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Abstract— Automated Vehicles require exhaustive testing in
simulation to detect as many safety-critical failures as possible
before deployment on public roads. In this work, we focus on the
core decision-making component of autonomous robots: their
planning algorithm. We introduce a planner testing framework
that leverages recent progress in simulating behaviorally diverse
traffic participants. Using large scale search, we generate,
detect, and characterize dynamic scenarios leading to collisions.
In particular, we propose methods to distinguish between
unavoidable and avoidable accidents, focusing especially on
automatically finding planner-specific defects that must be
corrected before deployment. Through experiments in complex
multi-agent intersection scenarios, we show that our method
can indeed find a wide range of critical planner failures.

I. INTRODUCTION

Thorough verification of planning algorithms is critical

to show their robustness in handling various real-world

situations, especially for automated vehicles interacting with

other traffic participants.

As the planner is responsible for making decisions au-

tonomously, its defects are likely to cause accidents. There-

fore, exhaustive and reproducible testing in safety-critical

scenarios using simulated environments is a core part of the

development of automated vehicles. In recent years, various

traffic simulators for autonomous driving were proposed [1]–

[3]. Benchmarks such as CommonRoad [4] also provide

various log data of vehicle behaviors for use in evaluation.

However, these environments typically lack diversity in the

behavior of traffic participants, thus limiting test coverage.

On the other hand, increasing diversity by introducing ran-

dom driving policies or adversarial vehicles results mostly in

unpredictable cases [5], [6]. This limits testing to situations

where the optimal planning behavior is overly conservative

or mandates drastic evasive maneuvers, leaving most realistic

safety-critical situations untested.

In this work, we explore how AI agents with diverse RL

policies can help find a wide range of interesting planner

failure modes.

Our first contribution is a large scale dynamic scenario

generation strategy leveraging recent progress in Reinforce-

ment Learning (RL) for driving agents [7]. Using behav-

iorally diverse policies along with a flexible action space, we

efficiently and automatically generate test cases covering a
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wider range of driving behaviors than what typical rule-based

approaches can. The resulting scenarios enable discovering

many situations resulting in safety-critical failures, especially

collisions with other simulated traffic participants. However,

not all collisions might be meaningful or useful for planner

testing. Therefore, in our second and main contribution,

we focus on counterfactually detecting avoidable failures

that can (and should) be fixed. Unavoidable failures are

situations where a planner cannot escape a collision no matter

how it behaves, and thus are an intrinsic feature of the

environment, not the planning algorithm itself. Following a

collision, we first rewind the traffic simulation back in time,

considering human reaction time as a benchmark [8]. We

then propose two methods for assessing, counterfactually, if

a failure is avoidable or not: a planner-specific one and a

generic one. Our planner-specific failure detection method

uses general parameter optimization tools (e.g. [9]) to try to

find a set of planner parameters that could have enabled it to

avoid the observed failure, which doubles as useful feedback

for planner improvements. Our generic avoidability check

estimates whether the collision is dynamically avoidable

by replacing the target planner with a collision-avoiding

agent trained using a Constrained Markov Decision Process

(CMDP) approach [10]. This method can be applied when

searching for planner parameters is not possible. In both

cases, we check if the failure could have been avoided by

resuming the simulation. This is different from historical

replay, as all agent policies are rerun.

To experimentally validate our method, we test the stan-

dard "Intelligent Driver Model" (IDM) [11], modified to

drive in multiple intersection scenes where the other agents

use the aforementioned diverse RL policies. Our experiments

reveal significant defects covering a wide range of near-

misses and collision types, angles, and positions, thus con-

firming the usefulness of our approach for improving the

safety of planning algorithms.

II. RELATED WORK

With the recent progress in the development of au-

tonomous vehicles, studies focusing on testing planner mod-

ules have become an increasing focus of research in recent

years. Due to the difficulty of actual vehicle testing and

evaluation of autonomous driving systems [12], various ap-

proaches using simulation testing have been proposed.

Tuncali et al. [5] proposed an adversarial error detec-

tion method for ML-based autonomous vehicles modules,

such as planner and recognition modules, by perturbing
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test scenarios to induce collisions and misclassifications.

