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Abstract—This paper studies deterministic and stochastic
fixed-time stability of autonomous nonlinear discrete-time (DT)
systems. Lyapunov conditions are first presented under which
the fixed-time stability of deterministic DT system is certified.
Extensions to systems under deterministic perturbations as well
as stochastic noise are then considered. For the former, the
sensitivity to perturbations for fixed-time stable DT systems is
analyzed, and it is shown that fixed-time attractiveness is resulted
from the presented Lyapunov conditions. For the latter, sufficient
Lyapunov conditions for fixed-time stability in probability of
nonlinear stochastic DT systems are presented. The fixed upper
bound of the settling-time function is derived for both fixed-
time stable and fixed-time attractive systems, and the stochastic
settling-time function fixed upper bound is derived for stochastic
DT systems. Illustrative examples are given along with simulation
results to verify the introduced results.

Index Terms—Discrete-time systems, Fixed-time stability, Non-
linear systems, Stochastic systems.

I. INTRODUCTION

The Lyapunov stability theory has a longstanding history as

a powerful tool in control theory to obtain many important

results in the design of a variety of controllers and adaptation

laws. The basic framework of the Lyapunov stability theory

provides conditions under which their satisfaction guarantees

the stability of the system in some sense. While finding a

function satisfying these conditions, called Lyapunov function,

is generally challenging, controllers and update laws can be

developed to make a candidate Lyapunov function enforce the

stability conditions.

The Lyapunov theory generally provides conditions to assure

the states of a system convergence to an equilibrium state. The

qualitative guarantees that are provided for the convergence

time determine the stability type, ranging from asymptotic

stability, exponential stability, finite-time stability to fixed-time

stability. While asymptotic stability and exponential stability

provide assurance that the system’s states eventually converge

to an equilibrium, many real-world practical systems demand

intense time response constraints, which makes these types

of stabilities insufficient. Therefore, a surge of interest has

emerged in the control community in studying finite-time

stability to design control systems and adaptation laws that

exhibit finite-time convergence to an equilibrium point.

Finite-time stability [1] has been studied for continuous-time

(CT) and discrete-time (DT) deterministic and stochastic sys-

tems [2], [3], [4], [5]. Moreover, finite-time stability concept

has been extensively applied for the finite-time control of DT

[6], [7], [8] and CT [9], [10], [11] systems, as well as finite-

time identification [12], [13], [14], [15], [16], [17], [18], [19],
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[20], [21]. In the finite-time stability, however, the settling (i.e.,

convergence) time, depends on the system’s initial condition,

and, thus, cannot be specified a priori. Moreover, when the

magnitude of the initial condition is large, it can lead to an

unacceptable convergence time guarantee. Fixed-time stability,

on the other hand, imposes a stronger requirement on the

settling time and provides convergence guarantees with a pre-

specified bound on the settling time, independent of the initial

condition. Fixed-time stability of deterministic and stochastic

CT systems, respectively, studied in [22] and [23], have been

widely studied within the frameworks of fixed-time control

design [24], [25], [26], [27], [28], [29], [30], [31], fixed-time

observer design [32], [33], [34], [35], [36], [37] and fixed-time

identification [38], [39], [40], [41], [42], [43].

While most real-world systems are CT in nature, DT systems

are of great importance since systems are typically discretized

and controlled with digital computers and micro-controllers

in real-world applications. Even though finite-time stability

of DT deterministic [19], [20], [44], [5] and stochastic [45],

[46] systems are recently studied, fixed-time stability of DT

deterministic and stochastic systems is surprisingly unsettled,

despite its practical importance. This gap motivates us to

present fixed-time Lyapunov stability conditions that pave the

way for the realization of fixed-time control and identification

of DT systems through designing appropriate controllers and

adaptation laws, respectively.

Lyapunov theory can also be leveraged to study the be-

havior of uncertain systems. There are typically two types

of uncertainties in control systems: randomness which is

caused by a noise in a stochastic system, and deterministic

unknown perturbations with known bounds (here, we call the

deterministic systems affected by deterministic perturbations

as perturbed deterministic systems). The stability results are

typically presented in terms of stability in probability for

stochastic systems’ stability [47], [23], [3], [2], [46], which

guarantees convergence in probability to an equilibrium point,

and in terms of attractiveness to a bounded set for perturbed

systems.

In this paper, we develop fixed-time stability conditions

for both deterministic and stochastic DT nonlinear systems.

First, fixed-time stability for equilibria of deterministic DT au-

tonomous systems is defined. That is, a settling-time function

is defined with a fixed upper bound independent of the initial

condition. We then present Lyapunov theorems for fixed-

time stability of both unperturbed and perturbed deterministic

DT systems. Moreover, the sensitivity of fixed-time stability

properties to perturbations of systems is investigated under

the assumption of the existence of a locally Lipschitz discrete

Lyapunov function. It is ensured that fixed-time stability
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is preserved under perturbations in the form of fixed-time

attractiveness. Furthermore, sufficient Lyapunov conditions for

fixed-time stability in probability of stochastic DT systems

and their stochastic settling-time function are presented. The

presented framework will pave the way for designing control

laws with guaranteed satisfaction of a given performance

measure in fixed time. Moreover, the presented stability re-

sults can be leveraged to develop fixed-time observers and

identifiers for deterministic and stochastic DT systems, which

are of great importance in control of safety-critical systems

that highly rely on a system model and a state estimator to

make less-conservative and feasible decisions. This is because

fixed-time stability allows the system to preview and quantify

probable errors in state estimators and identifiers considerably

fast, which can be employed by the control system to avoid

conservatism.

This paper is organized as follows. Section 2 describes

the fixed-time stability of deterministic DT systems. The

sensitivity to deterministic perturbation for fixed-time stable

DT systems is analyzed in Section 3. Section 4 explains the

fixed-time stability in probability of stochastic DT systems.

