Плотность вероятности: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Плотность вероятности и функция распределения — разные вещи, в том числе и в приложениях (даже графики функций разные).
Метки: с мобильного устройства из мобильной версии
м Бот: оформление Ш:БРЭ
 
(не показано 9 промежуточных версий 8 участников)
Строка 1: Строка 1:
'''Пло́тность вероя́тности''' — один из способов задания [[Распределение вероятностей|распределения случайной величины]]. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) [[Случайная величина|случайной величины]]» или «[[функция распределения|функция распределения вероятностей]]» фактически синонимизируются{{Нет АИ|22|06|2020}} и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).
'''Пло́тность вероя́тности''' — один из способов задания [[Распределение вероятностей|распределения случайной величины]]. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) [[Случайная величина|случайной величины]]» или «[[функция распределения|функция распределения вероятностей]]» фактически синонимизируются{{Нет АИ|22|06|2020}} и под ними подразумевается [[Числовая функция|вещественная функция]], характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).


== Прикладное описание понятия ==
== Прикладное описание понятия ==
Строка 26: Строка 26:
::<math>{f}_\chi(y) = f(z^{-1}(y))\cdot \left|\frac{\mbox{d}z^{-1}(y)}{\mbox{d}y}\right|</math>,
::<math>{f}_\chi(y) = f(z^{-1}(y))\cdot \left|\frac{\mbox{d}z^{-1}(y)}{\mbox{d}y}\right|</math>,


где <math>z^{-1}(y)</math> — обратная функция по отношению к <math>y=z(x)</math> (предполагается, что z — взаимно однозначное отображение).
где <math>z^{-1}(y)</math> — [[обратная функция]] по отношению к <math>y=z(x)</math> (предполагается, что z — [[Биекция|взаимно однозначное отображение]]).


Значение плотности распределения <math>f(x_1)</math> не является вероятностью принять случайной величиной значение <math>x_1</math>. Так, вероятность принятия [[Непрерывная случайная величина|непрерывной случайной величиной]] <math>\xi</math> значения <math>x_1</math> равна нулю. При непрерывном распределении случайной величины <math>\xi</math> вопрос может ставиться о вероятности её попадания в некий диапазон, а не о вероятности реализации её конкретного значения.
Значение плотности распределения <math>f(x_1)</math> не является вероятностью принять случайной величиной значение <math>x_1</math>. Так, вероятность принятия [[Непрерывная случайная величина|непрерывной случайной величиной]] <math>\xi</math> значения <math>x_1</math> равна нулю. При непрерывном распределении случайной величины <math>\xi</math> вопрос может ставиться о вероятности её попадания в некий диапазон, а не о вероятности реализации её конкретного значения.
Строка 34: Строка 34:
:: <math>\int_{-\infty}^xf(t)\,\mbox{d}t = F(x) </math>
:: <math>\int_{-\infty}^xf(t)\,\mbox{d}t = F(x) </math>


называют [[Функция распределения|функцией распределения]] (соответственно, плотность распределения вероятности — это производная функции распределения). Функция <math>F</math> является неубывающей и изменяется от 0 при <math>x\to -\infty</math> до 1 при <math>x\to +\infty</math>. {{нет АИ 2|На практике часто допускается неточность терминологии, то есть плотность распределения <math>f</math>, как и <math>F</math>, именуется функцией распределения (иногда законом распределения), но обычно из контекста очевидно, о чём идёт речь.|02|02|2020|}}
называют [[Функция распределения|функцией распределения]] (соответственно, плотность распределения вероятности — это [[производная функции]] распределения). Функция <math>F</math> является неубывающей и изменяется от 0 при <math>x\to -\infty</math> до 1 при <math>x\to +\infty</math>.


[[File:Uniform_distribution_PDF.png|thumb|Функции плотности вероятности для [[Непрерывное равномерное распределение|равномерного распределения]]]]
[[File:Uniform_distribution_PDF.png|thumb|Функции плотности вероятности для [[Непрерывное равномерное распределение|равномерного распределения]]]]
Строка 61: Строка 61:
В двух последних примерах множитель <math>A</math> подбирается в зависимости от параметра <math>\lambda</math> или <math>\alpha</math> так, чтобы обеспечить нормировку интеграла от плотности вероятности. В случае распределения Лапласа оказывается, что <math>A = \lambda</math>.
В двух последних примерах множитель <math>A</math> подбирается в зависимости от параметра <math>\lambda</math> или <math>\alpha</math> так, чтобы обеспечить нормировку интеграла от плотности вероятности. В случае распределения Лапласа оказывается, что <math>A = \lambda</math>.


