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Abstract— This paper is concerned with the stability analysis
of the recurrent neural networks (RNNs) by means of the
integral quadratic constraint (IQC) framework. The rectified
linear unit (ReLU) is typically employed as the activation
function of the RNN, and the ReLU has specific nonnegativity
properties regarding its input and output signals. Therefore, it
is effective if we can derive IQC-based stability conditions with
multipliers taking care of such nonnegativity properties. How-
ever, such nonnegativity (linear) properties are hardly captured
by the existing multipliers defined on the positive semidefinite
cone. To get around this difficulty, we loosen the standard
positive semidefinite cone to the copositive cone, and employ
copositive multipliers to capture the nonnegativity properties.
We show that, within the framework of the IQC, we can employ
copositive multipliers (or their inner approximation) together
with existing multipliers such as Zames-Falb multipliers and
polytopic bounding multipliers, and this directly enables us to
ensure that the introduction of the copositive multipliers leads
to better (no more conservative) results. We finally illustrate
the effectiveness of the IQC-based stability conditions with the
copositive multipliers by numerical examples.
Keywords: recurrent neural networks, rectified linear units,
stability, IQC, nonnegative signals, copositive multipliers.

I. INTRODUCTION

A recurrent neural network (RNN) is a class of deep neural
networks and able to imitate the behavior of dynamical
systems due to its feedback mechanism. The effectiveness
of the RNN is widely recognized in speech recognition,
natural language processing, and image recognition [1], [2],
[3]. Even though new architectures such as transformer [4]
have been developed recently, it is expected that the RNN
retains its position as one of the fundamental and important
elements in deep neural networks.

Even though the feedback mechanism is the key of the
RNN and distinguishes the RNN from other feedforward
networks, the existence of the feedback mechanism may
cause network instability. Therefore the stability analysis of
the RNN has been an important issue in the machine learning
community [1], [2], [3]. From control theoretic viewpoint, we
can readily apply the small gain theorem [5] to the stability
analysis of a given RNN by representing it as a feedback
connection with a linear time-invariant (LTI) system and a
static nonlinear activation function typically being a rectified
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linear unit (ReLU) for the RNN. It is nonetheless true
that the standard small gain theorem leads to conservative
results since it does not take into account the important
property that the ReLU returns only nonnegative signals.
This motivated us to analyze the l2 induced norm of LTI
systems for nonnegative input signals in [6], which is referred
to as the l2+ induced norm in this paper. We characterized
an upper bound of the l2+ induced norm by copositive
programming [7], and then derived a numerically tractable
semidefinite program (SDP) for (in general loosened) upper
bound computation. We finally derived an l2+-induced-norm-
based (scaled) small gain theorem for the stability analysis
of the RNN and illustrated its effectiveness by numerical
examples.

We believe that the treatments in [6] brought some
new insights for the stability analysis of feedback sys-
tems constructed from LTI systems and nonlinear elements
(i.e., Lur’e systems). However, the l2+-induced-norm-based
(scaled) small gain condition might be shallow in view of the
advanced integral quadratic constraint (IQC) theory [8]. We
acknowledge the fact that, for the stability analysis of Lur’e
systems, the effectiveness of the IQC-based approaches with
Zames-Falb multipliers [9] are widely recognized, see, e.g.,
[10], [11]. Therefore it is strongly preferable if we can build
the nonnegativity-based approach upon the powerful IQC-
based framework. Such an extension seems hard, since, as the
denomination IQC says, the existing multipliers capture the
properties of nonlinear elements with quadratic constraints
on their input-output signals, whereas the nonnegativity prop-
erty of the RNN (i.e., ReLU) is essentially linear constraints
on the input-output signals. To get around this difficulty,
we loosen the standard positive semidefinite cone to the
copositive cone and employ copositive multipliers to handle
the linear (nonnegativity) constraints on the input-output
signals of the RNN. As clarified later on, this can be done
in such a sound way that the proposed IQC-based stability
condition with the copositive multipliers encompasses the
results in [6] as particular cases. Then, by applying an inner
approximation to the copositive cone, we derive numerically
tractable IQC-based SDPs for the stability analysis of the
RNN. We show that, within the framework of IQC, we can
employ copositive multipliers (or their inner approximation)
together with existing multipliers such as the Zames-Falb
multipliers and polytopic bounding multipliers, and this
directly enables us to ensure that the introduction of the
copositive multipliers leads to better (no more conservative)
results. We finally illustrate the effectiveness of the IQC-
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based stability conditions with the copositive multipliers by
using the same numerical examples as in [6]. Related works
include [12], [13], [14], [15], but again the novel contribution
of the present paper is capturing the behavior of ReLUs by
copositive multipliers within the framework of IQCs.