Section 5 represents the verification of the introduced method

through illustrative examples along with simulation results.

Notations: In this paper, the following notations are em-

ployed. R, R`, Z, N`, and N represent, respectively, the set

of real numbers, non-negative real numbers, integer numbers,

natural numbers except zero, and natural numbers. Moreover,

R
n represents the set of nˆ1 real column vectors. ‖.‖ is used

to denote induced 2-norm for matrices and the Euclidean norm

for vectors. The trace of a matrix A is indicated with trpAq. |.|
denotes the absolute value of any scalar x. t.u : R ÞÑ Z is the

floor function. ∆p.q is the DT difference operator for determin-

istic systems and is defined for a function V pypkqq : Rn ÞÑ R
`

as ∆V pypk ` 1qq “ V pypk ` 1qq ´ V pypkqq.

All random variables are assumed to be defined on a

probability space pΩ,F ,Pq, with Ω as the sample space, F
as its associated Borel σ-algebra and P as the probability

measure. For a random variable ν : Ω ÝÑ R
n defined on the

probability space pΩ,F ,Pq, with some abuse of notation, the

statement ν P R
n is used to state the dimension of the random

variable. ErXs denotes the expected value of the random

variable X on the probability space pΩ,F ,Pq. It is assumed

that the probability space pΩ,F ,Pq admits a sequence of

mutually independent identically distributed random vectors

νpkq, k P N.

II. FIXED-TIME STABILITY FOR DETERMINISTIC

DISCRETE-TIME SYSTEMS

In this section, the fixed-time stability of autonomous unper-

turbed deterministic DT systems is defined and the Lyapunov

theorem specifying the sufficient conditions for their fixed-

time stability is presented.

Consider the following nonlinear DT system,

ypk ` 1q “ F pypkqq, (1)

where F : Dy ÞÑ Dy, F p0q “ 0 is a nonlinear function on Dy ,

and Dy is an open set with 0 P Dy . Moreover, ypkq P Dy Ď

R
n, k P N is the system state vector. For an initial condition

yp0q, define the solution sequence ypkq, k P Nyp0q Ď N, where

Nyp0q is the maximal interval of existence of ypkq after which

the solution may cease outside the domain of F p.q. Then, the

solution sequence ypkq, k P Nyp0q Ď N is uniquely defined in

forward time for every initial condition yp0q P Dy irrespective

of whether or not the function F p.q is a continuous function

[5].

Before proceeding, the following definitions are needed.

Definition 1. (Locally Lipschitz function) A function fpxq is

locally Lipschitz on a domain Ω Ă R
n if for each point in Ω

there exist a neighborhood Ω0 and a positive constant L such

that

||fpxq ´ fpyq|| ď L ||x ´ y||,@x P Ω0, y P Ω0. (2)

Moreover, L is called the Lipschitz constant of fpxq.

The following definition extends the fixed-time stability

definition presented in [22] for CT systems to DT systems.

Definition 2. (Fixed-time stability) Consider the DT nonlinear

system (1). The zero solution of ypkq ” 0 to the system

(1) is said to be fixed-time stable, if there exist an open

neighborhood Ny Ď Dy of the origin and a settling time

function K : Nyzt0u ÞÑ N
`, such that:

1) The system (1) is Lyapunov stable. That is, for every

ǫ ą 0, there exists a δ ą 0 such that if ||yp0q|| ď δ, then

||ypkq|| ď ǫ for all k P t0, ...,Kpyp0qq ´ 1u.

2) For every initial condition yp0q P Nyzt0u, the solution

sequence ypkq of (1) reaches the equilibrium point and

remains there after k ą Kpyp0qq and @yp0q P Ny ,

where K : Nyzt0u ÞÑ N
`.

3) The settling-time function Kpyp0qq is bounded, i.e.,

DKmax P N
` : Kpyp0qq ď Kmax,@yp0q P Nyzt0u.

DT nonlinear system (1) is globally fixed-time stable if it is

fixed-time stable with Ny “ Dy “ R
n.

Remark 1. If only conditions 1) and 2) of the above definitions

are satisfied, the finite-time stability [1] is resulted. In contrast,

the fixed-time stability imposes the additional condition 3).

This requirement makes the upper bound of the settling time

in the fixed-time stability independent of the initial condition,

in contrast to the finite-time stability. Therefore, the fixed-

time stability is a stronger type of stability than the finite-time

stability.

The following theorem provides sufficient conditions under

which the system (1) is fixed-time stable.

Theorem 1. Consider the nonlinear DT system (1). Suppose

there is a Lyapunov function V : Dy ÞÑ R
` where Dy is

an open neighborhood around the origin and there exist a
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neighborhood Ωy Ă Dy of the origin such that

V pyp0qq “ 0, (3)

V pypkqq ą 0, ypkq P Ωyzt0u, (4)

∆V pypk ` 1qq ď ´αmint
V pypkqq

α
,

maxtV r1pypkqq, V r2pypkqquu, ypkq P Ωyzt0u, (5)

for some positive constants 0 ă α ă 1, 0 ă r1 ă 1, and

r2 ą 1. Then, the system (1) is fixed-time stable and has a

settling time function K : Ny ÞÑ N
` that satisfies

Kpyp0qq ď tα
1

1´r1 p1 ´ α
1

1´r1 qu ` tα´1pα
1

1´r2 ´ 1qu ` 3,

(6)

for all yp0q P Nyzt0u where Ny is an open neighborhood of

the origin. Moreover, if Dy “ R
n, V p.q is radially unbounded

and (5) holds on R
n, then system (1) is globally fixed-time

stable.

Proof The Lyapunov stability of the system (1) can be

concluded using similar arguments as of [5] (see Theorem 4.1).