Как названные, так и другие распределения широко применяются в физике. Например, в случае [[Распределение Максвелла|распределения Максвелла]] роль случайной величины обычно играет абсолютная величина скорости молекулы в [[Идеальный газ|идеальном газе]]. При этом для аргумента функции <math>f</math> нередко используют тот же символ, что и для рассматриваемой в физической задаче случайной величины (как если бы выше на месте <math>\xi</math> всюду стояло <math>x</math>). Так, в выражении максвелловской плотности распределения пишут не формальную переменную <math>x</math>, а символ скорости <math>v</math>. В простейших ситуациях такая вольность с обозначениями не приводит к недоразумениям.
Как названные, так и другие распределения широко применяются в физике. Например, в случае [[Распределение Максвелла|распределения Максвелла]] роль случайной величины обычно играет [[абсолютная величина]] скорости молекулы в [[Идеальный газ|идеальном газе]]. При этом для аргумента функции <math>f</math> нередко используют тот же символ, что и для рассматриваемой в физической задаче случайной величины (как если бы выше на месте <math>\xi</math> всюду стояло <math>x</math>). Так, в выражении максвелловской плотности распределения пишут не формальную переменную <math>x</math>, а символ скорости <math>v</math>. В простейших ситуациях такая вольность с обозначениями не приводит к недоразумениям.

Спадающий при стремлении аргумента к <math>+\infty</math> или <math>-\infty</math> участок графика плотности вероятности <math>f(x)</math> в областях, где <math>f \ll f_{max}</math>, называется [[Хвост распределения|хвостом]]. Из упомянутых распределений, нормальное и лапласовское имеют по два хвоста (слева и справа), а максвелловское в выписанном виде — один (справа).


Выше была изложена суть понятия «плотность вероятности». Однако, такое изложение не является строгим — плотность <math>f</math> нередко является функцией нескольких величин, в рассуждениях неявно предполагались не всегда гарантируемые непрерывность и дифференцируемость функций и так далее.
Выше была изложена суть понятия «плотность вероятности». Однако, такое изложение не является строгим — плотность <math>f</math> нередко является функцией нескольких величин, в рассуждениях неявно предполагались не всегда гарантируемые непрерывность и дифференцируемость функций и так далее.
Строка 73: Строка 75:
Если вероятность <math>\mathbb{P}</math> абсолютно непрерывна, то согласно [[Теорема Радона — Никодима|теореме Радона-Никодима]] существует неотрицательная [[Борелевы функции|борелевская функция]] <math>f\colon\mathbb{R}^n \to [0,\infty)</math> такая, что
Если вероятность <math>\mathbb{P}</math> абсолютно непрерывна, то согласно [[Теорема Радона — Никодима|теореме Радона-Никодима]] существует неотрицательная [[Борелевы функции|борелевская функция]] <math>f\colon\mathbb{R}^n \to [0,\infty)</math> такая, что
: <math>\mathbb{P}(B) = \int\limits_{B} f(x)\, dx</math>,
: <math>\mathbb{P}(B) = \int\limits_{B} f(x)\, dx</math>,
где использовано общепринятое сокращение <math>m(dx) \equiv dx</math>, и интеграл понимается [[Интеграл Лебега|в смысле Лебега]].
где использовано общепринятое сокращение <math>m(dx) \equiv dx</math>, и [[интеграл]] понимается [[Интеграл Лебега|в смысле Лебега]].


