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Abstract—Deep learning architectures have been widely fos-
tered throughout the last years, being used in a wide range of
applications, such as object recognition, image reconstruction,
and signal processing. Nevertheless, such models suffer from
a common problem known as overfitting, which limits the
network from predicting unseen data effectively. Regularization
approaches arise in an attempt to address such a shortcoming.
Among them, one can refer to the well-known Dropout, which
tackles the problem by randomly shutting down a set of neurons
and their connections according to a certain probability. There-
fore, this approach does not consider any additional knowledge
to decide which units should be disconnected. In this paper,
we propose an energy-based Dropout (E-Dropout) that makes
conscious decisions whether a neuron should be dropped or not.
Specifically, we design this regularization method by correlating
neurons and the model’s energy as an importance level for
further applying it to energy-based models, such as Restricted
Boltzmann Machines (RBMs). The experimental results over
several benchmark datasets revealed the proposed approach’s
suitability compared to the traditional Dropout and the standard
RBMs.

Index Terms—Machine learning, Restricted Boltzmann Ma-
chines, Regularization, Dropout, Energy-based Dropout

I. INTRODUCTION

Machine learning (ML) techniques have been broadly inves-
tigated to create authentic representations of the real world.
Recently, deep learning has emerged as a significant area
in ML [1], since its techniques have achieved outstanding
results and established several hallmarks in a wide range of
applications, such as image classification, object detection, and
speech recognition, to cite a few.

Restricted Boltzmann Machines (RBMs) [2] attracted con-
siderable attention in the past years, mainly due to their
simplicity, high-level parallelism, and comprehensive repre-
sentation capacity. Such models stand for stochastic neural
networks based on energy principles and guided by physi-
cal laws. Usually, these networks learn in an unsupervised
fashion [3] and are applied in various problems, e.g., image
reconstruction, collaborative filtering, and feature extraction.

Machine learning algorithms are commonly trained accord-
ing to an error metric called loss function (training error).
Nevertheless, their biggest challenge lies in achieving a low
generalization error (testing error). Whenever there is a high
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discrepancy between training and testing errors, the model
expects to “memorize” the training data, losing its gener-
alization capacity and leading to reduced recognition rates
when confronted with new data. One can acknowledge such a
problem as overfitting.

Numerous attempts have been engaged in order to lessen
the overfitting problem in classification tasks, such as early-
stopping training or even introducing regularization methods
such as soft-weight sharing [4], L1 [5], and L2 [6], Drop-
Connect [7], among others. Alternatively, the best way to
employ a regularization method would be to average the
predictions of all possible parameter configurations, weighing
the possibilities and checking out which would perform better.
Nevertheless, such a methodology demands a cumbersome
computational effort, only feasible for pitiful or non-complex
models [8].

Some years ago, an regularization approach known as
Dropout was proposed by Srivastava et al. [9] and aimed
to turn off learning neurons using a random Bernoulli dis-
tribution. In other words, neurons and their outgoing and
incoming connections are temporarily removed from the net-
work according to a probability, allowing the evaluation of
distinct sub-architectures and providing more robust training
knowledge. Although it seems a straightforward method, the
problem lies in that neurons are randomly dropped based only
on a probability value (p), not taking advantage of valuable
information related to the model itself. Also, the p value have
to be carefully chosen, since high probabilities of shutting off
neurons may negatively impact the learning process.

Therefore, we aim to address such a problem through
an energy-based Dropout, which creates a relationship be-
tween the system’s neurons and its energy, removing standard
Dropout’s hyper-parameter (p) and the aleatory behavior while
feeding in more robust information about the learning process
itself.

In a nutshell, the main contributions of this paper are
threefold: (i) to introduce a new type of regularization based
on the model’s energy, (ii) to introduce an energy-based
Dropout in the context of RBMs, and (iii) to fill the lack
of research regarding Dropout-based regularizations in RBMs.
The remainder of this paper is organized as follows. Section II
presents some studies and theoretical background concerning
Dropout. Section III explains the energy-based Dropout, while
Section IV presents the central concepts of RBM, Dropout
RBM, and energy-based Dropout RBM. Section V discusses
the experimental setup employed in this work, while Sec-
tion VI presents the experimental results. Finally, Section VII
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states conclusions and future works.

II. BACKGROUND AND RELATED WORK

Dropout is a probability-based method [9] that decides
whether a set of neurons should be dropped or not. This section
presents the main concepts regarding such an approach and
studies concerning such a regularization method.

A. Related Works

Only a few recent studies have addressed the RBMs’ overfit-
ting problem with Dropout-based regularization. For instance,
Wang et al. [10] have introduced a fast version of Dropout,
but not aiming RBMs as their primary focus. The proposed
approach is employed in classification and regression tasks and
works by sampling from a Gaussian approximation instead of
applying the Monte Carlo “optimization”.

