model run was made with the pumpage set to zero. Figure 22*B* shows the flux to the mangroves (out of the aquifer) in light blue (fig. 22*B*) superimposed with the flux in and out of the aquifer from the calibrated transient simulation shown fig. 22*A*. The period of furrow irrigation (1986-1993) still has the increased recharge from irrigation return flow included (fig. 22*B*). The hypothetical simulation shows a large increase in outward flow from the aquifer to the estuary, and there is never any simulated flow of water from the estuary to the aquifer. The average flow from the aquifer to the estuary is 2.5 Mgal/d if all pumping is removed for 1994 to 2004. With pumping for this same period, the flow into the aquifer from the estuary averages 0.1 Mgal/d and the average flow from the aquifer to the estuary is 0.2 Mgal/d. These water budgets indicate that pumping at the Salinas fan is capturing groundwater flow that would otherwise discharge through the mangroves. As noted earlier, the irrigation return flow more than offsets the groundwater withdrawals from 1986 through 1993.

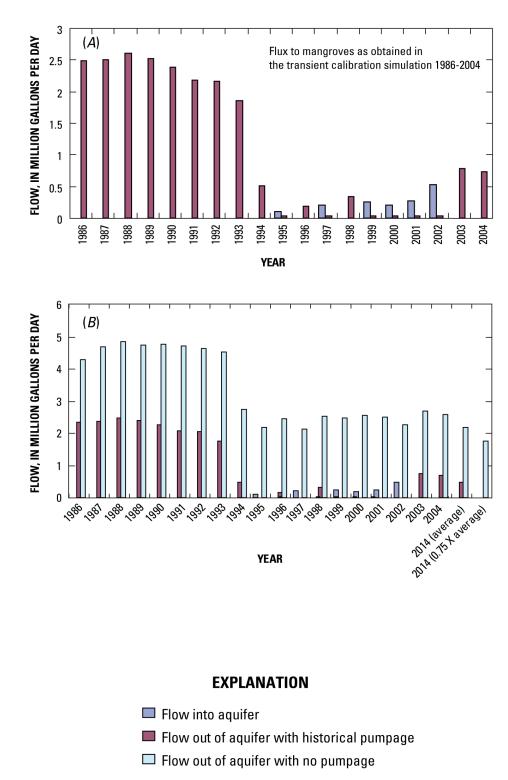
Two additional hypothetical simulations were extended to year 2014 by adding a 10-year stress period to the end of the 1986-2004 simulation using 2004 pumping rates. The first simulation assumed average (1986-2004) precipitation with average net recharge and no irrigation return flow, and average surfacewater infiltration from streams; the second simulation assumed a 25 reduction in precipitation. The flux to the mangrove swamp in the additional 10-year stress period is also shown on figure 22B. The hypothetical simulations indicate that without a reduction in pumping rates, slightly dryer than average period would result in almost no freshwater discharge to the mangroves at the JBNERR and potential saline-water movement from the estuary into the aquifer. These two simulations were rerun assuming no pumpage (fig. 22B).

# Alternative Strategies for Groundwater Management

Alternatives for groundwater management in the aquifer near the JBNERR include reducing groundwater withdrawals, implementing artificial recharge measures, or a combination of both. Artificial recharge is defined as any method used to increase recharge to an aquifer by introducing water that would not naturally be present (American Society of Civil Engineers, 2001). Artificial recharge can be accomplished by increasing surfacewater infiltration using "in-channel" or "off-channel" means. In-channel methods can include in-stream dams and weirs or levees to impound water across the flood plain. Off-channel methods involve the development of canals or other structures that divert floodwater from streams to adjacent fields. Additionally, artificial recharge may be accomplished by using injection wells to pump freshwater or treated wastewater into the aquifer. It is not within the scope of this study to determine which alternative approach is most feasible or determine the source of freshwater or treated waste water. However, the model can be used to investigate how to increase groundwater flow (to the mangroves) up to the 2-Mgal/d rate simulated for no-pumping


conditions. Because it may not be practical to achieve the simulated flux of 2 Mgal/d at the mangroves, the alternatives were tested by running the calibrated transient model with a 10-year stress period under average climate conditions with a goal of achieving 70 percent or 1.4 Mgal/d of groundwater flow toward the mangroves at the JBNERR.


Five alternatives for achieving a 1.4-Mgal/d discharge to the mangroves were evaluated: (1) artificial recharge using injection wells north of the JBNERR boundary (figs. 23 and 24), (2) artificial recharge by flooding fields in areas north of the JBNERR (figs. 23 and 25), (3) termination of groundwater withdrawals near the affected mangroves (figs. 23 and 26), (4) reduction of groundwater withdrawals by 50 percent at irrigation wells (figs. 23 and 27), and (5) a combination of alternatives 2 and 4 (figs. 23 and 28).


The objective of the first alternative was to determine the spacing and rate of injection required to obtain discharge to the mangrove area of approximately 1.4 Mgal/d. Through trial and error it was determined that eight wells injecting a total of 1,040 gal/min (gallons per minute) to layers 2 and 3 (each well operating at an injection rate of 130 gal/min) for a total of about 1.5 Mgal/d resulted in a total flux to the mangrove area of about 1.4 Mgal/d.

The second alternative was tested by flooding agricultural fields north of the JBNERR and south of Highway 3. This alternative involves determining the rate of increased recharge to agricultural fields, and possibly using water from Canal de Patillas. The number of flooded cells in agricultural fields and the increased rate of recharge required to provide a groundwater discharge to the mangrove area of about 1.4 Mgal/d was determined by trial and error. This rate can be achieved if the recharge over approximately 958 ac is increased from 0.00072 to 0.0059 ft/d—the net recharge value used for the period when sugarcane was the principal crop in the area. The net recharge applied to the 958 ac represents 1.84 Mgal/d. This alternative, however, will require additional water if the area is cultivated. The irrigation requirement for the cultivation of sugarcane is 4 ft/yr (an area of 938 ac would require 3.4 Mgal/d). Thus, if sugarcane were planted, the total water requirement would be at least 3.4 Mgal/d.

The third alternative was tested by ceasing groundwater withdrawals from all wells located in an area bounded by the Canal de Patillas, the JBNERR, Hacienda Magdalena, and Cerro Aguirre. The model simulation indicated that the aquifer flux to the mangrove area will be about 1.34 Mgal/d. This alternative may require importing at least 2.44 Mgal/d of water from other sources to compensate for the shutdown of 2 public-supply wells, 4 industrial wells, and 6 agricultural wells that withdraw about 0.56, 1.07 and 0.81 Mgal/d, respectively.







**Figure 22.** Model simulated flow to the mangroves (part of the general-head boundary cells in model layer 2) in the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico (*A*) as obtained in calibrated transient model and (*B*) flux to mangroves with a 10-year stress period added while maintaining 2004 pumping rates with average precipitation and with 75 percent of average precipitation.

#### 54 Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.

 Table 8.
 Summary of years where irrigation return flow occurs, precipitation conditions are less than average, and model simulated water budget indicates estuary water enters the South Coast aquifer.

| Year | Irrigation return<br>flow from furrow<br>irrigation | Annual rainfall at<br>Aguirre less than<br>average | Estimated annual<br>streamflow<br>infiltration less than<br>average | Rainfall and<br>streamflow<br>infiltration less than<br>average | Model simulated water<br>budget indicates estuary<br>water flows into the aquifer |
|------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1986 | Х                                                   |                                                    |                                                                     |                                                                 |                                                                                   |
| 1987 | Х                                                   |                                                    |                                                                     |                                                                 |                                                                                   |
| 1988 | Х                                                   |                                                    |                                                                     |                                                                 |                                                                                   |
| 1989 | Х                                                   | Х                                                  | Х                                                                   | Х                                                               |                                                                                   |
| 1990 | Х                                                   |                                                    |                                                                     |                                                                 |                                                                                   |
| 1991 | Х                                                   | Х                                                  | Х                                                                   | Х                                                               |                                                                                   |
| 1992 | Х                                                   | Х                                                  |                                                                     |                                                                 |                                                                                   |
| 1993 | Х                                                   | Х                                                  | Х                                                                   | Х                                                               |                                                                                   |
| 1994 |                                                     | Х                                                  | Х                                                                   | Х                                                               |                                                                                   |
| 1995 |                                                     | Х                                                  | Х                                                                   | Х                                                               | Х                                                                                 |
| 1996 |                                                     |                                                    | Х                                                                   |                                                                 |                                                                                   |
| 1997 |                                                     | Х                                                  | Х                                                                   | Х                                                               | Х                                                                                 |
| 1998 |                                                     |                                                    |                                                                     |                                                                 |                                                                                   |
| 1999 |                                                     | Х                                                  |                                                                     |                                                                 | Х                                                                                 |
| 2000 |                                                     | Х                                                  |                                                                     |                                                                 | Х                                                                                 |
| 2001 |                                                     | Х                                                  | Х                                                                   | Х                                                               | Х                                                                                 |
| 2002 |                                                     | Х                                                  | Х                                                                   | Х                                                               | Х                                                                                 |
| 2003 |                                                     |                                                    |                                                                     |                                                                 |                                                                                   |
| 2004 |                                                     |                                                    |                                                                     |                                                                 |                                                                                   |

The fourth alternative was tested by reducing the groundwater withdrawals by 50 percent from all agricultural wells within the aquifer. The simulation indicated that this reduction in groundwater withdrawals will result in a discharge to the mangrove area of about 0.80 Mgal/d. This amount, however, is less than the 1.4 Mgal/d goal required for discharge to the mangrove area. The fourth alternative will require about 1.26 Mgal/d of water from other sources to compensate for the reduction in pumpage from 15 agricultural wells.

The fifth alternative was tested using a combination of the previous simulated alternatives of reduction of groundwater withdrawals and artificial recharge over agricultural areas. The reduction of groundwater withdrawals was the same as in alternative 4; however, the flooded agricultural fields covered an area of 587 ac, which is 61 percent of the area used in alternative 2. The results from the model simulation indicated that the discharge to the mangrove area will be about 1.37 Mgal/d. The net recharge applied over the agricultural field is 0.0059 ft/d, which is the same as for alternative 2, and equivalent to 1.13 Mgal/d. As in alternative 2, the water requirement from other sources will depend upon whether the area is cultivated or if it is flooded without cultivation. Using the irrigation requirements for sugarcane cultivation (4 ft/yr) in 587 ac, approximately 2.1 Mgal/d would be required. This alternative will require an additional 1.26 Mgal/d of water from other sources to compensate for the reduction in pumpage from agricultural wells.

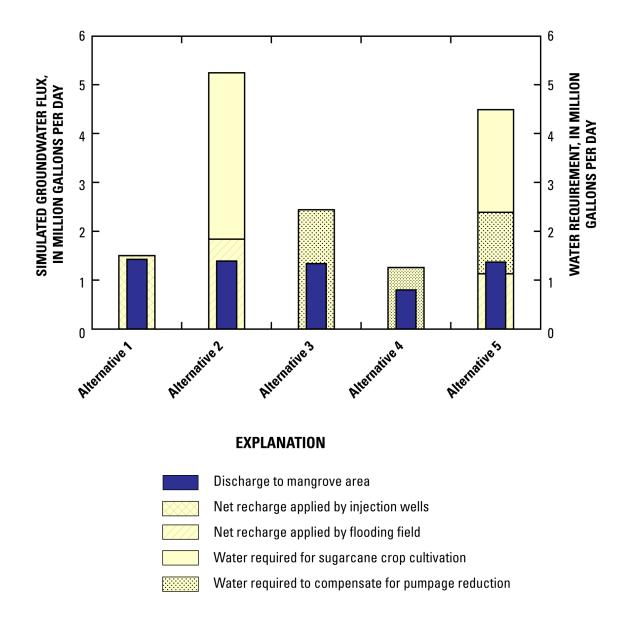
A summary of the water requirements from artificial recharge sources and simulated discharge to the mangroves for each of the tested alternatives is given in figure 23. The first and fourth alternatives require the least amount of artificial recharge. However, the fourth alternative does not substantially increase flow to the mangroves. Thus, the first alternative requires the least amount of water and yields the target amount of discharge to the mangroves.

The potentiometric surfaces resulting from all five simulated alternatives described previously (figs. 24-28) indicate how water levels and the shape of the contours change from the 2004 simulated surface for model layer 2. In particular, the implementation of alternatives 1, 2, and 3 may create groundwater mounds and increase groundwater levels, above those of the 2004 potentiometric surface, by more than 5 ft near the mangrove swamps (figs. 24-26). These increases in groundwater levels could increase the potentiometric surface to the point of saturating soils. In conjunction with the groundwater level increases, a pronounced southward component in the direction of groundwater flow results from all of the five alternatives evaluated.

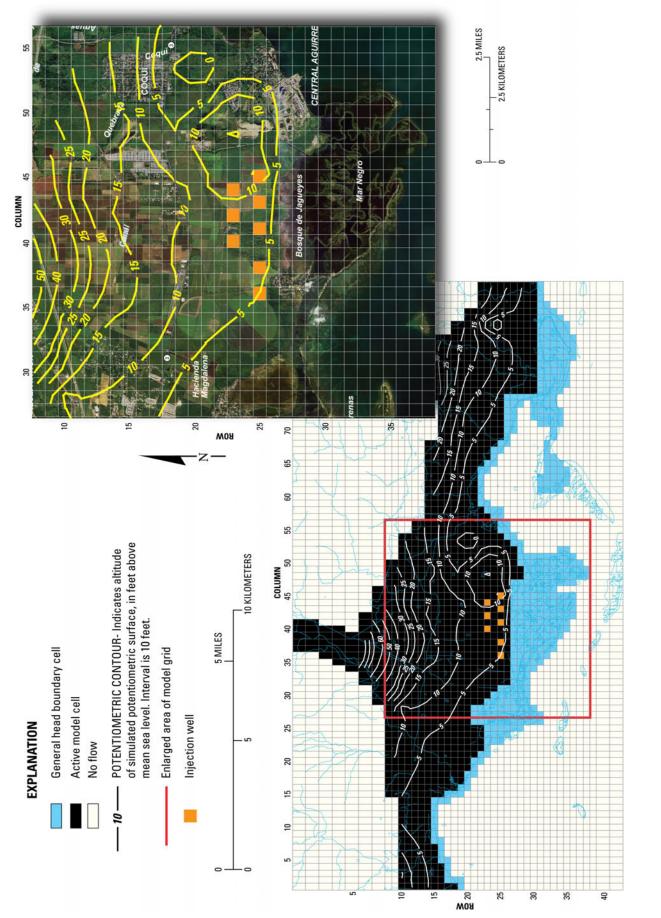
The groundwater altitudes measured at observation wells 154, 177, and 96 (plate 2 and apps. 3 and 4) near the northern border of the JBNERR (USGS Piezometer C, JBNERR West, and JBNERR East, respectively), could be used to identify periods when groundwater discharge to the mangrove areas declines. These piezometers may also serve to monitor the temporal and spatial effects of the applied water-management alternative(s) on groundwater levels. These wells could also be used for collecting water samples to detect changes in groundwater chemical composition.

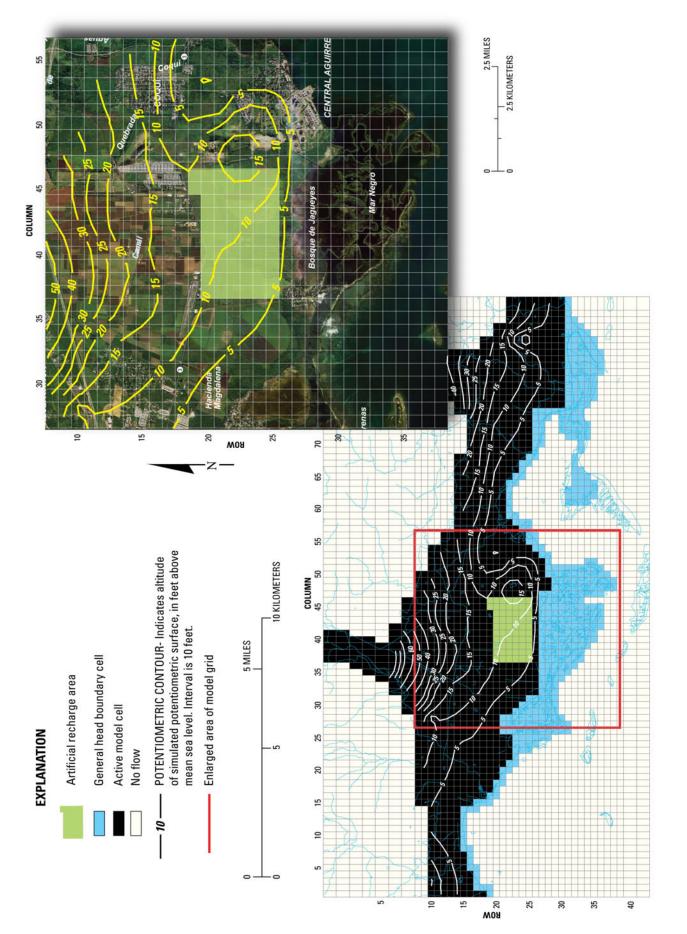
## **Limitations of the Model**

All groundwater flow models are an oversimplification of the actual aquifer system. Three major simplifications involved in this modeling effort are (1) simplified hydraulic conductivity zones for the five model layers, (2) the assumption of a correctly located and static freshwater/seawater interface represented in the model as a no-flow boundary, and (3) use of non-varying general head boundaries along the coast. The greatest sources of error in the model calibration process result from a lack of accuracy in groundwater withdrawal rates, especially from irrigation wells; a lack of continuous streamflow gaging stations along upstream and downstream segments of streams that lose flow to the aquifer (especially the Río Nigua); and a lack of seepage studies for the irrigation canals.

