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Abstract

We seek an entropy estimator for discrete distributions with fully empirical accuracy bounds. As
stated, this goal is infeasible without some prior assumptions on the distribution. We discover that
a certain information moment assumption renders the problem feasible. We argue that the moment
assumption is natural and, in some sense, minimalistic — weaker than finite support or tail decay
conditions. Under the moment assumption, we provide the first finite-sample entropy estimates
for infinite alphabets, nearly recovering the known minimax rates. Moreover, we demonstrate that
our empirical bounds are significantly sharper than the state-of-the-art bounds, for various natural
distributions and non-trivial sample regimes. Along the way, we give a dimension-free analogue of
the Cover-Thomas result on entropy continuity (with respect to total variation distance) for finite
alphabets, which may be of independent interest. Additionally, we resolve all of the open problems
posed by Jürgensen and Matthews, 2010.

1 Introduction

Estimating the entropy of a discrete distribution based on a finite iid sample is a classic problem with
theoretical and practical ramifications. Considerable progress has been made in the case of a finite
alphabet, and the countably infinite case has also attracted a fair amount of attention in recent years.
(See Section 4 for a some background, motivation, and related work.) A less-addressed issue is one of
empirical accuracy estimates: data-dependent bounds adaptive to the particular distribution being
sampled.

Our point of departure is the simpler (to analyze) problem of estimating a discrete distribution µ in
total variation norm ‖·‖TV = 1

2 ‖·‖1, where the most recent advance was made by Cohen et al. (2020);
see therein for a literature review. If µ is a distribution on N and µ̂n is its empirical realization based
on a sample of size n, then Theorem 2.1 of Cohen et al. states that with probability at least 1− δ,

‖µ− µ̂n‖1 ≤ 2√
n

∑
j∈N

√
µ̂n(j) + 6

√
log(2/δ)

2n
. (1)

This bound has the advantage of being valid for all distributions on N, without any prior assumptions,
and being fully empirical: it yields a risk estimate that is computable based on the observed sample,

∗Part of this research was conducted when the author was graduate student at Ben-Gurion University of The Negev,
Israel.
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not depending on any unknown quantities. (Additionally, Cohen et al. argue that (1) is near-optimal in
a well-defined sense.) The question we set out to explore in this paper is: What analogues of (1) are
possible for discrete entropy estimation?

When µ has support size d <∞, an answer to our question is readily provided by combining (1)
with Cover and Thomas (2006, Theorem 17.3.3), which asserts that, for ‖µ− ν‖1 ≤ 1/2, we have

|H(µ)−H(ν)| ≤ ‖µ− ν‖1 log
d

‖µ− ν‖1
, (2)

where H(·) is the entropy functional defined in (3). Indeed, taking µ as in (1) and ν to be µ̂n yields
a fully empirical estimate on |H(µ)−H(µ̂n)|. For fixed d < ∞, no technique relying on the plug-in
estimator can yield minimax rates (Wu and Yang, 2016). The plug-in is, however, asymptotically
optimal for fixed d < ∞ (Paninski, 2003) as well as strongly universally consistent even for d = ∞
(Antos and Kontoyiannis, 2001a), and is among the few methods for which explicitly computable
finite-sample risk bounds are known.

The thrust of this paper is to replace the restrictive finite-support assumption with considerably more
general moment conditions. It is well-known that when estimating the mean of some random variable
X, the first-moment assumption E|X| ≤ M is not sufficient to yield any finite-sample information.1

Strengthening the assumption to E|X|α ≤M , for any α > 1, immediately yields finite-sample empirical
estimates on

∣∣EX − 1
n

∑n
i=1Xi

∣∣ via the von Bahr and Esseen (1965) inequality.2 In this sense, a bound
on the (1 + ε)th moment is a minimal requirement for empirical mean estimation. However, it is not
immediately obvious how to apply this insight to the entropy estimation problem: the corresponding
random variable is X = − logµ(I), where I ∼ µ, but rather than being given iid samples of X, we
are only given draws of I. In Corollary 1, we provide an empirical entropy estimate under a (1 + ε)th
moment assumption (for any ε > 0) on X = − logµ(I).

Our contribution. In Theorem 1, we provide a dimension-free analogue of (2), which, combined
with (1), allows for empirical accuracy bounds on the plug-in entropy estimator under a minimalistic
moment assumption. Moreover, for this rich class of distributions, the plug-in estimator turns out to be
asymptotically optimal, as we show in Theorem 5. Our moment assumption is natural and considerably
less restrictive than the finite-alphabet and tail conditions studied in previous works (see Sections 7
and .1). Moreover, as we argue in Theorem 4, without such a moment assumption, an empirical bound
is not feasible. As we demonstrate in Section 6, the rates provided by our empirical bound compare
favorably against the state of the art.

2 Definitions and notation

Our logarithms will always be base e by default. For discrete distributions, there is no loss of
generality in taking the domain to be the natural numbers N = {1, 2, 3, . . .}. For k ∈ N, we write
[k] := {i ∈ N : i ≤ k}. The set of all probability distributions on N will be denoted by ∆N. For d ∈ N,
we write ∆d ⊂ ∆N to denote those µ whose support is contained in [d].

We define the operator (·)↓, which maps any µ ∈ ∆N to its non-increasing rearrangement µ↓. The
set of all non-increasing distributions will be denoted by ∆↓N :=

{
µ↓ : µ ∈ ∆N

}
.

We write R+ := [0,∞). For any ξ : N→ R+ and α ≥ 0, define

H(α)(ξ) :=
∑

j∈N:ξ(j)>0

ξ(j) |log ξ(j)|α . (3)

For ξ ∈ RN, denote by |ξ| ∈ RN
+ the elementwise application of |·| to ξ. When ξ ∈ ∆N and α = 1, (3)

recovers the standard definition of entropy, which we denote by H(ξ) := H(1)(ξ). For general α > 0,
1Even distinguishing, for X ≥ 0, between EX = 0 and EX =M based on a finite sample is impossible with any degree

of confidence. Of course, 1
n

∑n
i=1Xi → EX almost surely, by the strong law of large numbers.

2Put Y = X − EX; then E|Y | ≤ 2M . For 1 < α < 2, a sharper version of the Bahr-Esseen inequality (Pinelis, 2015)
states that E

[∣∣∑n
i=1 Yi

∣∣α] ≤ 2n(2M)α, which implies tail bounds via Markov’s inequality. Better rates are available via
the median-of-means estimator, see Lugosi and Mendelson (2019).
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this quantity may be referred to as the αth moment of information. For h ≥ 0, define

∆
(α)
N [h] =

{
µ ∈ ∆N : H(α)(µ) ≤ h

}
and also ∆

(α)
N :=

⋃
h≥0 ∆

(α)
N [h] and ∆

↓(α)
N [h] := ∆↓N ∩∆

(α)
N [h].

For n ∈ N and µ ∈ ∆N, we write X = (X1, . . . , Xn) ∼ µn to mean that the components of the
vector X are drawn iid from µ. The empirical measure µ̂n ∈ ∆N induced by the sample X is defined
by µ̂n(j) = 1

n

∑
i∈[n] 1[Xi = j]. For any ξ ∈ RN and 0 < p < ∞, the `p (pseudo)norm is defined by

‖ξ‖pp =
∑

j∈N |ξ(j)|p and ‖ξ‖∞ = supj∈N |ξ(j)|.
For α, h > 0, and n ∈ N, define the L1 minimax risk for the αth moment by

R(α)
n (h) := inf

Ĥ
sup

µ∈∆
(α)
N [h]

E|Ĥ(X1, . . . , Xn)−H(µ)|, (4)

where the infimum is over all mappings Ĥ : Nn → R+.