Ba et al. [11] proposed an adaptive Dropout for training
deep neural networks, which is achieved by computing local
expectations of binary dropout variables and by calculating
derivatives using backpropagation and stochastic gradient de-
scent. The experiments showed that the method achieved low
misclassification rates in the MNIST and NORB datasets,
highly competitive with CNNs.

Su et al. [12] introduced a Dropout-based RBM considering
field-programmable gate arrays, enabling improved implemen-
tation and hardware efficiency. Additionally, Wang et al. [13]
presented an extensive review of different regularization meth-
ods in the context of RBMs, such as weight decay, network
pruning, and Dropconnect. Although all these methods have
obtained state-of-the-art results in some applications, their
main drawback concerns setting up parameters.

Tomczak [14] employed different regularization methods for
RBMs to improve their classification and generalization per-
formance. In the experiments, the application of the considered
regularization techniques did not result in any improvement.
Nevertheless, when combining the information-theoretic regu-
larization and the reconstruction cost, the proposed approach
improved the log-probabilities.

In summary, RBM-related works show that when the main
task is classification, such technique takes little advantages
from the Dropout regularizer. On the other hand, it may boost
the unsupervised learning, increasing the log-probabilities,
and providing robustness data reconstruction. Considering that
an RBM has a simple architecture, connections can quickly
saturate, thus forcing the latent space to learn only the more
prominent features from the data, which cause difficulties in
data generalization and generation. It is interesting to employ
an advanced regularization method, as the proposed approach,
such that the energy associated with the latent representation
indicates which hidden neurons need to be off to encourage
others to learn more.

B. Dropout Regularization

Dropout is a robust regularization method with a low
computational cost that evaluates countless sub-architectures
by randomly dropping out some neurons along the training

process. Such a heuristic inhibits units from learning their
neighbors’ mistakes or “memorizing” the input data, been
widely employed for classification tasks. Figure 1 illustrates
examples of both standard and Dropout network architectures.

(a) (b)
Fig. 1. Examples of: (a) standard network architecture and (b) a Dropout
network architecture.

Furthermore, it is straightforward to elucidate the mathemat-
ical foundations of Dropout. Let r be a vector of n neurons of
a specific layer L, where each variable ri, i = {1, 2, . . . , n},
assumes the value 0 (zero) with probability p, regardless of
other variables rj , j = {1, 2, . . . , n}, where i 6= j. If ri = 0,
the ith unit from the layer L is temporarily switched-off
alongside with its connections, while the unit is held when
ri = 1.

Notice the probability p is sampled directly from a Bernoulli
distribution [9], as follows:

ri ∼ Bernoulli(p),∀i = {1, 2, . . . , n}. (1)

Besides, such a probability value is re-sampled for every batch
during training.

Let γ be the network activation function and WL ∈ <m×n

the weight matrix in a specific layer L. The activation vector
yL ∈ <n can be formulated as follows:

yL = γ(WLxL), (2)

where xL ∈ <m is the input from layer L.
In order to consider the dropout of neurons in this layer,

the previous equation can be extended to the following:

yL = r ∗ γ(WLxL), (3)

where ∗ stands for the point-wise operator.
Notably, the Dropout regularization provides training based

on all possible 2n sub-networks, as neurons are randomly
shut down according to a probability p. Nevertheless, at the
inference time (testing step), the weight matrix WL needs
to be re-scaled with p in order to consider all possible sub-
networks, as follows:

W̃L = pWL. (4)
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III. ENERGY-BASED DROPOUT

In this section, we present the proposed approach denoted
as energy-based Dropout (E-Dropout), which establishes a
straightforward relationship between hidden neurons and the
system’s energy, hereinafter denoted “Importance Level” (I).
The idea is to take advantage of the model’s behavior for
further enabling a more conscious decision whether a set of
neurons should be dropped or not.

Let IL ∈ <n be the Importance Level of the hidden neurons
at a specific layer L, which directly correlates the hidden
probabilities with the RBM total energy. One can define IL
as follows:

IL =

(
Ptr(xL = 1)

Pi(xL = 1)

)
|∆E|

, (5)

where Ptr(xL = 1) represents the probability of activating
hidden neurons in layer L after the training procedure, and
Pi(x

L = 1) stands for the activation probability of the
hidden neurons in layer L given the input data x only, i.e.,
before training. Finally, |∆E| represents the absolute value of
the system’s energy variation, i.e., the energy after training
subtracted from the initial energy measured.

The main intuition behind such a relationship derives from
the RBM’s energy, in which the hidden configuration partic-
ipate directly to the total energy, as shown in Equation 8 in
the next section. The idea is to represent a gain or loss in
information by applying a ratio between the pre- and post-
neurons activation. Looking towards Equation 5, one can
observe an innovative way to model the relationship between
neuron probability and the system’s energy. In short, the
meaning of a hidden neuron in the model is proportional to
its importance level.