The proof of fixed-time stability consists of three parts. In the

first part, we show that for V pyp0qq ą α
1

1´r2 , the settling

time function is Kpyp0qq “ 1. In the second part, we show

that if α
1

1´r1 ă V pyp0qq ă α
1

1´r2 , there exists a settling-time

function with a fixed upper bound K˚ (i.e., Kpyp0qq ď K˚)

such that one has V pypkqq “ 0, @k ą K˚. Finally in the third

part, for V pyp0qq ď α
1

1´r1 , the Lyapunov function reaches

V pkq “ 0 with settling-time function Kpyp0qq “ 1.

Since 0 ă r1 ă 1 and r2 ą 1, one has

V r2pypkqq ă V r1pypkqq, @V pypkqq ď 1, (7)

and

V r1pypkqq ď V r2pypkqq, @V pypkqq ą 1. (8)

We, first, prove part 1 where V pyp0qq ą α
1

1´r2 . In this case,

since α
1

1´r2 ą 1, using (8), (5) leads to

∆V pypk ` 1qq ď ´αmint
V pypkqq

α
, V r2pypkqqu. (9)

Moreover, since V pyp0qq ą α
1

1´r2 , the above inequality for

k “ 0 yields

∆V pyp1qq ď ´V pyp0qq. (10)

Now, (10) implies that the settling time function is Kpyp0qq “

1, for V pyp0qq ą α
1

1´r2 .

For part 2 where α
1

1´r1 ă V pypkqq ă α
1

1´r2 , based on (5),

first we show that V pkq reduces to V pypkqq ď 1 after some

time where this time is upper bounded by a fixed constant K˚
1

.

Note that for 1 ă V pypkqq ă α
1

1´r2 , using (8), one has

mint
V pypkqq

α
,maxtV r1pypkqq, V r2pypkqquu “

mint
V pypkqq

α
, V r2pypkqqu “ V r2pypkqq, (11)

Then, (11) and (5), lead to

V pypk ` 1qq ď V pypkqq ´ αV r2pypkqq. (12)

The condition (12) holds for k “ 0, ...,K˚
1

´ 1 where 1 ă

V pypkqq ă α
1

1´r2 . Therefore, using (12) for k “ 0, 1, ...,K˚
1

´
1, one has

V pyp1qq ´ V pyp0qq ď ´αV r2pyp0qq,

V pyp2qq ´ V pyp1qq ď ´αV r2pyp1qq,

...

V pypK˚
1

´ 1qq ´ V pypK˚
1

´ 2qq ď ´αV r2pypK˚
1

´ 2qq,

V pypK˚
1

qq ´ V pypK˚
1

´ 1qq ď ´αV r2pypK˚
1

´ 1qq,

which leads to

V pypK˚
1

qq ´ V pyp0qq ď

K˚

1
´1

ÿ

k“0

´αV r2pypkqq. (13)

Since V pypkqq ă V pypk ´ 1qq, (13) can be rewritten as

V pypK˚
1

´ 1qq ´ V pyp0qq ď ´K˚
1
αV r2pypK˚

1
´ 1qq, (14)

that leads to

K˚
1

ď
V pyp0qq ´ V pypK˚

1
´ 1qq

αV r2pypK˚
1

´ 1qq
. (15)

Using 1 ă V pyp0qq ă α
1

1´r2 for k ă K˚
1

, (15) implies

K˚
1

ď
α

1

1´r2 ´ 1

α
, (16)

which leads to the integer upper bound for K˚
1

as follows

K˚
1

ď tα´1pα
1

1´r2 ´ 1qu ` 1. (17)

Note that since for k ą K˚
1

one has V pypkqq ď 1. Thus, for

α
1

1´r1 ă V pypkqq ď 1, using (7) one has

mint
V pypkqq

α
,maxtV r1pypkqq, V r2pypkqquu “

mint
V pypkqq

α
, V r1pypkqqu “ V r1pypkqq, (18)

and (18) and (5) result in

V pypk ` 1qq ď V pypkqq ´ αV r1pypkqq. (19)

Using (19), there exists a time k ą K˚
2

such that V pkq reaches

V pypkqq ď α
1

1´r1 where K˚
2

is a fixed positive integer. Using

(19) for k “ K˚
1
,K˚

1
` 1, ...,K˚

2
´ 1 one obtains

V pypK˚
1

` 1qq ´ V pypK˚
1

qq ď ´αV r1pypK˚
1

qq,

V pypK˚
1

` 2qq ´ V pypK˚
1

` 1qq ď ´αV r1pypK˚
1

` 1qq,

...

V pypK˚
2

´ 1qq ´ V pypK˚
2

´ 2qq ď ´αV r1pypK˚
2

´ 2qq,

V pypK˚
2

qq ´ V pypK˚
2

´ 1qq ď ´αV r1pypK˚
2

´ 1qq,
(20)

which leads to

K˚
2

´ K˚
1

ď
V pK˚

1
q ´ V pK˚

2
´ 1q

αV r1pypK˚
2

´ 1qq
. (21)

Since, α
1

1´r1 ă V pypkqq ă 1 for k “ K˚
1
,K˚

1
`1, ...,K˚

2
´1,

(21) reduces to
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K˚
2

ď K˚
1

` tα
1

1´r1 p1 ´ α
1

1´r1 qu ` 1. (22)

Using (17), (22) is rewritten as follows

K˚
2

ď tα´1pα
1

1´r2 ´ 1qu ` tα
1

1´r1 p1 ´ α
1

1´r1 qu ` 2. (23)

At time k ą K˚
2

for which V pypkqq ď α
1

1´r1 , (5) reduces

to

∆V pypk ` 1qq ď ´V pypkqq, (24)

which leads to V pypk ` 1qq “ 0 for k ě K˚
2

` 1. This

completes the proof of part 2.

The proof of part 3 where V pyp0qq ď α
1

1´r1 is also derived

based on (24) where V pkq reaches zero with Kpyp0qq “ 1.

