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Abstract

Inference for cause-specific hazards from competing risks data under interval censoring and 

possible left truncation has been understudied. Aiming at this target, a penalized likelihood 

approach for a Cox-type proportional cause-specific hazards model is developed, and the 

associated asymptotic theory is discussed. Monte Carlo simulations show that the approach 

performs very well for moderate sample sizes. An application to a longitudinal study of dementia 

illustrates the practical utility of the method. In the application, the age-specific hazards of AD, 

other dementia and death without dementia are estimated, and risk factors of all competing risks 

are studied.
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1. Introduction

Interval censored failure time data arise widely from longitudinal studies where the 

occurrence of the failure-defining event can only be detected at periodic study visits. In 

many such kind of longitudinal studies, multiple types of events could occur to a subject. If 

those types of events are dependent but preclude each other or only time to the first event is 

of interest, competing risks issue comes up for the time-to-event analysis. Furthermore, if a 

subject’s follow-up starts later than the time origin of the time-to-event analysis, there is also 

left truncation that needs to be accounted for. Clinical studies of elder people often give rise 

to left truncated and interval censored competing risks data. For instance, when studying age 

to onset of a chronic disease like diabetes, osteoporosis and Alzheimer’s disease (AD), the 

event time is interval censored between two consecutive assessments, death is a competing 

risk that precludes those clinical endpoints if occurring prior to them, and enrolled study 

participants are usually required to be free of the disease and of course alive at the entry to 

follow-up. A real example of such studies is the Memory and Aging Project (MAP) (Bennett 
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et al., 2012). Since 1997, the MAP has recruited more than 1400 older individuals from 

about 40 retirement communities and senior housing facilities in the Chicago metropolitan 

area to study how dementia evolves in the elderly. The participants were all dementia-free 

when they entered the study and had yearly evaluation for dementia during the follow-up, 

which leads to left-truncated and interval censored age-to-dementia data. Dementia could be 

categorized into two major types, AD and other dementia, which are competing risks 

because time to the first incidence of dementia is of scientific interest. Besides, a 

considerable proportion of these elder participants passed away before they were diagnosed 

to be demented, making death another competing risk.

Competing risks data under interval censoring and left truncation was first studied by 

Hudgens et al. (2001), who developed the nonparametric maximum likelihood estimator 

(NPMLE) for the cumulative incidence function of a failure type. Since then, a deal of 

attention has been drawn to the inference of the cumulative incidence function with interval 

censored competing risks data. Relevant works include Jewell et al. (2003), Groeneboom et 

al. (2008a,b), Li and Fine (2013), Hudgens et al. (2014) and Li (2016) among others. But the 

important problem of inference of the cause-specific hazard with interval censored 

competing risks data has not been studied extensively. Along this line, Li and Fine (2013) 

proposed four cause-specific hazard estimators for current status competing risks data based 

on smoothing the nonparametric cumulative incidence estimators, and derived their 

asymptotic distributions. The estimation methods of Li and Fine (2013) can be naturally 

extended to the setting of mixed case interval censoring. With a slightly different target, 

Frydman and Liu (2013) developed the NPMLE of the cumulative cause-specific hazard 

function in an interval censored competing risks model. However, works on inference for 

cause-specific hazards with interval censored competing risks data, especially regression 

modeling, are still much needed.

We are aware that several works on inference for multistate models from interval censored 

data have been published in the past 17 years. Two major papers are Joly and Commenges 

(1999), which studied a progressive three-state model, and Joly et al. (2002), which studied 

an illness-death model. The censoring mechanisms for the event history data considered 

therein are different from the one we consider, though. Specifically, Joly and Commenges 

(1999) assumes that the second transition is only subject to right censoring; Joly et al. (2002) 

assumes that the death time is exactly known if a subject dies and that a subject could be ill 

at death even if s/he is healthy at the last seen time; we focus on the situation where there are 

several interval censored competing events but any two of them cannot occur within the 

same interval. Ideally, the penalized likelihood approach in Joly and Commenges (1999) and 

Joly et al. (2002) can be adopted to analyze competing risks data under interval censoring 

and left truncation, yet some gaps in practice and theory remain to be filled. In terms of 

practice, how to minimize the cross-validation criterion to select smoothing parameters was 

not discussed by either paper, neither was how to determine the number of knots as well as 

the boundary endpoints for spline smoothing. In terms of theory, there was no theoretical 

justification for using cubic splines to approximate the intensity functions in the particular 

penalized likelihoods proposed by the two papers, and neither paper investigated the finite 

sample performance of the proposed variance estimator and confidence interval for 

transition intensities. In this article, we present a slightly different penalized likelihood 
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approach to analyze competing risks data subject to interval censoring and left truncation 

and address the aforementioned issues. Additionally, we provide some heuristic arguments 

about the asymptotic theory associated with the methods.