After computing IL for each hidden neuron, it is possible to
obtain the Dropout mask s by comparing it with a uniformly
distributed random vector as follows:

s =

{
1, if IL < u

0, otherwise,
(6)

where u ∈ <n is a uniformly distributed random vector, i.e.,
u ∈ [0, 1). Furthermore, one can calculate the activation vector
yL as follows:

yL = s ∗ γ(WLxL). (7)

It is crucial to highlight that neurons tend to increase or
decrease their importance level during the learning process
based on the information acquired from the data distribution,
where a neuron is less likely to be dropped out when its
importance assumes a higher value. Additionally, when the
system’s energy is close to zero (more accurate data distribu-
tion learning), the energy-based Dropout allows a continuous
drop out of neurons to learn additional information. Finally,
during the inference phase, it is unnecessary to re-scale the
weight matrix.

IV. RESTRICTED BOLTZMANN MACHINES

Restricted Boltzmann Machines [15] are stochastic neural
networks that deal with unlabeled data efficiently. In other
words, RBMs are a suitable approach for unsupervised prob-
lems such as image reconstruction, feature extraction, pre-
training deep networks, and collaborative filtering.

Such networks are modeled as bipartite graphs and
parametrized by physical concepts like energy and entropy.
Thereby, RBMs have a simple architecture with two binary-
valued layers: the visible layer v with m units, and the hidden
layer h with n units. Each connection between a visible vi
and a hidden unit hj is weighted by wij . The weight matrix
Wm×n retains the knowledge of the network1. Figure 2 shows
the standard architecture of an RBM.

h
h …

v

1 h2 hn

vm…v
3

v
2

v
1

W

Fig. 2. The standard RBM architecture.

While the visible layer handles the data, the hidden layer
performs the feature extraction by detecting patterns and learn-
ing the data distribution in a probabilistic manner. Equation 8
describes the energy function of an RBM, where a ∈ <m

and b ∈ <n stand for the biases of visible and hidden units,
respectively:

E(v,h) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
m∑
i=1

n∑
j=1

vihjwij . (8)

In addition, the joint probability of an arrangement (v,h)
can be modeled as folows:

P (v,h) =
e−E(v,h)

Z
, (9)

where Z is the partition function, which is a normalization
term for the probability over all possible visible and hidden
states. Moreover, the marginal probability of an input vector
is represented as follows:

P (v) =

∑
h

e−E(v,h)

Z
. (10)

As in bipartite graph and in an undirected model, the
activations for both units (visible and hidden) are mutually
independent. Therefore, the formulation of their conditional
probabilities is straightforward, being defined by as follows:

1Since RBMs have one hidden layer only, we omitted the layer index L.
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P (v|h) =

m∏
i=1

P (vi|h), (11)

and

P (h|v) =

n∏
j=1

P (hj |v), (12)

where P (v|h) and P (h|v) represent the probability of the
visible layer given the hidden states and the probability of the
hidden layer given the visible states, respectively.

From Equations 11 and 12, we can derive the probability
of a single active visible neuron i given the hidden states, and
the probability of a single active hidden neuron j given the
visible states, as follows:

P (vi = 1|h) = σ

 n∑
j=1

wijhj + ai

 , (13)

and

P (hj = 1|v) = σ

(
m∑
i=1

wijvi + bj

)
, (14)

where σ(·) stands for the logistic-sigmoid function.
Essentially, an RBM learns a set of parameters θ =

(W ,a, b) during the training process. Such task can be
modeled as an optimization problem aiming to maximize the
product of data probabilities for all training set V , as follows:

arg max
Θ

∏
v∈V

P (v). (15)

Such a problem is commonly treated by applying the
negative of the logarithm function, known as the Negative
Log-Likelihood (NLL), which represents the approximation of
the reconstructed data regarding the original data distribution.
Therefore, it is possible to take the partial derivatives of W ,
a and b at iteration t. Equations 16, 17 and 18 describe the
update rules for this set of parameters:

W (t+1) = W (t) + η(vP (h|v)− ṽP (h̃|ṽ)), (16)

a(t+1) = a(t) + (v − ṽ), (17)

and

b(t+1) = b(t) + (P (h|v)− P (h̃|ṽ)), (18)

where η is the learning rate, ṽ stands for the reconstructed
input data given h, and h̃ represents an estimation of the
hidden vector h given ṽ.

Hinton et al. [15] proposed one of the most efficient ways
to train an RBM and estimate the visible and hidden layers,
known as the Contrastive Divergence (CD). Such an approach
uses Gibbs sampling to infer the neurons’ states, initializing
the visible units with the training data.