Hence, the Lyapunov function reaches V pypkqq “ 0 with the

settling-time function Kpyp0qq such that

Kpyp0qq “ 1,

V pyp0qq ą α
1

1´r2 and V pyp0qq ă α
1

1´r1 , (25)

and

Kpyp0qq ď tα´1pα
1

1´r2 ´ 1qu ` tα
1

1´r1 p1 ´ α
1

1´r1 qu ` 3,

α
1

1´r1 ă V pyp0qq ď α
1

1´r2 . (26)

Therefore, the system is fixed-time stable, and the system tra-

jectory converges to the origin with the settling-time function

given in (6). This completes the proof.

Moreover, if Ny “ Dy “ R
n and V p.q is radially un-

bounded, the global fixed-time stability follows using the same

procedure. ˝

III. SENSITIVITY TO DETERMINISTIC PERTURBATION FOR

FIXED-TIME STABLE DISCRETE-TIME SYSTEMS

The system (1) usually describes a nominal model of the

system that works under ideal conditions. Nevertheless, many

real-world systems are under uncertainties and disturbances

that affect the system’s behavior. To account for these uncer-

tainties, a more accurate representation of the system can be

given by the following deterministic perturbed model

ypk ` 1q “ F pypkqq ` gpk, ypkqq, (27)

where g represents perturbation caused by disturbances, un-

certainties, or modeling errors. This section investigates the

solution behavior of the deterministic perturbed system (27)

in a neighborhood of the fixed-time stable equilibrium of the

nominal system (1).

Assumption 1. The perturbation term g is bounded, i.e.,

sup
N`ˆDy

}gpk, ypkqq} ă δ0, (28)

for some δ0 ă 8.

The following definition extends the fixed-time attractiveness

definition presented in [22] for CT systems to DT systems.

Definition 3. (Fixed-time attractiveness) The perturbed system

(27) is said to be fixed-time attractive by a bounded set Y
around the equilibrium point, if @yp0q P Ny the solution

sequence ypkq of (27) reaches Y in finite time k ą Kpyp0qq
and remains there for all k ą Kpyp0qq, where K : Nyzt0u ÞÑ
N

` is the settling-time function and the settling-time function

Kpyp0qq is bounded, i.e., DKmax P N
` : Kpyp0qq ď

Kmax,@yp0q P Ny .

The following lemma is required in the proof of Lyapunov-

based fixed-time attractiveness of perturbed deterministic sys-

tems.

Lemma 1. Let V pypkqq : Dy ÞÑ R
` be a fixed-time Lyapunov

function for the the nominal (unperturbed) system (1), i.e.,

V pypkqq satisfies conditions (3)-(5) for the system (27) when

g “ 0. Let also V pypkqq be locally Lipschitz continuous on

Dy with Lipschitz constant LV and Assumption 1 hold. Then,

for the perturbed deterministic system (27), V pkq satisfies

∆V pypk ` 1qq ď ´ αmint
V pypkqq

α
,

maxtV r1pypkqq, V r2pypkqquu

` LV }gpk, ypkqq}, (29)

where ∆V pypk ` 1qq is computed along the solution of the

unperturbed deterministic system.

Proof The proof is similar to [48], which is developed for

exponential stability, and is thus omitted. ˝

The following theorem provides the behavior of deterministic

fixed-time stable DT systems under bounded deterministic

perturbations.

Theorem 2. Suppose there exists a Lyapunov function V :

Ωy ÞÑ R
` which is locally Lipschitz on an open neighborhood

Ωy of the origin with Lipschitz constant LV and satisfies (3)-

(5) for the nominal system (1) for some real positive numbers

α, r1, r2 ą 0 such that 0 ă α ă 1, 0 ă r1 ă 1, and r2 ą 1.

Let Assumption 1 hold. Then, around the origin, the system

(27) is fixed-time attractive to the following bound

by “ ty P Ωy : V pyq ď Bu, (30)

where

B “

#

pm1LV δ0
α

q
1

r2 , 1 ă V pyp0qq ă α
1

1´r2 ,

pm2LV δ0
α

q
1

r1 , α
1

1´r1 ă V pyp0qq ď 1,
(31)

and its fixed-time bounded settling-time function is Kpyp0qq ď
K˚ where

K˚ “

#

tα´1

c pα
1

1´r2 ´ 1qu ` 1, 1 ă V pyp0qq ă α
1

1´r2 ,

tα´1

d pα
r1

r1´1 ´ αqu ` 1, α
1

1´r1 ă V pyp0qq ď 1,

(32)

αc “ p1 ´ 1

m1

qα, αd “ p1 ´ 1

m2

qα. The constants m1 ą 1

and m2 ą 1 are selected such that

"

αBr2 ´ m1LV δ0 ą 0, V p0q ą 1,

αBr1 ´ m2LV δ0 ą 0, V p0q ď 1
(33)
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Proof According to Theorem 1, the origin is the fixed-time

stable equilibrium for the unperturbed or nominal system (1).

Lemma 1 and (28) imply that

∆V pypk ` 1qq ď ´αmint
V pypkqq

α
,

maxtV r1pypkqq, V r2pypkqquu ` LV δ0. (34)

For 1 ă V pyp0qq ă α
1

1´r2 , (34) leads to

∆V pypk ` 1qq ď ´αV r2pypkqq ` LV δ0. (35)

Having 1 ă V pyp0qq ă α
1

1´r2 and V pyp0qq ą B, and using

(33) and m1 ą 1, one has

αBr2 ´ m1LV δ0 ą 0 ñ ´αBr2 ` m1LV δ0 ă 0,

ñ ´αBr2 ` LV δ0 ă 0, (36)

which results in

LV δ0 ă
1

m1

αBr2 . (37)

For yp0q R by (V pyp0qq ą B) and 1 ă V pyp0qq ă α
1

1´r2 , (35)

and (37) imply that

∆V pypk ` 1qq ď ´αV r2pkq `
1

m1

αBr2 . (38)

Using V pypkqq ą B, (38) is upper bounded as follows

∆V pypk ` 1qq ď ´αcV
r2pypkqq, (39)

such that αc “ p1 ´ 1

m1

qα is positive. Using the results of

part 2 in Theorem 1 proof, (39) implies that for yp0q R by

and 1 ă V pyp0qq ă α
1

1´r2 with α ă m1LV δ0, ypkq
reaches the invariant set (30) within the fixed time steps

K˚ “ tα´1

c pα
1

1´r2 ´ 1qu ` 1 and remains there after.