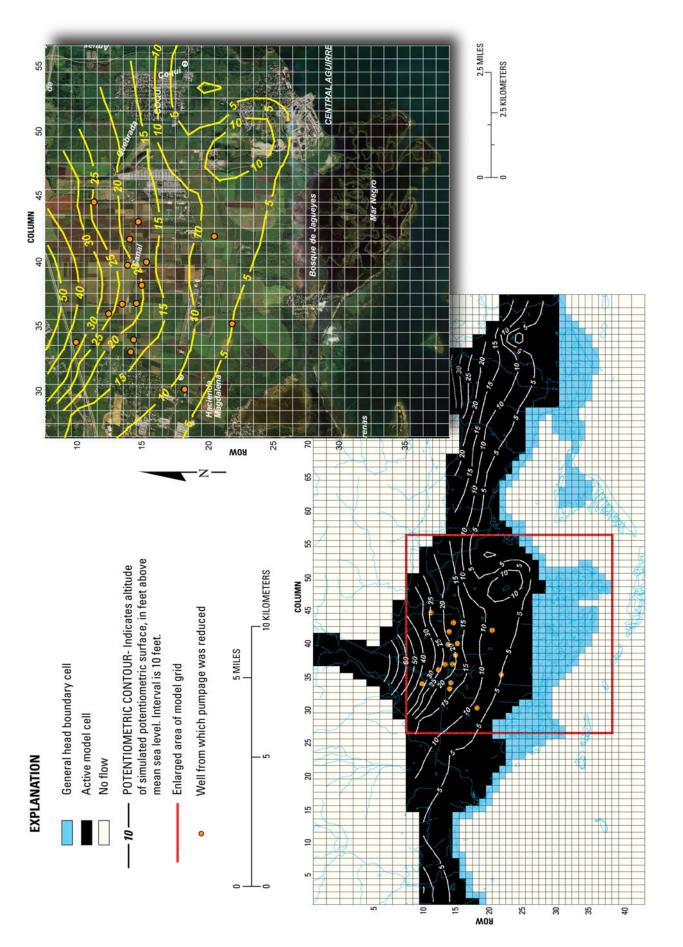

The hydraulic conductivity is undoubtedly more heterogeneous in the study area than in the simplified zones used in the calibrated model. However, the final distribution of hydraulic conductivity is within reasonable ranges of the known distribution, based on specific capacity tests, and mimics the current understanding of the depositional environment (table 5; Renken and others, 2002).

The errors introduced by approximating the freshwater/seawater interface as a stationary no-flow boundary are believed to be small (Reilly, 2001). This is common practice, especially for simulations involving short time scales. No effort was made to test this boundary condition.

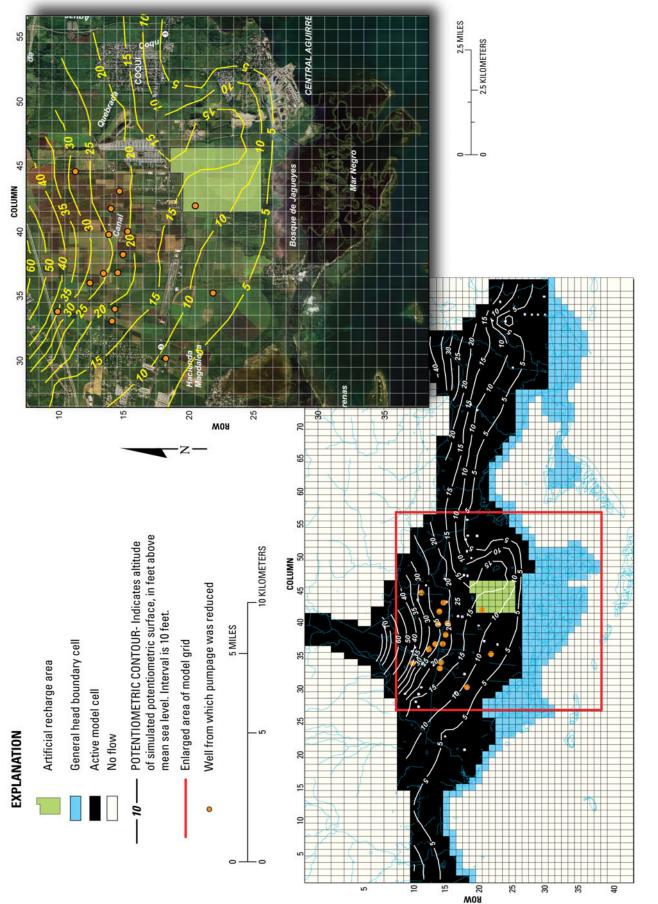

The non-varying general head boundary in layers 2 and 3 along the coast may have some effect on leakage to or from the aquifer to the mangroves and the sea. The conductance term is calculated from the estimates of horizontal hydraulic conductivity of the coastal sediments divided by 10 (to represent vertical hydraulic conductivity) and the cell area. Because the grid spacing is fairly small, the conductance terms are not large, and therefore, they do not result in forcing a constant head and should provide a reasonable estimate of groundwater flow to or from the coast (Kuniansky and Danskin, 2003). The general head at the coast is set to mean sea level, even though the actual head would rise and fall with the tides. However, tidal fluctuations in southern Puerto Rico are small, with a diurnal range of 0.8 ft (Arroyo NWS station). Thus, the non-varying specified head along the coast is a reasonable approximation, especially because annual stress periods were used.


Calibration of the model would be improved with more accurate information about the major components of the water budget. The two major components with missing information are non-metered groundwater withdrawals and continuous streamflow. Better knowledge of these fluxes would help constrain the model calibration and provide much more confidence in the calibrated set of aquifer properties and net recharge. This information would result in a more limited set of model parameters and stresses. Despite this limitation, final estimates of these water-budget components are within ranges estimated by previous studies.


Because of the uncertainty in major water-budget components, the groundwater management alternatives examined herein are primarily illustrative rather than quantitative examples of how fresh groundwater flux may be increased to mangroves in the JBNERR. The rates of groundwater withdrawal reduction, rates of net recharge applied, and injection rates determined from the simulation of the alternatives should not be considered precise estimates. However, the analysis of the relation between groundwater withdrawal reductions and net recharge increases, and the injection rate required to increase fresh groundwater discharge to the mangroves in the JBNERR, should prove useful in evaluating available water-management alternatives.




**Figure 23.** Model simulated groundwater flux to the mangrove area in the Jobos Bay National Estuarine Research Reserve and required water from sources for each of the groundwater management strategies tested.














## Summary

Since about 1990, about 75 ac of mature black mangroves have died in the JBNERR. Many factors can contribute to the mortality of mangroves, including hurricanes, storms, tsunamis, droughts, changes in hydrology, erosion and subsidence, hypersalinity, and pollution. However, changes in irrigation practices, rainfall, and water use between 1986 and 2002 have resulted in approximately 25 ft of drawdown in the potentiometric surface of the aquifer near the JBNERR by 1995. To address these concerns, the USGS, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, conducted a study to determine how aquifer development and changes in irrigation practices may have affected the groundwater flow to the JBNERR.

The objectives of this study were accomplished by gathering and analyzing data and developing a three-dimensional groundwater flow model of the aquifer. Although the domain of the groundwater model emphasizes the JBNERR area, it extends to hydrogeologic boundaries of rivers to the west and east, as well as to the northern and basal boundaries of alluvial deposits on the coastal plain. The collection of continuous resistivity profiles along the coast at the JBNERR and in Jobos Bay helped define the freshwater/ seawater interface that forms the coastal boundary as well as freshwater discharge locations to the bay.

The model was calibrated to annual stress periods from 1986 to 2004. The steady-state initial condition of 1986 was representative of the existing hydrologic conditions, when furrow irrigation was exclusively used in the area (furrow irrigation ceased by 1994). By simulating annual hydraulic head distributions and groundwater budgets from 1986 to 2004, it was possible to quantify the changes in groundwater flow to the JBNERR, particularly the groundwater discharge into the mangrove areas, and determine how replacing furrow irrigation with micro-drip irrigation affected groundwater flux through the mangroves.

Simulations indicate that the upward groundwater flow to the mangrove swamps in the JBNERR could have been as high as 25 Mgal/d in 1986, equivalent to 63 percent of the total simulated aquifer discharge. Net areal recharge during 1986 may have been as high as 26 Mgal/d, which includes irrigation return flow and is equivalent to 67 percent of the total simulated aquifer inflow. Simulated streamflow infiltration for 1986 was 12 Mgal/d, equivalent to 30 percent of the simulated aquifer inflow.

Transient simulations indicate that the switch from furrow irrigation to drip irrigation primarily reduced freshwater discharge the coast. Prior to 1994, furrow irrigation was still predominant and irrigation return flows increased the net recharge to the aquifer. This additional recharge more than offset the effect of groundwater withdrawals, and the simulated average discharge to the coast was 19 Mgal/d. From 1994 through 2004, furrow irrigation was completely replaced by drip irrigation, resulting in reduced groundwater withdrawals. However, the reduced withdrawals did not offset the loss of recharge from irrigation return flows, and the simulated average coastal discharge declined to only 7 Mgal/d, a reduction of 63 percent. The average annual rainfall at the Aguirre Central rainfall station remained relatively constant, averaging 38 in., for both the 1986 to 1993 and 1994 to 2004 periods, thus minimizing the possibility that the difference in simulated water budgets for the two periods was the result of comparing a wet period to a dry period. The simulated average groundwater discharge to the mangrove swamps at the JBNERR from 1994 to 2004 was less than 0.2 Mgal/d, compared to an average of 2 Mgal/d for the 1986 to 1993 period when irrigation return flow occurred. The groundwater discharge to the mangrove swamps exceeded 0.5 Mgal/d during 2003-2004 because of higher than average annual rainfall during these 2 years. The transient simulation also indicated that if pumpage from the aquifer is not reduced and conditions are slightly drier than average during a given period, then little freshwater discharge to the Mar Negro at JBNEER will occur, and saline water from the estuary may move into the aquifer.

Sensitivity analyses indicate that the steady-state simulation is most sensitive to net recharge in furrow irrigation areas and horizontal hydraulic conductivity in zone 2, and fairly insensitive to vertical hydraulic conductivity. The horizontal hydraulic conductivity of zone 2 represents the lower permeability sediments between higher permeability fan deposits. The transient simulation is most sensitive to reductions in the horizontal hydraulic conductivity of zone 2 and streamflow infiltration along Río Nigua.

The groundwater flow model was used to test five alternatives for increasing groundwater discharge to the coastal mangrove swamps to approximately 1.4 million gallons per day: (1) artificially recharging the aquifer with injection wells or (2) increasing irrigation return flow by going back to furrow irrigation; (3) termination of groundwater withdrawals near the mangroves; (4) reduction of groundwater withdrawals at irrigation wells by 50 percent; and (5) a combination of alternatives 2 and 4 increasing irrigation return flows and decreasing irrigation withdrawals. Each alternative assumed average climatic conditions and groundwater withdrawals at 2004 rates. Alternative 1 required 1.5 Mgal/d of injected water. Alternative 2 required flooding 958 acres with a rate of 1.84 Mgal/d if no crops are grown. Alternative 3 required the termination of 2.44 Mgal/d of withdrawals to achieve

1.34 Mgal/d of discharge to the mangroves. Alternative 4 did not achieve the objective with only 0.80 Mgal/d of simulated discharge to the mangroves, while requiring a 1.26 Mgal/d reduction in groundwater withdrawals. Alternative 5 required flooding fields with an additional 1.13 Mgal/d and the same reduction in groundwater withdrawals, but did achieve the objective of about 1.4 Mgal/d discharge to the mangroves. Alternative 1, incorporating injection wells near the reserve required the least amount of water to raise groundwater levels and maintain discharge of 1.4 Mgal/d through the mangroves.

# **Selected References**

- American Society of Civil Engineers, 2001, Standard guidelines for artificial recharge of ground water: Environmental and Water Resources Institute American Society of Civil Engineers Report 34-01, 106 p.
- Bear, Jacob, 1979, Hydraulics of Groundwater: New York, McGraw-Hill, 567p.
- Bennet, G.D., 1976, Electrical analog simulation of the aquifers along the south coast of Puerto Rico: U.S. Geological Survey Open-File Report 76-4, 99 p.
- Bennet, G.D., and Guisti, E.V., 1971, Coastal groundwater flow near Ponce, Puerto Rico: Geological Survey Research 1971, Chapter D: U.S. Geological Survey Professional Paper 750-D, p. D206-D211.
- Bouwer, Herman, 1978, Groundwater hydrology: New York, McGraw-Hill, 480 p.
- Cintrón, Gilberto, Lugo, A.E., Pool, D.J., and Morris, Greg, 1978, Mangroves in Puerto Rico and adjacent islands: Biotropica, v. 10, no. 2, p. 110-121.
- Díaz, J.R., 1974, Coastal salinity reconnaissance and monitoring system-south coast of Puerto Rico: U.S. Geological Survey Open-File Report 74-1, 28 p.
- Díaz, J.R., 1977a, Groundwater levels on the south coast of Puerto Rico, February 1974 to February 1975: U.S. Geological Survey Open-File Report 76-625, 30 p.
- Díaz, J.R., 1977b, Ground water in alluvium on the south coast of Puerto Rico, February 1977: U.S. Geological Survey Open-File Report 77-696, 6 p.
- Díaz, J.R., 1979a, Groundwater levels in alluvium on the south coast of Puerto Rico, February 1978: U.S. Geological Survey Open-File Report 79-1272, 18 p.
- Díaz, J.R., 1979b, Seawater intrusion, south coast of Puerto Rico, 1966-77: U.S. Geological Survey Open-File Report 79-1334, 20 p.

- Fetter, C.W., 1994, Applied hydrogeology: New York, Macmillan, 691 p.
- Giusti, E.V., 1971, Water resources of the Coamo area, Puerto Rico: Commonwealth of Puerto Rico Waterresources Bulletin 8, 43 p.
- Gómez-Gómez, Fernando, 1979, Reconnaissance of six solid waste disposal sites in Puerto Rico and effects on water quality: U.S. Geological Survey Open-File Report 79-1338, 10 p.
- Gómez-Gómez, Fernando, 1987, Planning report for the Caribbean Islands Regional Aquifer-System Analysis Project: U.S. Geological Survey Water-Resources Investigations Report 86-4074, 50 p.
- Gómez-Gómez, Fernando, 1991, Hydrochemistry of the South Coastal Plain aquifer system of Puerto Rico and its relation to surface-water recharge, *in* Gómez-Gómez, Fernando, Quiñones-Aponte, Vicente, and Johnson, A.I., eds., Regional aquifer systems of the United States—Aquifers of the Caribbean Islands: American Water Resources Association Monograph Series no. 15, p. 57-75.
- Graves, R.P., 1992, Geohydrology of the Aguirre and Pozo Hondo area, southern Puerto Rico: U.S. Geological Survey Water-Resources Investigations Report 91-4124, 43 p.
- Harbaugh, A.W., and McDonald, M.G., 1996, User's documentation for MODFLOW-96, An update to the U.S. Geological Survey modular finite-difference groundwater flow model: U.S. Geological Survey Open-File Report 96-485, 56 p.
- Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, The U.S. Geological Survey modular groundwater model User guide to modularization concepts and the Groundwater Flow Process: U.S. Geological Survey Open-File Report 00-92, 121 p.