O’Kelly et al. [13] proposed an importance sampling and

a cross-entropy method for a given probability distribution

for generating test scenarios in which more accidents occur.

In [13]–[15], naturalistic driving data were used for making

the behavior model of other vehicles. However, collecting

data might not always be possible in rare or safety-critical

scenarios.

Koren et al. [6] tackled the problem of finding colli-

sion failures for the IDM-based planner, using a solver to

sample pedestrian behavior across crosswalks. They showed

experimentally that collisions could be induced more ef-

ficiently using a deep RL-based method, and compared

it to using Monte Carlo Tree Search (MCTS). Corso et

al. [16] further improved Koren et al.’s work by proposing

a method for detecting failure cases that are relevant to the

planner. Their method evaluates the planner’s behavior with a

Responsibility-Sensitive Safety (RSS) condition [17], which

focuses on the faults caused by the planner. They separately

tried to diversify the failure cases the method detects by

giving a reward to the solver when the planner’s trajectory

on a new failure is far from the previously found collision

trajectories.

Corso et al.’s motivation is similar to our purpose. How-

ever, they only considered a planner with other pedestrians

instead of vehicles, and they used the hard-coded RSS

condition while our work introduces a more flexible and rel-

evant concept of avoidable failures. Furthermore, they have

only considered either finding diverse failure trajectories or

failures relevant to the tested planner, while we focus on both

aspects at the same time.

III. GENERATING DIVERSE PLANNER TEST CASES

A. Traffic Simulator Design

We use a testing environment based on a traffic simulator

for intersection scenes used in the work of [7]. Fig. 1 shows

a map of the intersection scene and the scales used for roads

and vehicles. Vehicles are limited from going over the black

lines, representing walls, and overlapping on each other.

The traffic simulator has one ego vehicle (blue) ge as

the planner to be evaluated, and m other vehicles (orange)

go1 , . . . , gom which can be set. The ego vehicle computes

the next action from the current state according to a planner

policy πp
θ , where p indicates the planner’s policy to distin-

guish it from the other vehicle policies described below, θ is

a combination of adjustable parameters of the planner, and

users can select any parameters from a defined parameter

space Θp. Also, each other vehicle computes the next action

according to a policy πo. The user can select any policy from

a set of available other vehicle policies Πo. The simulator

updates the state at discrete time intervals with a constant

defined by the user. A single update to the states in the

simulator is called a step, and ∆t is the update interval time

constant for one step. The action of the vehicle gk at step i is

represented by a pair aki = (α, φ) of acceleration [m/s2] and

steering value [rad]. The state of the vehicle gk at step i is

represented as a quadruplet uki = (xki , y
k
i , v

k
i , h

k
i ), including

Fig. 1: The scale of the traffic simulation map and the vehicle. All
units are meters. The black lines in the map represent walls.
The black arrows of vehicles mean headings.

(xki , y
k
i ), the position of the center in x-y coordinates [m],

vki , the velocity [m/s], and hki , the heading [rad].
Each vehicle gk transitions from the current state uki to

the next state uki+1 from the selected action of the policy

according to the kinematic bicycle model [18]. The state of

the simulator in step i is defined as Ui = (uei , u
o1
i , . . . , u

om
i ),

where uei and uoki are a state of the ego vehicle ge and one

of the other vehicles gok at step i, respectively. The users

can define a set of failure states F for all failure conditions

of the planner vehicle. The user can define a set of end states

E to determine the termination of the simulation. Unless

otherwise noted, F ⊆ E so the simulation will be terminated

when it enters a failure state.

The simulator is given as inputs a planner policy πp
θ and

a scenario s = (πo, U0,F , E) which is an assortment of

information on everything other than πp
θ , and then starts

the simulation. The set of all evaluation scenarios prepared

by the user is represented as S. We also assume that all

action choices and state transitions are deterministic for

reproducibility. That is, given (πp
θ , s) to the simulator, the

state Un after n steps is uniquely determined from (πp
θ , s).

