Максимальный идеал: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Addbot (обсуждение | вклад)
м Интервики (всего 10) перенесены на Викиданные, d:q1203540
уточнение ссылки
Строка 1: Строка 1:
'''Максимальным идеалом''' (коммутативного) [[кольцо (алгебра)|кольца]] называется всякий собственный [[Идеал (алгебра)|идеал]] кольца, не содержащийся ни в каком другом собственном идеале.
'''Максимальным идеалом''' [[коммутативное кольцо|коммутативного кольца]] называется всякий собственный [[Идеал (алгебра)|идеал]] кольца, не содержащийся ни в каком другом собственном идеале.


== Свойства ==
== Свойства ==

Версия от 14:10, 30 июня 2013

Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.

Свойства

  • Множество всех идеалов кольца индуктивно упорядочено по отношению включения, поэтому (Лемма Цорна) во всяком кольце максимальные идеалы существуют, более того, для всякого собственного идеала I кольца R существует максимальный идеал кольца R, который его содержит.
  • (Считаем далее, речь идёт о кольцах с единицей.)
    Если элемент a кольца R не обратим, тогда все элементы кольца, кратные ему, образуют собственный идеал. Поэтому каждый необратимый элемент кольца содержится в некотором максимальном идеале. Если элемент a обратим, всякий идеал, который его содержит, совпадает со всем кольцом, поэтому обратимые элементы не содержатся ни в каком собственном идеале, соответственно и ни в каком максимальном.
  • Если все необратимые элементы кольца R образуют идеал, он является максимальным, и притом единственным - других максимальных идеалов в кольце R нет. (Верно и обратное: если в кольце R максимальный идеал единствен, он включает в себя все необратимые элементы кольца.) В этом случае кольцо R называется локальным кольцом.
  • Характеристическое свойство максимального идеала: идеал кольца максимален, тогда и только тогда, когда факторкольцо является полем (в нём каждый элемент обратим).
  • Если кольцо R имеет структуру банаховой алгебры над полем комплексных чисел С, факторкольцо по максимальному идеалу R/I изоморфно C. В этом случае идеал I определяет гомоморфизм кольца R в поле C, ядром которого является идеал I.
    Для каждого a существует единственное число , такое что (e - единица алгебры R). Соответствие и есть тот самый гомоморфизм.
  • Из характеристического свойства следует, что всякий максимальный идеал является простым.

Примеры

  • В кольце целых чисел Z максимальными идеалами являются все простые идеалы: если p - простое число, тогда идеал (p)=pZ максимален. Например, чётные числа образуют максимальный идеал, а числа, кратные 4 - образуют идеал, но не максимальный - этот идеал содержится в идеале чётных чисел.
  • В кольце многочленов k[X,Y], где k - алгебраически замкнутое поле, максимальные идеалы имеют вид .
  • Кольцо степенных рядов над полем k - локальное кольцо. Необратимые элементы - те, которые не содержат свободного члена. Они образуют идеал. Он - единственный максимальный идеал в этом кольце.