3 Main results

Our first result is a dimension-free analogue of (2):

Theorem 1. For all α > 1, H : ∆
(α)
N → R+ is uniformly continuous under `1. In particular, for all

µ,ν ∈ ∆
(α)
N satisfying ‖µ− ν‖∞ < e−α, we have

|H(µ)−H(ν)| ≤ ‖µ− ν‖1−1/α
1

(
2eα ‖µ− ν‖∞ logα

1

‖µ− ν‖∞
+ H(α)(µ) + H(α)(ν)

)1/α

(5)

≤ ‖µ− ν‖1−1/α
1

(
2e ‖µ− ν‖1/α∞ log

1

‖µ− ν‖∞
+ H(α)(µ)1/α + H(α)(ν)1/α

)
. (6)

Moreover, a weaker form of (5) holds with αα in place of eα ‖µ− ν‖∞ logα 1
‖µ−ν‖∞

under the weaker
condition ‖µ− ν‖∞ < 1/2, from which the correspondingly weaker form of (6) follows as well.

The requirement in Theorem 1 that α > 1 cannot be dispensed with, as the function H : ∆
(α)
N [h]→ R+

is not continuous under `1 for α = 1 (see Remark following Lemma 4), and, a fortiori, is not uniformly
continuous. Thus, there can be no function F : R2

+ → R+ satisfying

|H(µ)−H(ν)| ≤ F (‖µ− ν‖1 , h), h > 0,µ,ν ∈ ∆
(1)
N [h]

with the additional property that for any two sequences µn,νn ∈ ∆N satisfying εn := ‖µn − νn‖1 → 0,
it holds that F (εn, h)→ 0. Moreover, the upper bound in Theorem 1 is tight, up to a constant factor:

Theorem 2. For every 0 < ε < 1/2 and α ≥ 1, there are µ,ν ∈ ∆N such that ε = ‖µ− ν‖1 ≥
‖µ− ν‖∞ and

|H(µ)−H(ν)| ≥ cε1−1/α

(
2eε1/α log

1

ε
+ H(α)(µ)1/α + H(α)(ν)1/α

)
, (7)

where c ≥ 1
2e+2 is a universal constant.

Perhaps surprisingly,3 it turns out that H : ∆
(α)
N [h]→ R+ is uniformly continuous not only under

`1, but actually under all `p norms:

Theorem 3. There is a function F : R4
+ → R+ such that

|H(µ)−H(ν)| ≤ F (‖µ− ν‖p , h, α, p), h > 0, α > 1, p ∈ [1,∞],µ,ν ∈ ∆
(α)
N [h]

with the additional property that whenever εn := ‖µn − νn‖p → 0, we have F (εn, h, α, p)→ 0.

3Since `1 dominates all of the `p norms, continuity of a function under `p trivially implies continuity under `1, but the
reverse implication is generally not true.
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Remark. Although Theorem 3 establishes uniform continuity, it gives no hint as to the functional
dependence of the modulus of continuity F on α, p, h, and ‖µ− ν‖p. We leave this as a fascinating
open problem — even though the practical applications are likely to be limited: it follows from Wyner
and Foster (2003) and Theorem 5 that for p = α = 2 and fixed h, F (‖µ− ν‖2 , h, 2, 2) cannot decay at
a faster rate than 1/ log(1/ ‖µ− ν‖2).

Combining Theorem 1 with (1) yields an empirical (under moment assumptions) bound for the
plug-in entropy estimator:

Corollary 1. For all α > 1, h > 0, δ ∈ (0, 1), n ≥ 2 log 4
δ , and µ ∈ ∆

(α)
N [h], we have that

|H(µ)−H(µ̂n)| ≤
(

2αα + h+ H(α)(µ̂n)
)1/α

2 ‖µ̂n‖
1/2
1/2√

n
+ 6

√
log (4/δ)

2n

1−1/α

(8)

holds with probability at least 1− δ. For all α > 1, h > 0, 0 < ε < e−α, δ ∈ (0, 1), n ≥ 2
ε2

log 4
δ , and

µ ∈ ∆
(α)
N [h], we have that

|H(µ)−H(µ̂n)| ≤
(

2eαε log1/α 1

ε
(9)

+ h+ H(α)(µ̂n)
)1/α

2 ‖µ̂n‖
1/2
1/2√

n
+ 6

√
log (4/δ)

2n

1−1/α

holds with probability at least 1− δ. For all α > 1, h > 0, δ ∈ (0, 1), n ≥ 2e2α log 4
δ , and µ ∈ ∆

(α)
N [h],

we have that

|H(µ)−H(µ̂n)| ≤
(

2
( e

2

)α√ 2

n
log

4

δ

∣∣∣∣log

(
2

n
log

4

δ

)∣∣∣∣α (10)

+ h+ H(α)(µ̂n)
)1/α

2 ‖µ̂n‖
1/2
1/2√

n
+ 6

√
log (4/δ)

2n

1−1/α

holds with probability at least 1− δ.

Remark. Since the estimates in Corollary 1 involve the random quantity ‖µ̂n‖1/2, it is natural to
inquire as to the behavior of the latter. It follows from Cohen et al. (2020, Proposition C.1) that
n−1/2 ‖µ̂n‖

1/2
1/2 → 0 in almost surely. The rate of convergence must necessarily depend on µ itself (cf.

Berend and Kontorovich (2013, Remark 9)).
In Section 6, we compare the rates implied by Corollary 1 to the state of the art on various

distributions.
Next, we examine the optimality of the plug-in estimate by analyzing the minimax risk, defined

in (4). It was known (Silva, 2018, Appendix A) that assuming H(µ) <∞ does not suffice to yield a
minimax rate for the L2 risk:

inf
Ĥ:Nn→R+

sup
µ∈∆

(1)
N

E
(
Ĥ(X1, . . . , Xn)−H(µ)

)2
=∞.

This technique yields an analogous result for the L1 risk as well. We strengthen these results in two
ways: (i) by lower-bounding the L1 risk (rather than L2, which is never smaller), and (ii) by restricting
µ to ∆

(1)
N [h] and obtaining a finitary, quantitative lower bound:

Theorem 4. For α = 1, there is a universal constant C > 0 such that for all h > 1 and n ∈ N, n ≥ 2,
we have R(1)

n (h) ≥ Ch.

4



Remark. The above result complements — but is not directly comparable to — Antos and Kontoyiannis
(2001a, Theorem 4). Ours gives a quantitative dependence on h but constructs an adversarial distribution
for each sample size n; theirs is asymptotic only but a single adversarial distribution suffices for all n.
Remark. Our technique immediately yields a lower bound of Ch2 on the L2 minimax risk.

In contradistinction to the α = 1 case, where no minimax rate exists, we show that the plug-in
estimator is minimax for all α > 1:

Theorem 5. The following bounds hold for the L1 minimax risk:

(a) Upper bound: for all h > 0, α > 1,

R(α)
n (h) ≤ 1 + log n√

n
+

2α−1h

logα−1 n
, n ∈ N;

further, this bound is achieved by the plug-in estimate H(µ̂n).

(b) Lower bound: for each α > 0, n ∈ N there is an h > 0 such that

R(α)
n (h) ≥ h

4 · 3α logα−1 n
.

Open problem. Close the gap in the dependence on α in the upper and lower bounds.

Open problem. Another gap between the upper and lower bounds is the quantified on h: in the
upper bound, it is “for all”, while in the lower bound, it is “exists”. Closing this gap is also of interest.

Finally, in Section 7.3, we resolve most of the conjectures posed by Jürgensen and Matthews (2010).

4 Related work

Continuity, convergence, moments of information Zhang (2007) gave a sharpened version of
(2) and Ho and Yeung (2010) presented analogous bounds; Audenaert (2007) proved a non-commutative
generalization. Sason (2013, Theorem 5) upper-bounds |H(µ)−H(ν)| in terms of quantities related
to ‖µ− ν‖1, where (at most) one of them is allowed to have infinite support. Even though H(·) is
not continuous on ∆N, the plug-in estimate H(µ̂n) converges to H(µ) almost surely and in L2 (Antos
and Kontoyiannis, 2001a). Silva (2018) studied a variety of restrictions on distributions over infinite
alphabets to derive strong consistency results and rates of convergence. Moments of information were
apparently first defined in Golomb (1966).