Notation: The set of n × m real matrices is denoted by
Rn×m, and the set of n×m entrywise nonnegative matrices
is denoted by Rn×m+ . For a matrix A, we also write A ≥ 0
to denote that A is entrywise nonnegative. We denote the set
of n × n real symmetric matrices by Sn. For A ∈ Sn, we
write A � 0 (A ≺ 0) to denote that A is positive (negative)
definite. For A ∈ Rn×n, we define He{A} := A + AT .
For A ∈ Rn×n and B ∈ Rn×m, (∗)TAB is a shorthand
notation of BTAB. We denote by Dn++ ⊂ Rn×n the set of
diagonal matrices with strictly positive diagonal entries. In
addition, we denote by Dn[α, β] the set of diagonal matrices
whose diagonal entries are all within the closed interval
[α, β]. Moreover, Dnver[α, β] ⊂ Dn[α, β] is the set of 2n

matrices corresponding to the vertices of Dn[α, β]. A matrix
M ∈ Rn×n is said to be Z-matrix if Mij ≤ 0 for all i 6= j.
Moreover, M is said to be doubly hyperdominant if it is
a Z-matrix and M1n ≥ 0, 1TnM ≥ 0, where 1n ∈ Rn
stands for the all-ones-vector. In this paper we denote by
DHDn ⊂ Rn×n the set of doubly hyperdominant matrices.

For the discrete-time signal w defined over the time
interval [0,∞), we define

‖w‖2 :=

√√√√ ∞∑
k=0

|w(k)|22

where for v ∈ Rnv we define |v|2 :=

√√√√ nv∑
j=1

v2j . We also

define

l2 := {w : ‖w‖2 <∞} ,
l2+ := {w : w ∈ l2, w(k) ≥ 0 (∀k ≥ 0)}

and

l2e := {w : wτ ∈ l2, ∀τ ∈ [0,∞)}

where wτ is the truncation of the signal w up to the time
instant τ and defined by

wτ (k) =

{
w(k) (k ≤ τ),

0 (k > τ).

For an operator H : l2e 3 w → z ∈ l2e, we define its
(standard) l2 induced norm by

‖H‖2 := sup
w∈l2, ‖w‖2=1

‖z‖2. (1)

We also define

‖H‖2+ := sup
w∈l2+, ‖w‖2=1

‖z‖2. (2)

This is a variant of the l2 induced norm introduced in [6]
and referred to as the l2+ induced norm in this paper. We
can readily see that ‖H‖2+ ≤ ‖H‖2.

II. COPOSITIVE PROGRAMMING

Copositive programming (COP) is a convex optimization
problem in which we minimize a linear objective function
over the linear matrix inequality (LMI) constraints on the
copositive cone [7]. In this section, we summarize its basics.

A. Convex Cones Related to COP

Let us review the definition and the property of convex
cones related to COP.
Definition 1: [16] The definition of proper cones PSDn,
COPn, CPn, NNn, and DNNn in Sn are as follows.

1) PSDn := {P ∈ Sn : ∀x ∈ Rn, xTPx ≥ 0} =
{P ∈ Sn : ∃B s.t. P = BBT } is called the positive
semidefinite cone.

2) COPn := {P ∈ Sn : ∀x ∈ Rn+, xTPx ≥ 0} is called
the copositive cone.

3) CPn := {P ∈ Sn : ∃B ≥ 0 s.t. P = BBT } is called
the completely positive cone.

4) NNn := {P ∈ Sn : P ≥ 0} is called the nonnegative
cone.

5) PSDn + NNn := {P + Q : P ∈ PSDn, Q ∈
NNn}N This is the Minkowski sum of the positive
semidefinite cone and the nonnegative cone.

6) DNNn := PSDn ∩ NNn is called the doubly
nonnegative cone.