The rest of the paper is organized as follows. Section 2 presents the estimation and 

inferential procedures for cause-specific hazards with competing risks data under interval 

censoring and possible left truncation when covariates are available. The associated 

asymptotic theory is also discussed therein. In Section 3, we conduct extensive simulations 

to investigate the finite sample performance of the proposed methods. An analysis of the 

MAP data using the proposed methods is given in Section 4, followed by some concluding 

discussions in Section 5 that point out several future research directions. The computational 

details are collected in the Appendix.

2. Cause-Specific Hazard Regression

2.1. Observations

We describe the competing risks data under interval censoring and possible left truncation as 

follows. Let ( ) be the sequence of inspection times for subject i (i = 1,…, 

n) and  be the left truncation time, if any, and 0 otherwise. Define 

. Ti denotes the failure time, Ki denotes the failure cause, and J 
denotes the number of failure causes. Define 

 and 

. Zi denotes a d-dimensional 

vector of time-independent covariates whose effects on the distribution of (Ti,Ki) are of 

interest. The observable competing risks data under interval censoring and possible left 

truncation consist of n i.i.d. vectors of (Mi,V⃗
i,Δ→i,Zi).

2.2. Model and Likelihood

We are interested in estimating the conditional cause-specific hazard functions given the 

covariates, λk(t|Z) (k = 1,…, J). For this purpose, we assume a proportional cause-specific 

hazards model:

(1)

where λ0k(t)’s are baseline cause-specific hazards and βk’s are cause-specific regression 

parameters.

The development of the likelihood considers two kinds of interval censoring schemes. The 

first one is a generalization of mixed case interval censoring (Schick and Yu, 2000) to the 

setting with covariates, which assumes that the inspection process is independent of the 

failure time and cause given the covariates, that is, for any subject i,
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(2)

The second censoring scheme is a generalization of the independent inspection process (IIP) 

model (Lawless, 2003, Section 2.3.1), for which the inspection process stops if any type of 

failure is detected, to the setting with covariates. Under this censoring scheme, it is assumed 

that the next inspection time is independent of the failure time and cause given the history of 

inspection times and failure information as well as the covariates, that is, for any subject i,

(3)

where  denotes 

the history of inspection times and failure information. Hudgens et al. (2014) discussed 

when the two censoring schemes will be reasonable to assume respectively and gave some 

illustrating examples. Under either censoring scheme, our work only considers the situation 

where P(Vj−Vj−1 ≥ ε) = 1 for some ε > 0, i.e., any two successive observation times are 

strictly separated.

No matter whether the censoring mechanism is mixed case interval censoring or the 

independent inspection process, the likelihood of (Mi,V⃗
i,Δ→i,Zi) (i = 1,…, n) under Model 

(1) equals, up to a multiplicative constant that doesn’t depend on λ0(·) = (λ01(·),…, λ0J (·)) 

and ,

(4)

(Hudgens et al., 2014), where  and 

 is the cumulative 

incidence function for Cause k (k = 1,…, J). Note that this likelihood assumes all J causes 

are interval censored and any two competing events do not occur within the same interval. 

Let Li and Ri be the last inspection time before the failure and the first inspection time after 

the failure respectively for the ith subject (Ri = ∞ if no failure occurs by ). Let  if 

a failure occurs to Subject i by  and J + 1 otherwise. The likelihood (4) can be 

reformulated as
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(5)

2.3. Penalized Likelihood Estimation

Unlike competing risks data subject to right censoring, there is no counterpart of partial 

likelihood for interval censored competing risks data which profiles out baseline cause-

specific hazards for estimating regression parameters. However, when the cause-specific 

hazards are expected to be smooth, we can estimate β and λ0(·) simultaneously by 

maximizing a penalized log likelihood. Specifically, we penalize the log likelihood by 

subtracting a term which has large values for rough baseline cause-specific hazard functions 

and then search for the minimizer (β̂, λ̂
0(·)) of the minus penalized log likelihood in the 

parameter space of (β, λ0(·)). The estimators β̂ and λ̂
0(·) obtained this way are the so-called 

maximum penalized likelihood estimators (MPLE). In the sequel, we assume that λ0k(·)’s 

are strictly positive over the interval [τ1, τ2] with τ1 being the lower bound of V0’s support 

and τ2 being the upper bound of VM’s support, and λ0k(·)’s have first derivatives with finite 

L2-norms over [τ1, τ2]. The roughness penalty function in the penalized likelihood is then 

chosen to be the sum of the squared L2-norms of the first derivatives of the baseline hazards. 