В более общем виде, пусть <math>(X, \mathcal F)</math> — произвольное [[Сигма-алгебра|измеримое пространство]], а <math>\mu</math> и <math>\nu</math> — две [[Вероятность|меры]] на этом пространстве. Если найдется неотрицательная <math>f</math>, позволяющая выразить меру <math>\nu</math> через меру <math>\mu</math> в виде
В более общем виде, пусть <math>(X, \mathcal F)</math> — произвольное [[Сигма-алгебра|измеримое пространство]], а <math>\mu</math> и <math>\nu</math> — две [[Вероятность|меры]] на этом пространстве. Если найдется неотрицательная <math>f</math>, позволяющая выразить меру <math>\nu</math> через меру <math>\mu</math> в виде
Строка 124: Строка 126:


== Свойства плотности вероятности ==
== Свойства плотности вероятности ==
* Плотность вероятности определена [[почти всюду]]. Если <math>f</math> является плотностью вероятности <math>\mathbb{P}</math> и <math>f(x) = g(x)</math> почти всюду относительно меры Лебега, то и функция <math>g</math> также является плотностью вероятности <math>\mathbb{P}</math>.
* Плотность вероятности определена [[почти всюду]]. Если <math>f</math> является плотностью вероятности <math>\mathbb{P}</math> и <math>f(x) = g(x)</math> почти всюду относительно меры Лебега, то и функция <math>g</math> также является плотностью вероятности <math>\mathbb{P}</math>./


* Интеграл от плотности по всему пространству равен единице:
* Интеграл от плотности по всему пространству равен единице:
Строка 134: Строка 136:
* Замена меры в интеграле Лебега:
* Замена меры в интеграле Лебега:
: <math>\int\limits_{\mathbb{R}^n} \varphi(x)\, \mathbb{P}(dx) = \int\limits_{\mathbb{R}^n}\varphi(x)\, f(x)\, dx</math>,
: <math>\int\limits_{\mathbb{R}^n} \varphi(x)\, \mathbb{P}(dx) = \int\limits_{\mathbb{R}^n}\varphi(x)\, f(x)\, dx</math>,
где <math>\varphi:\mathbb{R}^n \to \mathbb{R}</math> любая борелевская функция, интегрируемая относительно вероятностной меры <math>\mathbb{P}</math>.
где <math>\varphi::\mathbb{R}^n \to \mathbb{R}</math> любая борелевская функция, интегрируемая относительно вероятностной меры <math>{}\mathbb{P}</math>.


== Примеры абсолютно непрерывных распределений ==
== Примеры абсолютно непрерывных распределений ==
Строка 174: Строка 176:


== Литература ==
== Литература ==
* {{БРЭ|Плотность вероятности|id=3146355}}
* {{БРЭ|статья=Плотность вероятности|ссылка=https://old.bigenc.ru/mathematics/text/3146355|архив=https://web.archive.org/web/20230221173900/https://old.bigenc.ru/mathematics/text/3146355|архив дата=2023-02-21}}


[[Категория:Теория вероятностей]]
[[Категория:Теория вероятностей]]

Текущая версия от 22:54, 12 июля 2024

Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются[источник не указан 1540 дней] и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).

Прикладное описание понятия

[править | править код]

Плотность распределения одномерной непрерывной случайной величины — это числовая функция , отношение значений которой в точках и задаёт отношение вероятностей попаданий величины в узкие интервалы равной ширины и вблизи данных точек.

Плотность распределения неотрицательна при любом и нормирована, то есть

При стремлении к функция стремится к нулю. Размерность плотности распределения всегда обратная к размерности случайной величины — если исчисляется в метрах, то размерностью будет м-1.

Вероятность попадания случайной величины в интервал между и равна площади под графиком функции плотности вероятности .

Если в конкретной ситуации известно выражение для , с его помощью можно вычислить вероятность попадания величины в интервал как

.

Зная плотность вероятности, можно также определить наиболее вероятное значение (моду) случайной величины как максимум . Также с помощью плотности вероятности находится среднее значение случайной величины:

и среднее значение измеримой функции случайной величины:

.

Чтобы перейти к плотности распределения другой случайной величины , нужно взять

,

где обратная функция по отношению к (предполагается, что z — взаимно однозначное отображение).

Значение плотности распределения не является вероятностью принять случайной величиной значение . Так, вероятность принятия непрерывной случайной величиной значения равна нулю. При непрерывном распределении случайной величины вопрос может ставиться о вероятности её попадания в некий диапазон, а не о вероятности реализации её конкретного значения.

Интеграл

называют функцией распределения (соответственно, плотность распределения вероятности — это производная функции распределения). Функция является неубывающей и изменяется от 0 при до 1 при .