#### 64 Effects of Changes in Irrigation Practices and Aquifer Development on GW Discharge to the JBNERR near Salinas, P.R.

Heisel, J.E., and Gonzalez, J.R., 1979, Water budget and hydraulic aspects of artificial recharge, south coast of Puerto Rico: U.S. Geological Survey Water-Resources Investigations Report 78-58, 102 p.

Helmer, E.H., Ramos, O., del Mar-Lopez, T., Quiñones, M., and Díaz, W., 2002, Mapping forest type and land use of a biodiversity hotspot: International Institute of Tropical Forestry, U.S. Department of Agriculture, 36 p.

Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.

Hill, M.C., 1998, Methods and guidelines for effective model calibration: U.S. Geological Survey Water-Resources Investigations Report 98-4005, 90 p.

Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R., 2000, MODFLOW-2000, The U.S. Geological Survey modular groundwater model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs: U.S. Geological Survey Open-File Report 00-184, 209 p.

Jimenez, J.A., Lugo, A.E., and Cintron, Gilberto, 1985, Tree mortality in mangrove forests: Biotropica, v. 17, no. 3, p. 177-185.

Johnson, A.I., 1967, Specific yield—Compilation of specific yields of various materials: U.S. Geological Survey Water-Supply Paper 1662-D.

Krushensky, R.D., and Schellekens, J.H., 2001, Geology of Puerto Rico, *in* Bawiec, W.J., ed., Geology, Geochemistry, Geophysics, Mineral Occurrence, and Mineral Resource Assessment for the Commonwealth of Puerto Rico: U.S. Geological Survey Open-File Report 98-38, CD-ROM.

Kuniansky, E.L., and Danskin, W.R., 2003, Models gone bad—Common modeling problems and how to solve them, *in* Poeter, Eileen, Zheng, Chunmiao, Hill, Mary, and Doherty, John, eds., MODFLOW and More 2003—Understanding through Modeling, Conference Proceedings: Golden, Colo., Colorado School of Mines, p. 356-360.

Kuniansky, E.L., Gómez-Gómez, Fernando, and Torres-González, Sigfredo, 2004, Effects of aquifer development and changes in irrigation practices on groundwater availability in the Santa Isabel area, Puerto Rico: U.S. Geological Survey Water-Resources Investigations Report 03-4303, 56 p. McClymonds, N.E., and Díaz, J.R., 1972, Water resources of the Jobos area, Puerto Rico: Commonwealth of Puerto Rico Water-Resources Bulletin 13, 32 p.

McClymonds, N.E., and Ward, P.E., 1966, Hydrologic characteristics of the alluvial fan near Salinas, Puerto Rico: U.S. Geological Survey Professional Paper 550-C, p. C231-C234.

McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference groundwater flow model: U.S. Geological Survey Techniques of Water-Resources Investigations book 6, chap. A1, 586 p.

National Oceanic and Atmospheric Administration, 2005, Climatological Data Annual Summary, Puerto Rico and the Virgin Islands, v. 51, no. 13.

Pool, D.J., Snedaker, S.C., and Lugo, A.E., 1977, Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica: Biotropica, v. 9, no. 3, p. 195-212.

Puerto Rico Water Resources Authority, 1972, Geological and geophysical investigations of the proposed Aguirre nuclear station in the Aguirre power plant complex environmental report: 101 p.

Quiñones-Aponte, Vicente, 1989, Horizontal anisotropy of the principal groundwater flow zone in the Salinas alluvial aquifer, Puerto Rico: Ground Water, v. 27, no. 4, p. 491-500.

Quiñones-Aponte, Vicente, 1991, Water resources development and its influence on the water budget for the aquifer system in the Salinas to Patillas area, Puerto Rico, *in* Gómez-Gómez, Fernando, Quiñones-Aponte, Vicente, and Johnson, A.I., eds., Regional aquifer systems of the United States—Aquifers of the Caribbean Islands: American Water Resources Association Monograph Series no. 15, p. 37-55.

Quiñones-Aponte, Vicente, and Gómez-Gómez, Fernando, 1987, Potentiometric surface of the Salinas alluvial aquifer and the hydrologic conditions in the Salinas quadrangle, Puerto Rico, March 1986: U.S. Geological Survey Water-Resources Investigations Report 87-4161, 1 sheet.

Quiñones-Aponte, Vicente, Gómez-Gómez, Fernando, and Renken, R.A., 1996, Geohydrology and simulation of groundwater flow in the Salinas to Patillas area, Puerto Rico: U.S. Geological Survey Water-Resources Investigations Report 95-4063, 37 p. Ramos-Ginés Orlando, 1994, Effects of changing irrigation practices on the groundwater hydrology of the Santa Isabel-Juana Díaz area, south central Puerto Rico: U.S. Geological Survey Water-Resources Investigations Report 91-4183, 22 p.

Reilly, T.E., 2001, System and boundary conceptualization in groundwater flow simulation: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. B8, 26 p.

Renken, R.A., Gómez -Gómez, Fernando, Quiñones-Aponte, Vicente, and Dacosta, Rafael, 1995, Structure and depositional patterns and their influence on the hydraulic conductivity of fan-deltas in southern Puerto Rico, *in* Miller, R.L., Escalante, G., Reinemund, J.A., and Bergin, M.J., eds., Energy and Mineral Potential of the Central American-Caribbean Region: Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, Springer-Verlag, v. 16, p. 369-377.

Renken, R.A., Ward, W.C., Gill, I.P., Gómez-Gómez, Fernando, and Rodriguez-Martínez, Jesús, 2002, Geology and hydrogeology of the Caribbean Islands Aquifer System of the Commonwealth of Puerto Rico and the U.S. Virgin Islands: U.S. Geological Survey Professional Paper 1419, 139 p.

Robert, M.L., 2001, Evaluación de fuentes dispersas de contaminación en la cuenca hidrográfica de la Reserva Estuarina de la Bahía de Jobos y su posible asociación con los altos niveles de nitratos en sus aguas subterráneas: Universidad de Puerto Rico, Recinto Ciencias Médicas, Escuela Graduada de Salud Pública.

Rodríguez, J.M., 2005, Potentiometric surface of the fan-delta aquifer and hydrologic conditions at the Río Nigua de Salinas fan delta, Salinas, Puerto Rico, July 9-11, 2002: U.S. Geological Survey Scientific Investigations Map 2910, 1 pl.

Rodríguez, J.M., 2006, Evaluation of hydrologic conditions and nitrate concentrations in the Río Nigua de Salinas fan delta Aquifer, Salinas, Puerto Rico, 2002-2003: U.S. Geological Survey Scientific Investigations Report 2006-5062, 38 p.

Rodriguez, J.M., and Gomez-Gomez, Fernando, 2008, Historical ground-water development in the Salinas alluvial fan area, Salinas, Puerto Rico, 1900-2005: U.S. Geological Survey Scientific Investigation Map 2008-3032 Rodriguez, J.M., and Gomez-Gomez, Fernando, 2009, Groundwater quality survey of the South Coast aquifer of Puerto Rico, April 2 through May 30, 2007: U.S. Geological Survey Scientific Investigation Map 2009-3032

Rutledge, A.T., 1993, Computer programs for describing the recession of groundwater discharge and for estimating mean groundwater recharge and discharge from streamflow records: U.S. Geological Survey Water-Resources Investigations Report 93-4121, 45 p.

Theis, C.V., Brown, R.H., and Meyer, R.R., 1963, Estimating the transmissibility of aquifers from the specific capacity of wells: U.S. Geological Survey Water-Supply Paper 1536-1, 331-341 p.

Torres-González, Sigfredo, and Gómez-Gómez, Fernando, 1987, Potentiometric surface of the fandelta aquifer and hydrologic conditions in the central Aguirre quadrangle, Puerto Rico, March, 1986: U.S. Geological Survey Water-Resources Investigations Report 87-4160, 1 sheet.

Yamauchi, H., 1984, Impact on groundwater resources of conversion from furrow to drip irrigation: Water Resources Bulletin, no. 4, v. 20, p. 557-563.



Appendix

Appendix 1. Estimated average annual rates of groundwater withdrawals in the Río Jueyes to Río Guamaní part of the South Coast aquifer from 1986 to 2004.

| Reference<br>map number | Well name             | Discharge<br>(gallons per<br>minute) |      |      |      |      |      |      |      | Ē    | Discharge<br>(million gallons per day) | Discharge<br>ı gallons pe | er day) |      |      |      |      |       |      |      |      |
|-------------------------|-----------------------|--------------------------------------|------|------|------|------|------|------|------|------|----------------------------------------|---------------------------|---------|------|------|------|------|-------|------|------|------|
|                         |                       |                                      | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994                                   | 1995                      | 1996    | 1997 | 1998 | 1999 | 2000 | 2001  | 2002 | 2003 | 2004 |
| 18                      | PRASA Puente<br>Jobos | 160                                  | 0.23 | 0.23 | 0.23 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 33                      | Phillips (8 wells)    | na                                   | 0.80 | 0.80 | 1.05 | 1.20 | 1.16 | 1.16 | 1.16 | 1.18 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 40                      | Salich 1              | 3,000                                | 0.98 | 0.98 | 0.86 | 0.81 | 0.86 | 0.98 | 0.86 | 0.98 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 1.20 | 1.20 | 1.20 | 1.20  | 1.20 | 0.00 | 0.00 |
| 41                      | Aguirre 3             | 1,650                                | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.70                                   | 0.70                      | 0.70    | 0.70 | 0.70 | 0.70 | 0.70 | 0.70  | 0.70 | 0.70 | 0.70 |
| 42                      | Fortuna 1             | 026                                  | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.40                                   | 0.40                      | 0.40    | 0.40 | 0.40 | 0.40 | 0.40 | 0.40  | 0.40 | 0.40 | 0.40 |
| 49                      | Magdalena 2           | 550                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.10 | 0.10  | 0.10 | 0.10 | 0.10 |
| 50                      | Esperanza 3           | 2,000                                | 0.66 | 0.66 | 0.54 | 0.48 | 0.54 | 0.66 | 0.54 | 0.66 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 51                      | Magdalena 1           | 1,300                                | 0.43 | 0.43 | 0.43 | 0.25 | 0.43 | 0.43 | 0.31 | 0.43 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.10 | 0.10 | 0.10 | 0.10  | 0.10 | 0.10 | 0.10 |
| 52                      | Carmen 2              | 1500                                 | 0.49 | 0.49 | 0.49 | 0.31 | 0.49 | 0.49 | 0.49 | 0.49 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 |
| 54                      | Salinas 1             | 650                                  | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.60                                   | 0.60                      | 0.60    | 0.60 | 0.60 | 0.60 | 0.60 | 09.0  | 0.60 | 0.60 | 0.60 |
| 55                      | Salinas 2             | 700                                  | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 1.00                                   | 1.00                      | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 |
| 70                      | Amadeo 2              | 800                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.0 | 0.50                                   | 0.50                      | 0.50    | 0.50 | 0.50 | 0.50 | 0.50 | 0.50  | 0.50 | 0.50 | 0.50 |
| 71                      | Godreau 6             | 1,690                                | 0.55 | 0.55 | 0.44 | 0.38 | 0.44 | 0.55 | 0.44 | 0.55 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 72                      | Godreau 5             | 1,100                                | 0.36 | 0.36 | 0.36 | 0.18 | 0.36 | 0.36 | 0.36 | 0.36 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 110                     | Godreau 2             | 665                                  | 0.22 | 0.22 | 0.22 | 0.04 | 0.22 | 0.22 | 0.22 | 0.22 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 111                     | Godreau 4             | 1,300                                | 0.43 | 0.43 | 0.43 | 0.25 | 0.43 | 0.43 | 0.43 | 0.43 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 114                     | AEE 6                 | 1,000                                | 0.60 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24                                   | 0.24                      | 0.24    | 0.24 | 0.24 | 0.24 | 0.24 | 0.24  | 0.24 | 0.24 | 0.24 |
| 115                     | AEE 7                 | 650                                  | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40                                   | 0.40                      | 0.40    | 0.40 | 0.40 | 0.40 | 0.40 | 0.40  | 0.40 | 0.40 | 0.40 |
| 116                     | AEE 9                 | 062                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.0 | 0.47                                   | 0.47                      | 0.47    | 0.47 | 0.47 | 0.47 | 0.47 | 0.47  | 0.47 | 0.47 | 0.47 |
| 126                     | <b>PRASA Villodas</b> | 360                                  | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52                                   | 0.52                      | 0.52    | 0.52 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 127                     | PRASA Perpetuo        | 50                                   | 0.08 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.16                                   | 0.16                      | 0.17    | 0.30 | 0.27 | 0.27 | 0.27 | 0.27  | 0.27 | 0.27 | 0.27 |
| 128                     | Aguirre 1             | na                                   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.13                                   | 0.13                      | 0.13    | 0.13 | 0.13 | 0.13 | 0.13 | 0.13  | 0.13 | 0.00 | 0.00 |
| 129                     | Fortuna 1             | 1,500                                | 0.49 | 0.49 | 0.37 | 0.37 | 0.25 | 0.25 | 0.00 | 00.0 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 130                     | Adela 1               | 1,000                                | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.41                                   | 0.41                      | 0.41    | 0.41 | 0.41 | 0.41 | 0.41 | 0.41  | 0.41 | 0.41 | 0.41 |
| 131                     | Lanausse 2            | 200                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.0 | 0.08                                   | 0.08                      | 0.08    | 0.08 | 0.08 | 0.08 | 0.08 | 0.08  | 0.08 | 0.08 | 0.08 |
| 142                     | Salinas 4 (Coco 2)    | 320                                  | 0.46 | 0.37 | 0.43 | 0.43 | 0.43 | 0.46 | 0.46 | 0.20 | 0.21                                   | 0.21                      | 0.21    | 0.21 | 0.21 | 0.21 | 0.21 | 0.21  | 0.21 | 0.21 | 0.21 |
| 143                     | PRASA Campa-<br>mento | 113                                  | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.20 | 0.20 | 0.20 | 0.20                                   | 0.20                      | 0.16    | 0.10 | 0.10 | 0.10 | 0.10 | 0.10  | 0.00 | 0.00 | 0.00 |
| 151                     | Magdalena 3           | 560                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00                                   | 0.00                      | 0.00    | 0.00 | 0.23 | 0.23 | 0.23 | 0.23  | 0.23 | 0.23 | 0.23 |
| 156                     | Fortuna 4             | 600                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17                                   | 0.17                      | 0.17    | 0.17 | 0.17 | 0.17 | 0.17 | 0.17  | 0.17 | 0.17 | 0.17 |