From Definition 1, we clearly see that the following
inclusion relationships hold:

CPn ⊂ DNNn ⊂ PSDn ⊂ PSDn +NNn ⊂ COPn, (3)

CPn ⊂ DNNn ⊂ NNn ⊂ PSDn +NNn ⊂ COPn. (4)

In particular, when n ≤ 4, it is known that COPn =
PSDn + NNn and CPn = DNNn hold [16]N On the
other hand, as for the duality of these cones, COPn and
CPn are dual to each other, PSDn+NNn and DNNn are
dual to each other, and PSDn and NNn are self-dual. It is
also well known that the interior of the cone PSDn can be
characterized by

PSD◦n = {P ∈ Sn : ∀x ∈ Rn\{0}, xTPx > 0}
= {P ∈ Sn : ∃B s.t. P = BBT , rank(B) = n}.

B. Basic Properties of COP

COP is a convex optimization problem on the copositive
cone and its dual is a convex optimization problem on the
completely positive cone. As mentioned in [7], the problem
to determine whether a given symmetric matrix is copositive
or not is a co-NP complete problem, and the problem to
determine whether a given symmetric matrix is completely
positive or not is an NP-hard problem. Therefore, it is hard
to solve COP numerically in general. However, since the
problem to determine whether a given matrix is in PSD +
NN or in DNN can readily be reduced to SDPs, we can
numerically solve the convex optimization problems on the
cones PSD+NN and DNN easily. Moreover, when n ≤
4, it is known that COPn = PSDn + NNn and CPn =
DNNn as stated above, and hence those COPs with n ≤ 4
can be reduced to SDPs.



III. IQC-BASED STABILITY ANALYSIS OF RNN WITH
RELU

A. Basics of RNN and Stability

Let us consider the dynamics of the discrete-time RNNs
typically described by

G :

x(k + 1) = Λx(k) +Winw(k) + v(k),
z(k) = Woutx(k),
w(k) = Φ(z(k) + s(k)).

(5)

Here x ∈ Rn is the state and Λ ∈ Rn×n, Wout ∈ Rm×n,
Win ∈ Rn×m are constant matrices with Λ being Schur-Cohn
stable. We assume x(0) = 0. On the other hand, note that
s : [0,∞) → Rm and v : [0,∞) → Rn are external input
signals and Φ : Rm → Rm is the static activation function
typically being nonlinear. The matrices Win and Wout are
constructed from the weightings of the edges in RNN.

In this paper, we consider the typical case where the
activation function is the (entrywise) rectified linear unit
(ReLU) whose input-output property is given by

Φ(ξ) = [ φ(ξ1) · · · φ(ξm) ]
T
,

φ : R→ R, φ(η) =

{
η (η ≥ 0),
0 (η < 0).

(6)

We can readily see that ‖Φ‖2 = 1. It should be noted that
the system G0 essentially makes the feedback loop with the
ReLU Φ where

G0 :=

[
Λ Win

Wout 0

]
. (7)

Since here we are dealing with nonlinear systems, it is of
prime importance to clarify the definition of “stability.” The
definition we employ for the analysis of RNN is as follows.
Definition 2: [5] (Finite Gain l2 Stability) An operator H :
l2e 3 u → y ∈ l2e is said to be finite gain l2 stable if there
exists a nonnegative constant γ such that ‖yτ‖2 ≤ γ‖uτ‖2
holds for any u ∈ l2e and τ ∈ [0,∞).

In the following, we analyze the finite gain l2 stability of
the operator in RNN with respect to the input [ sT vT ]T ∈
l2e and the output [ zT wT ]T ∈ l2e. Note that the feedback
connection in the RNN is well-posed since its dynamics is
given by the state-space equation (5). We also note that we
implicitly use the causality of G and Φ in the following.

B. IQC-Based Basic Stability Condition

It is known that the framework of Integral Quadratic
Constraint (IQC) [8] is helpful in capturing the nonlinearity
in feedback systems and obtaining less conservative results
for stability analysis. The basic IQC-based stability condition
for RNN with ReLU can be summarized by the next theorem.
Theorem 1: For any input signal ξ ∈ l2e and output signal
ζ ∈ l2e of ReLU Φ such that ζ = Φξ, suppose Π ∈
S2m satisfies the time-domain (discrete-time version of) IQC
given by
τ∑
k=0

[
ξ(k)
ζ(k)

]T
Π

[
ξ(k)
ζ(k)

]
≥ 0 (8)

for any τ ∈ [0,∞). Then, the RNN given by (5) with ReLU
Φ given by (6) is finite-gain l2 stable if there exist P ∈
PSDn and S ∈ Dm++ such that[
−P 0
0 −S

]
+

[
Λ Win

Wout 0

]T [
P 0
0 S

] [
Λ Win

Wout 0

]
+

[
Wout 0

0 Im

]T
Π

[
Wout 0

0 Im

]
≺ 0.