Using (34), for α
1

1´r1 ă V pyp0qq ď 1, one has

∆V pypk ` 1qq ď ´αV r1pypkqq ` LV δ0. (40)

Having α
1

1´r1 ă V pyp0qq ď 1 and V pyp0qq ą B, and using

(33) and m2 ą 1, one has

αBr1 ´ m2LV δ0 ą 0 ñ ´αBr1 ` m2LV δ0 ă 0,

ñ ´αBr1 ` LV δ0 ă 0. (41)

From (41), one obtains

LV δ0 ă
1

m2

αBr1 . (42)

For yp0q R by (V pyp0qq ą B) and α
1

1´r1 ă V pyp0qq ď 1, then

(40) and (42) imply that

∆V pypk ` 1qq ď ´αV r1pypkqq `
1

m2

αBr1 . (43)

Using V pypkqq ą B, (43) is upper bounded as follows

∆V pypk ` 1qq ď ´αdV
r1pypkqq, (44)

such that αd “ p1 ´ 1

m2

qα is positive. Using the results of

part 2 in Theorem 1 proof, (44) implies that for yp0q R by

and α
1

1´r1 ă V pyp0qq ă 1 with m2LV δ0 ă α, ypkq
reaches the invariant set (30) within the fixed time steps

K˚ “ tα´1

d pα
r1

r1´1 ´ αqu ` 1 and remains in by ever after.

This completes the proof. ˝

Remark 2. In (30), the bound B is either a function of m1

or m2, as given is (31). Notice that the fixed-time attractive

bound (31) increases by choosing large values for m1 or m2

and accordingly the fixed-time of convergence given in (32)

decreases. Therefore, the bigger we choose the bounded set

B, the shorter the fixed-time of convergence and vice-versa.

IV. FIXED-TIME STABILITY IN PROBABILITY FOR

STOCHASTIC DISCRETE-TIME SYSTEMS

Consider the DT nonlinear stochastic system given by

ypk ` 1q “f pypkqq ` gpypkqqνpkq fi F pypkq, νpkqq,

yp0q
a.s.
“ y0, k P N, (45)

where, for every k P N, ypkq P D Ď R
n is a D-valued

stochastic process with y0 P D, and νpkq P R
n, k P N, is the

independent and identically distributed zero-mean stochastic

process on pΩ,F ,Pq. f : D Ñ D and g : D Ñ R
nˆn are

continuous functions with f p0q “ 0 and gp0q “ 0 where

ye “ 0 is the equilibrium of the system (45), if and only

if yp.q is P-almost surely (a.s.) equal to zero (i.e., yp.q
a.s.
“ 0)

and is a solution of (45).

A stochastic process y : r0, ks ˆ Ω Ñ D is a solution

sequence of (45) on the discrete-time interval r0, κs with initial

condition yp0q
a.s.
“ y0 if ypkq satisfies (45) almost surely.

The following definitions are given for stability in probability

for the zero solution ypkq
a.s.
” 0 of the DT nonlinear stochastic

system (45).

Definition 4. [46], [49]

‚ The zero solution ypkq
a.s.
” 0 to (45) is Lyapunov stable

in probability, if for every ε ą 0 and ρ P p0, 1q, there

exist δ “ δpε, ρq ą 0 such that, for all ||y0|| ă δ,

P

ˆ

sup
kPN

}ypkq} ą ε

˙

ď ρ.

‚ The zero solution ypkq
a.s.
” 0 to (45) is asymptotically

stable in probability if it is Lyapunov stable in probability

and, for every ρ P p0, 1q, there exists δ “ δpρq ą 0 such

that if ||y0|| ă δ, then

P

ˆ

lim
kÑ8

}ypkq} “ 0

˙

ě 1 ´ ρ.

‚ The zero solution ypkq
a.s.
” 0 to (45) is globally asymp-

totically stable in probability if it is Lyapunov stable in

probability and, for all y0 P R
n,

P

ˆ

lim
kÑ8

}ypkq} “ 0

˙

“ 1.

‚ The zero solution ypkq
a.s.
” 0 to (45) is exponentially

stable in probability if for some 0 ă γ ă 1 independent

of ν, it is Lyapunov stable in probability and, for every

ρ P p0, 1q, there exists δ “ δpρq ą 0 such that if ||y0|| ă
δ, then

P

ˆ

lim
kÑ8

}γkypkq} “ 0

˙

ě 1 ´ ρ.
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‚ The zero solution ypkq
a.s.
” 0 to (45) is globally expo-

nentially stable in probability if for some 0 ă γ ă 1

independent of ν, it is Lyapunov stable in probability and,

for all y0 P R
n,

P

ˆ

lim
kÑ8

}γkypkq} “ 0

˙

“ 1.

Definition 5. [46] For the DT stochastic dynamical system

(45) and V : D Ñ R
`, the difference operator ∆V of y is

given as follows,

∆V pyq “ ErV pF py, νqqs ´ V pyq, y P D.

Note that the difference operator in Definition 5 is a deter-

ministic function and does not involve the expectation of the

system state trajectory and only involves the expectation over

the random noise variable ν. Moreover, the random vectors

νpkq, k P N, all have the same distribution.