We denote as T (πp
θ , s, n) the state derived by a (πp

θ , s)
after n steps from the initial state of the simulation, and

as T (πp
θ , s, ∗) the last state of the simulation derived from

(πp
θ , s). An input (πp

θ , s) is called a failure case if the

simulation ends in a state T (πp
θ , s, ∗) ∈ F . On the other

hand, (πp
θ , s) is called a success case when the simulation

ends in a state T (πp
θ , s, ∗) ∈ E ∩ Fc.

B. Generating Other Vehicle Policy Sets

Using the method described in [7], we generated RL-

based driving policies for other vehicles. Each vehicle is

given a navigation route in advance, which defines a reward

function for driving with the following goals: i) moving along

the given navigation route as much as possible, and ii) not

colliding to walls and vehicles. During training, vehicles in

the simulation g1, . . . , gm move according to a policy πo.

Note, however, that πo does not control all the vehicles in a

centralized manner, but rather each of vehicles has a copy of

πo which they execute in a decentralized manner. Therefore,

at the planner testing phase, it is possible to replace one



of g1, . . . , gm with a vehicle ge that drives according to

a planner policy πp
θ and execute the testing simulation.

The RL-based policies not only control the speed on the

predefined path but also enable lateral control by steering.

This degree of freedom plays an important role in detecting

diverse failures.

To acquire a diverse policy set, we use Diverse Policy

Selection (DPS) [7] to generate k policies with a success rate

of δ% or more on the evaluation scenarios. See the original

paper for details.

C. Policy Set Diversity Metric

We use a diversity metric inter-policy diversity [7] to

evaluate how different the behaviors of any two policies in

a set Πo are from each other. Note that this Πo is used as a

set of other vehicle policies during planner testing, but each

policy πo in Πo is also treated as πo = πp when evaluating

this metric. This evaluation for the policy set Πo is performed

on a set of evaluation scenarios S which is different from

training scenarios.

Let τs(π) be a trajectory generated from (π, s), and Sπ

a subset of S consisting of scenarios such that (π, s) is a

success case after running the simulation for a π and all

s ∈ S. The inter-policy diversity is defined as follows:

DIP (Πo) =
1

|Πo|(|Πo| − 1)

∑

π∈Πo

∑

π′∈Πo\{π}

DIP (π, π
′)

(1)

whereDIP (π, π
′) = 1

|Sπ

⋂
S
π′ |

∑
s∈Sπ

⋂
S
π′
d(τs(π), τs(π

′)).

Here d(τ, τ ′) refers to the average Euclidean distance

between two trajectories. In planner testing, we use this

diversity metric to quantify the diversity of different sets of

policies generated for other vehicles.

IV. AVOIDABLE FAILURES

This section defines failure cases that are relevant to our

study. Intuitively, we only focus on failure cases which can be

avoided by modifying the planning policy. When the planner

cannot be modified in a way that allows it to avoid the failure,

such a failure case is likely irrelevant to the planner design

because no improvement can be made in this situation. On

the other hand, avoidable failures could serve as valuable

references when designing pre-crash safety systems.

Consider a failure case with a planner policy πp
θ and a

scenario s = (πo, U0,F , E) such that T (πp
θ , s, n) ∈ F for

some step n before the simulation ends. The idea is to con-

duct a counterfactual analysis by re-running the simulation

with a modified planner policy πp′ to see if it is possible

to avoid the failure. However, we do not want to restart the

simulation too far back in time from the n-th step when

the failure occurs because it could completely change the

simulation trajectory of the target planner. Therefore, we re-

run the simulation only shortly before the failure state to

evaluate this pre-failure situation. More specifically, let ρ be

the minimum reaction time of the ego vehicle, the simulation

is then restarted from the step n− ⌈ρ/∆t⌉.

As choices for the modified policy πp′, we propose

two types of counterfactual modification: a planner-specific

modification and a generic modification independent of the

planner. These two types of modification provide two classes

of avoidable failures for planner testing, discussed in the

following two subsections.