Entropy estimation Recent surveys of entropy estimation results may be found in Jiao et al.
(2015); Verdú (2019). The finite-alphabet case is particularly well-understood. For fixed alphabet size
d <∞, the plug-in estimate is asymptotically minimax optimal (Paninski, 2003). Paninski (2004) non-
constructively established the existence of a sublinear (in d) entropy estimator. The optimal dependence
on d (at fixed accuracy) was settled by Valiant and Valiant (2011a, 2017) as being Θ(d/ log d).

The Θ(d/ log d) dependence on the alphabet size is also relevant in the so-called high dimensional
asymptotic regime, where d grows with n. Here, the plug-in estimate is no longer optimal, and more
sophisticated techniques are called for (Valiant and Valiant, 2011a,b, 2017). The works of Wu and Yang
(2016); Jiao et al. (2015); Han et al. (2015); Jiao et al. (2017) characterized the minimax rates for the
high-dimensional regime: a small additive error of ε requires Θ(d/ε log d) samples. Building off of these
polynomial-approximation based constructions, Acharya et al. (2017) design an additional optimal
estimator, this one based on a profile maximum likelihood approach that can also estimate a variety
of other important statistics. Fukuchi and Sakuma (2017, 2018) generalize the optimal estimators to
estimate any additive functional, recovering in particular the optimal rates for entropy. Acharya et al.
(2019) modify these optimal estimators with the added goal of low space complexity.

5



Finally, there is the infinite-alphabet case. Although here the plug-in estimate is again universally
strongly consistent, control of the convergence rate requires some assumption on the sampling distribution
— and Antos and Kontoyiannis (2001a) compellingly argue that moment assumptions are natural and
minimalistic. Absent any prior assumptions, the L1 (and hence L2) convergence rate of any estimator
can be made arbitrarily slow (Theorem 4 ibid.). The present paper proves a variant of this result (see
Theorem 4 and the Remark following it). Antos and Kontoyiannis (2001a) further show that even under
moment assumptions, there is no polynomial rate of convergence for the plug-in estimate: there is no
β > 0 such that its risk decays as O(n−β). Wyner and Foster (2003) showed that the plug-in estimate
achieves a rate of O( 1

logn) for bounded second moment, and this is minimax optimal. Brautbar and
Samorodnitsky (2007) exhibited a function of the higher moments that can be used in place of alphabet
size to give a multiplicative approximation to the entropy.

The empirical nature of Corollary 1 can be seen as a distribution-dependent improvement over
otherwise worst-case minimax guarantees. It can be compared, in this light, to the “instance-optimality"
program of Hao et al. (2018); Hao and Orlitsky (2020) and the adaptive guarantees of Han et al. (2015).

5 Proofs

5.1 Proof of Theorem 1

We begin with a subadditivity result for the αth moment of information (which we state for α > 0,
even though only the range α > 1 will be needed).

Lemma 1. For α > 0 and µ,ν ∈ ∆
(α)
N , we have

H(α)(|µ− ν|) ≤ 2αα + H(α)(µ) + H(α)(ν). (11)

If, additionally, ‖µ− ν‖∞ ≤ e−α, then

H(α)(|µ− ν|) ≤ 2eα ‖µ− ν‖∞ logα
1

‖µ− ν‖∞
+ H(α)(µ) + H(α)(ν). (12)

Proof. Define h(α) : [0, 1]→ R+ by z 7→ z logα(1/z), where h(α)(0) = 0. The function h(α) is increasing
on [0, e−α] and decreasing on [e−α, 1]. The maximum is therefore achieved at z = e−α, and

max
z∈[0,1]

h(α)(z) = h(α)(e−α) = e−ααα. (13)

Now decompose H(α):

H(α)(|µ− ν|) =
∑

i:µ(i)∨ν(i)>e−α

h(α)(|µ(i)− ν(i)|) +
∑

i:µ(i)∨ν(i)≤e−α

h(α)(|µ(i)− ν(i)|). (14)

To prove the lemma, we bound the two terms of (14) separately. The second term can be bound in two
ways, yielding (11) and (12), respectively. To bound the first term of (14), notice that µ ∈ ∆N implies
that |{i ∈ N : µ(i) > e−α}| ≤ eα, and similarly for ν. Thus,∑

i:µ(i)∨ν(i)>e−α

h(α)(|µ(i)− ν(i)|) ≤
( ∣∣{i : µ(i) > e−α

}∣∣+
∣∣{i : ν(i) > e−α

}∣∣ ) max
z∈[0,1]

h(α)(z) (15)

≤ 2eαe−ααα = 2αα.

For the second term of (14), notice that when µ(i) ∨ ν(i) ≤ e−α, the monotonicity of h(α) implies

h(α)(|µ(i)− ν(i)|) ≤ h(α)(µ(i) ∨ ν(i)),

and hence ∑
i∈N:µ(i)∨ν(i)≤e−α

h(α)(|µ(i)− ν(i)|) ≤
∑

i:∈µ(i)∨ν(i)≤e−α

h(α)(µ(i) ∨ ν(i))

≤
∑

i:∈µ(i)∨ν(i)≤e−α

h(α)(µ(i)) + h(α)(ν(i))

≤ H(α)(µ) + H(α)(ν);

6



this proves (11). Given the additional condition ‖µ− ν‖∞ ≤ e−α, to prove (12), put ε = ‖µ− ν‖∞
and modify (15) as follows:∑

i:µ(i)∨ν(i)>e−α

h(α)(|µ(i)− ν(i)|) ≤
( ∣∣{i : µ(i) > e−α

}∣∣+
∣∣{i : ν(i) > e−α

}∣∣ )h(α)(ε)

≤ 2eαh(α)(ε).

The latter holds since |µ(i)− ν(i)| ≤ ‖µ− ν‖∞, and so h(α)(|µ(i)− ν(i)|) ≤ h(α)(ε), by h(α)’s mono-
tonicity on [0, e−α].

Proof of Theorem 1. The concavity argument in the proof of Cover and Thomas (2006, Theorem 17.3.3),
immediately implies

|H(µ)−H(ν)| ≤ H(|µ− ν|).

Then, via an application of Hölder’s inequality,

H(|µ− ν|) =
∑
i∈N
|µ(i)− ν(i)| log

1

|µ(i)− ν(i)|

=
∑
i∈N
|µ(i)− ν(i)|1−1/α · |µ(i)− ν(i)|1/α log

1

|µ(i)− ν(i)|

≤

(∑
i∈N

(
|µ(i)− ν(i)|1−1/α

)1/(1−1/α)
)1−1/α(∑

i∈N

(
|µ(i)− ν(i)|1/α log

1

|µ(i)− ν(i)|

)α)1/α

= ‖µ− ν‖1−1/α
1 H(α)(|µ− ν|)1/α.

The claim follows by invoking Lemma 1 and the subadditivity of t 7→ t1/α for t ≥ 0 and α > 1.

5.2 Proof of Theorem 2

Let 0 < ε ≤ 1/2 be given and choose µ,ν ∈ ∆N as follows: µ = (1, 0, 0, . . .) and ν = (1− ε, ε, 0, 0, . . .).
Then left-hand side of (7) is L(ε) = H(ν):

L(ε) = (1− ε) log
1

1− ε
+ ε log

1

ε
=: L1(ε) + L2(ε),

and right-hand side of (7), without the constant c, is

R(ε) = ε1−1/α

(
2eε1/α log

1

ε
+

(
(1− ε)

∣∣∣∣log
1

1− ε

∣∣∣∣α + ε

∣∣∣∣log
1

ε

∣∣∣∣α)1/α
)

≤ ε1−1/α

(
2eε1/α log

1

ε
+ 21/α max

{
(1− ε)1/α log

1

1− ε
, ε1/α log

1

ε

})
≤ 2ε1−1/α(1− ε)1/α log

1

1− ε
+ (2e + 2)ε log

1

ε
=: R1(ε) +R2(ε).