In the following, sufficient conditions for Lyapunov, asymp-

totic and exponential stability in probability for the system

(45) are given.

Lemma 2. [45], [49]: Consider the discrete-time nonlinear

stochastic system (45) and assume that there exists a contin-

uous function V : D Ñ R
` such that

V p0q “ 0,

V pyq ą 0, y P D, y ‰ 0,

∆V pyq ď 0, y P D.

Then the zero solution ypkq
a.s.
” 0 to (45) is Lyapunov stable

in probability. Moreover, if

∆V pyq ă 0, y P D, y ‰ 0,

then the zero solution ypkq
a.s.
” 0 to (45) is asymptotically

stable in probability. Furthermore, if

∆V pyq ă ´γV pyq, 0 ă γ ă 1, y P D, y ‰ 0,

then the zero solution ypkq
a.s.
” 0 to (45) is exponentially stable

in probability. If D “ R
n and V p¨q is radially unbounded, then

the zero solution ypkq
a.s.
” 0 to (45) is globally asymptotically

or exponentially stable in probability under the defined Lya-

punov conditions.

The following definition provides the characteristics of

stochastic DT systems under which they are fixed-time stable

in probability.

Definition 6. (Fixed-time stability in probability) Consider

the stochastic DT nonlinear system (45). The zero solution of

ypkq
a.s.
” 0 to the system (45) is said to be fixed-time stable in

probability, if there exist a stochastic process called stochastic

settling time function Kpy, ¨q, such that:

1) The system (45) is Lyapunov stable in probability. That

is, for every ǫ ą 0 and ρ P p0, 1q, there exists a δ “
δpǫ, ρq ą 0 such that for all yp0q

a.s.
“ y0 P Dzt0u, if

||yp0q|| ď δ, then

P

˜

sup
kPr0,Kpy0,νqq

›

›ypkq
›

› ą ε

¸

ď ρ.

2) For every initial condition yp0q
a.s.
“ y0 P Dzt0u, the

solution sequence ypkq is defined on
“

0,K
`

y0, ν
˘˘

, ν P
Ω, ypkq P Dzt0u, k P

“

0,K
`

y0, ν
˘˘

, ν P Ω, and

P
`›

›y
`

K
`

y0, ν
˘˘›

› “ 0
˘

“ 1.

3) The stochastic settling-time function Kpy, ¨q, for all y P
D, is finite almost surely and there exist a fixed-time

upper bound for the stochastic settling-time Kpy, ¨q, i.e.,

ErKpy0, νqs ď Kmax where Kmax is a positive integer.

The zero solution ypkq
a.s.
” 0 to (45) is globally fixed-time

stable in probability if it is fixed time stable in probability

with D “ R
n.

Lemma 3. Consider the nonlinear stochastic DT system (45)

and the scalar system

V pxpk ` 1qq “ γpV pxpkqqq, xpkq P R
n, (46)

where

γpV pxpkqqq “ V pxpkqq ´ αmint
V pxpkqq

α
,

maxtV r1pxpkqq, V r2pxpkqquu, (47)

such that 0 ă α ă 1, 0 ă r1 ă 1, and r2 ą 1. If there exists

a continuous positive-definite function V : Rn Ñ R
`and the

nondecreasing function γ : R` Ñ R
`such that

E
“

V pF py, νqs ď γpV pyqq, y P R
n,

then

V
`

y0
˘

ď x0, x0 P R
`

implies

ErV pypkqqs ď xpkq, k P N,

where the sequence xpkq, k P N, satisfies (46).

Proof. This Lemma is an extension of finite-time stability

conditions [46], which is provided for fixed-time stability

conditions. The proof is similar and is omitted. ˝
The following theorem represents the sufficient Lyapunov

conditions for fixed-time stability in probability for stochastic

DT nonlinear systems.

Theorem 3. Consider the nonlinear stochastic system (45).

If there exists a continuous and radially unbounded function

V : Rn Ñ R
` such that

V p0q “ 0, (48)

V pyq ą 0, y P R
nzt0u, (49)

ErV pF py, νqqs ď γpV pyqq, y P R
nzt0u, (50)

where γp.q is given in (47), then the zero solution ypkq
a.s.
” 0

to (45) is globally fixed-time stable in probability. Moreover,

there exists a stochastic settling-time K : Rn Ñ N such that

E
“

K
`

y0
˘‰

ď K̂ px0q ă Kmax, (51)

where Kp¨q is almost surely finite stochastic settling-time

function and K̂ px0q is the finite settling-time function of

(46) and Kmax is the fixed upper bound for K̂ px0q and

E
“

K
`

y0
˘‰

.
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Proof Based on (47) and (50), one has

ErV pF py, νqqs ´ V pyq ď γpV pyqq ´ V pyq

ă 0, y P R
nzt0u,

and hence, it follows from Lemma 2 that the zero solution

ypkq
a.s.
“ 0 to (45) is globally asymptotically stable in

probability. Now, consider the nonlinear DT system (46) and

note that, by Theorem 1, the zero solution xpkq ” 0 to

(46) is globally fixed-time stable and there exists K̂ px0q ă

tα
1

1´r1 p1 ´ α
1

1´r1 qu ` tα´1pα
1

1´r2 ´ 1qu ` 3 such that

xpkq “ 0, k ě K̂ px0q , x0 P R
`.

Now, let V
`

y0
˘

ă x0, yp0q
a.s.
“ y0 P R

n, and it follows from

Lemma 3 that

ErV pypkqqs “ 0, k ě K̂ px0q .

Since V pypkqq, k P N, is a nonnegative random variable, it

follows that V pypkqq
a.s.
“ 0 for all k ě K̂ px0q. Then, it

follows from (48) and (49) that ypkq
a.s.
“ 0 for all k ě K̂ px0q.