Thus, the minus penalized log likelihood is defined as

(6)

where l(β, λ0(·)) = log L(β, λ0(·)) and hk’s are smoothing parameters. The first derivatives 

of the baseline hazards are chosen for the penalization so that (6) can equal

(7)

where .

In the absence of competing risk i.e.  depends on Λ0(·|τ1) through its 

values at , and thus Theorem 2.3 in Green 

and Silverman (1993) implies that the MPLE Λ̂
0(·|τ1) is a natural monotone cubic spline 
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over [τ1, τ2] with interior knots being T ≡ the unique values of 

. As a result, the MPLE λ̂0(·) is a 

nonnegative quadratic spline over [τ̃1, τ̃2], where τ̃1 = min T and τ̃2 = max T, with interior 

knots being T\{τ1̃, τ̃2}, and it is constant over [τ1, τ̃1] and [τ̃2, τ2] respectively. In practice, 

τ1 and τ2 in the penalty term are often unknown and replaced by τ̃1 and τ̃2. Consequently, 

λ0(·) is estimated only on [τ̃1, τ2̃]. To reduce computational burden, one can approximate 

λ̂
0(·) over [τ̃1, τ̃2] by quadratic spline with a subset of the knots needed for the full MPLE. 

According to Section 3.5 of Gu (2013), the approximation has the same asymptotic 

convergence rate as the full MPLE provided that its number of knots is sufficiently large, 

which will be discussed in Section 2.5.

In the presence of competing risks, there is no closed form for the MPLE λ̂
0(·), but this can 

be rescued by approximating λ̂
0(·) over [τ̃1, τ̃2] by quadratic splines with interior knots 

being a subset of T\{τ̃1, τ̃2} as in the situation without competing risk. M-splines have been 

proposed to approximate λ̂
0(·) for penalized likelihood hazard estimation with interval 

censored data (see, e.g., Joly et al., 1998; Joly and Commenges, 1999; Joly et al., 2002), 

because the corresponding Λ̂
0(·|τ̃1) in the likelihood are then approximated by I-splines with 

the same spline coefficients as in the M-splines. We thus adopt quadratic M-splines to 

approximate λ̂
0(·). Specifically, λ̂

0(·) is approximated by J linear combinations of qn 

quadratic M-spline basis functions over [τ1̃, τ̃2],

(8)

where θ̃k = (θ̃k1,…, θ̃kqn)T (k = 1,…, J) is a vector of spline coefficients and M(·) = (M1(·),

…, Mqn (·)) is a base of quadratic M-spline functions on [τ1̃, τ̃2]. Here we use a common set 

of knots τ1̃ = d0 < d1 < … < dBn < dBn+1 = τ̃2 for approximating λ0̂k(·)’s of different failure 

causes by M-splines in order to simplify the computation.  are put at every pn values 

of the ordered T\{τ̃1, τ̃2}, where pn = ⌈(|T| − 1)/(Bn + 1)⌉. Note that qn = Bn + 3. Bn is 

chosen to be O(nν) for some constant ν ∈ (0, 1]. A small ν is computationally preferred, but 

too small a ν could result in model bias. How small it can be depends on the smoothness of 

λ0(·), which will be discussed in Section 2.5. According to Ramsay (1988), we constrain 

θ̃k’s to be nonnegative so that λ̃
0k(·)’s are nonnegative functions. The estimators of β and 

λ0(·), denoted by β̃ and λ̃
0(·), are then obtained by minimizing (6) with respect to β and 

 subject to the constraint θ ≥ 0. The details on the optimization such as the 

choice of initial values and the integral evaluations in the likelihood are provided in the 

Appendix.