(9)

Proof of Theorem 1: Suppose (9) holds with P = P̂ ∈
PSDn and S = Ŝ ∈ Dm++. Then, it is very clear that there
exist ε > 0 and ν > 0 such that
M(P̂ , ε, ν) ≺ 0, with

M(P̂ , ε, ν) :=


−P̂ + ε2Wout

TWout 0 0 0

0 −Ŝ 0 0
0 0 −ν2In 0
0 0 0 −ν2Im


+(∗)T

[
P̂ 0

0 Ŝ

] [
Λ Win In 0

Wout 0 0 Im

]
+ (∗)TΠ

[
Wout 0 0 Im

0 Im 0 0

]
.

Then, along the trajectory of the RNN for the input signals
v ∈ l2e and s ∈ l2e, we have

x(k)
w(k)
v(k)
s(k)


T

M(P̂ , ε, ν)


x(k)
w(k)
v(k)
s(k)

 ≤ 0 (k = 0, 1, · · · )

or equivalently,

ε2z(k)T z(k)− x(k)T P̂ x(k) + x(k + 1)T P̂ x(k + 1)

+(z(k) + s(k))T Ŝ(z(k) + s(k))− w(k)T Ŝw(k)

−ν2v(k)T v(k)− ν2s(k)T s(k)

+

[
z(k) + s(k)

w(k)

]T
Π

[
z(k) + s(k)

w(k)

]
≤ 0

(k = 0, 1, · · · ).

Here, since ‖Φ‖2 = 1 and Ŝ ∈ Dm++, we have

(z(k) + s(k))T Ŝ(z(k) + s(k))− w(k)T Ŝw(k) ≥ 0

and hence

ε2z(k)T z(k)− x(k)T P̂ x(k) + x(k + 1)T P̂ x(k + 1)

−ν2v(k)T v(k)− ν2s(k)T s(k)

+

[
z(k) + s(k)

w(k)

]T
Π

[
z(k) + s(k)

w(k)

]
≤ 0

(k = 0, 1, · · · ).
By summing up the above inequality up to k = τ , we have

x(τ + 1)T P̂ x(τ + 1) + ε2
τ∑
k=0

|z(k)|22 − ν2
(

τ∑
k=0

|v(k)|22 +
τ∑
k=0

|s(k)|22

)

+

τ∑
k=0

[
z(k) + s(k)

w(k)

]T
Π

[
z(k) + s(k)

w(k)

]
≤ 0.

Since P̂ ∈ PSDn and since (8) holds, we can readily
conclude from the above inequality that

‖zτ‖22 ≤
ν2

ε2
(
‖vτ‖22 + ‖sτ‖22

)
or equivalently,

‖zτ‖2 ≤
ν

ε

∥∥∥∥[ sτvτ
]∥∥∥∥

2

.



With this inequality and

‖wτ‖2 = ‖(Φ(z + s))τ‖2
= ‖Φ(z + s)τ‖2
≤ ‖Φ‖2(‖zτ‖2 + ‖sτ‖2)
= ‖zτ‖2 + ‖sτ‖2,

we arrive at the conclusion that∥∥∥∥[ zτwτ
]∥∥∥∥

2

≤
√
ν2

ε2
+ 2

∥∥∥∥[ sτvτ
]∥∥∥∥

2

holds for any v ∈ l2e, s ∈ l2e and τ ∈ [0,∞). This completes
the proof.
Remark 1: Since G0 defined in (7) makes the feedback loop
with Φ, and since ‖Φ‖2 = 1, it is very clear that the small
gain condition ‖G0‖2 < 1 is a sufficient condition for the
stability of the RNN with the ReLU. In addition, it is not hard
to see that the ReLU Φ satisfies Φ(ξ) = (D−1ΦD)(ξ) for
any D ∈ Dn++. Therefore the scaled small gain condition
‖D−1G0D‖2 < 1 with D ∈ Dn++ is also a sufficient
condition for the stability. It should be noted that (9) with
Π = 0 corresponds to the scaled small gain condition, and
that (9) with Π = 0 and S = Im corresponds to the small
gain condition [5]. In this sense, the IQC-based stability
condition in Theorem 1 encompasses these basic stability
conditions.