Appendix 1. Estimated average annual rates of groundwater withdrawals in the Río Jueyes to Río Guamaní part of the South Coast aquifer from 1986 to 2004.—Continued

| 19819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference<br>map number | Well name                 | Discharge<br>(gallons per<br>minute) |      |      |      |      |      |      |      | j<br>j | Disc<br>lion gal | Discharge<br>(million gallons per day) | r day) |      |      |      |      |      |      |      |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--------------------------------------|------|------|------|------|------|------|------|--------|------------------|----------------------------------------|--------|------|------|------|------|------|------|------|------|
| FMASA Goldenuz190000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                           |                                      | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993   | 1994             | 1995                                   | 1996   | 1997 | 1998 |      |      |      | 2002 | 2003 | 2004 |
| PRASACode 31300.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.360.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 159                     | PRASA Godreau 2           | 190                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33   | 0.35             | 0.35                                   | 0.35   | 0.58 | 0.58 | 0.58 | 0.58 |      | 0.58 | 0.58 | 0.58 |
| PKASALisa<br>quotida000.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                     | PRASA Coco 3              | 130                                  | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36   | 0.36             | 0.36                                   | 0.36   | 0.36 | 0.36 | 0.36 | 0.36 |      | 0.36 | 0.36 | 0.36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161                     | PRASA Las Mar-<br>garitas | 200                                  | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29   | 0.29             | 0.29                                   | 0.29   | 0.29 | 0.29 | 0.29 | 0.29 |      | 0.29 | 0.29 | 0.29 |
| AEE59000.600.600.600.600.600.600.600.600.600.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 162                     | Deestano                  | na                                   | 0.00 | 00.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.07             | 0.07                                   | 0.07   | 0.07 | 0.07 | 0.07 | 0.07 |      | 0.07 | 0.07 | 0.07 |
| Magdene4300010101010101010100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <td>163</td> <td>AEE 5</td> <td>900</td> <td>0.60</td> <td>09.0</td> <td>0.60</td> <td>0.60</td> <td>0.60</td> <td>0.60</td> <td>0.60</td> <td>0.60</td> <td>0.20</td> <td>0.20</td> <td>0.20</td> <td>0.20</td> <td>0.20</td> <td>0.20</td> <td>0.20</td> <td></td> <td>0.20</td> <td>0.20</td> <td>0.20</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 163                     | AEE 5                     | 900                                  | 0.60 | 09.0 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60   | 0.20             | 0.20                                   | 0.20   | 0.20 | 0.20 | 0.20 | 0.20 |      | 0.20 | 0.20 | 0.20 |
| PRASAEE3000.320.440.500.480.410.500.400.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.410.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                     | Magdalena 4               | 300                                  | 0.1  | 0.1  | 0.1  | 0.1  | 0.05 | 0.05 | 0.05 | 0.05   | 0.00             | 0.00                                   | 0.00   | 0.00 | 0.00 | 0.00 | 00.0 |      | 0.00 | 0.00 | 0.00 |
| PRASAmetrine1000.150.150.150.150.150.150.150.150.150.150.150.150.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.210.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.220.230.230.230.230.230.230.230.230.230.230.230.230.230.230.230.230.230.230.240.240.240.24 <td>172</td> <td>PRASA AEE</td> <td>300</td> <td>0.32</td> <td>0.44</td> <td>0.50</td> <td>0.48</td> <td>0.44</td> <td>0.50</td> <td>0.40</td> <td>0.40</td> <td>0.41</td> <td>0.41</td> <td>0.41</td> <td>0.41</td> <td>0.41</td> <td>0.41</td> <td>0.41</td> <td></td> <td>0.41</td> <td>0.41</td> <td>0.41</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172                     | PRASA AEE                 | 300                                  | 0.32 | 0.44 | 0.50 | 0.48 | 0.44 | 0.50 | 0.40 | 0.40   | 0.41             | 0.41                                   | 0.41   | 0.41 | 0.41 | 0.41 | 0.41 |      | 0.41 | 0.41 | 0.41 |
| PRASALas<br>Mareas600.090.110.110.110.110.110.140.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173                     | PRASA San Felipe          | 100                                  | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.16 | 0.20   | 0.21             | 0.21                                   | 0.21   | 0.21 | 0.21 | 0.21 | 0.21 |      | 0.21 | 0.21 | 0.21 |
| Fortuna 10 $250$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$ $0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 176                     | PRASA Las<br>Mareas       | 60                                   | 0.09 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.14 | 0.14   | 0.15             | 0.15                                   | 0.15   | 0.15 | 0.15 | 0.15 | 0.15 |      | 0.15 | 0.15 | 0.15 |
| Fortuna 5 $360$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.11$ $0.12$ $0.22$ $0.22$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0.23$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201                     | Fortuna 10                | 250                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.1              | 0.10                                   | 0.10   | 0.10 | 0.10 | 0.10 | 0.10 |      | 0.10 | 0.10 | 0.10 |
| PRASA Godreau12700.000.000.000.370.500.650.400.330.390.390.390.390.390.390.390.39Esperanza 21,8000.590.590.590.410.590.470.500.000.000.000.000.000.00Godreau 12500.000.000.000.000.000.000.000.000.000.000.000.00Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.00Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.00Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.00Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.00Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.00Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.00Santa Fe 25000.000.000.000.000.000.000.000.000.000.000.000.00 <th< td=""><td>202</td><td>Fortuna 5</td><td>360</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.11</td><td>0.11</td><td>0.11</td><td>0.11</td><td>0.11</td><td>0.11</td><td>0.11</td><td></td><td>0.11</td><td>0.11</td><td>0.11</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202                     | Fortuna 5                 | 360                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.11             | 0.11                                   | 0.11   | 0.11 | 0.11 | 0.11 | 0.11 |      | 0.11 | 0.11 | 0.11 |
| Esperanza 21,8000.590.590.590.590.510.590.590.510.500.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 <td>206</td> <td>PRASA Godreau 1</td> <td>270</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.37</td> <td>0.50</td> <td>0.65</td> <td>0.40</td> <td>0.33</td> <td>0.39</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 206                     | PRASA Godreau 1           | 270                                  | 0.00 | 0.00 | 0.00 | 0.37 | 0.50 | 0.65 | 0.40 | 0.33   | 0.39             | 0.39                                   | 0.39   | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 |
| Godreau12500.000.000.000.000.000.000.000.010.040.040.040.040.040.040.040.04Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 <t< td=""><td>207</td><td>Esperanza 2</td><td>1,800</td><td>0.59</td><td>0.59</td><td>0.59</td><td>0.41</td><td>0.59</td><td>0.59</td><td>0.47</td><td>0.59</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 207                     | Esperanza 2               | 1,800                                | 0.59 | 0.59 | 0.59 | 0.41 | 0.59 | 0.59 | 0.47 | 0.59   | 0.00             | 0.00                                   | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 |      | 0.00 | 0.00 | 0.00 |
| Santa Fe 12000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 208                     | Godreau 1                 | 250                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.04             | 0.04                                   | 0.04   | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| Santa Fe 24000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 209                     | Santa Fe 1                | 200                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.08             | 0.08                                   | 0.08   | 0.08 | 0.08 | 0.08 | 0.08 |      | 0.08 | 0.08 | 0.08 |
| Gonzalez 2         500         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13                                                                                                                                                                                                                                                                                                             | 210                     | Santa Fe 2                | 400                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.00             | 0.00                                   | 0.00   | 0.00 | 0.08 | 0.08 | 0.08 |      | 0.08 | 0.08 | 0.08 |
| Aguire 6         1,800         0.59         0.55         0.55         0.55         0.55         0.55         0.50         0.00         0.00         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20                                                                                                                                                                                                                                                                                                             | 211                     | Gonzalez 2                | 500                                  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.13             | 0.13                                   | 0.13   | 0.13 | 0.13 | 0.13 | 0.13 |      | 0.13 | 0.13 | 0.13 |
| Ayerst         na         0.00         0.00         0.00         0.00         0.00         0.22         0.25         0.25         0.31         0.31         0.31         0.31         0.31         0.31         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.30         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31         0.31 <th< td=""><td>212</td><td>Aguirre 6</td><td>1,800</td><td>0.59</td><td>0.55</td><td>0.55</td><td>0.55</td><td>0.55</td><td>0.55</td><td>0.55</td><td>0.55</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.20</td><td>0.20</td><td>0.20</td><td></td><td>0.20</td><td>0.00</td><td>0.00</td></th<> | 212                     | Aguirre 6                 | 1,800                                | 0.59 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55   | 0.00             | 0.00                                   | 0.00   | 0.00 | 0.20 | 0.20 | 0.20 |      | 0.20 | 0.00 | 0.00 |
| Fibers Superfund na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 213                     | Ayerst                    | na                                   | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.25 | 0.25 | 0.28   | 0.31             | 0.30                                   | 0.29   | 0.31 | 0.31 | 0.27 | 0.30 |      | 0.30 | 0.30 | 0.30 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 214                     | Fibers Superfund          | na                                   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |        | 0.00             | 0.00                                   | 0.00   | 0.00 | 0.00 |      |      |      | 0.65 | 0.65 | 0.65 |

| 6-17, 1987.           |
|-----------------------|
| 6-17                  |
| March 1               |
| Rico,                 |
| , Puerto              |
| at Salinas,           |
| SC-2 8                |
| boring                |
| or test               |
| tion fo               |
| descrip               |
| ogic                  |
| Lithol                |
| Appendix 2 <i>a</i> . |

[Lithologic description by Jesús Rodríguez-Martínez. Latitude 17°57'38", longitude 66°24'11"; horizontal datum: North American Datum 1927; land surface altitude: about 23 feet above mean sea level]

| Depth interval<br>(feet)         | Depth interval<br>(feet)                                                                                                                          |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-10                             | Claystone, light brownish yellow, locally dark, locally orange and black stained, well indurated, slightly calcareous, with pebbly lithic clasts. |
| 10-15                            | Sand, clayey, dark yellowish brown.                                                                                                               |
| 15-26                            | Claystone, moderate yellowish brown, locally silty and sandy.                                                                                     |
| 26-38                            | Volcanic gravel, with minor cobbles and a coarse to very coarse dark lithic sand.                                                                 |
| 38-48                            | Claystone, pale yellowish brown and very pale orange, sandy and pebbly.                                                                           |
| 48-58                            | Gravel, cobbly, with very coarse volcanic and quartzose sand.                                                                                     |
| 58-68                            | Claystone, moderate brown, locally pebbly coarse sandy and silty, locally with weathered lithic clasts.                                           |
| 68-89                            | Claystone, moderate brown, moderate to well indurated, silty and pebbly in part.                                                                  |
| 89-99                            | Claystone, moderate brown to dark brownish yellow, locally dusky yellow mottled, silty in part.                                                   |
| 99-116                           | Gravel, volcanic, cobbly, with a matrix of volcanic and minor very coarse quartzose sand.                                                         |
| 116-125                          | Gravel, volcanic, multi-colored, sub-angular to sub-rounded, moderately weathered, with a minor quartzose and volcanic sand.                      |
| 125-142                          | Sand, volcanic and quartzose, very coarse to cobbly, with a minor quartz fraction.                                                                |
| 142-164                          | Sand, volcanic and quartzose, very coarse to pebbly.                                                                                              |
| 164-178                          | Claystone, moderate brown with an assorted mixture of volcanic pebbles, cobbles and coarse sand.                                                  |
| 178-194                          | Claystone, moderate to dark yellowish brown, locally sandy, silty and pebbly.                                                                     |
| 194-203                          | Sand, volcanic, dusky brown to dark yellow, very coarse grained, to pebbly and cobbly.                                                            |
| 203-210                          | Claystone, moderate brown, locally volcanic pebbly.                                                                                               |
| 210-229                          | Sand, volcanic, very coarse grained, clayey                                                                                                       |
| 229-257                          | Claystone, moderate brown, sandy, locally with volcanic cobbles and pebbles                                                                       |
| 257-273                          | Sand, clayey, dark yellowish brown locally pebbly.                                                                                                |
| 273-280                          | Conglomerate, sandy, with a minor clayey matrix                                                                                                   |
| 280-294                          | Sand, moderate dark yellowish, very coarse grained, pebbly,clayey,                                                                                |
| 294-300                          | Conglomerate, volcanic clasts, brownish yellow to yellowish orange, black mottled, in a very coarse grained and pebbly sand.                      |
| 300-303                          | Claystone, dark yellowish brown, silty, locally sandy and pebbly.                                                                                 |
| 303-321                          | Sand, coarse grained, clayey and pebbly, with multi-colored volcanic clasts.                                                                      |
| 321-336                          | Claystone, reddish brown, black mottled, sandy, locally with volcanic pebbles.                                                                    |
| 336-349                          | Sand, dark yellowish brown to moderate brown, coarse grained, clayey and pebbly.                                                                  |
| 349-366                          | Claystone, moderate brown, locally grading to a clayey sand, locally pebbly.                                                                      |
| 366-410                          | Conglomerate, volcanic clasts, in a clayey coarse grained sand matrix.                                                                            |
| 410-416                          | Claystone, moderate brown to medium reddish brown, black mottled.                                                                                 |
| <sup>F</sup> inal depth 416 feet |                                                                                                                                                   |

| [Lithologic description by Je       | [Lithologic description by Jesús Rodríguez-Martínez. Reference number 89 in appendix 3. Latitude 17°58' 01", longitude 66°10'52"; horizontal datum: North American Datum 1927. Land surface altitude |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| about 48 feet above mean sea level] | ı level]                                                                                                                                                                                             |
| Depth interval (feet)               | Lithologic description                                                                                                                                                                               |
| 6-0                                 | Sand, volcanic, medium to very coarse grained, locally silty and clayey, locally with cobbles, with a minor quartz fraction (possibly artificial fill).                                              |
| 9-16                                | Conglomerate, volcanic cobbles with a matrix of very coarse grained and pebbly sand.                                                                                                                 |
| 16-21                               | Claystone, dusky brown, slightly calcareous, sandy and silty, locally with volcanic pebbles.                                                                                                         |
| 21-27                               | Claystone, as above, dark and moderate yellowish brown, slightly to moderately calcareous.                                                                                                           |
| 27-44                               | Claystone, as above, becoming pale and medium bluish green mottled with heavily altered limestone clasts.                                                                                            |
| 44-54                               | Pebbly, very coarse volcanic sand, locally with volcanic cobbles.                                                                                                                                    |
| 54-65                               | Claystone with volcanic gravel.                                                                                                                                                                      |
| 65-69                               | Sand, volcanic, dark gray, black, locally green volcanic, very coarse grained, pebbly.                                                                                                               |
| 69-80                               | Claystone, medium reddish brown, grayish green, greenish gray mottled, internally black mottled, partially wet, locally slightly calcareous, reddish brown downward, locally with cobbles.           |
| 80-103                              | Sandstone, poorly consolidated, very coarse grained, subangular to subrounded, locally with volcanic pebbles and cobbles,                                                                            |
| 103-108                             | Generally as above, and increasingly pebbly.                                                                                                                                                         |
| 108-113                             | Claystone, moderate brown to medium reddish brown, black and light greenish gray mottled internally, silty, locally pebbly.                                                                          |
| 113-124                             | Sand, volcanic, very coarse grained, pebbly.                                                                                                                                                         |
| 124-128                             | Claystone, moderate brown to medium yellowish gray, black mottled locally, silty.                                                                                                                    |
| 128-135                             | Sand, volcanic, sand, dark gray, medium green, very coarse grained, pebbly, with a minor quartz fraction.                                                                                            |
| 135-139                             | Claystone, medium-reddish brown, silty.                                                                                                                                                              |
| 139-148                             | Conglomerate, volcanic, medium green, dark-brownish red, angular- subangular, slightly to moderately altered in a minor to coarse sand fraction.                                                     |
| 148-160                             | Generally as above, but locally with silt.                                                                                                                                                           |
| 160-178                             | Claystone, silty, with volcanic weathered material.                                                                                                                                                  |
| 178-196                             | Sand, volcanic, very coarse grained, with angular volcanic pebbles of medium dark green color and with red and yellow tones.                                                                         |
| 196-204                             | Igneous basement, medium to dark green, with dark green phenocrysts (ferromagnesium) and veinlets (irregular pattern) of calcite and silica, yellowish red-oxidized zones and veinlets (hematite?).  |
| Final depth, 204 feet               |                                                                                                                                                                                                      |
|                                     |                                                                                                                                                                                                      |

Appendix 2b. Lithologic description for test boring SC-3 at Guayama, Puerto Rico, March 19-20, 1987.