A. Planner-specific Avoidable Failure

A planner-specific modification is where the parameter θ
of the original policy is modified to a different parameter

θ′. The modified policy becomes πp′ = πp
θ′ , and a planner-

specific avoidable failure is then defined as follows.

Definition 1 (planner-specific avoidable failure). Given a

planner policy πp
θ and a scenario s = (πo, U0,F , E) such

that T (πp
θ , s, n) ∈ F , (πp

θ , s) is a planner-specific avoidable

failure if and only if there exists a parameters θ′ ∈ Θp \ {θ}
such that T (πp

θ′, s′, ∗) ∈ E∩Fc where s′ = (πo, T (πp
θ , s, n−

⌈ρ/∆t⌉),F , E).

The avoidable failures defined here are dependent on the

planner’s specifications. Such a planner-specific avoidable

failure is highly relevant to the planner because it highlights

the incapability of the planner to choose the appropriate

parameter θ′ to avoid the upcoming failure. On the other

hand, other failure cases are of lesser usefulness since the

planner cannot avoid them only by adjusting its parameter.

This modified parameter θ′ found in the test can be provided

as useful feedback to planner development.

B. Generic Avoidable Failure

Instead of searching within the planner parameter space

for a combination that could possibly avoid the failure in

question, another approach is to verify if the failure is

avoidable following some "safe" driving policy. If a failure is

avoidable by the "safe" policy, the failure case and the way it

can be avoided provide valuable information for improving

the planner design.

One intuitive candidate for the "safe" policy is to opt for a

full deceleration in order to stop the vehicle, similar to pre-

crash safety systems. However, even though stopping could

avoid some types of failures, it might as well cause other

failure cases such as rear-end crashes. Therefore, a good

"safe" policy should consider the environmental situation and

optimize towards a relatively safe action. This can actually be

done by following a recently developed data-driven approach

[10] for constrained Markov Decision Process (CMDP).

Given a baseline policy η, the greedy-safe policy πp
η is

defined by πp
η(Ui) = arg min

a
T η(Ui, a) where T η(Ui, a)

is the threat function of η given by

T
η(Ui, a) = P (Uη ∈ F | initial action = a) (2)

with Uη = T (η, (πo, Ui,F , E), ∗) being the final state

following η. The threat function at (Ui, a) is the probability

for the ego vehicle to encounter a failure starting from the

state Ui with the initial action a and then following the

baseline policy η. Therefore, it can be learned by running

the simulator with the baseline policy. The threat function

is similar to the Q-function in reinforcement learning, but

instead of estimating the future reward, the threat function



(a) Right-turn (b) Crossing

Fig. 2: The blue vehicle is the ego vehicle, and the orange vehicles
are the other vehicles. The label on each vehicle indicates
the vehicle ID. White arrows indicate the course of each
vehicle. Note that each vehicle is allowed to drive in places
other than the white arrow on the course. The purple
rectangle represents the goal of the ego vehicle, and it is
considered a success case if the vehicle reaches the goal
without collision and within designated time.

estimates the future chance of failure. Similar to the greedy

policy in reinforcement learning, the greedy-safe policy πp
η

acts greedily according to the threat function to avoid failure.

Note that the greedy-safe policy πp
η is in a policy class

different from the tested planner model πp
θ .

Using the greedy-safe policy, we define the generic avoid-

able failure as follows.

Definition 2 (Generic avoidable failure). Given a planner

policy πp
θ and a scenario s = (πo, U0,F , E) such that

T (πp
θ , s, n) ∈ F , (πp

θ , s) is a generic avoidable failure if and

only if T (πp
η, s

′, ∗) ∈ E ∩ Fc where s′ = (πo, T (πp
θ , s, n−

⌈ρ/∆t⌉),F , E).

Since this class of avoidable failures is determined by the

greedy-safe policy πp
η , they can provide planner-independent

feedback for failure avoidance improvement. The choice of

the baseline policy η could affect the ability of the greedy-

safe policy, but we show in our experiments that a random

baseline policy can still detect significant generic avoidable

failures.