IV. CONCRETE MULTIPLIERS CAPTURING THE
PROPERTIES OF RELU

A. Zames-Falb Multiplier

In this section, we summarize the arguments of [10] on
the discrete-time Zames-Falb multipliers [9]. By following
[10], we first introduce the following definitions.
Definition 3: [10] Let µ ≤ 0 ≤ ν. Then the nonlinearity
φ : R → R is slope-restricted, in short φ ∈ slope(µ, ν), if
φ(0) = 0 and

µ ≤ φ(x)− φ(y)

x− y
≤ sup

x 6=y

φ(x)− φ(y)

x− y
< ν

for all x, y ∈ R, x 6= y. On the other hand, the nonlinearity
φ is said to be sector-bounded if
(φ(x)− αx)(φ(x)− βx) ≤ 0 (∀x ∈ R)

for some α ≤ 0 ≤ β. This is expressed as φ ∈ sec[α, β].
The main result of [10] on the discrete-time Zames-

Falb multipliers for slope-restricted nonlinearities can be
summarized by the next lemma.
Lemma 1: [10] For a given nonlinearity φ ∈ slope(µ, ν)
with µ ≤ 0 ≤ ν, let us define Φ : Rm → Rm by the first
equation in (6). Assume M ∈ DHDm. Then we have

(∗)T
[

0 MT

M 0

]([
νIm −Im
−µIm Im

] [
x

Φ(x)

])
≥ 0 ∀x ∈ Rm.

From this key lemma and the fact that the ReLU φ : R→
R satisfies φ ∈ slope(0, 1), we can obtain the next result on
the Zames-Falb multiplier for the ReLU given by (6).
Corollary 1: Let us define
ΠZF :=

{
Π ∈ S2m : Π = (∗)T

[
0 MT

M 0

] [
Im −Im
0 Im

]
, M ∈ DHDm

}
. (10)

Then, Π ∈ ΠZF is a valid multiplier that satisfies (8) for the
ReLU Φ given by (6).

B. Polytopic Bounding Multiplier

The polytopic bounding multipliers are useful to capture
the properties of sector-bounded nonlinearities. To represent
them in compact fashion, let us define

Π?
pol[α, β] :=

{
Π ∈ S2m : (∗)TΠ

[
I
∆

]
� 0 ∀∆ ∈ Dn[α, β]

}
. (11)

Then the following lemma provides the polytopic bounding
multipliers for sector-bounded nonlinearities.
Lemma 2: [10] For a given nonlinearity φ ∈ sec[α, β] with
α ≤ 0 ≤ β, let us define Φ : Rm → Rm by the first equation
in (6). Assume Π ∈ Π?

pol[α, β]. Then we have

(∗)TΠ

[
x

Φ(x)

]
≥ 0 ∀x ∈ Rm.

As also stated in [10], it is hard to check whether
Π ∈ Π?

pol[α, β] holds since Π?
pol[α, β] is characterized by

infinitely many constraints. To get around this difficulty, we
employ a primitive but numerically tractable inner approxi-
mation of Π?

pol[α, β] given as follows:

Πpol[α, β] :=

{
Π =

[
X Y

Y T Z

]
∈ S2m :

(∗)TΠ

[
I
∆

]
� 0 ∀∆ ∈ Dnver[α, β], Zii ≤ 0 (i = 1, · · · ,m)

}
.
(12)

From this inner approximation and the fact that the ReLU
φ : R → R satisfies φ ∈ sec[0, 1], we can obtain the next
result that provides the polytopic bounding multiplier for the
ReLU given by (6).
Corollary 2: Let us define

Πpol :=

{
Π =

[
X Y

Y T Z

]
∈ S2m :

(∗)TΠ

[
I
∆

]
� 0 ∀∆ ∈ Dnver[0, 1], Zii ≤ 0 (i = 1, · · · ,m)

}
.

(13)

Then, Π ∈ Πpol is a valid multiplier that satisfies (8) for the
ReLU Φ given by (6).