A. Dropout RBMs

Considering the concepts mentioned above, a Dropout RBM
can be formulated as a simple RBM extended with one binary
random vector r ∈ {0, 1}n. In this new formulation, r stands
for the activation or dropout of the neurons in the hidden layer,
where each variable ri determines whether the neuron hi is
going to be dropped out or not. Figure 3 illustrates such an
idea, in which the hidden unit h2 is shutoff.

h
h …

v

1 hn

vm…v
3

v
2

v
1

W

Fig. 3. The Dropout-based RBM architecture.

Notice that r is re-sampled for every mini-batch during
learning. As units were dropped from the hidden layer, Equa-
tion 14 can be rewritten as follows:

P (hj = 1|r,v) =

{
0, if rj = 0

σ (
∑m

i=1Wijvi + bj) , otherwise.
(19)

Therefore, a Dropout RBM can be understood as a blend of
several RBMs, each one using different subsets of their hidden
layers. As we are training the model with different subsets,
the weight matrix W needs to be scaled at testing time, being
multiplied by p in order to adjust its weights (Equation 4).

B. E-Dropout RBMs

As aforementioned in Section III, one can use Equation 5
to calculate the importance level I of the hidden neurons.
Nevertheless, when dealing with an E-Dropout RBM, as the
system’s energy approximates to zero, I tends to overflow with
large values. Therefore, it is necessary to re-scale I between
0 and 1 as follows:

I =
I

max{I}
. (20)

After computing I, one can use Equation 6 to calculate the
Dropout mask s. Therefore, Equation 14 can be rewritten as
follows:

P (hj = 1|s,v) =

{
0, if sj = 0

σ (
∑m

i=1Wijvi + bj) , otherwise.
(21)

Furthermore, it is worth using mini-batches while training
the network, which can be accomplished by calculating Equa-
tion 20 for every sample in the mini-batch followed by its
average.
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V. EXPERIMENTS

In this section, we present the methodological setup used
to evaluate the E-Dropout considering RBMs2 in the task
of binary image reconstruction. Besides, we compare the
proposed method against a standard-Dropout, RBMs without
Dropout, among others, and describe the employed datasets
and the experimental setup.

A. Modeling E-Dropout RBMs

As aforementioned in Section III, the energy-based Dropout
uses Equation 5 to calculate an importance level I for each
neuron. Additionally, it computes the dropout mask s using
Equation 6. Finally, it uses s in the same way as the stan-
dard Dropout method. Note that we consider the very same
fundamental concepts presented in Section IV.

B. Datasets

Three well-known image datasets were employed through-
out the experiments:
• MNIST3 [17]: set of 28× 28 grayscale images of hand-

written digits (0-9), i.e., 10 classes. The original version
contains a training set with 60, 000 images from digits
‘0’-‘9’, as well as a test set with 10, 000 images;

• Fashion-MNIST4 [18]: set of 28×28 grayscale images of
clothing objects. The original version contains a training
set with 60, 000 images from 10 distinct objects (t-shirt,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boot), and a test set with 10, 000 images;

• Kuzushiji-MNIST5 [19]: set of 28× 28 grayscale images
of hiragana characters. The original version contains a
training set with 60, 000 images from 10 previously
selected hiragana characters, and a test set with 10, 000
images.

C. Experimental Setup

Concerning the experimental setup, we employed five dif-
ferent RBM architectures, in which the main difference lies in
the regularization method. In this case, RBM does not employ
Dropout, the “Weight” RBM (W-RBM) with L2 regularization
employing a penalty of 5 · 10−3 (the mean value of the
ranges proposed by Hinton [2]), the “standard-dropout” RBM
(D-RBM) uses the traditional Dropout, the “DropConnect”
RBM (DC-RBM) uses the traditional DropConnect, and the
“E-Dropout” RBM (E-RBM) employs the proposed energy-
based Dropout. Additionally, when considering the “standard-
dropout” and the “DropConnect”, we used p = 0.5 as stated
by Srivastava et al. [9] and Wan et al. [7], respectively.

Since the learning rate and the number of hidden neurons are
important hyperparameters of an RBM, we fixed each RBM
according to Table I, in which four different models have been
considered, i.e., Ma, Mb, Mc, Md. To provide more shreds

2RBMs, Dropout-RBMs, Weight-RBMs, and Energy-Dropout RBMs are
available in Learnergy library [16].

3http://yann.lecun.com/exdb/mnist
4https://github.com/zalandoresearch/fashion-mnist
5https://github.com/rois-codh/kmnist

of evidence of the E-Dropout suitability, we employed four
distinct architectures, differing only in the number of hidden
neurons and learning rates.

Notice that three out of four architectures have 1, 024 hidden
neurons. The reason is that RBMs with more feature detector
units have more chances to learn unimportant information from
the data distribution. Moreover, we decreased the learning rate
to verify the E-Dropout ability to improve significantly when
the network learns slowly.