V. PLANNER TEST ENVIRONMENT

In this section, we describe the details of our planner

testing settings: target traffic scenes and the tested planner.

A. Traffic Scenes

We conduct planner testing assuming two types of traffic

scenes in an intersection following Japanese traffic rules.

One (Right-turn) is a scene where the ego vehicle goes

straight against the right-turning vehicle (Fig. 2a), and the

other (Crossing) is a scene where the ego vehicle intersects

another vehicle from the other lane (Fig. 2b). In both scenes,

there is a leading vehicle in front of the ego vehicle. There

are no traffic lights in either scene.

Fig. 3: Longitudinal control of our tested planner. The ego car
decelerates according to the other vehicle’s velocity com-
ponent toward the ego vehicle.

B. System under Test Model

Following previous studies on planner testing [6], [16],

we use a planner with a variant of IDM [11] as well1. The

specific control algorithm and the adjustable parameters for

detecting avoidable failures are shown below.

Basically, the ego vehicle ge moves under IDM’s free

road behavior. If there is another vehicle around the ego

vehicle, it decelerates according to that vehicle’s speed. In

order to be able to run our planner in more involved traffic

scenes, not limited to single-lane-following situations, such

as intersections with multiple vehicles, we add a feature to

select which vehicle to follow (we call it the attentional

vehicle here). The selection procedure is as follows.

First, the ego vehicle checks whether or not each of the

surrounding other vehicles is included in the attentional area,

which is a 20 [m] and ψ [rad] fan-shaped area in front

of the ego vehicle as shown in Fig. 3. The ψ is called an

attentional angle, and dynamically changes in consideration

of the possibility of collision with each vehicle. For example,

the attentional angle shrinks when the other vehicle is going-

away. The maximum and minimum attentional angles are

determined by parameters φmax and φmin. The ego vehicle

decelerates according to the closest attentional vehicle among

the other vehicles determined to be included in the attentional

area. The desired deceleration is determined by the atten-

tional vehicle’s velocity component toward the ego vehicle

and the parameter dIDM (see the original IDM [11]). With

the aid of this selection rule, our IDM-based planner is able

to run through intersections better, avoiding to awkwardly

follow oncoming vehicles on the opposite lane while paying

attention to crossing vehicles.

Especially in planner-dependent avoidable failure detec-

tion, a combination of the adjustable parameters of the

planner related to the above longitudinal control is θ =
(dIDM, φmax, φmin).

1Note that [6], [16] do not describe the details of the planner. Thus, the
algorithm may not be the same.



TABLE I: Prepared policy sets for other vehicles

Traffic type Policy type Suc. rate DIP (Πo)

Right-turn LessDiverse 94.8 % 0.72
Right-turn Diverse 94.0 % 5.11

Crossing LessDiverse 94.6 % 0.38
Crossing Diverse 93.8 % 3.00

VI. EXPERIMENTS

In this section, we show the experimental results in de-

tecting diverse failure cases that are relevant to the planner.

A. Experimental Setting

1) Policy set for other vehicles: To train the RL-based

other vehicle policies, we generated training scenarios by

applying random perturbations based on the vehicles’ layout

shown in Fig. 2. Using DPS (see III-B), we generated a

combination of 50 policies that have the highest behavioral

diversity and a success rate of 90% or more on the diver-

sity evaluation scenarios generated with a different random

number from the training. We briefly denote the such diverse

policy set as Diverse.

We also created a baseline policy set, called LessDiverse,

with a low diversity score as follows: i) create a set Πcand of

many RL-based policies with success rate of 90% or more, ii)

pick one policy πok from Πcand, iii) select 50 policies from

Πcand that are considered to be having similar behavior to

πok based on their interpolicy-diversity.

For reference, the inter-policy diversity values of the

two policy sets are shown in Table I. Note that a higher

inter-policy diversity score is considered better in terms of

diversity.

2) Testing environment and scenarios: The update time

interval of a simulator ∆t = 0.1 [s]. As shown in V-A,

we conduct planner testing on two traffic scenes, which

consist of two vehicles (car1, car2) other than the target ego

vehicle. We prepared 300 patterns by randomly introducing

perturbations to the initial status of each vehicle. These

300 patterns are used to test every other vehicle driving

policy. Since we use 50 different other driving policies, we

performed 15, 000 simulation tests per each traffic scene.