2.4. Smoothing Parameter Selection

We select the smoothing parameters in (6) by minimizing the leave-one-out likelihood cross-

validation criterion:
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(9)

where h = (h1,…, hJ)T, ζ = (βT, θT)T, ζ̃−i(h) is the MPLE of ζ given smoothing parameter h 
based on the sample in which the ith subject is removed, and li is the log likelihood 

contribution of this subject. Commenges et al. (2007) showed that the leave-one-out 

likelihood cross-validation criterion is a possible estimator up to a constant of the expected 

Kullback-Leibler divergence.

Direct calculation of (9) is computationally burdensome. Following O’Sullivan (1988), an 

approximation formula for (9) can be obtained:

(10)

where  and ζ̃(h) = (β̃(h)T,θ̃(h)T)T is the MPLE of ζ 
given smoothing parameter h based on the whole sample. The h in the parentheses will be 

omitted in the sequel for a compact display. The computational details on minimizing (10) 

are given in the Appendix.

2.5. Inference

It is hard to rigorously derive the large sample theory associated with the above penalized 

likelihood approach. Much of the following argument is heuristic based on the relevant 

literature with the focus on the utility of the asymptotics to the inference for β and λ0(·) with 

finite samples.

In the sequel, λ0k(·)’s are assumed to have at most cth-order (c ≥ 1) derivatives that are 

square integrable over [τ1, τ2]. To sketch the large sample theory, we first discuss the 

determination of the number of interior knots Bn in light of the equivalence between (6) and 

(7). According to Section 3.5.4 of Gu (2013), the smoothing parameter selected by cross 

validation, h̃, is of order n−4/(4p+1) for some p ∈ [1, 2] depending on c if , 

and the corresponding λ̃
0(·) achieves the optimal convergence rate in L2-norm over [τ1, τ2]. 

Combining with Stone (1982), one would expect that this optimal convergence rate is 

n−(2p−1)/(4p+1) and that p = (c + 1)/2 for 1 ≤ c < 3 and p = 2 for c ≥ 3. This indicates that it 

suffices to have ν = 2/9 in practice for λ̃
0k(·)’s to achieve the optimal convergence rate if 

λ0k(·)’s have square integrable third-order derivative over [τ1, τ2]. Considering n ≤ |T| ≤ 3n, 

we set Bn = max{⌈(3n)2/9⌉, 5} in the subsequent simulation study and real data analysis. 

With the above h̃ and qn, when n is large, ζ̃ − ζ(n) has an approximate multivariate normal 

distribution with mean 0 and covariance matrix −n−1Hpl(ζ̃,h̃)−1Hl(ζ̃)Hpl(ζ̃,h̃)−1 based on 

Gray (1992), where ζ(n) = (β(n), θ(n)) is the value of ζ that maximizes the expectation of 

pl(ζ). From a Bayesian viewpoint, similar arguments to Section 5 of O’Sullivan (1988) can 

show that when n is large, ζ has an approximate Gaussian posterior distribution with mean ζ̃ 

and covariance matrix −n−1Hpl(ζ̃,h̃)−1. −n−1Hpl(ζ̃,h̃)−1Hl(ζ̃)Hpl(ζ̃,h̃)−1 and −n−1Hpl(ζ̃,h̃)−1 
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are asymptotically equivalent, but Rondeau et al. (2003) showed that the latter performs 

better with finite samples in the sense that it is closer to the empirical variance of the MPLE 

for finite dimensional parameters and its associated Wald confidence intervals for finite 

dimensional parameters have empirical coverage probability closer to the nominal level. 

Therefore, we used −n−1Hpl(ζ̃,h̃)−1 in the simulation and the real data application.

With a smoothing parameter selected by cross validation, the regression parameter estimator 

from the penalized likelihood approach for semiparametric models usually has a bias of 

larger order than o(n−1/2) (Rice, 1986). One exception is that the covariates of the regression 

parameters are uncorrelated with the covariate of the infinite dimensional parameter (Rice, 

1986). In our situation, that is equivalent to assuming

(11)

In other words, the observation times are determined regardless of the explanatory variable 

values, which is true in most longitudinal studies. Under this assumption, the bias β(n) − β is 

of order o(n−1/2), so  is asymptotically normal with mean 0 and a covariance 

matrix that can be consistently estimated by the upper left Jd×Jd block of −Hpl(ζ̃,h̃)−1. One 

is able to construct Wald tests and confidence intervals for β based on this asymptotic 

distribution. Since −nHpl(ζ̃,h̃) is the observed information matrix of the penalized 

likelihood, ζ̃ is semiparametrically efficient under (11).