Now L1(ε) ≥ R1(ε)/2 for ε ∈ (0, 1
2 ] and L2(ε) = R2(ε)

2e+2 , and therefore L1(ε) + L2(ε) ≥ R1(ε)/2 +
1

2e+2R2(ε) ≥ 1
2e+2R(ε). �

5.3 Proof of Theorem 3

The following fact (Lieb and Loss, 2001, Theorem 3.5 and Eq. (5) on p. 83) will be useful4:

‖µ↓ − ν↓‖p ≤ ‖µ− ν‖p , p ∈ [1,∞], µ,ν ∈ ∆N. (16)

4The result is stated for functions in f ∈ L2(Rn) and their symmetric-decreasing rearrangements f∗, but the
specialization to discrete distributions is straightforward. We convert µ to a function f : R+ → R+ via f(x) = µ(dxe)
and ν to g(x) analogously. A direct calculation then shows that ‖µ− ν‖p = ‖f − g‖p and ‖µ↓ − ν↓‖p = ‖f∗ − g∗‖p, to
which the result from Lieb and Loss (2001) applies to yield (16).
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A result of Scheffé (1947) (more accurately credited to Riesz, 1928 (Kusolitsch, 2010)) implies that a
sequence {ξn∈N} ⊂ `1(N) converging pointwise to some ξ ∈ `1(N) also converges in `1 iff ‖ξn‖1 → ‖ξ‖1.
This immediately implies

Lemma 2. If {µn∈N} ⊂ ∆N converges pointwise to some µ ∈ ∆N, then it also converges in `1.

Berend et al. (2017, Lemma 1) showed that ∆
↓(1)
N [h] is compact under `1. We begin by extending

this result to general α, p.

Lemma 3. For all α ≥ 1, p ∈ [1,∞], and h > 0, the set ∆
↓(α)
N [h] is compact under `p.

Remark. This is quite false if either the non-increasing or the bounded-entropy condition is omitted.
For a counterexample to the former, consider the sequence µn ∈ ∆N defined by µn(i) = 1[i = n]. For a
counterexample to the latter, consider the sequence µn ∈ ∆N, where µn is uniform on [n].

Proof. We closely follow the proof strategy of Berend et al. (2017, Lemma 1). In a metric space,
compactness and sequential compactness are equivalent. Let µn∈N be a sequence in ∆

↓(α)
N [h]. Since

[0, 1] is compact, every {µn(i) : n ∈ N} has a convergent subsequence, and hence µn∈N has a pointwise
convergent subsequence. There is thus no loss of generality in assuming that µn → µ pointwise.
Obviously, µ is non-negative and non-increasing. It remains to show that

(a)
∑

i∈Nµ(i) = 1,

(b) H(α)(µ) ≤ h,

(c) ‖µn − µ‖p → 0.

To show (a), assume, for a contradiction, that
∑

i∈N µ(i) > 1. Then there must be an i0 ∈ N such
that

∑i0
i=1µ(i) > 1. But the latter must then hold for all µn with n sufficiently large, which contradicts

µn ∈ ∆N. Now assume ε := 1−
∑

i∈Nµ(i) > 0. For any i0 ∈ N, we have
∑i0

i=1µn(i) < 1− ε/2 for all
sufficiently large n. Now every ν ∈ ∆↓N satisfies ν(i) ≤ 1

i (ν(1) + ν(2) + . . .+ ν(i)) ≤ 1
i . Hence,

∞∑
i=i0+1

µn(i) |logµn(i)|α ≥
∞∑

i=i0+1

µn(i)(log i0)α >
ε

2
(log i0)α.

Choosing i0 sufficiently large makes the latter expression exceed h, violating the assumption µn ∈
∆
↓(α)
N [h]. Thus (a) holds.
To show (b), assume for a contradiction that H(α)(µ) > h— and, in particular,

∑i0
i=1µ(i) |logµ(i)|α >

h for some i0 ∈ N. But the latter must hold for all µn with n sufficiently large, a contradiction.
Finally, to show (c), we invoke Lemma 2: if {µn∈N} ⊂ ∆N converges pointwise to some µ ∈ ∆N,

then it also converges in `1. Since `1 dominates every `p, p > 1, this proves (c).

Next, we examine the continuity of H(·) on ∆
↓(α)
N [h] under `p.

Lemma 4. Fix h > 0, α > 1, and p ∈ [1,∞]. If {µn∈N} ⊂ ∆
↓(α)
N [h] converges in `p, then its limit is

some µ ∈ ∆
↓(α)
N [h] and furthermore, H(µn)→ H(µ). In other words, H(·) is continuous on ∆

↓(α)
N [h]

under `p.

Remark. We note that H(·) is not continuous on ∆
↓(1)
N [h] under `p, p ∈ [1,∞], as evidenced by the

sequence µn = (1 − εn, εn/n, . . . , ε/n, 0, 0, . . .), with support size n + 1. We can choose εn so that
H(µn) = h, but of course the limiting µ has H(µ) = 0 (see Example 1 in Berend et al. (2017)).

Proof. It follows from Lemma 3 that the limiting µ belongs to ∆
↓(α)
N [h]. Further, Lemma 2 implies

that µn → µ in `1. Invoking the continuity result in Theorem 1 proves the claim.
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Proof of Theorem 3. It follows from Lemma 4 that H(·) is continuous on ∆
↓(α)
N [h] under `p. Since, by

Lemma 3, ∆
↓(α)
N [h] is compact under `p, it follows that H(·) is uniformly continuous on ∆

↓(α)
N [h]: there

is a function F such that

|H(µ)−H(ν)| ≤ F (‖µ− ν‖p , h, α, p), µ,ν ∈ ∆
↓(α)
N [h]

and εn := ‖µn − νn‖p → 0 =⇒ F (εn, h, α, p)→ 0. Now, for all µ,ν ∈ ∆
(α)
N [h] we have

|H(µ)−H(ν)| =
∣∣∣H(µ↓)−H(ν↓)

∣∣∣ ≤ F (‖µ↓ − ν↓‖p, h, α, p).

It follows from (16) that ‖µn − νn‖p → 0 =⇒ ‖µ↓n − ν↓n‖p → 0, which concludes the proof.

5.4 Proof of Corollary 1

Proof. Fix 0 < ε < e−α. Consider two potential “bad” events: B1, where ‖µ̂n − µ‖∞ > ε, and B2,

where ‖µ− µ̂n‖1 >
2‖µ̂n‖

1/2
1/2√
n

+ 6

√
log(4/δ)

2n . Our assumption on the sample size n, together with the
Dvoretzky-Kiefer-Wolfowitz inequality (Massart, 1990), implies that P (B1) ≤ δ/2 and (1) implies that
P (B2) ≤ δ/2. Thus, with probability at least 1− δ, neither of B1 or B2 occurs, and on the event where
‖µ− µ̂n‖∞ < ε < e−α, we may invoke Theorem 1, from which the claims immediately follow.

5.5 Proof of Theorem 4

For h > 1 and n ∈ N, n ≥ 2, put an = (1 − 1/(2n)) log(1 − 1/(2n)) and define the support size
S = S(h, n) by S = b(1/2n) exp(2n(h + an))c. Consider the distributions µ0 = (1, 0, 0, . . . ) and µn
defined by µn(1) = 1− 1/(2n), and

µn(i) =
1

2nS
, 2 ≤ i ≤ 1 + S(h, n).

We compute the Kullback-Leibler divergence and entropy:

DKL (µ0||µn) = log
1

1− 1/(2n)
≤ 1

1− 1/(2n)
− 1 ≤ 1

n
(17)

H(µ0) = 0 ≤ h.

For x ≥ 2, always bxc ≥ x/2. Additionally, from 2nan ≥ −1, and 1
2n exp(2nh− 1) > 2, we obtain that

S > (1/4n) exp(2n(h+ an)), hence we also have that h ≥ H(µn) > h− 1
2n log 2. Since 1

2x log 2 ≤ 1/2

on [1,∞) and h > 1, it follows that H(µn) ≥ h
2 , whence |H(µ0)−H(µn)| ≥ h/2. To bound the L1

minimax risk (defined in (4)), we invoke Markov’s inequality:

E|Ĥ(X1, . . . , Xn)−H(µ)| ≥ h

4
P
(
|Ĥ(X1, . . . , Xn)−H(µ)| > h

4

)
.