In the tests, the simulation will end when the ego vehicle

reaches the designated goal or when it fails to do so within

300 steps.

A collision between the ego vehicle and other vehicles is

also regarded as a termination condition, and the test result

is counted as a failure. When a failure due to a collision

occurs, the proposed two avoidability verification methods

are conducted to determine if the failure is avoidable or not.

3) Parameters of the tested planner: We used an IDM-

based planner as described in V-B. The adjustable parameters

for testing are as follows: dIDM = 0.5 [m/s2] which is the

default setting of original IDM [11], φmax = 3.142 [rad] and

φmin = 0.524 [rad]. The following restrictions were given

to ego vehicles: maximum and minimum velocity vmax =
2.0 [m/s], vmin = −0.5 [m/s], and maximum and minimum

acceleration amax = 1.0 [m/s2], amin = −1.0 [m/s2].

4) Parameter search to find planner-specific avoidable

failure: When a collision occurs, we evaluate if the col-

lision is a planner-specific avoidable failure, defined in

IV-A, by searching the three planner parameters shown

in V-B. Since checking all possible combinations of these

parameters is computationally infeasible, we make use of

Optuna [9], a parameter optimization framework, to run

parameter search 100 times. If there is a combination of

parameters which succeeds in avoiding the evaluated colli-

sion, the collision is counted as a planner-specific avoidable

failure. We set the parameter space of the tested planner

as Θp = {(dIDM, φmax, φmin) | dIDM ∈ [0.1, 10.0], φmax ∈
[π2 , 2π], φmin ∈ [ π12 ,

π
2 ]}. We also set the minimum reaction

time ρ of ego vehicle to 2.0 [s] based on [8].

5) Greedy-safe policy for generic avoidable failure:

When a collision is not avoidable by the planner-specific

modification, we evaluate if the collision is a generic avoid-

able failure, by running the greedy-safe policy defined in

IV-B. We use the policy which selects completely random

actions as the baseline policy η to construct the threat func-

tion. For computational efficiency, we approximate the threat

function by neural networks with the threat function upper

bound in [10]. Since the actions take continuous values, in

our experiments, the greedy-safe policy πp
η randomly samples

30 actions and pick the one with the lowest threat value at

each time. We also set the minimum reaction time of the ego

vehicle ρ = 2.0 [s].

B. Counting Avoidable Failures

Table II shows the number of failures detected in each

of combinations of traffic types and policy types. Here

we classify the failures into three types; planner-specific

avoidable failures, generic avoidable failures found only

by the planner-independent modification, and unavoidable

failures. We can see that the planner-specific modification

can identify a decent amount of avoidable failures, and these

types of failures can be directly used in adjusting the pa-

rameter of the planner policy. For those failures unavoidable

by the planner-specific modification, the proposed planner-

independent method provides additional failure feedback

to planner development. These types of generic avoidable

failures could help indicate certain weaknesses of the target

policy class, and they provide information about the general

kinetic capabilities of the ego vehicle. The rest of unavoid-

able failures are likely irrelevant to the planner design, as

discussed in previous sections.

The ability of policy diversity in finding failures is obvious

from Table II; the total number of failures found by the

Diverse is more than that by the LessDiverse, about 1.5
times more in the Right-turn scene and about 10 times more

in the Crossing scene. Moreover, many failures found by the

LessDiverse are unavoidable, about one quarter, 28/100, in

the Right-turn scene and about half, 11/23, in the Crossing

scene. While for the diverse policy set, only about one-tenth,

15/153, of the failures in the Right-turn scene and about one

quarter, 80/235, in the Crossing scene are unavoidable. This



TABLE II: The number of each failure types:
Total: total #failures in 15,000 simulation tests, A-
P: #planner-specific avoidable failures, A-G: #generic
avoidable failures detected by the planner-independent
modification only, U: #unavoidable failures.