| Well name and<br>reference number | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean see level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-----------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| Benito 1 (1)a,d                   | 175854066114900                      | 175854               | 661149                | 69                                                      | 60                                     | 26-60                                            |
| San Felipe (2)a,b,c,d             | 175816066125400                      | 175816               | 661254                | 10                                                      | 54                                     | 33-54                                            |
| PRASA Coquí #1 (3)a,b,c,d         | 175826066134400                      | 175826               | 661344                | 26                                                      | 80                                     | na                                               |
| Templo Glove (4)a,b,c,d           | 175830066135400                      | 175830               | 661354                | 33                                                      | 80                                     | na                                               |
| Bomba Coquí 2 (5)a,b,c,d          | 175813066133100                      | 175813               | 661331                | 16                                                      | 150                                    | na                                               |
| Aguirre Sugar 9 (6)a,b,c,d        | 175810066145300                      | 175810               | 661453                | 43                                                      | 128                                    | 0-128                                            |
| PRWRA 1 (7)a,b,c,d                | 175824066142300                      | 175824               | 661423                | 47                                                      | 250                                    | na                                               |
| Hacienda Vieja 3 (8)a,b,c         | 175755066143000                      | 175755               | 661430                | 36                                                      | 94                                     | na                                               |
| Pozo Aguirre 2 (9)a,b,c           | 175759066144400                      | 175759               | 661444                | 16                                                      | 87                                     | na                                               |
| Hacienda Vieja T-01 (10)a,b,c     | 175754066144500                      | 175754               | 661445                | 20                                                      | 115                                    | na                                               |
| Cautiño 3 (11)a,b,c,d             | 175822066104300                      | 175822               | 661043                | 66                                                      | 130                                    | na                                               |
| Cautiño 4 (12)a,b,c               | 175810066105800                      | 175810               | 661058                | 51                                                      | 131                                    | na                                               |
| Sucn González (13)a,b,c           | 175822066105300                      | 175822               | 661053                | 61                                                      | 94                                     | na                                               |
| Benito 2 (14)a,b,c                | 175751066105900                      | 175751               | 661059                | 38                                                      | 125                                    | na                                               |
| Bomba Coquí 4 (15)a,b,c,d         | 175757066131800                      | 175757               | 661318                | 8                                                       | 189                                    | na                                               |
| Josefa Norte (16)a,b,c,d          | 175732066091900                      | 175732               | 660919                | 30                                                      | 100                                    | na                                               |
| La Ana at Josefa (17)a,b,c,d      | 175756066095700                      | 175756               | 660957                | 49                                                      | 195                                    | 0-196                                            |
| PRASA Puente Jobos (18)a,b,c,d    | 175724066095600                      | 175724               | 660956                | 27                                                      | 150                                    | 60-87                                            |
| A-02-Test Well (19)a,b,c          | 175722066090200                      | 175722               | 660902                | 33                                                      | 32                                     | na                                               |
| Guamani 3 (20)a,b,c               | 175758066104000                      | 175758               | 166104                | 39                                                      | 150                                    | na                                               |
| Las Mareas 2 (21)a,b,c            | 175627066084000                      | 175627               | 660840                | 2                                                       | 30                                     | na                                               |
| Bomba Mercedes 8 (22)a,b,c        | 175648066080600                      | 175648               | 660806                | 7                                                       | 110                                    | na                                               |
| Merced Batt Well 2 (23)d          | 175648066081600                      | 175648               | 660816                | 7                                                       | 110                                    | na                                               |
| Luce Co. 4 (24)a,b,c,d            | 175646066082100                      | 175646               | 660821                | 7                                                       | 110                                    | na                                               |
| USGS 1 (25)a,b,c                  | 175642066083700                      | 175642               | 660837                | 7                                                       | 52                                     | 17-50                                            |
| USGS 2 (26)a,b,c                  | 175645066092300                      | 175645               | 660923                | 2                                                       | 52                                     | na                                               |
| Luce Co. 3 (27)a,b,c,d            | 175741066082100                      | 175741               | 660821                | 52                                                      | 44                                     | na                                               |

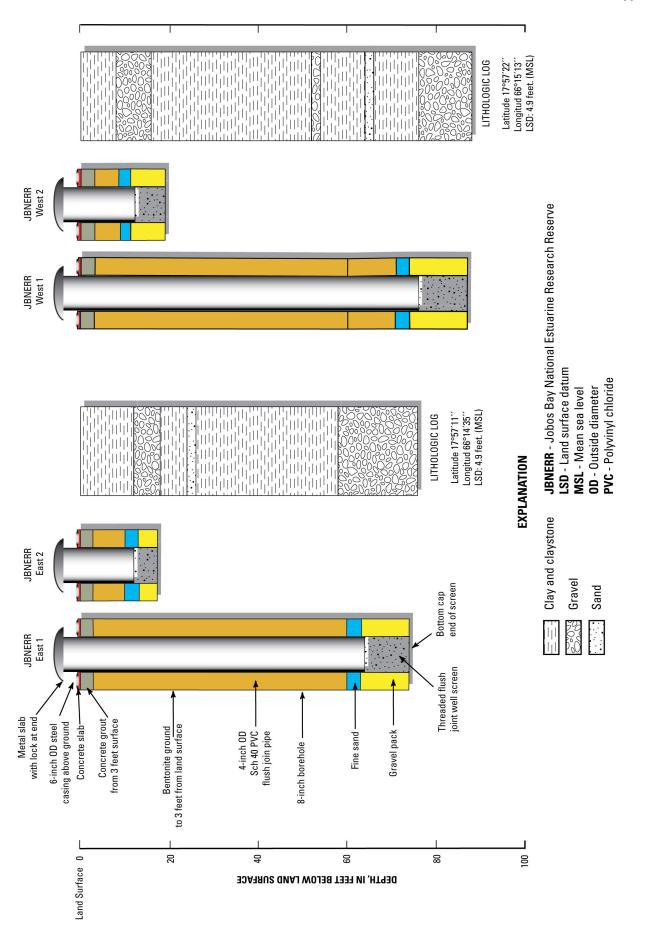
| Well name and<br>reference number   | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-------------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| Cabassa 1 (28)a,b,c                 | 175718066082300                      | 175718               | 660823                | 46                                                      | 120                                    | na                                               |
| Aguirre Sugar 2 (29)a,b,c           | 175718066080700                      | 175718               | 660807                | 39                                                      | 175                                    | na                                               |
| Reunión Batt (30)a,b,c              | 175740066085000                      | 175740               | 660850                | 49                                                      | 86                                     | na                                               |
| Melania ( 31)a,b,c,d                | 175755066084800                      | 175755               | 660848                | 62                                                      | 105                                    | na                                               |
| Reunión 3 (32)a,b,c                 | 175735066085900                      | 175735               | 660859                | 43                                                      | 132                                    | 22-130                                           |
| Phillips #7 (33)a,b,c,d             | 175718066083900                      | 175718               | 660839                | 41                                                      | 151                                    | 25-51                                            |
| Fibers 1 (34) (Inter Fibers 1)a,b,c | 175754066084100                      | 175754               | 660841                | 61                                                      | 120                                    | 20-120                                           |
| Phillips Dom #2 (35)a,b,c           | 175716066083400                      | 175716               | 660834                | 39                                                      | 150                                    | 25-150                                           |
| Inter Fibers 3 (36)a,b,c            | 175755066085700                      | 175755               | 660857                | 56                                                      | 150                                    | na                                               |
| C-01-Test (37)a,b,c                 | 175732066084500                      | 175732               | 660845                | 49                                                      | 41                                     | na                                               |
| PRASA Fibers 3 (38)d                | 175735066090500                      | 175735               | 660905                | 51                                                      | na                                     | na                                               |
| Phillips core well (39)a,b,c        | 175720066084000                      | 175720               | 660840                | 43                                                      | 110                                    | na                                               |
| Salich #1 (40)a,b,c,d               | 175748066160400                      | 175748               | 661606                | 25                                                      | 162                                    | 32-96                                            |
| Aguirre 3 (41)a,b                   | 175804066150700                      | 175804               | 661507                | 32                                                      | 150                                    | 0-150                                            |
| Fortuna 1 (42)a,b,c,d               | 175810066155400                      | 175810               | 661554                | 70                                                      | 140                                    | 0-140                                            |
| Caraballo (43)d                     | 175856066151000                      | 175856               | 661510                | 70                                                      | 140                                    | na                                               |
| Esperanza #1 (44)a,b,c,d            | 175810066153500                      | 175810               | 661535                | 39                                                      | 150                                    | 0-103                                            |
| Lanause 3 (45)a,b,c                 | 175840066153700                      | 175840               | 661537                | 54                                                      | 160                                    | na                                               |
| SC-2 (46)a,b,c                      | 175750066152000                      | 175750               | 661520                | 23                                                      | 416                                    | na                                               |
| Teresa 1 (47)a,b,c                  | 175829066163000                      | 175829               | 661630                | 33                                                      | 140                                    | na                                               |
| Magdalena 1 (48)a,b,c               | 175859066162200                      | 175859               | 661622                | 58                                                      | 180                                    | na                                               |
| Magdalena #2 (49)a,b,c,d            | 175855066161400                      | 175855               | 661614                | 56                                                      | 150                                    | na                                               |
| Providencia 1 (50)a,b,c             | 175851066163000                      | 175851               | 661630                | 52                                                      | 119                                    | 66-0                                             |
| Aguirre 2 (51)a,b                   | 175835066162600                      | 175835               | 661626                | 46                                                      | 126                                    | 0-126                                            |
| Carmen #2 (52)a,b,c                 | 175837066165400                      | 175837               | 661654                | 40                                                      | 173                                    | 54-172                                           |
| Salinas Airfield (53)a,b,c,d        | 175819066160600                      | 175819               | 661606                | 51                                                      | 06                                     | 30-90                                            |

| Well name and<br>reference number | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-----------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| Salinas 1 (54)a,b,c,d             | 175851066174600                      | 175851               | 661746                | 29                                                      | 120                                    | 25-120                                           |
| Salinas 2 (55)a,b,d               | 175850066154500                      | 175850               | 661545                | 29                                                      | 120                                    | 25-120                                           |
| Antonneti #1 (56)a,b,c,d          | 175821066182100                      | 175821               | 661821                | 11                                                      | 60                                     | 0-60                                             |
| Margarita #3 (57)a,b,c,d          | 175839066180700                      | 175839               | 661807                | 20                                                      | 154                                    | 12-154                                           |
| Las Pozas-2 TW (58)a,b,c          | 175852066185500                      | 175852               | 661855                | 9                                                       | 171                                    | па                                               |
| U.S. Army #1 (59)a,b,c,d          | 175928066171500                      | 175928               | 661715                | 57                                                      | 165                                    | 32-65                                            |
| U.S. Army-1 TW (60)a,b,c          | 175942066170100                      | 175942               | 661701                | 66                                                      | 48                                     | 38-48                                            |
| Vélez #1 (61)a,b,c,d              | 175928066174000                      | 175928               | 661740                | 107                                                     | 46                                     | 21-101                                           |
| Pueblito (62)a,b,c,d              | 175905066172000                      | 175905               | 661720                | 126                                                     | 44                                     | 32-112                                           |
| Coco Alvarado (63)a,b,c           | 175840066181200                      | 175840               | 661812                | 18                                                      | 69                                     | 9-57                                             |
| Isadora #2 (64)a,b,c,d            | 175908066180500                      | 175908               | 661804                | 31                                                      | 180                                    | na                                               |
| Pozas 1 (65)a,c                   | 175903066192000                      | 175903               | 661920                | 16                                                      | 160                                    | 0-160                                            |
| Pozas Test #1 (66)a,b,c,d         | 175848066190100                      | 175848               | 661901                | 9                                                       | 168                                    | 9-104                                            |
| Sabater Viejo (67)a,b,c,d         | 175926066141100                      | 175926               | 661411                | 89                                                      | 200                                    | 24-56                                            |
| Providencia 2 (DW) (68)a,b,c,d    | 175904066163700                      | 175904               | 661637                | 56                                                      | 137                                    | na                                               |
| Burgos (69)a,b,c                  | 175811066155900                      | 175903               | 661650                | 54                                                      | 120                                    | 30-120                                           |
| Amadeo #2 (70)a,b,c               | 175933066161800                      | 175933               | 661618                | 82                                                      | 175                                    | na                                               |
| Godreau 6 (71)a,b,c,d             | 175921066165500                      | 175921               | 661655                | 62                                                      | 150                                    | na                                               |
| Godreau 5 (72)a,b,c,d             | 175930066160300                      | 175930               | 661603                | 84                                                      | 146                                    | na                                               |
| U.S. Army #2 (73)a,b,c,d          | 175952066162400                      | 175952               | 661624                | 89                                                      | 165                                    | 30-123,<br>125-157                               |
| Porrata (74)a,b,c,d               | 175943066150600                      | 175943               | 661506                | 95                                                      | 272                                    | па                                               |
| Coco Test 1 (75)a,b,c             | 175957066153800                      | 175957               | 661538                | 112                                                     | 66                                     | na                                               |
| Río Jueyes #1 (76)a,b,c           | 175857066203000                      | 175857               | 662030                | 26                                                      | 196                                    | na                                               |
| Texidor 1 (77)a,b,c               | 175916066202700                      | 175916               | 662027                | 52                                                      | 168                                    | 20-167                                           |
| Palés (78)a,b,c                   | 175916066203300                      | 175916               | 662033                | 49                                                      | 160                                    | na                                               |
| San José #2 (79)a,b,c             | 175956066200400                      | 175956               | 662004                | 135                                                     | 175                                    | na                                               |

| Well name and<br>reference number | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-----------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| Sostre #2 (80)a,b,c,d             | 175959066201200                      | 175959               | 662012                | 145                                                     | 236                                    | 96-142                                           |
| Sostre #1 (81)a,b,c,d             | 175956066205400                      | 175956               | 662054                | 148                                                     | 146                                    | 46-136                                           |
| Coco 1 (82)a,b,c,d                | 180044066153500                      | 180044               | 661535                | 141                                                     | 120                                    | 32-53                                            |
| Santini-1 (83)a,b,c               | 180059066151900                      | 180059               | 661519                | 157                                                     | 100                                    | 68-100                                           |
| Defense Dept (84)a,b,c            | 180136066153800                      | 180136               | 661538                | 187                                                     | 114                                    | na                                               |
| Municipio Salinas (85)a,b,c       | 180141066150900                      | 180141               | 661509                | 57                                                      | 100                                    | na                                               |
| Theater 1 (86)a,b,c,d             | 180023066175400                      | 180023               | 661754                | 131                                                     | 80                                     | 0-180                                            |
| Peñuelas (87)a,b,c                | 180007066203000                      | 180007               | 662030                | 154                                                     | 115                                    | 55-115                                           |
| Ballester (88)a,b,c               | 180041066222900                      | 180041               | 662229                | 174                                                     | 33                                     | na                                               |
| SC-3 (89)a,b,c                    | 175801066105200                      | 175801               | 661052                | 48                                                      | 204                                    | na                                               |
| Pozo Hondo (90)a,b,c              | 175951066102900                      | 175951               | 661029                | 246                                                     | 106                                    | na                                               |
| Aguirre Norte (91)a,b,c           | 175954066122900                      | 175954               | 661229                | 210                                                     | na                                     | na                                               |
| Merced TW (92)d                   | 175748066081300                      | 175748               | 660813                | 59                                                      | 101                                    | na                                               |
| Aguirre Sugar 1A (93)d            | 175747066075800                      | 175747               | 660758                | б                                                       | 75                                     | na                                               |
| Godreau 7 (94)d                   | 175903066165000                      | 175903               | 661650                | 54                                                      | 120                                    | na                                               |
| Amadeo Gonzalez (95)d             | 175933066161800                      | 175933               | 661618                | 82                                                      | 170                                    | na                                               |
| Hacienda Vieja #2 (96)d           | 175709066145300                      | 175709               | 661453                | 20                                                      | 102                                    | na                                               |
| Magdalena #5 (97)d                | 175822066165400                      | 175822               | 661654                | 23                                                      | na                                     | na                                               |
| Jauca 2b (98)d                    | 175820066215000                      | 175820               | 662150                | 13                                                      | 100                                    | na                                               |
| U.S. Army #2A (99)d               | 175952066162400                      | 175952               | 661624                | 89                                                      | 170                                    | na                                               |
| U.S. Army #2 (C. Sant) (100)d     | 175924066171500                      | 175924               | 661715                | 56                                                      | 100                                    | na                                               |
| U.S. Army Test #1 (101)d          | 175942066170300                      | 175942               | 661703                | 66                                                      | 57                                     | na                                               |
| Isadora #3 (102)d                 | 175909066185300                      | 175909               | 661853                | 13                                                      | na                                     | na                                               |
| Pozas #2 (103)d                   | 175917066194300                      | 175917               | 661943                | 70                                                      | 160                                    | na                                               |
| Castro #4 (104)d                  | 175957066193400                      | 1759570              | 661934                | 112                                                     | 225                                    | na                                               |
| Pales #3 (105)d                   | 175916066203300                      | 175916               | 662033                | 49                                                      | na                                     | na                                               |