It follows via Le Cam’s two point method (Tsybakov, 2008, Section 2.4.2) that

R(1)
n (h) ≥ h

8
e−nDKL(µ0||µ) ≥ h

8e
,

where the second inequality stems from (17).
�

5.6 Proof of Theorem 5

We begin with an auxiliary lemma, of possible independent interest.

Lemma 5. For all µ ∈ ∆N and n ∈ N, we have

H(µ) ≥ EH(µ̂n) ≥ H(µ)− inf
0<ε<1

 ∑
i∈N:µ(i)<ε

µ(i) log
1

µ(i)
+ log

(
1 +

1

εn

) .
9



Proof. The first inequality follows from Jensen’s, since H(·) is concave and Eµ̂n = µ. To prove the
second inequality, choose ε > 0, put J := {i ∈ N : µ(i) < ε}, and compute

EH(µ̂n) = E

 ∑
i∈N\J

µ̂n(i) log
1

µ̂n(i)
+
∑
i∈J

µ̂n(i) log
1

µ̂n(i)


≥ E

 ∑
i∈N\J

µ̂n(i) log
1

µ̂n(i)
+

(∑
i∈J

µ̂n(i)

)
log

1∑
i∈J µ̂n(i)


=: EH(µ̃n),

where µ̃n is the “collapsed” version of µ̂n, where all of the masses in J have been replaced by a single
mass equal to their sum, and the inequality holds because conditioning reduces entropy (Cover and
Thomas, 2006, Eq.(2.157)). We observe that µ̃n has support size at most 1 + 1/ε and invoke Paninski
(2003, Proposition 1):

EH(µ̃n) ≥ H(µ̃)− log

(
1 +

1

εn

)
, (18)

where µ̃ is the “collapsed” version of µ. Now

H(µ̃) = H(µ) +

∑
i∈j
µ(i)

 log
1∑

i∈J µ(i)
−
∑
i∈J

µ(i) log
1

µ(i)

≥ H(µ)−
∑
i∈J

µ(i) log
1

µ(i)
,

which concludes the proof.

The first part of the theorem will follow from the following proposition.

Proposition 1. For α ≥ 1, h > 0, n ∈ N and µ ∈ ∆
(α)
N [h], we have

E|H(µ)−H(µ̂n)| ≤ log n√
n

+ inf
0<ε<1

[(
log

1

ε

)1−α
h+ log

(
1 +

1

εn

)]
.

Proof. Since by Lemma 5, |H(µ)− EH(µ̂n)| = H(µ)− EH(µ̂n), it follows from the triangle and Jensen
inequalities that

E|H(µ)−H(µ̂n)| ≤ E|H(µ̂n)− EH(µ̂n)|+ H(µ)− EH(µ̂n)

≤
√

Var [H(µ̂n)] + H(µ)− EH(µ̂n)

≤ log n√
n

+ H(µ)− EH(µ̂n), (19)

where the variance bound is from Antos and Kontoyiannis (2001b, Proposition 1(iv)).
For any ε > 0, Lemma 5 implies

EH(µ̂n) ≥ H(µ)−
∑

i∈N:µ(i)<ε

µ(i) log
1

µ(i)
− log

(
1 +

1

εn

)

≥ H(µ)−
(

log
1

ε

)1−α ∑
i∈N:µ(i)<ε

µ(i)

(
log

1

µ(i)

)α
− log

(
1 +

1

εn

)

≥ H(µ)−
(

log
1

ε

)1−α
H(α)(µ)− log

(
1 +

1

εn

)
, (20)
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where the second and third inequalities follow from the obvious relations

∑
i:µ(i)<ε

µ(i) log
1

µ(i)
≤

(
log

1

ε

)1−α ∑
i:µ(i)<ε

µ(i)

(
log

1

µ(i)

)α

≤
(

log
1

ε

)1−α
H(α)(µ).

The claim follows by combining (19) with (20).

Proof of Theorem 5(a). Use the fact that R(α)
n (h) ≤ E|H(µ)−H(µ̂n)|, invoke Proposition 1 with

ε = 1√
n
and use log(1 + x) ≤ x.

We now prove the second half of the theorem.

Proof of Theorem 5(b). Let α > 0, n ∈ N and define two families of distributions:

U1 :=
{
µ1 = Uniform([n3])

}
,

U2 :=
{
µ2 = Uniform(A) : A ⊂ [n3], |A| = n2

}
.

Let h := 3α logα n and note that U1 ∪ U2 ⊆ ∆
(α)
N [h]. Let E be the event that X = (X1, . . . , Xn) has no

repeating elements, i.e |{X1, X2, . . . , Xn}| = n. Let µ1 ∈ U1,µ2 ∈ U2 and consider the values PX∼µn1 (E)
and PX∼µn2 (E). Form ∈ N, defineK(m) to be the smallest k such that when uniformly throwingm balls
into k buckets, the probability of collision is at least 1/2. Since K(m) is known5 to be at least

√
m (and

hence K(n2) > n) we have a lower bound of 1
2 on both PX∼µn1 (E) and PX∼µn2 (E). Define µn1 |E as the

distribution on Nn induced by conditioning the product µn1 on the event E, and define µn2 |E analogously.
Our key observation is that conditional on E, µn1 is uniform on ([n3])n whereas µn2 = Uniform(A)n is
uniform on (A)n, where (J)k :=

{
(x1, . . . , xk) ∈ Jk : | {x1, . . . , xk} | = k

}
is the set of all possible ordered

samples of size k from a distribution supported on J . To verify this observation, take x = (x1, . . . , xn) ∈
[n3] and note that (µn1 |E)(x) = PX∼µn1 ({X = x} ∩ E) /PX∼µn1 (E) = PX∼µn1 ({X = x}) /PX∼µn1 (E)
if x has no repeating elements (meaning {X = x} ⊆ E) and (µn1 |E)(x) = 0 otherwise. Then

R(α)
n (h) ≥ inf

Ĥ
sup

µ∈U1∪U2
E

X∼µn

[
|Ĥ(X)−H(µ)|

]
(a)
≥ inf

Ĥ
sup

µ∈U1∪U2
E

X∼µn|E

[
|Ĥ(X)−H(µ)|

]
P

X∼µn
(E)

≥ inf
Ĥ

1

2
sup

µ∈U1∪U2
E

X∼µn|E

[
|Ĥ(X)−H(µ)|

]
(b)
≥ inf

Ĥ

1

4

(
E

X∼µn1 |E

[
|Ĥ(X)−H(µ1)|

]
+ sup
µ2∈U2

E
X∼µn2 |E

[
|Ĥ(X)−H(µ2)|

])
(c)
≥ inf

Ĥ

1

4

(
E

X∼µn1 |E

[
|Ĥ(X)−H(µ1)|

]
+ E
µ2∼Uniform(U2)

[
E

X∼µn2 |E

[
|Ĥ(X)−H(µ2)|

]])
(d)
= inf

Ĥ

1

4

(
E

X∼µn1 |E

[
|Ĥ(X)−H(µ1)|

]
+ E
X∼µn1 |E

[
|Ĥ(X)−H(µ2)|

])

= inf
Ĥ

1

4

(
E

X∼µn1 |E

[
|Ĥ(X)−H(µ1)|+ |Ĥ(X)−H(µ2)|

])
(e)
≥ 1

4
|H(µ1)−H(µ2)| = 1

4
log n =

1

4

h

3α logα−1 n
,

where (a) is from the law of total expectation (the complement of E is discarded), (b) and (c) are
bounding a supremum by an average, (e) is from the triangle inequality, and (d) is by observing that,

5Better bounds exist (Brink, 2012).
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by symmetry, the operators Eµ2∼Uniform(U2)

[
EX∼µn2 |E [·]

]
= EA∼Uniform([n2])

[
EX∼Uniform((A)n) [·]

]
and

EX∼µn1 |E [·] = EX∼Uniform([n3]) [·] are equivalent. (There is a minor abuse of notation in transitions after
(c), since we write µ2 without specifying a particular member of U2. However, µ2 only occurs therein
as H(µ2), and this value is identical for all µ2 ∈ U2.)