Failure types
Traffic type Policy type Total A-P A-G U

Right-turn LessDiverse 100 52 20 28
Right-turn Diverse 153 75 63 15

Crossing LessDiverse 23 12 0 11
Crossing Diverse 235 102 53 80

difference shows a major advantage of using diverse policies

in planner testing.

There is one interesting observation for avoidable failures

that the proportions of planner-specific avoidable failures of

the two sets of policies are actually similar, all-around half

of the total number of failures. The proportion is 52/100
for LessDiverse and 75/153 for Diverse in the Right-

turn scene, and is 12/23 for LessDiverse and 102/235 for

Diverse in the Crossing scene. However, the number of

generic failures found by the LessDiverse is far less, even

none was detected in the Crossing scene. Therefore, another

major benefit of the diverse policy sets is the capability to

produce generic avoidable failures regardless of the target

policy model.

C. Diversity of Detected Failures

In this subsection, we will examine the planner testing re-

sults from three different aspects: colliding vehicles, collision

angles, and collision positions.

First, colliding vehicles. Table III classifies the avoidable

collisions based on which vehicle (car1, car2) the ego-

vehicle collided with. These avoidable collisions are found

through avoidability analysis, either by the planner-specific

method or the generic detection. The results show a larger

number of collisions with car2, representing an oncoming

vehicle in the Right-turn scene, and a vehicle coming

from the side in the Crossing scene, comparing to car1,

which precedes ego-vehicle in the same lane on both scenes

and much less likely to collide with. We can see that the

tests using diverse policies were able to induce collisions

with car1, which could be avoidable, while testing with

less diverse policies was not able to detect these types of

collisions.

Secondly, Fig. 4 displays the distribution of collision

angles, where the ego-vehicle angle is considered as 0◦,

reference at the time of collisions. We can clearly see that

the set of diverse policies results in collisions with a much

wider distribution of collision angles.

Thirdly, Fig. 5 shows the distribution of collision locations

in the traffic simulation map. Since both tested driving scenes

target the straight line itinerary, as the IDM-based planner

also does not control steering, the resulted distributions of

collision locations spread out linearly. Still, the set of diverse

policies causes collisions with much wider distributions of

collision positions.

TABLE III: The number of avoidable collision for each vehicle
(collision to car1/car2) of failure cases.

#Collision
Traffic scene Policy type car1 car2

Right-turn LessDiverse 0 72
Right-turn Diverse 0 138

Crossing LessDiverse 0 12
Crossing Diverse 2 153

The resulted distribution of collision locations also shows

a group of collisions occurring in the early region of the

test course (top middle location in the map), which were

all unavoidable collisions. Examining these test scenarios

more closely showed that the collisions were due to car2

strangely leaving the designated course and aggressively

heading towards the ego-vehicle, similar to what adversarial

test scenarios generally aim for. While such cases are still

rare, they do shade light on one difficulty in utilizing RL-

based agents as other vehicles in traffic simulation. Fortu-

nately, our collision avoidability verification check enables

us to classify these test scenarios as unavoidable collisions,

which could be considered of lower priority for investigation

from the perspectives of planner development.

Finally, we performed an integrated analysis combining

the position, speed, angle, acceleration, and steering angle of

the two vehicles involved in the collision. Since this is a high-

dimensional data analysis, we embedded the collision states

into a two-dimensional space using t-SNE [19] as shown

in Fig. 6. From the figure, we can see that the avoidable

failures (dark red dots) resulting from the diverse policies

have a wider distribution than the avoidable collisions (dark

blue dots) resulting from the less diverse policies in the

Right-turn scene. For Crossing, the number of avoidable

collisions for the less diverse is small, while we can see that

the avoidable collisions resulting from the diverse policies

display several clusters.