| Well name and<br>reference number | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-----------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| Díaz #2 (106)d                    | 175937066203900                      | 175937               | 662039                | 72                                                      | na                                     | na                                               |
| San José #1 (107)d                | 175957066200800                      | 175957               | 662008                | 140                                                     | 117                                    | na                                               |
| Santiago Batt #1 (108)d           | 175954066210500                      | 175954               | 662105                | 102                                                     | 53                                     | na                                               |
| Santiago #2 DW (109)d             | 175959066210200                      | 175959               | 662102                | 105                                                     | 200                                    | na                                               |
| Godreau #2 (110)d                 | 175918066164100                      | 175918               | 661641                | 69                                                      | na                                     | na                                               |
| Godreau 4 (111)d                  | 175918066161900                      | 175918               | 661619                | 73                                                      | na                                     | na                                               |
| Amadeo #1 (112)d                  | 175925066165100                      | 175925               | 661651                | 66                                                      | na                                     | na                                               |
| PREPA #4 (113)d                   | 175835066145700                      | 175835               | 661457                | 59                                                      | 196                                    | na                                               |
| PREPA #6 (114)d                   | 175825066142500                      | 175825               | 661425                | 47                                                      | 260                                    | na                                               |
| PREPA #7 (115)d                   | 175845066142800                      | 175845               | 661428                | 58                                                      | 112                                    | na                                               |
| PREPA #9 (116)d                   | 175810066151400                      | 175810               | 661514                | 39                                                      | 275                                    | na                                               |
| Phillips 11 (117)d                | 175715066084500                      | 175715               | 660845                | 38                                                      | 125                                    | na                                               |
| PRASA Fibers 2 (118)d             | 175738066084500                      | 175737               | 660855                | 52                                                      | 100                                    | na                                               |
| PRASA Reunión 2 (119)d            | 175721066085500                      | 175721               | 660855                | 44                                                      | 125                                    | na                                               |
| Fibers 2 (120)d                   | 175755066085200                      | 175755               | 660852                | 55                                                      | 100                                    | na                                               |
| PRASA Pte Jobos (old) (121)d      | 175735066095900                      | 175735               | 660959                | 7                                                       | 148                                    | na                                               |
| Hormigonera Bruja (122)d          | 175755066105000                      | 175755               | 661050                | 43                                                      | 100                                    | na                                               |
| Central Guamani #2 (123)d         | 175752066105300                      | 175752               | 661053                | 39                                                      | 153                                    | na                                               |
| Cora #1 (124)d                    | 175757066103900                      | 175757               | 661039                | 44                                                      | 155                                    | 32-152                                           |
| Juana #4 (125)d                   | 175853066101400                      | 175853               | 661014                | 118                                                     |                                        | na                                               |
| PRASA Villodas (126)d             | 175841066104500                      | 175841               | 661045                | 82                                                      | 143                                    | na                                               |
| PRASA Perpetuo (127)d             | 175822066134800                      | 175822               | 661349                | 25                                                      | 118                                    | na                                               |
| Aguirre #1 (128)d                 | 175809066145300                      | 175809               | 661453                | 41                                                      | na                                     | na                                               |
| Adela #2 (129)d                   | 175848066145800                      | 175848               | 661458                | 72                                                      | na                                     | na                                               |
| Adela #1 (130)d                   | 175851066145700                      | 175851               | 661457                | 72                                                      | 26                                     | na                                               |
| Lannause 2 (131)d                 | 175919066144400                      | 175919               | 661444                | 87                                                      | na                                     | na                                               |
| González #2 (132)d                | 175959066141500                      | 175959               | 661415                | 123                                                     | 51                                     | na                                               |

| Well name and<br>reference number | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-----------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| PRWRA 5 (133)d                    | 175924066142300                      | 175924               | 661423                | 85                                                      | 305                                    | na                                               |
| A-01 TW (134)d                    | 175721066090200                      | 175721               | 660902                | 33                                                      | 101                                    | na                                               |
| Cautiño 7 (135)d                  | 175908066081800                      | 175908               | 660818                | 172                                                     | 72                                     | na                                               |
| Aguirre Sugar 10 (136)d           | 175810066145100                      | 175810               | 661451                | 43                                                      | 55                                     | na                                               |
| Coquí 5 (137)d                    | 175816066133100                      | 175816               | 661331                | 16                                                      | 150                                    | na                                               |
| Juana #2 (138)d                   | 175823066101300                      | 175823               | 661013                | 79                                                      | 129                                    | na                                               |
| PRASA (139)d                      | 175823066084500                      | 175823               | 660845                | na                                                      | 58                                     | na                                               |
| PRASA (140)d                      | 175742066082900                      | 175742               | 660829                | 62                                                      | 67                                     | na                                               |
| Reunión DW 1 (141)d               | 175756066082900                      | 175756               | 660829                | 72                                                      | 118                                    | na                                               |
| Salinas 4 (142)d                  | 175922066171200                      | 175922               | 661712                | 55                                                      | 180                                    | na                                               |
| PRASA Campamento (143)d           | 175930066165600                      | 175930               | 661656                | 66                                                      | 140                                    | na                                               |
| Godreau 3A (144)d                 | 175913066163500                      | 175913               | 661635                | 66                                                      | 102                                    | na                                               |
| Vélez (145)d                      | 175922066174600                      | 175922               | 661746                | 43                                                      | na                                     | na                                               |
| Isadora #4 (146)d                 | 175853066182800                      | 175853               | 661828                | 15                                                      | na                                     | na                                               |
| Hac. Teresa Dom (147)d            | 175754066162400                      | 175754               | 661624                | 15                                                      | na                                     | na                                               |
| Godreau Solar #2 (148)d           | 175912066162500                      | 175912               | 661625                | 64                                                      | na                                     | na                                               |
| USGS Piezo D (149)d               | 175910066155500                      | 175910               | 661555                | 72                                                      | na                                     | na                                               |
| Colmado Cruz well (150)d          | 175845066164500                      | 175845               | 661645                | 44                                                      | 100                                    | na                                               |
| Magdalena #3 (151)4               | 175823066164600                      | 175823               | 661646                | 26                                                      | 30                                     | na                                               |
| Salinas Speedway (152)d           | 175814066154700                      | 175814               | 6615477               | 43                                                      | na                                     | na                                               |
| Aguirre #1A (153)d                | 175811066151000                      | 175811               | 661510                | 37                                                      | na                                     | na                                               |
| USGS Piezo C (154)d               | 175735066151800                      | 175735               | 661518                | 15                                                      | na                                     | na                                               |
| Fortuna #3 (155)d                 | 175858066151600                      | 175858               | 661516                | 71                                                      | na                                     | na                                               |
| Fortuna #4 (156)d                 | 175851066153000                      | 175851               | 661530                | 59                                                      | na                                     | na                                               |
| Pioneer 1 (157)d                  | 175815066153700                      | 175815               | 661537                | 43                                                      | na                                     | na                                               |
| Piezo USGS Carmen (158)d          | 175826066173700                      | 175826               | 661737                | 13                                                      | na                                     | na                                               |


| Well name and<br>reference number | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-----------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| PRASA Godreau 2 (159)d            | 175925066170600                      | 175924               | 661704                | 59                                                      | na                                     | na                                               |
| PRASA Coco 3 (160)d               | 175908066172600                      | 175908               | 175908                | 43                                                      | na                                     | na                                               |
| PRASA Las Margaritas (161)d       | 175826066181600                      | 175826               | 661806                | 12                                                      | na                                     | na                                               |
| Deestano (162)d                   | 175824066162500                      | 175824               | 661625                | 36                                                      | na                                     | na                                               |
| AEE #5 (163)d                     | 175833066151600                      | 175833               | 661516                | 55                                                      | na                                     | na                                               |
| Abey (164)d                       | 175821066144700                      | 175821               | 661447                | 48                                                      | na                                     | na                                               |
| Hacienda Sabater #1 (165)d        | 175855066143100                      | 175855               | 661431                | 62                                                      | na                                     | na                                               |
| PRWRA #4 (166)d                   | 175909066142200                      | 175909               | 661422                | 72                                                      | na                                     | na                                               |
| PRWRA #2 (167)d                   | 175927066142000                      | 175927               | 661420                | 90                                                      | na                                     | na                                               |
| PRWRA #3 (168)d                   | 175944066142100                      | 175943               | 661421                | 110                                                     | na                                     | na                                               |
| Luce& Co #21 (169)d               | 175855066141400                      | 175855               | 661414                | 74                                                      | na                                     | na                                               |
| Magdalena # 4 (170)d              | 175915066143600                      | 175915               | 661436                | 82                                                      | na                                     | na                                               |
| Pollera 2 (171)d                  | 175916066131200                      | 175916               | 661312                | 98                                                      | na                                     | na                                               |
| PRASA AEE (172)d                  | 175828066142200                      | 175827               | 661435                | 46                                                      | na                                     | na                                               |
| PRASA San Felipe (173)d           | 175822066125300                      | 175822               | 661253                | 13                                                      | na                                     | na                                               |
| USGS Coquí 1 (174)d               | 175809066133200                      | 175809               | 661332                | 16                                                      | na                                     | na                                               |
| Pozo Aguirre (175)d               | 175827066141100                      | 175827               | 661411                | 175                                                     | na                                     | na                                               |
| PRASA Las Mareas (176)d           | 175739066156600                      | 175739               | 661566                | 23                                                      | na                                     | na                                               |
| Ermitaño (177)d                   | 175708066162900                      | 175708               | 661629                | 2                                                       | na                                     | na                                               |
| Tumores (178)d                    | 175856066123300                      | 175856               | 661233                | 56                                                      | na                                     | na                                               |
| Amoros (179)d                     | 175910066122400                      | 175910               | 661224                | 98                                                      | na                                     | na                                               |
| USGS Piezo A (180)d               | 175925066145300                      | 175925               | 661453                | 90                                                      | na                                     | na                                               |
| USGS Piezo G (181)d               | 175848066170700                      | 175848               | 661707                | 40                                                      | 167                                    | na                                               |
| Monsanto (182)d                   | 175814066155900                      | 175814               | 661559                | 42                                                      | na                                     | na                                               |
| Hac. Sabater 2 (183)d             | 175811066153600                      | 175811               | 661536                | 72                                                      | na                                     | na                                               |
| JBNERR West (184)d                | 175722066151300                      | 175722               | 661513                | 6.9                                                     | 87, 20                                 | na                                               |

| Well name and<br>reference number | USGS site<br>identifier <sup>1</sup> | Latitude<br>(ddmmss) | Longitude<br>(ddmmss) | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|-----------------------------------|--------------------------------------|----------------------|-----------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| JBNERR East (185)d                | 175711066143500                      | 175711               | 661435                | 4.9                                                     | 74, 17                                 | na                                               |
| Las Mareas 3 (186)d               | 175633066084100                      | 175633               | 660841                | 3                                                       | na                                     | na                                               |
| Phillips 4 (187)d                 | 175640066085100                      | 175640               | 660851                | 3                                                       | na                                     | na                                               |
| Phillips 3 (188)d                 | 175648066083900                      | 175648               | 660839                | 10                                                      | na                                     | na                                               |
| Josefa Sur (189)d                 | 175710066092300                      | 175710               | 660923                | 23                                                      | na                                     | na                                               |
| Reunión Sur (190)d                | 175721066083600                      | 175721               | 660836                | 42                                                      | na                                     | na                                               |
| PRASA Jobos 1 (191)d              | 175735066100400                      | 175735               | 661004                | 29                                                      | na                                     | na                                               |
| Adela 1 BTR (192)d                | 175754066102300                      | 175754               | 661023                | 36                                                      | na                                     | na                                               |
| Central Guamani 1 (193)d          | 175754066104700                      | 175754               | 661047                | 43                                                      | na                                     | na                                               |
| PRASA 2 (194)d                    | 175757066094200                      | 175757               | 660942                | 49                                                      | na                                     | na                                               |
| P. Morales Norte (195)d           | 175840066102100                      | 175840               | 661021                | 97                                                      | na                                     | na                                               |
| Piezo J-24 (196)d                 | 175823066182200                      | 175823               | 661822                | 8                                                       | 25                                     | na                                               |
| Benito (197)d                     | 175842066113800                      | 175842               | 661138                | 61                                                      | na                                     | na                                               |
| Chun Chin Irrigation (198)d       | 175805066105500                      | 175805               | 661023                | 48                                                      | na                                     | na                                               |
| Juana (199)d                      | 175815066102300                      | 175815               | 661023                | 59                                                      | na                                     | na                                               |
| Chunchin (200)d                   | 175805066120600                      | 175805               | 661206                | 7                                                       | na                                     | na                                               |
| Fortuna 10 (201)d                 | 175851066155100                      | 175851               | 661551                | 59                                                      | na                                     | na                                               |
| Rosado 1 (202)d                   | 175850066154000                      | 175850               | 661540                | 59                                                      | na                                     | na                                               |
| USGS RASA B (203)d                | 175925066145400                      | 175925               | 661454                | 89                                                      | 109                                    | na                                               |
| Isadora new (204)d                | 175859066181200                      | 175859               | 661812                | 26                                                      | na                                     | na                                               |
| Godreau #3 (205)d                 | 175918066182800                      | 175918               | 661828                | 44                                                      | na                                     | na                                               |
| PRASA Godreau 1 (206)d            | 175925066170601                      | 175924               | 661704                | 59                                                      | na                                     | na                                               |
| Esperanza 2 (207)d                | 175801066154700                      | 175801               | 661547                | 33                                                      | 474-100                                | 30-60                                            |
| Godreau 1 (208)d                  | 175926066155000                      | 175927               | 661556                | 85                                                      | na                                     | na                                               |
| Santa Fe 1 (209)d                 | 175911066155800                      | 175911               | 661558                | 84                                                      | na                                     | na                                               |
| Santa Fe 2 (210)d                 | 175859066155300                      | 175859               | 661553                | 63                                                      | na                                     | na                                               |

| Ę       |        |
|---------|--------|
| well    |        |
| ġ.      |        |
| rial    |        |
| ate     |        |
| e mi    |        |
| eable   |        |
| me      |        |
| per     |        |
| of      |        |
| ase     |        |
| β       |        |
| n c     |        |
| atic    |        |
| ine     |        |
| del     |        |
| п.      | onds   |
| sed     | eco    |
| ll u    | S S    |
| , we    | inute  |
| ပ်      | nin    |
| ilt;    | es 1   |
| g       | gre    |
| y aı    | de     |
| clay    | ISS,   |
| ial     | mmss.  |
| rfic    | pp     |
| su      | ole;   |
| s of    | ilał   |
| les     | ava    |
| ckne    | not    |
| thi     | ta r   |
| of      | da     |
| naț     | na,    |
| in 1    | STS;   |
| ed      | othe   |
| l us    | o pr   |
| wel     | l, an  |
| Ġ.      | datê   |
| m;      | ž      |
| gra     | aci    |
| dia     | cap    |
| lce     | fic ci |
| fence   | ecij   |
| l in    | , sp   |
| lsec    | vel.   |
| ell u   | r le   |
| W       | wate   |
| ы.<br>Э | ŝ      |
| ij.     | Ч      |
| low     | suc    |
| foll    | ata    |
| the     | ic d   |
|         | auli   |
| resent  | ydrau  |
| repres  | d hy   |
| n       | ano    |
| lum     | gic    |
| [O]     | olog   |
| left    | hydro  |
| п.      |        |
| ipts i  | btain  |
| scri    | ob1    |
| Б       | to     |
|         | Ч      |
| [Su     | used   |

| Well name and<br>reference number                                                                                                                                    | USGS site<br>identifier <sup>1</sup>  | Latitude<br>(ddmmss)        | Longitude<br>(ddmmss)   | Land surface<br>datum<br>(feet above<br>mean sea level) | Depth,<br>(feet below land<br>surface) | Open interval,<br>(feet above mean<br>sea level) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|-------------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| Gonzalez 2 (211)d                                                                                                                                                    | 175858066152800                       | 175858                      | 661527                  | 69                                                      | na                                     | na                                               |
| Aguirre 6 (212)d                                                                                                                                                     | 175812066134900                       | 175812                      | 661349                  | 23                                                      | na                                     | na                                               |
| Ayerst (213)d                                                                                                                                                        | 175740066090200                       | 175740                      | 660902                  | 41                                                      | na                                     | na                                               |
| Fibers Superfund (214)d                                                                                                                                              | 175724066085500                       | 175724                      | 660855                  | 39                                                      | na                                     | na                                               |
| Philips Petroleum 13 (215)                                                                                                                                           | 175719066085500                       | 175720                      | 660402                  | 33                                                      | 66                                     | na                                               |
| Juana 5 (216)                                                                                                                                                        | 175814066102200                       | 175858                      | 661022                  | 128                                                     | 142                                    | na                                               |
| Jobos (217)                                                                                                                                                          | 175814066102200                       | 175814                      | 661022                  | 59                                                      | 100                                    | па                                               |
| <sup>1</sup> Site identification number for each site based on the latitude and longitude of the site. First six digits are latitude, next six digits are longitude. | latitude and longitude of the site. F | irst six digits are latitud | le, next six digits are | longitude.                                              |                                        |                                                  |
| <sup>2</sup> Depth of shallow piezometer.                                                                                                                            |                                       |                             |                         |                                                         |                                        |                                                  |
| <sup>3</sup> Depth of deep piezometer.                                                                                                                               |                                       |                             |                         |                                                         |                                        |                                                  |

<sup>4</sup>Depth range of well battery.