6 Comparative Rates

Our bounds have the crucial characteristic of being empirical (under moment assumptions). When
we observe favorable distributions (even without a priori knowledge of the fact), we will benefit from
tighter bounds. This entails some cost, and in the worst case our bounds will be sub-optimal. In this
section, we illustrate these trade-offs for various natural classes of distributions.

For the class of all finite alphabet distributions, our bound is sub-optimal. The MLE (plug-in
estimator) is competitive with the optimal estimator up to logarithmic factors in d, but our bounds on
the MLE are loose nearly quadratically in d/n, in the worst case. The convergence of the empirical
distribution on a finite alphabet in `1 occurs at rate Θ(

√
d/n), whereas the MLE entropy estimator

converges at rate O
(√(

d
n

)2
+ log2 d

n

)
, as follows from Wu and Yang (2016, Proposition 1). So any

approach that upper bounds the entropy risk via `1 (as our Theorem 1 or Section 4 of Ho and Yeung
(2010)) will be worst-case suboptimal for this class of distributions.

Nevertheless, for certain classes of distributions our bounds (Theorem 1 and Corollary 1) can
significantly outperform the state of the art, for small and moderate-sized samples. To calculate the
expected rate of our approach, we apply Hölder’s inequality, as in the proof of Theorem 1:

E|H(µ̂n)−H(µ)| ≤
(
E
[
2αα + H(α)(µ) + H(α)(µ̂n)

])1/α

(E‖µ̂n − µ‖1)1−1/α .

Now, as in the proof of Lemma 1 (recall that h(α)(z) := z logα(1/z)) ,

EH(α)(µ̂n) = E
∑
i∈[d]

µ(i)∨µ̂n(i)≥e−α

h(α)(µ̂n(i)) +
∑
i∈[d]

µ(i)<e−α

h(α)(µ̂n(i))1[µ̂n(i) < e−α]

≤ 2eα max
z∈[e−α,1]

h(α)(z) +
∑
i∈[d]

µ(i)<e−α

Eh(α)(µ̂n(i))1[µ̂n(i) < e−α]

= 2eα max
z∈[e−α,1]

h(α)(z) +
∑
i∈[d]

µ(i)<e−α

Eh(α)(µ̂n(i)1[µ̂n(i) < e−α])

(i)

≤ 2eα max
z∈[e−α,1]

h(α)(z) +
∑
i∈[d]

µ(i)<e−α

h(α)(Eµ̂n(i)1[µ̂n(i) < e−α])

(ii)

≤ 2eα max
z∈[e−α,1]

h(α)(z) +
∑
i∈[d]

µ(i)<e−α

h(α)(Eµ̂n(i))

≤ 2eα max
z∈[e−α,1]

h(α)(z) + H(α)(µ)
(iii)

≤ 2αα + H(α)(µ),

where (i) follows from Jensen’s inequality, (ii) is because h(α)(z) is increasing on z ∈ [0, e−α] and (iii)
from (13).

By Berend and Kontorovich (2013, Lemma 6), we have E‖µ̂n − µ‖1 ≤ Λn(µ), where

Λn(µ) := 2
∑

µ(j)<1/n

µ(j) +
1√
n

∑
µ(j)≥1/n

√
µ(j).
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Figure 1: Left: A comparison of the three bounds for d = 10, D = 1000, p = 0.95. Our bound
considerably outperforms Wu and Yang (2016) on small samples, and performs nearly as well as the
finite-dimensional Cover-Thomas bound. Right: for our value of q = 2, the log-log plot shows roughly
the correct slope of −1/2.

This quantity is always finite and Λn(µ) −→
n→∞

0 for all µ ∈ ∆N (ibid). Thus, we obtain the bound

E|H(µ̂n)−H(µ)| ≤
(

4αα + 2H(α)(µ)
)1/α

Λn(µ)1−1/α. (21)

Finite support For distributions with a large support but concentrated mass, the bound in (21)
compares favorably to the state of the art, especially for smaller sample sizes. To illustrate this, consider
a mixture of two distributions with support sizes d and D: µ′ is uniform over [d], µ′′ is uniform over
[d+D], and µ := pµ′ + (1− p)µ′′, for some p ∈ [0, 1].

The state-of-the-art upper bound for the plug-in estimator can be inferred from Wu and Yang (2016,
Appendix D), and has the form

E|H(µ̂n)−H(µ)| ≤ WY(d,D, p, n) :=
d+D

n
+ min

(
C

log(d+D)√
n

,
log n√
n

)
for some C > 1; notice that it is insensitive to p. For a fair comparison to (21), our estimator’s
only a priori knowledge of µ is that its support is of size at most d+D. By Proposition 2, we have
maxµ∈∆K

H(α)(µ) ≤ max {α, logK}α + (α/e)α. This allows us to optimize over α for each n:

OUR(d,D, p, n) := inf
α>1

(
4αα + 2 max {α, log(d+D)}α + 2(α/e)α

)1/α

Λn(µ)1−1/α.

Since µ has finite support, the Cover-Thomas inequality (2) also applies to yield an adaptive
estimate when combined with (1). As t log(1/t) is concave, the latter has the form

E|H(µ̂n)−H(µ)| ≤ E
[
‖µ̂n − µ‖1 log

d+D

‖µ̂n − µ‖1

]
≤ Λn(µ) log

d+D

Λn(µ)
=: CT(d,D, p, n).

The comparisons are plotted in Figure 1 (Left).

Infinite support In some cases our bound is nearly tight (at least for the plug-in estimate), such
as for the family of zeta distributions µq(i) ∼ 1/iq with parameter q > 1. For this family, Antos and

Kontoyiannis (2001a, Theorem 7) establish a lower bound of order n
1−q
q on E

∣∣H(µ̂n)−H(µq)
∣∣. It is

straightforward to verify6 that µq ∈ ∆
(α)
N for all q, α > 1. Thus, we can optimize our bound in (21)

6One can, for example, apply Cauchy’s condensation test, followed up by the ratio test.
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over all α > 1; the results are presented in Figure 1 (Right).

7 Moments of Information

We motivate our bounded-moment assumption as being considerably less restrictive than the finite-
alphabet assumptions and tail conditions studied in previous works (Wu and Yang, 2016; Silva, 2018);
see Section .1 for a detailed comparison. Obtaining moment-based results is essentially a desideratum
laid out by Antos and Kontoyiannis (2001a), in which it is hypothesized that — in parallel to the
asymptotic distribution for the finite alphabet case — moment conditions are the correct notion to
achieve finite-sample estimates in the infinite alphabet case. Our Theorem 5(a) shows that, under these
assumptions, there is an inverse logarithmic convergence rate (similar to, though distinct from, the
results of Wyner and Foster (2003)) and, furthermore, using empirical quantities, this rate can be very
much accelerated, as demonstrated in Corollary 1.

In this section, we study some of the mathematical properties of moments of information.

7.1 Maximizing the α-moment over a fixed support size

Proposition 2. For K ≥ 2 and α ≥ 1,

max {logK, (α/e)}α ≤ max
µ∈∆K

H(α)(µ) ≤ max {logK,α}α + (α/e)α.

We will need the following useful (and likely known) result.

Lemma 6 (folklore). Suppose that 0 < a < 1 and f : [0, 1]→ R is strictly concave on [0, a] and strictly
convex on [a, 1]. Define the function F : ∆K → R by

F (µ) =
K∑
i=1

f(µ(i)).

Then any maximizer µ? of F is either the uniform distribution or else has exactly 1 “heavy” mass
v ∈ [a, 1] and K − 1 identical “light” masses (1− v)/(K − 1).