Therefore, there exists a stochastic settling-time ErK
`

y0
˘

s ď

K̂ px0q such that ypkq “ 0, k ě K
`

y0
˘

. Finally, since

ErK
`

y0
˘

s ď K̂ px0q, it follows that

E
“

K
`

y0
˘‰

ď K̂ px0q

ă tα
1

1´r1 p1 ´ α
1

1´r1 qu ` tα´1pα
1

1´r2 ´ 1qu ` 3,

and hence, Definition 6 is satisfied. ˝

V. EXAMPLE ILLUSTRATION AND SIMULATION

This sections provides examples to verify the correctness

of the presented fixed-time stability results. Example 1 is

presented for deterministic systems without uncertainties and

perturbations. Example 2 is a counterexample that shows

that if the Lyapunov conditions for a deterministic system

guarantees its fixed-time stability, by adding noise to the

system, the same Lyapunov conditions only guarantee expo-

nential stability in probability, and not fixed-time stability in

probability. This example clearly shows that moving from a

fixed-time stable deterministic system to a stochastic system

with the same dynamics, one might look for new Lyapunov

function candidates than the one used for the deterministic

system to show its fixed-time stability in probability, if there

exists one.

Example 1. (Fixed-time stable deterministic discrete-time

system) Consider the scalar nonlinear DT system given as

follows

ypk ` 1q “aypkq ´ α1signpypkqqˆ

mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu, (52)

where ypkq P R , k P N, 1

2
ă a ď 1, α1 P p0, 1q, r1

1
P p0, 1q

and r1
2

ą 1. Now, using Theorem 1, it is shown that the zero

solution ypkq “ 0 to (52) with a “ 1 is globally fixed-time

stable. Consider V pypkqq “ y2pkq and yL ă yp0q ă yH where

yL “ α
1 1

1´r1 and yH “ α
1 1

1´r2 (Note that if yp0q ą yH or

yp0q ă yL, then the zero solution ypkq “ 0 for (52) with

a “ 1 is fixed-time stable with Kpyp0qq “ 1).

The difference of V pypkqq “ y2pkq is as follows,

∆V pypkqq “ raypkq ´ α1signpypkqqˆ

mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uus2 ´ y2pkq

“paypkqq2

´ 2aα1|ypkq|mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu

` pα1 mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uuq2 ´ y2pkq

“pa2 ´ 1qy2pkq

` α1 mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uuˆ

p´2a|ypkq| ` α1 mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uuq.
(53)

Using the fact that

|ypkq| ą α1 mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu, (54)

one has

´ 2a|ypkq| ` α1 mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu ă

p1 ´ 2aqα1 mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu. (55)

Therefore, using (55), (53) leads to,

∆V pypkqq ď pa2 ´ 1qy2pkq

` p1 ´ 2aqα12 minty2pkq{α12,maxty2r
1

1pkq, y2r
1

2pkquu,
(56)

where using V pypkqq “ y2pkq one can rewrite (56) as follows,

∆V pypkqq ď pa2 ´ 1qV pypkqq

` p1 ´ 2aqα12 mintV pkq{α12,maxtV r1

1pkq, V r1

2pkquu. (57)

Sice 1

2
ă a ď 1, (57) is rewritten as

∆V pypkqq ď ´βα12 mintV pkq{α12,maxtV r1

1pkq, V r1

2pkquu,
(58)

where β “ p2a ´ 1q and for 1

2
ă a ď 1, 0 ă β ď 1.

For a “ 1, (58) leads to

∆V pypkqq ď ´α12 mintV pkq{α12,maxtV r1

1pkq, V r1

2pkquu.
(59)

which is analogous to (5) where α “ α12, r1 “ r1
1

and r2 “ r1
2
,

and all the parameters conditions mentioned in Theorem 1 are

satisfied. Therefore, it is shown that system (52) with a “ 1 is

globally fixed-time stable. Based on (6), the fixed upper bound

for the settling-time function of system (52) with a “ 1 is

K˚ “ tα1
2

1´r1
1 p1 ´ α

1 2

1´r1
1 qu ` tα1´2pα1

2

1´r1
2 ´ 1qu ` 3.

(60)

The state trajectory of the system (52) with a “ 1 is

simulated in Fig. 1 for 4 different values of parameters α1,

r1
1

and r1
2

to verify the fixed-time convergence of the system

(52) with a “ 1 where in Cases 1-4, yp0q “ 20 such that

yL ă yp0q ă yH in Cases 1-3 and yp0q ą yH for Case 4. As

depicted in Fig. 1, the settling-time is less than K˚ for Cases

1-3 where K˚ is calculated using (60) and given in Table 1,

and as mentioned in (25), for case 4, Kpyp0qq “ 1.
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TABLE I
PARAMETERS α1 , r1

1
, r1

2
, AND FIXED-TIME UPPER BOUND OF

SETTLING-TIME FUNCTION (K˚) FOR (52) WITH a “ 1 AND THE INITIAL

CONDITION yp0q “ 8.

α1 r1

1
r1

2
K˚ yL yH

Case 1 0.4 0.2 1.2 59601 0.31 97.6

Case 2 0.7 0.9 1.1 2558 0.02 35.4

Case 3 0.3 0.6 1.3 34002 0.04 55.3

Case 4 0.7 0.9 10 3 0.02 1.04

0 5 10 15

k (time steps)

0

5

10

15

20

y(
k)

Case 1

0 5 10 15

k (time steps)

0

5

10

15

20

y(
k)

Case 2

0 5 10 15

k (time steps)

0

5

10

15

20

y(
k)

Case 3

0 5 10 15

k (time steps)

0

5

10

15

20

y(
k)

Case 4

Fig. 1. Different fixed times of convergence for system (52) with a “ 1 and
different values of α1 , r1

1
and r1

2
.