Furthermore, we have considered 50 epochs for the RBM
learning procedure with mini-batches of size 256, while all
RBMs were trained using the Contrastive Divergence algo-
rithm with k = 1 (CD-1).

TABLE I
RBM HYPERPARAMETERS CONFIGURATION.

Parameter Ma Mb Mc Md

n (hidden neurons) 512 1,024 1,024 1,024

η (learning rate) 0.1 0.1 0.03 0.01

Two distinct metrics assessed the performance of the models
on the test set, i.e., the Mean Squared Error (MSE) and the
Structural Similarity Index (SSIM) [20]. The former is often
known as the reconstruction error, which encodes the quality
of the pixels reconstructed by the RBMs. In contrast, the
latter provides a more efficient analysis of the image structure
itself, which compares the quality between the original and
reconstructed images.

To provide robust statistical analysis and acknowledge that
the experiments’ results are independent and continuous over
a particular dependent variable (e.g., number of observations),
we identified the Wilcoxon signed-rank test [21] satisfied
our obligations. It is a non-parametric hypothesis test used
to compare two or more related observations (in our case,
repeated measurements of the MSE and SSIM values) to assess
whether there are statistically significant differences between
them or not. Therefore, we evaluated different RBM models
with distinct Dropout methods ten times to mitigate the RBMs’
stochastic nature for every dataset and architecture. Notice the
statistical evaluation considers each model at once.

Finally, all the experiments were run in a desktop computer
with 16 Gb of RAM (2, 400MHz clock), an AMD processor
containing six cores with 3 GHz of a clock, and a video card
(GPU) GTX 1060 with 6 Gb of memory.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results concerning
the E-Dropout RBM, D-RBM, W-RBM, and RBM, consider-
ing three well-known literature datasets.

A. MNIST

Considering the MNIST dataset, Table II exhibits the mean
reconstruction errors and their respective standard deviation
over the testing set, where the best results are in bold according
to the Wilcoxon signed-rank test. Considering model Mb and
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Mc, the E-RBM could not obtain better results as the RBM,
while for models Ma and Md, we can highlight that E-
RBM was more accurate than RBM, W-RBM, D-RBM, and
DC-RBM. Furthermore, these achievements evidence that E-
Dropout is less sensitive to different learning rates.

Table III exhibits the mean SSIM and their respective
standard deviation over all experiments, where the best results
are in bold according to the Wilcoxon signed-rank test. Con-
sidering model Mb and Mc, the E-RBM obtained, statistically,
the same results as the RBM, while for models Ma and
Md, the E-RBM was significantly better than the RBM, W-
RBM, D-RBM, and DC-RBM. It is interesting to note that the
proposed approach overpass the other regularizers methods for
all models, also for the architecture with 1, 024 hidden neurons
and the lowest learning rate, the E-Dropout supported a 2.5%
performance improvement on SSIM, in front of an RBM (the
second-best model).

In summary, one can notice that E-RBM performed better
than all the baselines with regularization. Additionally, Fig-
ure 4 depicts the mean reconstruction error over the training
set only for models that employ Dropout regularization and
the naive version (RBM) since such comparison stands for
the work focus and more curves generate visually unattractive
graphics. One can observe that most of the RBM models
achieved better results than the D-RBM considering the same
number of hidden neurons and learning rate. Nevertheless,
for the models Ma and Mb, the E-RBM achieved better
reconstruction errors, besides converging faster at the first
iterations.

Fig. 4. Mean reconstruction error over the MNIST training set.

Figure 5 depicts the mean SSIM over the testing set for
both Dropout methods and the RBM naive version regarding
all models. One crucial point to highlight is that all RBM
and E-RBM models achieved better results than the D-RBM
ones, probably due to the latter “constant” neurons shutdown.
Moreover, the E-Dropout achieved the best SSIM considering
models Ma, Mb, and Mc, thus fostering the proposed regu-
larization technique.

B. Fashion-MNIST

Regarding the Fashion-MNIST dataset, Table IV exhibits
the mean reconstruction errors and their respective standard
deviation over all experiments. Considering the E-RBM, it is

Fig. 5. Mean structural similarity index over the MNIST testing set.

clear its superiority regarding the baselines, once it achieved
the lowest errors overall RBM architectures. We can highlight
the performance on model Md, which was 5.77% better than
standard RBM.

Table V exhibits the results concerning the SSIM measure,
been the best ones according to the Wilcoxon’s signed-rank
test in bold. We can observe that the E-RBM achieved better
results than other baselines for models Mb and Mc (similar to
DC-RBM). Surprisingly, the DC-RBM achieved better results
regarding models Ma, Mc, and Md, which was unexpected
since such behavior was not observed in Table IV.