We finally note that the denomination “polytopic bound-
ing” comes from the historical reason that the multipliers
in (11) and (12) have been used to handle parametric
uncertainties in polytopes in the context of robust control
[17], [18].
Remark 2: Even though we restrict our attention to the
static Zames-Falb multiplier of the form (10) in Corollary 1,
it is true that the dynamical finite impulse response (FIR)
Zames-Falb multipliers are also investigated in [10] in fre-
quency domain. We do not pursue such a direction in this
paper mainly because the novel copositive multipliers, to be
introduced in the next subsection, rely on the analysis in
time-domain. However, we have a prospect that the extension
similar to the FIR multipliers in [10] can also be achieved in
time-domain by means of discrete-time system lifting [19].
Such an extension, and mutual relationship with the FIR
multipliers are currently under investigation. Still, we have
already obtained related results on the use of the discrete-
time system lifting in [6].
Remark 3: As clarified exhaustively in [10], the poly-
topic bounding multiplier encompasses some existing and
frequently used multipliers. For instance, the following
so-called diagonally structured multiplier has been often



employed to handle sector-bounded nonlinearities Φ in
Lemma 2.

Πds[α, β] :=

{
Π ∈ S2m : Π =

[
−αβD α+ β

2
D

∗ −D

]
, D ∈ Dm++

}
.

Then it is very clear that Πds[α, β] ⊂ Πpol[α, β] ⊂
Π?

pol[α, β]. Since the effectiveness of the Zames-Falb mul-
tipliers is also widely recognized, we could say that Π ∈
Πpol+ΠZF is the most up-to-date, effective, and numerically
tractable existing (static) multiplier to handle the ReLU.

C. Novel Copositive Multiplier

It has been shown recently in [20] that the input-output
relationship of the ReLU given by (6) can be fully captured
by three (in)equalities. Similar observation can also be found
in [21]. Namely, ζ = φ(ξ) holds for the input ξ ∈ R and
output ζ ∈ R of the ReLU if and only if

ζ(ζ − ξ) = 0, ζ ≥ 0, ζ − ξ ≥ 0. (14)

The first constraint is quadratic on the input and output sig-
nals and hence compatible with IQCs. In fact, this constraint
can be regarded as the extreme case of the sector bounded
nonlinearity φ ∈ sec[0, 1]. From this constraint, we can also
ensure that Π ∈ Πpol is a valid multiplier satisfying (8). On
the other hand, the second and third constraints are linear
with respect to the input and output signals. Therefore they
do not conform to the IQC framework if we merely rely
on the standard positive semidefinite cone PSD. This is
because the cone PSD has no functionality to distinguish
nonnegative vectors in the quadratic form. To get around this
difficulty, we employ copositive cone COP and introduce the
copositive multipliers. This result is summarized in the next
theorem.
Theorem 2: Let us define
Π?

COP :=

{
Π ∈ S2m : Π = (∗)TQ

[
−Im Im

0 Im

]
, Q ∈ COP2m

}
. (15)

Then, Π ∈ Π?
COP is a valid multiplier that satisfies (8) for

the ReLU Φ given by (6).
Remark 4: As stated in Section II, it is hard to check
whether Q ∈ COP2m holds in (15) and hence the copositive
multiplier (15) is intractable in general. To get around this
difficulty, we apply inner approximation to the copositive
cone COP and define
ΠCOP :=

{
Π ∈ S2m : Π = (∗)TQ

[
−Im Im

0 Im

]
, Q ∈ PSD2m +NN 2m

}
. (16)

Then, it is clear from (3) that ΠCOP ⊂ Π?
COP and hence Π ∈

ΠCOP is a valid multiplier that satisfies (8) for the ReLU Φ
given by (6). In particular, ΠCOP = Π?

COP holds if m ≤ 2.
It should be noted that checking Q ∈ PSD2m + NN 2m

is numerically tractable since this is essentially a positive
semidefinite constraint.
Remark 5: In relation to the copositive multiplier (16), let
us consider its special class given by
ΠCOP,0 :=

{
Π ∈ S2m : Π = (∗)T

[
0 0

0 Q̂

] [
−Im Im

0 Im

]
, Q̂ ∈ PSDm +NNm

}
.