0 5 10

k (time steps)

0

0.05

0.1

y(
k)

Case 1, y(0)=0.1

0 5 10

k (time steps)

0

2

4

6

8

y(
k)

Case 1, y(0)=8

0 5 10

k (time steps)

0

20

40

60

80

y(
k)

Case 1, y(0)=80

0 5 10

k (time steps)

0

2000

4000

6000

8000

y(
k)

Case 1, y(0)=8000

Fig. 2. Fixed-time convergence for Case 1 of system (52) with a “ 1 for
different initial values.

In Fig. 2, the state trajectory of system (52) with a “ 1 and

Case 1 parameters (α1 “ 0.4, r1
1

“ 0.2, r1
2

“ 1.2) is simulated

for 4 different initial conditions, yp0q “ 0.1, pyp0q ă yLq,

yp0q “ 8, pyL ă yp0q ă yHq, yp0q “ 80, pyL ă yp0q ă yHq
and yp0q “ 8000, pyH ă yp0qq where as expected for yp0q “
0.1 and yp0q “ 8000, the settling-time is Kpyp0qq “ 1, and for

yp0q “ 8 and yp0q “ 80 the convergence to zero is achieved

in few steps which ensures Kpyp0qq ď K˚.

However, for 1

2
ă a ă 1, based on (58), Lemma 2 and a

similar procedure to Theorem 1 proof, one can show that the

system (52) with 1

2
ă a ă 1 is exponentially stable.

Example 2. (Lyapunov function candidate: from determinis-

tic fixed-time stable systems to their stochastic counterparts)

In this counterexample we show that the deterministic global

fixed-time stable system may not preserve its fixed-time sta-

bility under the same Lyapunov function candidate after it is

exposed to stochastic noise.

Consider the scalar stochastic nonlinear DT system as fol-

lows

ypk ` 1q “ aypkq ´ α1signpypkqqˆ

mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu ` bypkqνpkq,
(61)

where ypkq P R , k P N, α1 P p0, 1q, r1
1

P p0, 1q and r1
2

ą 1,

νpkq P R is a zero-mean stochastic noise with Erνpkqs “ 0

and Erν2pkqs “ σ2, 1

2
ă a ď 1 and b ă

b

1´a2

σ2 .

Now, using Theorem 3 and the results of Example 1, it is

shown that the zero solution ypkq
a.s.
“ 0 to (61) (the stochastic

version of (52)) does not show global fixed-time stability in

probability for a “ 1 but preserves its exponential stability in

probability for 1

2
ă a ă 1, using the same Lyapunov function

as in Example 1.

Consider V pypkqq “ y2pkq such that for (61), one has

∆V pypkqq “

Erpaypkq ´ α1signpypkqqmint|ypkq|{α1,

maxt|ypkq|r
1

1 , |ypkq|r
1

2uu ` bypkqνpkqq2s ´ y2pkq

“Era2y2pkq ` pα1 mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uuq2

` b2y2pkqν2pkq ` 2aby2pkqνpkq

´ 2aα1|ypkq|mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu

´ 2bα1νpkq|ypkq|mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uus

´ y2pkq “ pa2 ` b2σ2 ´ 1qy2pkq

` α12 mint|ypkq|2{α12,maxt|ypkq|2r
1

1 , |ypkq|2r
1

2uu

´ 2aα1|ypkq|mint|ypkq|{α1,maxt|ypkq|r
1

1 , |ypkq|r
1

2uu.
(62)

Using (54), (62) leads to,

∆V pypkqq ď pa2 ` b2σ2 ´ 1qy2pkq

´ p2a ´ 1qα12 minty2pkq{α12,maxty2r
1

1pkq, y2r
1

2pkquu,
(63)

where using V pypkqq “ y2pkq one can rewrite (63) as follows,

∆V pypkqq ď pa2 ` b2σ2 ´ 1qV pkq

´ βαmintV pkq{α,maxtV pkqr1pkq, V pkqr2pkquu, (64)
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where β “ 2a ´ 1, α “ α12, r1 “ r1
1

and r2 “ r1
2
.

For a “ 1, (64) reduces to

∆V pypkqq ď b2σ2V pkq

´ αmintV pkq{α,maxtV pkqr1pkq, V pkqr2pkquu. (65)

However, (65) can not support the global fixed-time stability in

probability of the system (61) with a “ 1, due to the injected

noise stochasticity, while in Example 1 it was shown that the

same system without noise is fixed-time stable.

For 1

2
ă a ă 1 and b ă

b

1´a2

σ2 , one has 0 ă β ă 1 and

a2 ` b2σ2 ´ 1 ă 0. Thus, using (64) one obtains

∆V pypkqq ď

´ βαmintV pkq{α,maxtV pkqr1pkq, V pkqr2pkquu. (66)

By using (66), Lemma 2 and a similar procedure to Theorem 3

proof, one can show that the system (61) with 1

2
ă a ă 1 and

b ă
b

1´a2

σ2 is exponentially stable in probability. Therefore,

the stochastic system (61) preserves exponential stability in

probability for 1

2
ă a ă 1 and b ă

b

1´a2

σ2 .

VI. CONCLUSION

This paper addressed the fixed-time stability for deterministic

and stochastic discrete-time (DT) autonomous systems based

on fixed-time Lyapunov stability analysis. Novel Lyapunov

conditions are derived under which the fixed-time stability

of autonomous DT deterministic and stochastic systems is

certified. The sensitivity to perturbations for fixed-time stable

DT systems is analyzed and the analysis shows that fixed-time

attractiveness can be resulted from the presented Lyapunov

conditions. For both cases of fixed-time stable and fixed-time

attractive systems, the fixed upper bounds of the settling-time

functions are given. For future work, we intend to employ the

introduced DT systems fixed-time stability analysis for control

and identification of such systems.
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