### **Appendix 5.** Zoned recharge values used for transient calibration.

[Zone numbers shown within parenthesis, annual rainfall shown in figure 2]

| Stress period number | Calendar<br>year | Recharge per zone<br>(feet per day) | Recharge per zone<br>(inches per year) |
|----------------------|------------------|-------------------------------------|----------------------------------------|
|                      |                  | (1) 1.0 x 10 <sup>-3</sup>          | 4.4                                    |
|                      |                  | (2) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
| 1                    | 1986             | (3) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (4) 5.0 x 10 <sup>-4</sup>          | 2.2                                    |
|                      |                  | (5) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (1) $1.4 \times 10^{-3}$            | 6.1                                    |
|                      |                  | (2) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
| 2                    | 1987             | (3) $5.9 \times 10^{-3}$            | 25.8                                   |
|                      |                  | (4) 7.0 x 10 <sup>-4</sup>          | 3.1                                    |
|                      |                  | (5) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (1) 1.2 x 10 <sup>-3</sup>          | 5.3                                    |
|                      |                  | (2) $5.9 \times 10^{-3}$            | 25.8                                   |
| 3                    | 1988             | (3) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (4) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (5) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (1) 2.0 x 10 <sup>-4</sup>          | 8.8                                    |
|                      |                  | (2) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
| 4                    | 1989             | (3) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (4) $1.0 \ge 10^{-4}$               | 0.4                                    |
|                      |                  | (5) $5.9 \times 10^{-3}$            | 25.8                                   |
|                      |                  | (1) 1.2 x 10 <sup>-3</sup>          | 5.3                                    |
|                      |                  | (2) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
| 5                    | 1990             | (3) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (4) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (5) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (1) $6.0 \ge 10^{-4}$               | 2.6                                    |
|                      |                  | (2) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
| 6                    | 1991             | (3) $5.9 \times 10^{-3}$            | 25.8                                   |
|                      |                  | (4) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (5) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (1) 7.0 x 10 <sup>-4</sup>          | 3.1                                    |
|                      |                  | (2) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
| 7                    | 1992             | (3) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (4) 3.5 x 10 <sup>-4</sup>          | 1.5                                    |
|                      |                  | (5) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (1) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (2) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
| 8                    | 1993             | (3) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |
|                      |                  | (4) 1.5 x 10 <sup>-4</sup>          | 0.7                                    |
|                      |                  | (5) 5.9 x 10 <sup>-3</sup>          | 25.8                                   |

### Appendix 5. Zoned recharge values used for transient calibration.—Continued

[Zone numbers shown within parenthesis, annual rainfall shown in figure 2]

| Stress period number | Calendar<br>year | Recharge per zone<br>(feet per day) | Recharge per zone<br>(inches per year) |
|----------------------|------------------|-------------------------------------|----------------------------------------|
|                      |                  | (1) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (2) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
| 9                    | 1994             | (3) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (4) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (5) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (1) 2.0 x 10 <sup>-4</sup>          | 1.0                                    |
|                      |                  | (2) 2.0 x 10 <sup>-4</sup>          | 1.0                                    |
| 10                   | 1995             | (3) 2.0 x 10 <sup>-4</sup>          | 1.0                                    |
|                      |                  | (4) 1.0 x 10 <sup>-4</sup>          | 0.4                                    |
|                      |                  | (5) 2.0 x 10 <sup>-4</sup>          | 1.0                                    |
|                      |                  | (1) 1.4 x 10 <sup>-3</sup>          | 6.1                                    |
|                      |                  | (2)1.4 x 10 <sup>-3</sup>           | 6.1                                    |
| 11                   | 1996             | (3) 1.4 x 10 <sup>-3</sup>          | 6.1                                    |
|                      |                  | (4) 7.0 x 10 <sup>-4</sup>          | 3.1                                    |
|                      |                  | (5) 1.4 x 10 <sup>-3</sup>          | 6.1                                    |
|                      |                  | (1) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (2) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
| 12                   | 1997             | (3) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (4) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (5) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (1) 1.5 x 10 <sup>-3</sup>          | 6.6                                    |
|                      |                  | (2) 1.5 x 10 <sup>-3</sup>          | 6.6                                    |
| 13                   | 1998             | (3) 1.5 x 10 <sup>-3</sup>          | 6.6                                    |
|                      |                  | (4) 7.5 x 10 <sup>-4</sup>          | 3.3                                    |
|                      |                  | (5) 1.5 x 10 <sup>-3</sup>          | 6.6                                    |
|                      |                  | (1) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (2) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
| 14                   | 1999             | (3) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (4) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (5) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (1) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (2) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
| 15                   | 2000             | (3) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (4) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (5) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (1) 7.0 x 10 <sup>-4</sup>          | 3.1                                    |
|                      |                  | (2) 7.0 x 10 <sup>-4</sup>          | 3.1                                    |
| 16                   | 2001             | (3) 7.0 x 10 <sup>-4</sup>          | 3.1                                    |
|                      |                  | (4) 3.5 x 10 <sup>-4</sup>          | 1.5                                    |
|                      |                  | (5) 7.0 x 10 <sup>-4</sup>          | 3.1                                    |
|                      |                  |                                     |                                        |

### Appendix 5. Zoned recharge values used for transient calibration.—Continued

[Zone numbers shown within parenthesis, annual rainfall shown in figure 2]

| Stress period number | Calendar<br>year | Recharge per zone<br>(feet per day) | Recharge per zone<br>(inches per year) |
|----------------------|------------------|-------------------------------------|----------------------------------------|
|                      |                  | (1) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (2) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
| 17                   | 2002             | (3) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (4) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (5) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (1) 1.6 x 10 <sup>-3</sup>          | 7.0                                    |
|                      |                  | (2) 1.6 x 10 <sup>-3</sup>          | 7.0                                    |
| 18                   | 2003             | (3) 1.6 x 10 <sup>-3</sup>          | 7.0                                    |
|                      |                  | (4) 8.0 x 10 <sup>-4</sup>          | 3.5                                    |
|                      |                  | (5) 1.6 x 10 <sup>-3</sup>          | 7.0                                    |
|                      |                  | (1) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (2) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
| 19                   | 2004             | (3) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |
|                      |                  | (4) 3.0 x 10 <sup>-4</sup>          | 1.3                                    |
|                      |                  | (5) 6.0 x 10 <sup>-4</sup>          | 2.6                                    |

|                            | Observe              | ed ground-water levels f    | Observed ground-water levels for March 1986 used in steady-state calibration | state calibration |                                 |                          |
|----------------------------|----------------------|-----------------------------|------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------------|
| Report reference<br>number | USGS site identifier | Well name                   | Observed water-level alti-<br>tude (feet)                                    | Layer             | Simulated water level<br>(feet) | Residual error<br>(feet) |
| 4                          | 175830066135400      | Templo Glove                | 16                                                                           | σ                 | 20.75                           | -4.75                    |
| Ś                          | 175813066133100      | Coquí 2                     | -18                                                                          | ω                 | 6.21                            | -24.21                   |
| 6                          | 175759066144400      | Pozo Aguirre 2              | 10                                                                           | ω                 | 24.12                           | -14.12                   |
| 11                         | 175822066104300      | Cautiño 3                   | 52                                                                           | 2                 | 43.52                           | 8.48                     |
| 15                         | 175757066131800      | Coquí 4                     | 9                                                                            | ςς                | 5.85                            | 0.15                     |
| 16                         | 175732066091900      | Josefa Norte                | 21                                                                           | 3                 | 44.57                           | -23.57                   |
| 24                         | 175646066082100      | Luce & Co 4                 | 1                                                                            | 3                 | 0.16                            | 0.84                     |
| 27                         | 175741066082100      | Luce & Co 3                 | 38                                                                           | 2                 | 58.27                           | -20.27                   |
| 31                         | 175755066084800      | Melania                     | 47                                                                           | 3                 | 58.80                           | -11.80                   |
| 33                         | 175718066083900      | Phillips 7                  | 19                                                                           | 3                 | 28.25                           | -9.25                    |
| 34                         | 175754066084100      | Fibers 1<br>(InterFibers 1) | 54                                                                           | 2                 | 60.72                           | -6.72                    |
| 38                         | 175735066090500      | <b>PRASA Fibers 3</b>       | 30                                                                           | 3                 | 47.64                           | -17.64                   |
| 55                         | 175850066174400      | Salinas 2                   | 13                                                                           | 3                 | 13.76                           | -0.76                    |
| 56                         | 175821066182100      | Antonneti #1                | 7                                                                            | 3                 | 6.49                            | 0.51                     |
| 61                         | 175928066174000      | Vélez 1                     | 23                                                                           | 3                 | 25.37                           | -2.37                    |
| 64                         | 175908066180500      | Isadora 2                   | 12                                                                           | 3                 | 16.22                           | -4.22                    |
| 76                         | 175822066165400      | Magdalena 5                 | 10                                                                           | 3                 | 16.52                           | -6.52                    |
| 103                        | 175917066194300      | Pozas 2                     | 20                                                                           | 3                 | 9.15                            | 10.85                    |
| 113                        | 175835066145700      | PREPA #4                    | 47                                                                           | 3                 | 36.56                           | 10.44                    |
| 116                        | 175810066152700      | PREPA #9                    | 33                                                                           | 3                 | 26.69                           | 6.31                     |
| 118                        | 175738066084500      | <b>PRASA Fibers 2</b>       | 32                                                                           | 2                 | 53.19                           | -21.19                   |
| 119                        | 175721066085500      | Reunión 2                   | 32                                                                           | 2                 | 36.23                           | -4.23                    |
| 121                        | 175735066095900      | Puente Jobos                | 21                                                                           | 3                 | 27.85                           | -6.85                    |
| 123                        | 175752066105300      | Central Guamani 2           | 34                                                                           | 3                 | 21.78                           | 12.22                    |
| 126                        | 175841066104500      | <b>PRASA Villodas</b>       | 58                                                                           | 1                 | 64.75                           | -6.75                    |
| 127                        | 175822066134800      | <b>PRASA</b> Perpetuo       | 7                                                                            | б                 | 12.95                           | -5.95                    |

Appendix 6a. Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004.

Appendix 6a. Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004.—Continued

|                                                                                | ror                                       |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                        |                    |                 |                 |                 |                 |                 |                     |                 |                 |                 |                 |
|--------------------------------------------------------------------------------|-------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|
|                                                                                | Residual error<br>(feet)                  | 8.85            | 3.47            | -24.84          | 13.37           | 3.59            | 4.39            | -2.66           | -0.12           | -4.96           | -6.16           | -8.92           | 4.49            | 0.98                   | 0.73               | -9.53           | 11.04           | 17.29           | -5.79           | -4.73           | -4.83               | -3.38           | 8.59            | -5.71           | -11.86          |
|                                                                                | Simulated water level<br>(feet)           | 39.15           | 40.53           | 6.84            | 50.63           | 63.41           | 35.61           | 10.66           | 12.12           | 54.96           | 18.16           | 16.92           | 45.51           | 11.02                  | 31.27              | 22.53           | 31.96           | 70.71           | 51.79           | 25.73           | 12.83               | 5.38            | 78.41           | 57.71           | 25.86           |
| א־סומוני כמוומו מווסוו                                                         | Layer                                     | ю               | 3               | 3               | 2               | 1               | 3               | 3               | 3               | 3               | 3               | 3               | 3               | Э                      | 7                  | 3               | 3               | 1               | 3               | 3               | 2                   | 3               | 1               | 3               | ю               |
| הנוסבו הכת לו החוות-המוכו ובנכוס והו ואמו הו וסהה חסבת ווו סוכמת). סומוה מנוחו | Observed water-level alti-<br>tude (feet) | 48              | 44              | -18             | 64              | 67              | 40              | 8               | 12              | 50              | 12              | 8               | 50              | 12                     | 32                 | 13              | 43              | 88              | 46              | 21              | ∞                   | 2               | 87              | 52              | 14              |
|                                                                                | Well name                                 | Adela 2         | Adela 1         | Coquí 5         | Juana 2         | Reunión DW 1    | Godreau 3A      | Isadora 4       | Hac. Teresa Dom | USGS Piezo D    | Magdalena 3     | USGS Piezo C    | Fortuna 3       | Piezo USGS Car-<br>men | PRASA Godreau<br>2 | Deestano        | Abey            | PRWRA 3         | Magdalena 4     | PRASA AEE       | PRASA San<br>Felipe | Coquí 1         | Amoros          | USGS Piezo A    | Monsanto        |
|                                                                                | USGS site identifier                      | 175848066145800 | 175851066145700 | 175816066133100 | 175823066101300 | 175756066082900 | 175913066163500 | 175853066182800 | 175754066162400 | 175910066155500 | 175823066164600 | 175735066151800 | 175858066151600 | 175826066173700        | 175924066170400    | 175823066162400 | 175821066144600 | 175944066142100 | 175916066144000 | 175828066142200 | 175824066130900     | 175809066133100 | 175910066122400 | 175925066145400 | 175814066155900 |
|                                                                                | Report reference<br>number                | 129             | 130             | 137             | 138             | 141             | 144             | 146             | 147             | 149             | 151             | 154             | 155             | 158                    | 159                | 162             | 164             | 168             | 170             | 172             | 173                 | 174             | 179             | 180             | 182             |

Appendix 6a. Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004—Continued

| Poport reference<br>multiple         USGS site identifier         Well name<br>und (jeet)         Disperd water-level difi-<br>tude (jeet)         Apre-<br>tude (jeet)           183         17590606143000         Hac. Sabater 2         49         3           184         17564006083100         Hac. Sabater 2         49         3           187         17564006083000         Philips 4         3         3           188         17564006083000         Philips 4         3         3           189         17564006083000         Philips 4         3         3           190         177710066092300         Josefa Surr         15         3           191         1777306610400         Reunión Surr         23         3           192         17574066102300         Adela 1 BTR         23         3           193         175754066102400         Reunión Surr         23         3           194         175757066091200         Protales Notre         33         3           195         17575406610200         Protales Notre         34         3           196         17575406610200         Protales Notre         34         3           197         17575406610200         Protales Notre         34 |                            | Observe                               | d ground-water levels | Observed ground-water levels for March 1986 used in steady-state calibration | state calibration |                                 |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|-----------------------|------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------------|
| ter 2 49<br>1s 3 3<br>1s 3 3<br>1s 3<br>15<br>ur 15<br>ur 22<br>blos 1 23<br>blos 1 23<br>IR 33<br>lamani 1 33<br>lamani 1 33<br>lamani 1 33<br>r 40<br>· 0<br>· 0<br>· 0<br>· 17<br>· 15<br>· 16<br>· 16<br>· 17<br>· 16<br>· 17<br>· 17<br>· 18<br>· 18<br>· 19<br>· 10<br>· 11<br>· 11<br>· 11<br>· 12<br>· 12<br>· 11<br>· 13<br>· 11<br>· 11<br>· 12<br>· 11<br>· 13<br>· 12<br>· 11<br>· 11                                                                                                                                                                                                                                                                                                                                                | Report reference<br>number | USGS site identifier                  | Well name             | Observed water-level alti-<br>tude (feet)                                    | Layer             | Simulated water level<br>(feet) | Residual error<br>(feet) |
| Is 3 3 3 3 3 3 3 3 3 4 7 7 7 7 7 7 7 7 7 9 15 2 2 15 2 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                              | 183                        | 175906066143000                       | Hac. Sabater 2        | 49                                                                           | ε                 | 46.48                           | 2.52                     |
| 3<br>15<br>15<br>ur 15<br>ur 22<br>boos 1 23<br>Imani 1 23<br>Imani 1 33<br>140<br>40<br>40<br>79<br>64<br>79<br>79<br>79<br>79<br>79<br>79<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 186                        | 175633066084100                       | Las Mareas 3          | 3                                                                            | ω                 | 0.16                            | 2.84                     |
| 7<br>15<br>ur 22<br>bos 1 23<br>bos 1 23<br>IR 32<br>amani 1 33<br>40<br>Norte 79<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 187                        | 175640066085100                       | Phillips 4            | 3                                                                            | ω                 | 0.90                            | 2.10                     |
| 15       ur     22       ur     23       blos 1     23       TR     32       Immani 1     33       Immani 1     33       Adot     79       Norte     79       Norte     79       Immani 1     33       Immani 1     34       Immani 1                                                                                                                                                                                                                                                                                                                                                                          | 188                        | 175648066083900                       | Phillips 3            | 7                                                                            | ç                 | 2.87                            | 4.13                     |
| ur 22<br>bos 1 23<br>TR 33<br>aamani 1 33<br>aamani 1 33<br>40<br>• Norte 79<br>64<br>r 37<br>r 37<br>r 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 189                        | 175710066092300                       | Josefa Sur            | 15                                                                           | ç                 | 23.68                           | -8.68                    |
| bloos 1     23       TR     32       Lamani 1     33       Lamani 1     33       Iamani 1     34       Iamani 1     34       Iamani 1     37                                                                                                                                                                                                                                                                                                                                                                                                 | 190                        | 175721066083600                       | Reunión Sur           | 22                                                                           | 2                 | 34.09                           | -12.09                   |
| TR     32       lamani 1     33       lamani 1     33       h     40       Norte     79       Norte     79       i     79       i     79       i     79       i     79       i     50       i     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 191                        | 175735066100400                       | PRASA Jobos 1         | 23                                                                           | б                 | 26.36                           | -3.36                    |
| Iamani 1     33       A0     40       i Norte     79       i Norte     70                                                                                                                                                                                                                                                                                                                                                                                         | 192                        | 175754066102300                       | Adela 1 BTR           | 32                                                                           | ω                 | 30.52                           | 1.48                     |
| 40<br>Norte 79<br>64<br>54<br>50<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 193                        | 175754066104700                       | Central Guamani 1     | 33                                                                           | б                 | 23.85                           | 9.15                     |
| Norte 79<br>- 4<br>54<br>r 37<br>r 50<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 194                        | 175757066094200                       | PRASA 2               | 40                                                                           | б                 | 45.36                           | -5.36                    |
| 4<br>54<br>50<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 195                        | 175840066102100                       | P. Morales Norte      | 79                                                                           | 2                 | 69.76                           | 9.24                     |
| 54<br>37<br>50<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 196                        | 175823066182200                       | Piezo J-24            | 4                                                                            | ω                 | 4.49                            | -0.49                    |
| 37<br>50<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 197                        | 175842066113800                       | Benito                | 54                                                                           | 2                 | 63.57                           | -9.57                    |
| 50<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 198                        | 175805066105500                       | Benito Sur            | 37                                                                           | 2                 | 25.61                           | 11.39                    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199                        | 175815066102300                       | Juana                 | 50                                                                           | б                 | 41.42                           | 8.58                     |
| Mean residual<br>Standard deviation of residuals<br>Standard deviation of residuals divided by range in observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                        | 175805066120600                       | Chunchin              | 17                                                                           | 3                 | 8.31                            | 8.69                     |
| Standard deviation of residuals<br>Standard deviation of residuals divided by range in observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean residual              |                                       |                       |                                                                              |                   |                                 | -2.08                    |
| Standard deviation of residuals divided hy renove in observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standard deviati           | on of residuals                       |                       |                                                                              |                   |                                 | 9.53                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard deviati           | on of residuals divided by range in o | observations          |                                                                              |                   |                                 | 060.0                    |