To assess the estimation precision of λ̃
0(·), one could use the posterior distribution of θ 

derived above to construct approximate Bayesian confidence intervals for λ0(·). Specifically, 

the 100(1−α)% Bayesian confidence interval for λk(t) is

(12)

where Σθ̃k is the block in −n−1Hpl(ζ̃,h̃)−1 corresponding to θ̃k. This Bayesian technique for 

generating confidence intervals was proposed by O’Sullivan (1988) for log hazard 

estimation with right censored data. Based on Nychka (1988), we expect that when the 

sample size is large, the average coverage probability of these pointwise confidence intervals 

across the knots should be close to the nominal level. In other words, for n large,

(13)

where
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In practice, the lower bound might be negative in which case we replace it by 0.

3. Simulations

We investigate the finite sample performance of β̃ and λ̃
0(·) as well as their variance 

estimators and the corresponding confidence intervals through simulations. The failure time 

and cause were generated from the following two cause-specific hazard functions using the 

method of Beyersmann et al. (2009),

and

where Z1 is a Bernoulli random variable with probability 0.6 of being 1, Z2 has a uniform 

distribution over [0, 1] denoted by U(0, 1), Z1 and Z2 are independent, and the two baseline 

cause-specific hazards are

and

which are obtained by multiplying the hazard of a mixture of Weibull distributions, 0.35 * 

Weibull(0.012, 20) + 0.65 * Weibull(0.0092, 20), by 2 and 3 respectively. The left truncation 

time was generated by V0 = 80 + U(0, 10). Only subjects with T > V0 entered the sample for 

analysis. Six potential inspection times were generated for each subject of the sample with 

the first one being V0 +U(1.8, 2.2), the second one being V0 +U(3.8, 4.2), and so on. A 

subject could miss an inspection with probability 0.05. This simulation scenario is to mimic 

the design features of the MAP study. From this set-up, it is easy to see that τ1 = 80 and τ2 = 

102.2. The set-up also leads to that about 31.5% of the subjects in a sample will have Type 1 

failure observed, about 37.5% will have Type 2 failure observed, and the rest will have no 

failure by the end of follow-up. We did two simulations with sample size 500 and 750 
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respectively. In each simulation, we generated 1000 samples. The smoothing parameters 

were selected by cross validation for the first sample of every simulation and the same value 

was used for the rest samples in that simulation. The theoretical standard errors for β̃ and 

λ̃
0(·) were computed based on −n−1Hpl(ζ̃,h̃)−1 as described in Section 2.5.

All the numerical experiments were run in R-3.1.1. The computation is demanding, 

especially for the cross validation. We thus use parallel computing for evaluating the log 

likelihood and its gradient, allocating subjects to eight CPU cores that compute 

simultaneously. On a PC with a 3.40 GHz CPU and 8GB RAM, the smoothing parameter 

selection takes about 7.4 and 16.2 hours for n = 500 and 750 respectively, and the model 

fitting including covariance matrix estimation takes about 9.6 and 14.7 minutes. However, 

we expect that these times will be shortened remarkably if a better programmer codes the 

methods or better optimization engines are used.

The cross-validation selected h ̃ is (0.442, 0.330) and (0.153, 0.094) for n = 500 and 750 

respectively. The decrease of h̃ with n is consistent with the asymptotic theory on h̃. The 

baseline hazard of the second cause received less penalty than that of the first, perhaps 

because the two baseline hazards have similar shape whereas there were more failures from 

Cause 2.

Table 1 presents the results for estimating β. Except that when n = 500, there are bias in 

estimating β12 and β22 and a bit of undercoverage by the confidence interval for β21, the 

penalized likelihood approach performed very well in estimating β. Additionally, the 

standard error ratios between the two sample sizes stay around (750/500)1/2 ≈ 1.225, as 

implied by the asymptotic distribution of β̃. We thus conclude that n = 750 is large enough 

for using the asymptotic distribution of β̃ to perform inference on β in the simulation 

scenario.