Additionally, Figure 6 depicts the mean reconstruction error
for all architectures that employ Dropout and its naive version
(RBM). One can note that the standard Dropout technique dis-
turbed the RBM learning step. Moreover, the E-RBM achieved
the best results in all models and the lowest reconstruction
errors.

Fig. 6. Mean reconstruction error over Fashion-MNIST training set.

In the same manner, but assessing the models’ performance
by the SSIM measure (Figure 7), we can confirm that D-
RBM was not able to be competitive against the energy-based
Dropout and the RBM. Besides, E-RBM obtained better results
than the RBMs without Dropout, strengthening its capability
to increase the network’s learning power.

C. Kuzushiji-MNIST

Considering the Kuzushiji-MNIST dataset, from Table VI,
one can see that the E-RBM achieved the lowest mean
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TABLE II
MEAN RECONSTRUCTION ERRORS AND THEIR RESPECTIVE STANDARD DEVIATION ON MNIST TESTING DATASET.

Technique Ma Mb Mc Md

RBM [15] 20.968 ± 0.059 17.728 ± 0.040 20.644 ± 0.039 28.214 ± 0.068

W-RBM [2] 35.460 ± 0.126 31.753 ± 0.125 33.235 ± 0.062 39.583 ± 0.046

D-RBM [9] 47.757 ± 0.242 47.968 ± 0.267 67.572 ± 0.0.339 80.155 ± 0.244

DC-RBM [7] 26.470 ± 0.134 25.595 ± 0.235 28.437 ± 0.142 35.856 ± 0.146

E-RBM 20.511 ± 0.061 18.369 ± 0.072 21.277 ± 0.050 26.14 ± 0.174

TABLE III
MEAN SSIM VALUES AND THEIR RESPECTIVE STANDARD DEVIATION ON MNIST TESTING DATASET.

Technique Ma Mb Mc Md

RBM [15] 0.8170 ± 0.001 0.8410 ± 0.001 0.8150 ± 0.000 0.7490 ± 0.001

W-RBM [2] 0.7243 ± 0.001 0.7500 ± 0.001 0.7367 ± 0.001 0.6884 ± 0.001

D-RBM [9] 0.5690 ± 0.002 0.5460 ± 0.003 0.3750 ± 0.002 0.2950 ± 0.001

DC-RBM [7] 0.7684 ± 0.001 0.7659 ± 0.002 0.7468 ± 0.001 0.6934 ± 0.001

E-RBM 0.8240 ± 0.000 0.8410 ± 0.000 0.8160 ± 0.001 0.7740 ± 0.002

TABLE IV
MEAN RECONSTRUCTION ERRORS AND THEIR RESPECTIVE STANDARD DEVIATION ON FASHION-MNIST TESTING SET.

Technique Ma Mb Mc Md

RBM [15] 55.258 ± 0.097 53.204 ± 0.075 58.077 ± 0.066 67.293 ± 0.070

W-RBM [2] 66.195 ± 0.238 59.660 ± 0.152 62.769 ± 0.115 73.732 ± 0.114

D-RBM [9] 127.76 ± 0.694 104.78 ± 0.722 118.52 ± 0.782 119.95 ± 0.497

DC-RBM [7] 71.161 ± 0.105 68.983 ± 0.146 73.101 ± 0.190 80.538 ± 0.205

E-RBM 53.858 ± 0.180 52.288 ± 0.095 55.064 ± 0.091 61.52 ± 0.085

TABLE V
MEAN SSIM VALUES AND THEIR RESPECTIVE STANDARD DEVIATION ON FASHION-MNIST TESTING SET.

Technique Ma Mb Mc Md

RBM [15] 0.5630 ± 0.001 0.5940 ± 0.000 0.5410 ± 0.000 0.4760 ± 0.000

W-RBM [2] 0.5295 ± 0.001 0.5608 ± 0.001 0.5463 ± 0.001 0.4913 ± 0.001

D-RBM [9] 0.2010 ± 0.002 0.2570 ± 0.002 0.2220 ± 0.002 0.2130 ± 0.001

DC-RBM [7] 0.5791 ± 0.001 0.5856 ± 0.001 0.5729 ± 0.001 0.5405 ± 0.001

E-RBM 0.5760 ± 0.001 0.6130 ± 0.001 0.5710 ± 0.001 0.5150 ± 0.001

reconstruction errors for settings Ma and Md. For the model
Mb, RBM was the best in front of the employed architectures,
while for Mc, the difference between E-RBM and RBM was
not significant. On the other hand, for model Md, the E-RBM
had a performance improvement of 3.32% compared to RBM.