Proof. A standard “smoothing” argument (Loh, 2013) shows that if two masses u ≤ v occur in the
interval (a, 1), there is an ε > 0 such that f(u − ε) + f(v + ε) > f(u) + f(v). In other words, such
masses can be pushed apart (keeping their sum fixed) to increase the value of F , until one of them
reaches the boundary of [a, 1]. Furthermore, since 0 < a < u < v and u + v ≤ 1, repeated iteration
of the “pushing apart” operation will hit the left endpoint (i.e., a) rather than the right one (i.e., 1).
Having exhausted the “pushing apart” process, we are left with one “heavy” mass v ∈ [a, 1] and K − 1
“lighter” ones in [0, a]. But concavity implies that F will be maximized by pulling the lighter masses in
(as opposed to pushing them apart), which amounts to replacing each of them by the average of the
K − 1 values.

Proof of Proposition 2. Choosing µ to be the uniform distribution yields H(α)(µ) = logαK, and
choosing µ such that v := µ(1) = e−α yields H(α)(µ) ≥ v log(1/v)α = (α/e)α. Thus, the lower bound
is proven and it only remains to prove the upper bound.

Let µ? be a maximizer for given α,K. Recall the function h(α)(z) = z logα(1/z) and note that it is
strictly concave on [0, e−(α−1)] and strictly convex on [e−(α−1), 1]. Then Lemma 6 shows that µ? will
either be uniform or else attains at most one value v ∈ [e−(α−1), 1] in the convex interval, with the
remaining values equal to 1−v

K−1 ∈ [0, e−(α−1)] in the concave interval. Only the latter case is non-trivial:

H(α)(µ?) = v

(
log

1

v

)α
+ (1− v)

(
log

K − 1

1− v

)α
for some v satisfying

0 <
1− v
K − 1

≤ e−(α−1) ≤ v < 1. (22)
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Now v
(
log 1

v

)α is maximized over [0, 1] by v = e−α, which yields the value (α/e)α.

To bound the second term, g(v) := (1− v)
(

log K−1
1−v

)α
, we consider two cases: (i) K − 1 < eα and

(ii) K − 1 ≥ eα. In case (i), g is maximized by v? = 1− (K − 1)/eα and

g(v?) = (1− v?)
(

log
K − 1

1− v?

)α
≤
(

log
K − 1

1− v?

)α
= αα.

In case (ii), g is monotonically decreasing in v. The constraint 1−v
K−1 ≤ v from (22) implies v ≥ 1/K, so

in this case,

g(v) ≤
(

log
K − 1

1− 1/K

)α
= logαK.

This proves the upper bound.

7.2 Moments of Information vs. Moments of Distributions

Since for all r ≥ 1 and µ ∈ ∆N, we trivially have ‖µ‖r ≤ 1, it is only for r < 1 that ‖µ‖r conveys
nontrivial tail information. However, as a measure of tail decay, the latter is rather crude: ‖µ‖r <∞
for any r < 1 implies H(α)(µ) <∞ for all α > 0:

Proposition 3. For all α > 0 and r ∈ (0, 1), we have

H(α)(µ) ≤
(

α

e(1− r)

)2α

‖µ‖r .

Remark. The bound above is quite loose. For example, for α = 1 the AM-GM inequality readily yields,
for any r ∈ (0, 1),

H(µ) ≤ r

1− r
ln ‖µ‖r .

It may be of interest to investigate bounds of the form

H(α)(µ) ≤ a(α) logb(α) ‖µ‖c(α) ,

for some functions a, b, c : α 7→ (0,∞).

Proof. We first claim that for α > 0 and r ∈ (0, 1),

x logα
1

x
< xr, x ∈ [0, 1].

Indeed, the function x 7→ x1−r logα( 1
x) is maximized at x = e

α
r−1 , attaining the maximum value of

e−α( α
1−r )α. The latter is less than 1 whenever α < e(1− r). Likewise, whenever α < ce(1− r), we have

x logα( 1
x) < cαxr, and so H(α)(µ) < c2α ‖µ‖r. Choosing c = α

e(1−r) proves the claim.

7.3 Resolution of Jürgensen and Matthews Conjectures

In this section, we give a complete resolution of the conjectures posed by Jürgensen and Matthews
(2010).
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Conjecture 10.1 Jürgensen and Matthews (2010, Conjecture 10.1) posits that for d = 2, maxµ∈∆2 H(α)(µ)

has two maximizers π(α)
1 =

(
1
2 + x(α), 1

2 − x
(α)
)
and π

(α)
2 =

(
1
2 − x

(α), 1
2 + x(α)

)
for some value x(α)

such that x(2) = 1
2e

√
e2 − 4 and x(α) is strictly increasing as α→∞ and limα→∞ x

(α) = 1
2 .

By Lemma 6, there are at most three maximizers. Since H(α) ((e−α, 1− e−α)) > (αe )α > logα(2), the
uniform distribution is not a maximizer. So, including permutations, there are exactly two maximizers.

Let (u?α, v
?
α) be the increasingly-ordered maximizing distribution. We cannot have u?α < e−α, because

this would only decrease H(α) as compared to H(α) ((e−α, 1− e−α)). By Lemma 6, u?α ≤ e−(α−1), and
similarly v?α ∈ [1− e−(α−1), 1− e−α]. By convexity and monotonicity of log 1

x on [0, 1], the difference
between

∣∣h(α+1)(e−α)− h(α+1)(u?α)
∣∣ and ∣∣h(α)(e−α)− h(α)(u?α)

∣∣ shrinks by more than the difference
between

∣∣h(α+1)(v?α)− h(α+1)(1− e−α)
∣∣ and ∣∣h(α)(v?α)− h(α)(1− e−α)

∣∣ grows. So, for maxµ∈∆2 H(α)(µ)

to be less than maxµ∈∆2 H(α+1)(µ), as occurs (for sufficiently large α) by resolution of Conjecture 10.4
below, it must be that u?α+1 < u?α and v?α+1 > v?α (as α tends to infinity).

Furthermore, e−(α−1) → 0 as α→∞, and so limα→∞ x
(α) = 1

2 .
To find the value of x(2), set x := x(2) and find the critical points of

H(2)

(
x+

1

2
, x− 1

2

)
:=

(
1

2
− x
)

log2

(
1

2
− x
)

+

(
x+

1

2

)
log2

(
x+

1

2

)
.

Differentiating and factoring, we get

d

dx
H(2)

(
x+

1

2
, x− 1

2

)
= −

(
log

(
−x+

1

2

)
− log

(
x+

1

2

))(
2 + log

(
−x+

1

2

)
+ log

(
x+

1

2

))
= 0.

Now x = 0 is a solution which we know is not the maximum and we also get x = ±
√

e2−4
2e which exactly

what Jürgensen and Matthews (2010) conjectured.

Conjecture 10.2 Jürgensen and Matthews (2010, Conjecture 10.2) posits that for π(α)
1 , π

(α)
2 as above

and α ≥ 2, we have H(α)(π
(α)
1 ) = H(α)(π

(α)
2 ) > (log 2)α and moreover, this quantity is strictly increasing

and unbounded as α→∞.
Since log(2) < α

e , by Proposition 2, H(α)(π
(α)
1 ) = H(α)(π

(α)
2 ) > (log 2)α and unbounded.

Conjecture 10.3 Jürgensen and Matthews (2010, Conjecture 10.3) posits that H(α) has d local
maxima for for d > 2 and α > 2. By Lemma 6, the only maxima are the uniform distribution and the
d permutations of supv∈[e−(α−1),1):(d−1)u+v=1(d− 1)u logα(u) + v logα(v), should the latter exist with v
in interior of interval. So there are either 1 (e.g. eα = d) or d+ 1 local maxima.