D. Planner Weakness Found Through Testing

We examined the avoidable failures and found one of the

failure cases indeed reflects a weakness of the IDM-based

planner. Fig. 7 illustrates the situation where the leading

vehicle (car1) suddenly stops at the corner on the bottom of

the map when taking a turn (7a). The ego vehicle first applies

a brake to avoid a collision (7b), but at a certain timing,

it starts accelerating again (7c) and eventually crashes into

the leading vehicle (7d). This is due to the planner’s limited

attentional angle ψ = φmin according to the attentional angle

computation. This is a planner-specific avoidable failure,

and increasing the attentional angle should have avoided

this particular collision. However it could also impact the

IDM behavior in other situations, and the trade-off is to be

assessed in the development cycle based on these tests.

E. Discussion on Near-miss Cases

In addition to collisions, near-miss situations are also

of great interest in planner testing, as they can sometimes

indicate errors or malfunctions in the system. We imple-

mented a two-dimensional Time To Collision (TTC) [20] as
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Fig. 4: The distribution of collision angle. The number of the bins is 80.

(a) LessDiverse, Right-turn (b) Diverse, Right-turn (c) LessDiverse, Crossing (d) Diverse, Crossing

Fig. 5: The distribution of collision location.

(a) Right-turn (b) Crossing

Fig. 6: Visualization of the distribution of collision state by em-
bedding with t-SNE.

a preliminary experiment to count the number of minimum

TTCs (min-TTCs), where min-TTC is defined as the smallest

TTC between the ego vehicle and all other vehicles through

a simulation test.

Fig. 8 shows distributions of the obtained min-TTCs

for each policy set on both traffic scenes. Comparing the

distributions of diverse policies and less diverse policies, we

can see that the distributions are spread in both scenes. In the

Crossing scene, more near-miss situations of min-TTC ≤
2.0 [s] were detected with diverse policies testing. However,

in the case of Right-turn, the result was the opposite, most

probably because the behaviors of the less diverse policies

are biased towards that. In other words, various situations

(a) (b) (c) (d)

Fig. 7: An example of failure cases of the IDM-based planner.

covering min-TTC can be created by using diverse policies.

Usually, if a planner developer wants to test such a lower

min-TTC case, they have to design other vehicles manually

to produce such a targeted situation. For example, in the case

of using RL-based policies, they would need to give an agent

a reward when it produces a lower min-TTC.

In addition, we checked by replaying the near-miss cases

in the Right-turn with less diverse policies. We found many

cases that the ego vehicle was yielding to the right-turn

vehicle which turned right without slowing down. This near-

miss case, when the planner policy has already taken a safe

behavior, is not necessarily important for planner testing.

Therefore, we believe that it is necessary to define near-

miss cases that are relevant to planner testing and to narrow

down the analysis of near-miss cases to relevant ones. It

is not appropriate to apply the proposed avoidable failure

detections in this paper to near-miss detection because the

planner policy does not always need to avoid such near-
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Fig. 8: The distribution of min-TTC. The number of the bins is 100.

misses if the ego vehicle is already taking safe behavior.

In the future, it is a challenge to detect relevant near-miss

cases, including the improvement of two-dimensional TTC.

VII. CONCLUSION

In this work, we experimentally demonstrated a simple

but scalable approach to detecting various relevant planner

failure cases, using behaviorally diverse policies for traffic

simulation vehicles. In the test results analysis, we used our

two proposed failure avoidability assessment mechanisms to

counterfactually identify avoidable failures, being important

feedback from planner testing. We also examined the resulted

failure test cases from multiple angles, and were able to

demonstrate that the proposed approach helped detect a wider

range of avoidable planner failure situations. While the tests

were conducted on an IDM-based planner that has limited

flexibility, we do expect that this approach shall result in

much more diverse classes of detected failures when applied

on more practical planning systems.

Furthermore, the diversity capacity of the simulation envi-

ronment itself dictates the scale of diverse behaviors possible

within it. Such capacity can be expanded by adding more

maps, traffic lights, pedestrians, different vehicle types, etc.

to cover as many scenes as the automated vehicles would

need to navigate the real world. Also, if we can automatically

generate various traffic maps and rules, we will be able to

build our testing environment more efficiently. We do expect

that our proposed framework shall demonstrate increasing

benefit as such capacity increases, moving automated vehi-

cles a step forward towards a robust real-world deployment.
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