Appendix 6b. Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004.

|                            | Observed ground-water levels |                       | ıear Salinas, Puerto Rico, July 2002, compared with simulated water levels for 2002 | d with simulate | d water levels for 2002.     |                          |
|----------------------------|------------------------------|-----------------------|-------------------------------------------------------------------------------------|-----------------|------------------------------|--------------------------|
| Report<br>reference number | USGS site identifier         | Well name             | Observed water-level<br>altitude (feet)                                             | Layer           | Simulated water level (feet) | Residual error<br>(feet) |
| 3                          | 175826066134400              | PRASA Coqui #1        | 6.07                                                                                | 4               | -6.28                        | 12.35                    |
| 40                         | 175748066160600              | Salich #1             | -2.97                                                                               | 4               | -8.99                        | 6.02                     |
| 41                         | 175804066150700              | Aguirre #3            | -18.6                                                                               | 4               | -8.23                        | -10.37                   |
| 42                         | 175810066155400              | Fortuna #1            | 20.97                                                                               | 3               | -1.29                        | 22.26                    |
| 52                         | 175837066165400              | Carmen 2              | -0.32                                                                               | 4               | 3.78                         | -4.10                    |
| 55                         | 175850066174600              | PRASA Salinas 2       | 0.83                                                                                | 4               | 0.01                         | 0.82                     |
| 64                         | 175908066180400              | Isadora #2            | 1.38                                                                                | 4               | 2.30                         | -0.92                    |
| 72                         | 175930066160300              | Godreau 5             | 28.68                                                                               | 3               | 24.57                        | 4.11                     |
| 102                        | 175909066185300              | Isadora #3            | -0.6                                                                                | 3               | 1.99                         | -2.59                    |
| 110                        | 175918066164100              | Godreau #02           | 20.49                                                                               | 3               | 13.18                        | 7.31                     |
| 113                        | 175835066145700              | AEE #4                | 24.1                                                                                | 4               | -3.57                        | 27.67                    |
| 114                        | 175825066142500              | AEE #6                | 23.62                                                                               | 4               | -8.24                        | 31.86                    |
| 115                        | 175845066142800              | AEE #7                | 18.96                                                                               | 3               | -2.23                        | 21.19                    |
| 116                        | 175810066151400              | AEE #9                | -31.24                                                                              | 4               | -7.09                        | -24.15                   |
| 127                        | 175822066134900              | <b>PRASA</b> Perpetuo | 0.81                                                                                | 4               | -7.78                        | 8.59                     |
| 128                        | 175809066145300              | Aguirre #1            | -11.37                                                                              | 4               | -7.90                        | -3.47                    |
| 130                        | 175851066145700              | Adela                 | 20.9                                                                                | 4               | -1.97                        | 22.87                    |
| 131                        | 175919066144400              | Lanausse #2           | 22.75                                                                               | 3               | 5.26                         | 17.49                    |
| 142                        | 175922066171200              | Salinas 4             | 17.26                                                                               | 2               | 4.35                         | 12.91                    |
| 145                        | 175922066174600              | Vélez                 | 16.14                                                                               | 3               | 4.68                         | 11.46                    |
| 146                        | 175853066182800              | Isadora #4            | 2.32                                                                                | 4               | 1.31                         | 1.01                     |
| 147                        | 175918066164100              | Godreau #03           | 20.99                                                                               | 3               | 10.37                        | 10.62                    |
| 148                        | 175912066155500              | Godreau-Solar #2      | 23.8                                                                                | 33              | 9.91                         | 13.89                    |
| 149                        | 175910066155500              | USGS Piezo D          | 27.08                                                                               | б               | 13.45                        | 13.63                    |
| 150                        | 175845066164500              | Colmado Cruz well     | 6.4                                                                                 | 4               | 5.03                         | 1.37                     |
| 151                        | 175823066164600              | Magdalena #3          | 2.85                                                                                | ŝ               | 1.91                         | 0.94                     |
| 152                        | 175814066154700              | Salinas Speedway      | -5.81                                                                               | 33              | -4.41                        | -1.40                    |

Appendix 6b. Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004.—Continued

| Report<br>reference number | USGS site identifier                                             | Well name                   | Observed water-level<br>altitude (feet) | Layer | Simulated water level (feet) | Residual error<br>(feet) |
|----------------------------|------------------------------------------------------------------|-----------------------------|-----------------------------------------|-------|------------------------------|--------------------------|
| 154                        | 175735066151800                                                  | USGS Piezo C                | 1.65                                    | 4     | -4.10                        | 5.75                     |
| 155                        | 175858066151600                                                  | Fortuna #3                  | 20.64                                   | 33    | -0.06                        | 20.70                    |
| 156                        | 175851066153000                                                  | Fortuna #4                  | 20.2                                    | 3     | 1.20                         | 19.00                    |
| 157                        | 175815066153700                                                  | Pioneer 1                   | 1.03                                    | 33    | -5.39                        | 6.42                     |
| 159                        | 175924066170400                                                  | PRASA Godreau 2             | -6.01                                   | 2     | 5.87                         | -11.88                   |
| 160                        | 175908661726000                                                  | PRASA Coco 3                | 14.05                                   | 33    | 4.05                         | 10.00                    |
| 161                        | 175826066180600                                                  | <b>PRASA</b> Las Margaritas | -0.96                                   | 4     | -0.30                        | -0.66                    |
| 162                        | 175824066162500                                                  | Deestano                    | -2.11                                   | ю     | 1.47                         | -3.58                    |
| 163                        | 175833066151600                                                  | AEE #5                      | 22.75                                   | 4     | -4.42                        | 27.17                    |
| 164                        | 175821066144700                                                  | Abey                        | 19.06                                   | 4     | -5.32                        | 24.38                    |
| 165                        | 175855066143100                                                  | Hacienda Sabater #1         | 20.14                                   | 3     | -0.17                        | 20.31                    |
| 166                        | 175909066142200                                                  | PRWRA #4                    | 31.32                                   | 3     | 4.35                         | 26.97                    |
| 167                        | 175927066142000                                                  | PRWRA #2                    | 47.53                                   | ю     | 11.53                        | 36.00                    |
| 168                        | 175943066142100                                                  | PRWRA #3                    | 74.44                                   | ю     | 20.68                        | 53.76                    |
| 169                        | 175855066141400                                                  | Luce & Co #21               | 22.32                                   | б     | -0.10                        | 22.42                    |
| 170                        | 175915066143600                                                  | Magdalena #4                | 26.99                                   | 3     | 4.26                         | 22.73                    |
| 171                        | 175916066131200                                                  | Pollera 2                   | 69.08                                   | 1     | 17.09                        | 51.99                    |
| 173                        | 175822066125300                                                  | PRASA San Felipe            | 1.97                                    | 4     | -3.33                        | 5.30                     |
| 174                        | 175809066133200                                                  | USGS Coqui                  | 2.83                                    | 4     | -6.15                        | 8.98                     |
| 175                        | 175827066141100                                                  | Pozo Aguirre                | 7.68                                    | 4     | -6.70                        | 14.38                    |
| 176                        | 175739066156600                                                  | <b>PRASA</b> Las Mareas     | -0.35                                   | 4     | -5.35                        | 5.00                     |
| 177                        | 175708066162900                                                  | Ermitaño                    | 0.7                                     | 4     | -0.58                        | 1.28                     |
| 178                        | 175856066123300                                                  | Tumores                     | 51.12                                   | 2     | 14.33                        | 24.60                    |
| 179                        | 75910066122400                                                   | Amoros                      | 91.75                                   | 1     | 39.99                        | 51.76                    |
| Mean residual              |                                                                  |                             |                                         |       |                              | 12.63                    |
| Standard devis             | Standard deviation of residuals                                  |                             |                                         |       |                              | 15.75                    |
| Standard devis             | Standard deviation of residuals divided by range in observations | / range in observations     |                                         |       |                              | 0.13                     |
|                            |                                                                  |                             |                                         |       |                              |                          |

**Appendix 6***c.* Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004.

| Report<br>reference<br>number | USGS site identifier | Well name        | Observed<br>water-level<br>altitude (feet) | Layer | Simulated water<br>level (feet) | Residual error<br>(feet) |
|-------------------------------|----------------------|------------------|--------------------------------------------|-------|---------------------------------|--------------------------|
| 40                            | 175748066160600      | Salich #1        | 4.81                                       | 4     | 6.09                            | -1.28                    |
| 42                            | 175810066155400      | Fortuna #1       | 33.10                                      | 3     | 23.56                           | 9.54                     |
| 64                            | 175908066180400      | Isadora #2       | 7.83                                       | 4     | 11.51                           | -3.68                    |
| 72                            | 175930066160300      | Godreau #5       | 40.59                                      | 3     | 70.11                           | -29.52                   |
| 94                            | 175903066165000      | USGS Godreau 7   | 14.54                                      | 4     | 17.33                           | -2.79                    |
| 103                           | 175917066194300      | Pozas 2          | 27.66                                      | 3     | 6.08                            | 21.58                    |
| 110                           | 175918066164100      | Godreau #02      | 32.88                                      | 3     | 43.36                           | -10.48                   |
| 113                           | 175851066145700      | Adela 1          | 32.61                                      | 4     | 22.11                           | 10.50                    |
| 113                           | 175835066145700      | AEE #4           | 30.03                                      | 4     | 18.47                           | 11.56                    |
| 114                           | 175825066142500      | AEE #6           | 18.78                                      | 4     | 11.14                           | 7.64                     |
| 115                           | 175845066142800      | AEE #7           | 29.02                                      | 3     | 20.86                           | 8.16                     |
| 116                           | 175810066151400      | AEE #9           | 17.54                                      | 4     | 11.35                           | 6.19                     |
| 127                           | 175822066134900      | PRASA Perpetuo   | 0.81                                       | 4     | 6.24                            | -5.42                    |
| 128                           | 175809066145300      | Aguirre #1       | 19.02                                      | 4     | 11.99                           | 7.03                     |
| 131                           | 175919066144400      | Lanausse #2      | 34.98                                      | 3     | 34.83                           | 0.16                     |
| 140                           | 175742066082900      | PRASA Coqui      | 9.61                                       | 4     | 6.91                            | 2.70                     |
| 149                           | 175910066155500      | USGS Piezo D     | 37.29                                      | 3     | 45.61                           | -8.32                    |
| 151                           | 175823066164600      | Magdalena #3     | 10.60                                      | 3     | 13.46                           | -2.86                    |
| 154                           | 175735066151800      | USGS Piezo C     | 5.80                                       | 4     | 5.55                            | 0.26                     |
| 156                           | 175851066153000      | Fortuna #4       | 31.98                                      | 3     | 25.85                           | 6.14                     |
| 163                           | 175833066151600      | AEE #5           | 32.83                                      | 4     | 16.98                           | 15.85                    |
| 164                           | 175821066144700      | Abey             | 28.00                                      | 4     | 15.02                           | 12.98                    |
| 166                           | 175909066142200      | PRWRA #4         | 40.65                                      | 3     | 30.39                           | 10.26                    |
| 167                           | 175927066142000      | PRWRA #2         | 55.42                                      | 3     | 42.71                           | 12.71                    |
| 168                           | 175943066142100      | PRWRA #3         | 84.43                                      | 3     | 60.83                           | 23.60                    |
| 169                           | 175855066141400      | Luce & Co #21    | 32.41                                      | 3     | 24.43                           | 7.98                     |
| 170                           | 175915066143600      | Magdalena #4     | 39.18                                      | 3     | 32.96                           | 6.22                     |
| 173                           | 175822066125300      | PRASA San Felipe | 5.72                                       | 4     | 6.83                            | -1.11                    |
| 174                           | 175809066133200      | USGS Coqui       | 6.37                                       | 4     | 2.31                            | 4.06                     |
| 174                           | 175739066156600      | PRASA Las Mareas | 5.58                                       | 4     | 4.90                            | 0.68                     |
| 175                           | 175827066141100      | Pozo Aguirre     | 12.57                                      | 4     | 11.15                           | 1.42                     |
| 180                           | 175814066155900      | Monsanto         | 8.98                                       | 3     | 13.35                           | -4.37                    |
| 183                           | 175811066155900      | Burgos           | 18.16                                      | 3     | 11.12                           | 7.04                     |
| 201                           | 175851066155100      | Fortuna #10      | 34.81                                      | 3     | 32.51                           | 2.30                     |
| 201                           | 175850066154000      | Fortuna #5       | 32.87                                      | 3     | 29.19                           | 3.68                     |

**Appendix 6***c.* Observed water levels, simulated water levels, and calculated residuals for March, 1986, July 2002, and May 2004.—Continued

| Observed ground-water levels near Salinas, Puerto Rico, May 2004, compared with simulated water levels for 2004. |                      |             |                                            |       |                                 |                          |
|------------------------------------------------------------------------------------------------------------------|----------------------|-------------|--------------------------------------------|-------|---------------------------------|--------------------------|
| Report<br>reference<br>number                                                                                    | USGS site identifier | Well name   | Observed<br>water-level<br>altitude (feet) | Layer | Simulated water<br>level (feet) | Residual error<br>(feet) |
| 203                                                                                                              | 175925066145400      | USGS RASA B | 38.05                                      | 3     | 41.22                           | -3.17                    |
| 204                                                                                                              | 175859066181200      | Isadora new | 4.74                                       | 4     | 9.07                            | -4.33                    |
| 205                                                                                                              | 175918066182800      | Godreau #03 | 28.71                                      | 3     | 34.93                           | -6.22                    |
| Mean residual                                                                                                    |                      |             |                                            |       |                                 | 3.07                     |
| Standard deviation of residuals                                                                                  |                      |             |                                            |       |                                 | 9.49                     |
| Standard deviation of residuals divided by range in observations                                                 |                      |             |                                            |       |                                 | 0.11                     |