Then, we can see from [6] that the condition (9) with
Π ∈ ΠCOP,0 is a sufficient condition for the l2+-induced-
norm-based scaled small gain condition ‖D−1G0D‖2+ < 1
with D ∈ Dm++. Since the ReLU only returns nonnegative
signals, we intuitively deduce that ‖D−1G0D‖2+ < 1 could

be a sufficient condition for the stability. We have validated
this as the main result in [6], providing also the numerically
verifiable condition (9) with Π ∈ ΠCOP,0. Since ΠCOP,0 ⊂
ΠCOP does hold, we can conclude that the present result
encompasses the main result of [6] as a special case.
Remark 6: The treatment of nonnegative signals is the core
for the analysis of positive systems, and to acitively use the
nonnegativity in the analysis the integral linear constraints
are introduced in [22]. However, to build an effective stability
analysis method of RNNs upon the powerful IQC approach
with existing multipliers, we have to capture the nonnegativ-
ity of the signals in quadratic form. This is the reason why
we introduced copositive multipliers.

V. NUMERICAL EXAMPLES

In (5), let us consider the case Λ = 0, Wout = I6 and

Win =


0.29 −0.04 0.02 + a −0.35 −0.05 −0.12
−0.29 −0.24 −0.01 0.12 −0.13 0.18
−0.50 b 0.23 0.40 −0.28 −0.08

0.14 −0.27 −0.15 0.13 −0.47 −0.28
−0.10 −0.10 0.08 0.14 −0.22 0.50
−0.11 −0.28 −0.21 −0.14 −0.09 0.20

 .

For (a, b) = (0, 0), we see ‖G0‖2 = 0.9605. Here we
examined the finite gain l2 stability over the (time-invariant)
parameter variation a ∈ [−2, 2] and b ∈ [−10, 10]. This
example is exactly the same as that of [6] except for the
range of the parameter variation.

We tested the following stability conditions:
Test I (SSG): Find P ∈ PSDn, S ∈ Dm++ such that (9)
holds with Π = 0.
Test II (l2+-SSG): Find P ∈ PSDn, S ∈ Dm++, and Π ∈
ΠCOP,0 such that (9) holds.
Test III (SSG+ZF+PolB): Find P ∈ PSDn, S ∈ Dm++ and
Π ∈ ΠZF + Πpol such that (9) holds.
Test IV (SSG+ZF+PolB+COP): Find P ∈ PSDn, S ∈ Dm++

and Π ∈ ΠZF + Πpol + ΠCOP such that (9) holds.
It is very clear that if Test I is feasible then Tests II and III

are, and if Test III is feasible then Test IV is. However, there
is no theoretical inclusion relationship between Test II and
Test III. Test I corresponds to the scaled small gain condition
with the standard l2 induced norm, while Test II corresponds
to the scaled small gain condition with the l2+ induced norm.
These have been already implemented in [6], but we retested
them since we changed the range of the parameter variation.

In Fig. 1, we plot (a, b) for which the RNN is proved to be
stable by Tests I and II. Both Tests turned out to be feasible
for (a, b) in the green region, whereas only Test II turned out
to be feasible for (a, b) in the magenta region. On the other
hand, in Fig. 2, both Tests III and IV turned out to be feasible
for (a, b) in the red region, whereas only Test IV turned
out to be feasible for (a, b) in the blue region. From both
figures, we can confirm the effectiveness of the copositive
multipliers. As for the comparison between Tests II and III,
Test III tuned out to be feasible in much larger region than
that of Test II, but there is no strict inclusion relationship
between them. In fact, for (a, b) = (1.0, 1.4), Test II and III
turned out to be feasible and infeasible, respectively.



Fig. 1. Comparison: Test I vs Test II.

Fig. 2. Comparison: Test III vs Test IV.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we dealt with the stability analysis of the
RNN with the ReLU by means of the IQC framework.
By actively using the nonnegativity property of the ReLU,
we newly introduced the copositive multipliers. We showed
that we can employ copositive multipliers (or their inner
approximation) together with existing multipliers such as
Zames-Falb multipliers and polytopic bounding multipliers,
and this directly enabled us to ensure that the introduction of
copositive multipliers leads to better (no more conservative)
results. By numerical examples, we illustrated the effective-
ness of the copositive multipliers.

In the present paper and [6], we converted a COP to an
SDP by simply replacing COP by PSD +NN . However,
this treatment is conservative. In this respect, Lasserre [23]
and Klerk and Pasechnik [24] have already shown indepen-
dently how to construct a hierarchy of SDPs to solve COP in
an asymptotically exact fashion, but the size of SDPs grows
very rapidly. This is prohibitive to deal with realistic, larger
size networks. To get around this difficulty, we plan to rely
on efficient first-order methods to solve the specific conic
relaxations arising from polynomial optimization problems
with sphere constraints [25].
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