Figure 1 shows the averaged λ̃
0k(·)’s and Bayesian confidence intervals (12) for λ0k(·)’s 

across the 1000 Monte Carlo samples as well as the true λ0k(·)’s. The time range is taken to 

be [max(τ̃1), min(τ̃2)] over the Monte Carlo samples. One can see that the bias decreases 

with sample size and when n = 750, λ̃
0k(·) (k = 1, 2) has very little bias except near the 

boundaries where the number of observed failures is small. The widths of the confidence 

intervals appear to be of proper magnitude except near the boundaries where information 

from the data being vanishing widens the intervals. Figure 2 shows that the theoretical 

standard errors of the baseline cause-specific hazard estimates are very close to the empirical 

ones except again near the boundaries especially the left endpoint. Note that the theoretical 

standard errors are slightly larger than the empirical ones at most time points. This is 

because as Bayesian posterior standard deviations, the theoretical standard errors take the 

bias of λ̃
0k(·) (k = 1, 2) into account. Figure 3 shows the pointwise empirical coverage and 

the average coverage probabilities (13) of the 95% Bayesian confidence intervals for 

λ0k(·)’s. The empirical coverage approaches 95% as the sample size increases. All average 

coverage probabilities agree well with the nominal level. Figures 1, 2 and 3 together indicate 

that in the simulation scenario, n = 750 is large enough for the Bayesian inference on 

λ0k(·)’s to have good frequentist properties.
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We also performed similar simulations with Bn = max{⌈n2/9⌉, 5}. The simulation results, not 

provided here due to space limit, showed bigger bias of β̃ and λ̃
0(·) for n = 500 compared to 

the results with Bn = max{⌈(3n)2/9⌉, 5}; when n = 750, the results under these two different 

numbers of knots are quite similar. Thus we recommend using Bn = max{⌈(3n)2/9⌉, 5} in 

practice.

4. Application to the MAP Data

4.1. Data

We used the MAP data to investigate the effects of years of education (categorized into two 

levels: ≤ 12 years and > 12 years), gender, and the presence of the apolipoprotein E ε4 allele 

(ApoE4) on ages to incidences of AD, other dementia and death without dementia. The data 

set we used from the MAP study was frozen in 2010 with a sample size of 1168. We first 

excluded from that data set the 87 participants who had only baseline visit and were not 

known to have died, then removed one subject with L = R due to measurement error in age 

at visit, and finally deleted the 104 subjects with missing ApoE4 status. The resulting 

sample for the analysis has 976 subjects. A summary of characteristics of the sample is 

presented in Table 2.

4.2. Statistical Analysis

We aim to estimate the cause-specific hazards of AD, other dementia and death without 

dementia across age adjusting for education, gender and ApoE4 status. Model (1) is assumed 

for all cause-specific hazard functions with t representing age. The fact that death terminates 

the follow-up makes neither mixed case interval censoring nor the IIP model applicable to 

the inspection process of the MAP study. Nevertheless, according to the study design, those 

deceased subjects in our data set would have dementia examinations approximately one year 

apart until 2010 had they not died ahead of that year (based on the data, study subjects miss 

a scheduled visit rarely). Therefore, it is reasonable to treat the subjects who deceased before 

developing dementia as being interval censored between the last visit before death and the 

first visit after death, which did not happen but was scheduled. This scheduled visit is m 
years apart from the last visit before death where m is a positive integer and most often equal 

to 1. The resulting data are age-to-event data of the competing risks, AD, other dementia and 

death, under interval censoring and left truncation, for which the likelihood is of the form (5) 

with J = 3. It loses statistical efficiency to treat death as being interval censored rather than 

use its exact time. This interval censoring treatment was performed in order to estimate the 

AD, other dementia and death hazards from the MAP data using the proposed methods. 

Since the time intervals bracketing death are mostly 1 year in length in the analytic sample 

(138 out of 181 death bracketing intervals), the efficiency loss is expected to be small. 

Annually scheduled dementia examinations also decrease the chance that dementia 

incidence was not caught in subjects who died after developing dementia.

Based on the analytic sample, the visit times range from 54.34 to 107.50 years in age scale. 

We estimated the AD, other dementia and death hazards in this age window with the cross-

validation selected smoothing parameters being 41.3, 492.4 and 36.1 respectively. The 

baseline hazard of other dementia received a much larger roughness penalty because of few 
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such events. Table 3 shows the estimated cause-specific hazard ratios for the three 

covariates. The confidence intervals and two-sided p-values are based on the asymptotic 

normal distribution of the regression parameter estimators. The table indicates that 

controlling for the other covariates, carrying ApoE4 significantly increases the AD incidence 

rate, men are more likely to develop AD than women, and non-demented men have a 

significantly higher risk of death than non-demented women. Specifically, across the age 

period from 54.34 to 107.50 years, ApoE4 carriers have about two-fold the risk of 

developing AD that ApoE4 non-carriers have adjusting for gender and college attendance, 

the AD incidence rate is 44% higher in men than in women adjusting for college attendance 

and ApoE4 status, and the death risk for non-demented men is roughly 1.8 times that for 

non-demented women adjusting for college attendance and ApoE4 status. Due to the small 

number of people developing other dementia first, the three regression parameter estimators 

for other dementia have very large standard errors. Figure 4 shows the estimated cause-

specific hazards for AD, other dementia and death without dementia from age 54.34 to 