Additionally, Table VII exhibits the results for the SSIM
metric. One can see that E-RBM kept the same previous
behavior, meaning that for models Ma, and Md, it achieved

better results than the other baselines, while for model Mb

RBM and E-RBM have no statistical difference.
Moreover, Figure 8 depicts the mean reconstruction error

over the training set for all the Dropout-based models and
its naive version, respectively. In this particular dataset, the
MSE was considerably lower than Fashion-MNIST’s ones,
even though its digits seem more complex and have fewer
details than Fashion-MNIST objects.
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TABLE VI
MEAN RECONSTRUCTION ERROR AND THEIR RESPECTIVE STANDARD DEVIATION ON KUZUSHIJI-MNIST.

Technique Ma Mb Mc Md

RBM [15] 46.470 ± 0.121 37.587 ± 0.064 43.38 ± 0.070 58.262 ± 0.062

W-RBM [2] 76.839 ± 0.139 67.470 ± 0.139 70.537 ± 0.059 83.548 ± 0.061

D-RBM [9] 89.810 ± 0.249 80.475 ± 0.207 93.291 ± 0.189 109.436 ± 0.085

DC-RBM [7] 60.703 ± 0.149 53.330 ± 0.219 58.538 ± 0.141 74.056 ± 0.186

E-RBM 44.853 ± 0.133 38.511 ± 0.086 43.544 ± 0.074 54.937 ± 0.143

TABLE VII
MEAN SSIM AND THEIR RESPECTIVE STANDARD DEVIATION ON KUZUSHIJI-MNIST.

Technique Ma Mb Mc Md

RBM [15] 0.6910 ± 0.001 0.7480 ± 0.001 0.7040 ± 0.000 0.6060 ± 0.001

W-RBM [2] 0.5675 ± 0.001 0.6135 ± 0.001 0.5948 ± 0.001 0.5262 ± 0.001

D-RBM [9] 0.3890 ± 0.002 0.4290 ± 0.002 0.2970 ± 0.002 0.2040 ± 0.000

DC-RBM [7] 0.6561 ± 0.001 0.6703 ± 0.001 0.6577 ± 0.001 0.5933 ± 0.001

E-RBM 0.7040 ± 0.001 0.7480 ± 0.000 0.7150 ± 0.000 0.6370 ± 0.000

Fig. 7. Mean structural similarity index over Fashion-MNIST testing set.

Fig. 8. Mean reconstruction error over Kuzushiji-MNIST’s training set.

Furthermore, Figure 9 exhibits the mean SSIM over the
testing set considering the same approach that Figure 8. In

this particular dataset, the E-RBM achieved almost the same
performance as the RBM, for all configurations of n (number
of hidden neurons) and η (learning rate).

Fig. 9. Mean structural similarity index over Kuzushiji-MNIST’s testing set.

D. Dropout Overall Discussion

In addition to the reconstruction error and the visual quality
of the reconstructed image assessed by SSIM, in this section,
we analyze the behavior of E-Dropout related to the number of
neurons dropped out over the training epochs and the weights
learned by the E-RBM, D-RBM, and RBM models since it is
the only ones employing neuron deactivation, in addition the
original RBM.

The third architecture (Ma) is used here to illustrate how
the E-Dropout affects the number of neurons turned off
in the training process for the three datasets, as shown in
Figures 10, 11 and 12. For clarity, D-RBM tends to turn off
60, 000 (n ∗ p ∗ 60, 000 images/mini − batch) neurons on
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every epoch, while E-RBM considers the neurons activation
and the system energy batch-by-batch, and therefore, does not
have a “mean value”.

Fig. 10. Mean number of neurons dropped over MNIST’s training set.

Fig. 11. Mean number of neurons dropped over Fashion-MNIST’s training
set.

Fig. 12. Mean number of neurons dropped over Kuzushiji-MNIST’s training
set.

These results indicate that E-Dropout behavior depends on
the dataset since it considers the relationship between neurons
activation and the system’s energy derived from the data itself.

Considering the MNIST dataset, the E-Dropout starts by
almost turning off the same amount of neurons that the
standard Dropout, and slowly decrease this value over the
epochs. For the Fashion-MNIST dataset, the E-Dropout starts
with almost all neurons and starts dropping them out similar to
a sigmoid function shape. On the other hand, considering the

Kuzushiji-MNIST dataset, the E-Dropout starts by turning off
approximately 37, 000 neurons and rapidly decreasing these
values, while increasing the number of dropped out neurons
in the last epochs.

(I-A) (II-A) (III-A)

(I-B) (II-B) (III-B)

(I-C) (II-C) (III-C)

Fig. 13. Mc - MNIST subset of learned weights: (I-A) RBM, (II-A) D-
RBM and (III-A) E-RBM. Fashion-MNIST subset of learned weights: (I-B)
RBM, (II-B) D-RBM and (III-B) E-RBM. Kuzushiji-MNIST subset of learned
weights: (I-C) RBM, (II-C) D-RBM and (III-C) E-RBM.