Функции плотности вероятности для равномерного распределения

Самым простым распределением является равномерное распределение на отрезке . Для него плотность вероятности равна:

Функции плотности вероятности для нормального распределения

Широко известным распределением является «нормальное», оно же гауссово, плотность которого записывается как

,

где и — параметры: математическое ожидание и среднеквадратичное отклонение. Другие примеры плотностей распределения — одностороннее лапласовское ():

и ,

и максвелловское ():

и .

В двух последних примерах множитель подбирается в зависимости от параметра или так, чтобы обеспечить нормировку интеграла от плотности вероятности. В случае распределения Лапласа оказывается, что .

Как названные, так и другие распределения широко применяются в физике. Например, в случае распределения Максвелла роль случайной величины обычно играет абсолютная величина скорости молекулы в идеальном газе. При этом для аргумента функции нередко используют тот же символ, что и для рассматриваемой в физической задаче случайной величины (как если бы выше на месте всюду стояло ). Так, в выражении максвелловской плотности распределения пишут не формальную переменную , а символ скорости . В простейших ситуациях такая вольность с обозначениями не приводит к недоразумениям.

Спадающий при стремлении аргумента к или участок графика плотности вероятности в областях, где , называется хвостом. Из упомянутых распределений, нормальное и лапласовское имеют по два хвоста (слева и справа), а максвелловское в выписанном виде — один (справа).

Выше была изложена суть понятия «плотность вероятности». Однако, такое изложение не является строгим — плотность нередко является функцией нескольких величин, в рассуждениях неявно предполагались не всегда гарантируемые непрерывность и дифференцируемость функций и так далее.

Определение плотности вероятности в теории меры

[править | править код]

Плотность вероятности можно рассматривать как один из способов задания вероятностной меры на евклидовом пространстве . Пусть является вероятностной мерой на , то есть определено вероятностное пространство , где обозначает борелевскую σ-алгебру на . Пусть обозначает меру Лебега на . Вероятность называется абсолютно непрерывной (относительно меры Лебега) (), если любое борелевское множество нулевой меры Лебега также имеет вероятность ноль:

Если вероятность абсолютно непрерывна, то согласно теореме Радона-Никодима существует неотрицательная борелевская функция такая, что

,

где использовано общепринятое сокращение , и интеграл понимается в смысле Лебега.

В более общем виде, пусть  — произвольное измеримое пространство, а и  — две меры на этом пространстве. Если найдется неотрицательная , позволяющая выразить меру через меру в виде

то такую функцию называют плотностью меры по мере , или производной Радона-Никодима меры относительно меры , и обозначают

.

Плотность случайной величины

[править | править код]

Пусть определено произвольное вероятностное пространство , и случайная величина (или случайный вектор). индуцирует вероятностную меру на , называемую распределением случайной величины .

Если распределение абсолютно непрерывно относительно меры Лебега, то его плотность называется плотностью случайной величины . Сама случайная величина называется абсолютно непрерывной.

Таким образом для абсолютно непрерывной случайной величины имеем:

.
  • Не всякая случайная величина абсолютно непрерывна. Любое дискретное распределение, например, не является абсолютно непрерывным относительно меры Лебега, а потому дискретные случайные величины не имеют плотности.
  • Функция распределения абсолютно непрерывной случайной величины непрерывна и может быть выражена через плотность следующим образом:
.

В одномерном случае:

.

Если , то , и

.

В одномерном случае:

.
,

где  — борелевская функция, так что определено и конечно.

Плотность преобразования случайной величины

[править | править код]

Пусть  — абсолютно непрерывная случайная величина, и  — инъективная непрерывно дифференцируемая функция такая, что , где  — якобиан функции в точке . Тогда случайная величина также абсолютно непрерывна, и её плотность имеет вид:

.

В одномерном случае:

.

Свойства плотности вероятности

[править | править код]
  • Плотность вероятности определена почти всюду. Если является плотностью вероятности и почти всюду относительно меры Лебега, то и функция также является плотностью вероятности ./
  • Интеграл от плотности по всему пространству равен единице:
.

Обратно, если  — неотрицательная почти всюду функция, такая что , то существует абсолютно непрерывная вероятностная мера на такая, что является её плотностью.

  • Замена меры в интеграле Лебега:
,

где любая борелевская функция, интегрируемая относительно вероятностной меры .

Примеры абсолютно непрерывных распределений

[править | править код]

Литература

[править | править код]