107.50 for a woman who didn’t attend college and doesn’t carry ApoE4, which are baseline 

hazards in Model (1). The incidence rates of AD and death appear to increase dramatically 

after ages 80 and 84 respectively.

5. Discussion

We studied the penalized likelihood estimation for the Cox-type cause-specific hazard 

regression with left truncated and interval censored competing risks data. The inferential 

procedures for regression parameters and baseline hazards were proposed based on the 

heuristically derived asymptotics, and demonstrated satisfactory finite sample performances 

in the simulations when the sample size reaches 750. Besides sample size, the number of 

events for each competing risk as well as the failure bracketing interval length also affect the 

precision of hazard estimation. Low number of events for a competing risk leads to large 

variance for the corresponding baseline hazard and regression parameter estimators, so do 

wide failure bracketing intervals, which are often caused by a high rate of missing scheduled 

visits. Power calculation for treatment effect evaluation based on interval censored 

competing risks data should take these factors into account.

All proposed methods apply directly to interval censored data without competing risks or 

left truncation or either. By modifying the likelihood and carefully choosing the spline order, 

the latter needing further investigation, our methods can also deal with right censored data 

with or without competing risks and even the competing risks data where failures from 

certain causes could be observed exactly but other types of failure are interval censored. To 

obtain the likelihood of the partly interval censored competing risks data, one just needs to 

replace  in (4) by , where fk(t) = 

dFk(t)/dt, if failure from cause k is observed exactly.

Several other future research directions are worth pursuing as well. The first is to rigorously 

prove those asymptotic results heuristically derived in Section 2.5. Secondly, it may lead to 

better finite sample performance if one chooses different knots for estimating baseline 

hazards of different causes via splines. For example, when sample size is small, λ̃
0k(t) is 
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likely to be zero for some k’s and t’s, and −n−1Hpl(ζ̃, h̃)−1 may not be positive definite on 

the boundary of the parameter space. The problem of non-positive definite covariance matrix 

will occur less often if the interior knots for the spline approximating λ̂
0k(·) are equally 

spaced with respect to the quantiles of the unique values of

because the corresponding spline coefficient estimates are less likely to be zero. Last but not 

least, cross-validation based smoothing parameter selection is computationally intensive as 

discussed in Section 3 and the Appendix. One may exploit the connection between the 

penalized likelihood and the mixed-effects model to automatically select the smoothing 

parameters through maximizing a marginal likelihood as in Cai and Betensky (2003).
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Appendix: Computational Details

Substituting λ̃0k(·)’s for λ0k(·)’s in the minus penalized log likelihood and reparameterizing 

hk’s by hk = h/μk with μk’s satisfying the constraint that , we rewrite the 

penalty term in the quadratic form of θ̃k’s as follows,

where Qk is a qn×qn matrix with the jl-th element being . Note that Qk 

does not depend on k if a common set of M-spline basis functions are used to approximate 

λ0k(·)’s of different failure causes, which is the case in this paper.

For fixed h and μk’s, we minimize the minus penalized log likelihood with respect to β and θ 
subject to the constraint θ ≥ 0 using the R built-in function “nlminb”. The initial values for 

the optimization are 0 for every regression parameter and 0.1 for every spline coefficient. 

The integrals over (Li,Ri) in the likelihood do not have analytical expressions and are 

computed by Gauss-Jacobi quadrature with the number of quadrature points proportional to 

Ri − Li and 5 quadrature points for the shortest interval.
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To select h and μk’s based on the approximate cross-validation criterion, we use the 

following algorithm that adapts from Algorithm 3.3 in Section 3.4 of Gu (2013).

Algorithm for selecting smoothing parameters:

1. Set  and minimize the approximate likelihood cross-

validation criterion  with respect to h. Denote the 

resulting minimizer by h*.

2. Minimize the minus penalized log likelihood with h* and ’s to get 

estimates β* and .