Conjecture 10.4 For d, α ∈ N, define h?d,α := maxµ∈∆d
H(α)(µ). Jürgensen and Matthews (2010,

Conjecture 10.4) posits that h?d,α+1 > h?d,α and that limα→∞ h
?
d,α =∞. In light of the lower bound in

Proposition 2, the latter claim (i.e., unboundedness) is immediate.
For d > eα, by Proposition 2, maxµ∈∆d

H(α)(µ) ≤ 2 logα d and logα+1 d ≤ maxµ∈∆d
H(α+1)(µ). We

find, therefore, that for d > e2, maxµ∈∆d
H(α)(µ) ≤ maxµ∈∆d

H(α+1)(µ).
But since the conjecture takes interest in the case of α tending to infinity, let us focus on eα ≥ d− 1.
By Lemma 6, µ?α := arg maxµ∈∆d

H(α)(µ), is either uniform or takes two distinct values v ∈
[e−(α−1), 1] and u = 1−v

d−1 ∈ [0, e−(α−1)].
For x ∈ [0, 1

e ], log(1/x) ≥ 1, so h(α+1)(x) ≥ h(α)(x). So if u, v ∈ [0, 1
e ], then H(α)(µ?α) <

H(α+1)(µ?α) ≤ maxµ∈∆d
H(α+1)(µ)

So assume instead that v ∈ (1
e , 1]. In this case, we can bound the difference h(α)(v)− h(α+1)(v) ≤

h(α)(v) ≤ 1
e .

Since eα ≥ d−1, u > e−α and must lie in [e−α, e−(α−1)]. But for this entire interval, x ∈ [e−α, e−(α−1)]
has h(α+1)(x)− h(α)(x) ≥ 1

e ≥ h(α)(v). In order to see this, it suffices, since h(α) and h(α+1) are both
decreasing on [e−α, e−(α−1)], to show that h(α+1)(e−(α−1)) − h(α)(e−α) > 1

e . This can be seen by
observing e(α− 1)α+1 − αα > eα−1 for all α ≥ 3.
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It follows, therefore, that for α ∈ N, when d > eα, for all d ≥ 8, or for eα ≥ d− 1, for all α ≥ 3, the
former claim (monotonicity) holds, i.e.

max
µ∈∆d

H(α)(µ) < max
µ∈∆d

H(α+1)(µ).

(This can also be generalized to any β(6= α+ 1) for sufficiently large d or α respectively, if one so
desired).

Our conjecture We close the section with a conjecture of our own.

Conjecture 1. For eα < d < ∞, we have maxµ∈∆d
Hα(µ) = logα d and moreover, the maximum is

achieved by the uniform distribution over [d].
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.1 Comparison of tail-vs-moment assumptions

Expanding upon the observation of Antos and Kontoyiannis (2001b) that moment of information
assumptions are “weaker (and somewhat more natural” than tail decay rates, we make some concrete
comparisons between the two.

Let us list a number of conditions one might impose µ:

A1(α): Finite α-moment of information Antos and Kontoyiannis (2001b):
For some α > 1,E

[
logα 1

µ(X)

]
<∞.

B1(α,Mα): Bounded α-moment of information:
For some α > 1, ∃Mα > 0,E

[
logα 1

µ(X)

]
< Mα.

A2(β): Superlinear β tail decay:
For some β > 1,µ(i) = O

(
1
iβ

)
.

B2(β, cβ, cβ): Controlled superlinear β tail decay (Antos and Kontoyiannis, 2001b):
For some β > 1,∃cβ, cβ > 0 such that cβ

iβ
≤ µ(i) ≤ cβ

iβ
.

A3(γ): Superlinearly γ-logarithmic tail decay:
For some γ > 1,µ(i) = O

(
1

i logγ i

)
.

B3(γ, cγ , cγ): Controlled superlinearly γ-logarithmic tail decay (Antos and Kontoyiannis, 2001b):
For some γ > 1,∃cγ , cγ > 0 such that cγ

i log iγ ≤ µ(i) ≤ cγ
i log iγ .

Proposition 4. The following implications hold:

(a) A3(γ), γ > 2 =⇒ A1(α),∀α < γ − 1.

(b) A1(α), α > 1 6=⇒ A3(γ), γ < α+ 1

(c) B1(α,Mα) =⇒ A1(α)

(d) A2(β) =⇒ A3(γ),∀γ > 1

(e) A2(β) =⇒ A1(α),∀α > 1

(f) B2(β, cβ, cβ) =⇒ A2(β)

(g) B3(γ, cγ , cγ) =⇒ A3(γ)

(h) B2(β, cβ, cβ) =⇒ B1(α,Mα) with Mα = Mα(α, cβ, β)

(i) B3(γ, cγ , cγ), γ > 2 =⇒ B1(α,Mα),∀α < γ − 1, with Mα = Mα(α, cγ , γ).

Remark We start by noticing that∑
i∈Ω

µ(i)≤e−α

µ(i) logα
1

µ(i)
≤
∑
i∈Ω

µ(i) logα
1

µ(i)
≤ αα +

∑
i∈Ω

µ(i)≤e−α

µ(i) logα
1

µ(i)
,

(23)

and that on [0, e−α], it holds that x→ x logα 1
x is increasing. Since αα is finite, the convergence of the

series is primarily governed by what happens or small probabilities.

Proof (c), (d), (f), (g) Immediate.
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Proof (a) Suppose that assumption A3(γ) holds. Then ∃N ∈ N, C > 0 such that for any i ≥ N ,
µ(i) ≤ C 1

i logγ i . We focus on the rightmost term of (23).

∑
i∈Ω

µ(i)≤e−α

µ(i) logα
1

µ(i)
≤ Ne−ααα +

∑
i∈Ω

µ(i)≤e−α

i>N

µ(i) logα
1

µ(i)

≤ Ne−ααα + C
∑
i∈Ω

µ(i)≤e−α

i>N

1

i logγ i
logα

i logγ i

C

≤ Ne−ααα + C
∑
i∈Ω

µ(i)≤e−α

i>N

(log i+ γ log log i+ log 1/C)α

i logγ i
.

Since log i dominates both log log i and log 1/C, the series converges whenever
∑

i∈N
1

i logγ−α i
converges,

which occurs exactly for γ > α+ 1.

Proof (e) Let µ, and suppose that A2(β) holds for some β. Then ∃N ∈ N, C > 0 such that
∀i ∈ N, i > N , µ(i) ≤ C 1

iβ
. Let α > 1. We decompose the expression of E

[
logα 1

µ(X)

]
:

∑
i∈Ω

µ(i) logα
1

µ(i)
=
∑
i∈Ω
i≤N

µ(i) logα
1

µ(i)
+

∑
i∈Ω
i>N

µ(i)≤e−α

µ(i) logα
1

µ(i)︸ ︷︷ ︸
x 7→x logα 1

x
increasing on [0,e−α]

+
∑
i∈Ω
i>N

µ(i)>e−α

µ(i) logα
1

µ(i)

≤ N max
x∈[0,1]

{
x logα

1

x

}
︸ ︷︷ ︸

=e−ααα

+Cβα
∑
i∈Ω
i>N

µ(i)≤e−α

1

iβ
logα i

︸ ︷︷ ︸
≤Sα,β<∞

+
∑
i∈Ω
i>N

µ(i)>e−α︸ ︷︷ ︸
at most eα elements

µ(i) logα
1

µ(i)

≤ (Ne−α + 1)αα + CβαSα,β,

such that for any α > 1, there exists Mα < ∞ that bounds the α-moment of information. Notice
that although existence is guaranteed, N,C depend on the unknown µ. The asymptotic nature of
assumption A2(β) is therefore not enough to specify what Mα is.

Proof (h) Starting from (23),

∑
i∈Ω

µ(i) logα
1

µ(i)
≤ αα +

∑
i∈Ω

µ(i)≤e−α

µ(i) logα
1

µ(i)
≤ αα +

∑
i∈Ω

µ(i)≤e−α

cβ
iβ

logα
iβ

cβ

which is upper bounded by a converging series, whose value is entirely defined by α, β and cβ .

Proof (i) Follows the arguments of the proof for (a) and the proof of (h). The series converges exactly
when α < γ − 1, and if it does, the value of the converging series is a function of α, γ, cγ .

Proof (b) Assume that µ satisfies A1(α) for some α > 1. Then, ∀γ < α + 1, the collection of
distributions such that µ(i) ∈ O

(
(log log i)δ

i logγ i

)
, δ > 1 also verifies the hypothesis.
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