Regarding the weights learned by the models, Figure 13
depict a subset of model Mc for MNIST (I-A, II-A, III-
A), Fashion-MNIST (I-B, II-B, III-B), and Kuzushiji-MNIST
(I-C, II-C, III-C) datasets, respectively. Overall, the D-RBM
provides some sparsity but less “clear” weights, representing
any images’ details. The RBM provides a fair representation
of these details, and even though, in some cases, it is clear
that its weights are less informative. Finally, the E-RBM
portrays more accurate images representation, mainly the high-
frequency ones, such as the inner drawings.

Additionally, one can establish a parallel with the tem-
perature regularization effect showed by [22] and [23], in
which low temperatures forces de connections to small values,
providing network sparsity at the step that improves the lower
bound in the learning process. Such behavior is interesting
since the E-RBM was encouraged to prevent co-adaptations
selectively.

Furthermore, Figures 14, 15 and 16 depict a subset of model
Mc reconstructed images over MNIST, Fashion-MNIST, and
Kuzushiji-MNIST datasets, respectively.

(I) (II) (III) (IV)

Fig. 14. Mc - MNIST subset of reconstructed images: (I) RBM, (II) D-RBM,
(III) E-RBM and (IV) Original.

Finally, Table VIII shows the computational burden over all
methods and architectures, regarding 50 epoch of training. It
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(I) (II) (III) (IV)

Fig. 15. Mc - Fashion-MNIST subset of reconstructed images: (I) RBM, (II)
D-RBM, (III) E-RBM and (IV) Original.

(I) (II) (III) (IV)

Fig. 16. Mc - Kuzushiji-MNIST subset of reconstructed images: (I) RBM,
(II) D-RBM, (III) E-RBM and (IV) Original.

is essential to highlight that all datasets consume almost the
same computational load due to the same characteristics, and,
for that, it was summarized in one general table. The mean
and standard deviation are from the ten repetitions taken from
the experiments.

TABLE VIII
MEAN TIME IN SECONDS AND THEIR RESPECTIVE STANDARD DEVIATION.

Technique Ma Mb Mc Md

RBM [15] 250 ± 3 250 ± 3 250 ± 3 250 ± 3

W-RBM [2] 250 ± 3 250 ± 3 250 ± 3 250 ± 3

D-RBM [9] 250 ± 3 250 ± 3 250 ± 3 250 ± 3

DC-RBM [7] 1050 ± 3 1100 ± 3 1100 ± 3 1100 ± 3

E-RBM 300 ± 3 300 ± 4 300 ± 4 300 ± 4

Table VIII shows that E-RBM has a little more computa-
tional load than RBM, W-RBM, and D-RBM, but considering
a high number of training epochs. On the other hand, the DC-
RBM was the more power-consume model since the Drop-
Connect needs to sample a weight mask for every instance
on the mini-batch. In summary, the improvement achieved
by the E-RBM in the image reconstruction task depicted in
previous sections overcome the slightly worst performance in
processing time against the simpler baselines.

VII. CONCLUSION

This article proposed a new regularization method, known as
energy-based Dropout, an enhanced parameterless version of
the traditional Dropout. Based on physical principles, it creates
a direct correlation between the system’s energy and its hidden
neurons, denoted as Importance Level (I). Furthermore, as
Restricted Boltzmann Machines are also physical-based neural
networks, they were considered the perfect architecture to
validate the proposed approach.

The energy-based Dropout was validated in Restricted
Boltzmann Machines through a binary image reconstruction

task. Three well-known literature, datasets, MNIST, Fashion-
MNIST, and Kuzushiji-MNIST, were employed to validate
the proposed approach. Considering the experimental results
discussed in the paper, one can observe that the energy-
based Dropout proved to be a suitable regularization technique,
obtaining significantly better SSIM rates than its counterpart
Dropout in all three datasets. Additionally, when comparing
the energy-based Dropout to the standard RBM, it outper-
formed the latter in two out of three datasets, being slightly
worse in the one that it could not achieve the best result.
Moreover, it is possible to perceive that the weights learned by
the energy-Dropout approach were able to recognize different
patterns and high-frequency details, besides had less sharp
edges when compared to the standard RBM and Dropout-
based RBM.

When comparing all the employed techniques, more de-
manding tasks benefit more from the energy-based Dropout
than easier ones, i.e., tasks with higher reconstruction errors
seem to achieved the best result when using the energy-based
Dropout. Moreover, when comparing the proposed method
and the standard one, the proposed regularization obtained
significantly better results, reinforcing its capacity to improve
RBMs’ learning procedure.

Regarding future works, we aim at expanding some con-
cepts of the energy-Dropout regularization technique to the
classification task and other suitable machine learning algo-
rithms, such as Deep Belief Networks (DBNs) and Deep
Boltzmann Machines (DBMs).
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