3.
Select  and h0 that minimizes 

.

Ideally, one needs to adapt Algorithm 3.2 in Section 3.4 of Gu (2013) with h0 and ’s as the 

starting values to minimize V (h, μ1, …, μJ) with respect to (h, μ1, …, μJ). However, as 

pointed out in Section 3.5.3 of Gu (2013), their Algorithm 3.2 can be slow if the number of 

μk’s is large, and the starting values h0 and ’s often deliver “80% or more” of the 

achievable performance. We therefore select  as the smoothing 

parameters for model fitting. To minimize V (h, μ1, …, μJ) with (μ1, …, μJ) fixed in Steps 1 

and 3, we set the initial value of h to be

which adapts from the “sspreg1” function in the R package “gss”, and then apply the “nlm0” 

function from the package over short searching intervals on which the curve may be bowl-

shaped.
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Figure 1. 
Averaged estimates and 95% pointwise Bayesian confidence intervals of the baseline cause-

specific hazard functions across the 1000 Monte Carlo samples.
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Figure 2. 
Pointwise empirical standard errors and empirical means of the theoretical standard error 

estimates of the estimated baseline cause-specific hazard functions.
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Figure 3. 
Pointwise empirical coverage and average coverage probabilities of the 95% Bayesian 

confidence intervals for the baseline cause-specific hazard functions. The solid curves 

represent the empirical coverage.
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Figure 4. 
The baseline cause-specific hazard functions of AD, other dementia and death without 

dementia. The solid curves represent the point estimates and the dashed curves represent the 

95% Bayesian confidence intervals. The plot of other dementia hazard has a different y-axis 

scale because of the much wider confidence intervals.

Li Page 19

Comput Stat Data Anal. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li Page 20

Ta
b

le
 1

Si
m

ul
at

io
n 

re
su

lts
 o

f 
th

e 
es

tim
at

es
 o

f 
re

gr
es

si
on

 p
ar

am
et

er
s

n
P

ar
am

et
er

E
(β

̃ )
SE

(β
̃ )

P
r(
β 

∈
 C

I)

50
0

β 1
1 

=
 0

.3
0

0.
31

9
0.

15
8

0.
16

3
0.

95
4

β 1
2 

=
 −

0.
15

−
0.

10
9

0.
27

4
0.

27
7

0.
95

6

β 2
1 

=
 0

.1
0

0.
11

9
0.

15
4

0.
14

8
0.

93
5

β 2
2 

=
 −

0.
40

−
0.

35
4

0.
24

9
0.

25
4

0.
95

2

75
0

β 1
1 

=
 0

.3
0

0.
31

6
0.

13
0

0.
13

3
0.

95
2

β 1
2 

=
 −

0.
15

−
0.

13
3

0.
22

7
0.

22
6

0.
94

9

β 2
1 

=
 0

.1
0

0.
10

7
0.

12
4

0.
12

1
0.

94
3

β 2
2 

=
 −

0.
40

−
0.

38
4

0.
20

6
0.

20
7

0.
95

4

E
(β

̃ ): 
th

e 
em

pi
ri

ca
l m

ea
n 

of
 β̃

; S
E

(β
̃ ): 

th
e 

em
pi

ri
ca

l s
ta

nd
ar

d 
er

ro
r 

of
 β̃

; 
: t

he
 e

m
pi

ri
ca

l m
ea

n 
of

 th
e 

th
eo

re
tic

al
 s

ta
nd

ar
d 

er
ro

r 
es

tim
at

es
 o

f 
β̃ ;

 C
I:

 9
5%

W
al

d 
co

nf
id

en
ce

 in
te

rv
al

.

Comput Stat Data Anal. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li Page 21

Table 2

Characteristics of the MAP sample for the analysis

Characteristic Analysis

Gender—no. (%)

 Male 258 (26.4%)

 Female 718 (73.6%)

Years of education—no. (%)

 > 12 (attended college) 667 (68.3%)

 ≤ 12 (not attended college) 309 (31.7%)

ApoE4 status—no. (%)

 carrier 220 (22.5%)

 non-carrier 756 (77.5%)

Age at entrance—mean (sd) 80.2 (7.2)

No. of study visits—mean (sd) 5.7 (2.4)

Years of follow-up—mean (sd) 4.8 (2.5)

Observed outcome event–no. (%)

 AD 172 (17.6%)

 Other dementia 11 (1.1%)

 Death 181 (18.5%)
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