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Stochastic computing (SC) is a low-cost computational paradigm that has promising applications in digital filter design, image 

processing and neural networks. Fundamental to these applications is the weighted addition operation which is most often 

implemented by multiplexer (mux) trees. Mux-based adders have very low area but typically require long bit-streams to reach 

practical accuracy thresholds when the number of summands is large. In this work, we first identify the main contributors to mux 

adder error. We then demonstrate with analysis and experiment that two new techniques, precise sampling and full correlation, 

can target and mitigate these error sources. Implementing these techniques in hardware leads to the design of CeMux 

(Correlation-enhanced Multiplexer), a stochastic mux adder that is significantly more accurate and uses much less area than 

traditional weighted adders. We compare CeMux to other SC and hybrid designs for an electrocardiogram filtering case study that 

employs a large digital filter. One major result is that CeMux is shown to be accurate even for large input sizes. CeMux’s higher 

accuracy leads to a latency reduction of 4x – 16x over other designs. Further, CeMux uses about 35% less area than existing 

designs, and we demonstrate that a small amount of accuracy can be traded for a further 50% reduction in area. Finally, we 

compare CeMux to a conventional binary design and we show that CeMux can achieve a 50 – 73% area reduction for similar power 

and latency as the conventional design, but at a slightly higher level of error. 
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1 INTRODUCTION 

Digital systems, like those in biomedical implants and the internet of things, [27] often have computational needs 

where approximate results are acceptable, but they must meet stringent implementation constraints such as low 

power and small size. Stochastic computing (SC) [3] has recently emerged as a promising computational paradigm 

for such applications. SC employs streams of random bits to process data, where the value of a bit-stream is related  
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Figure 1: Root mean squared error vs. number of mux adder inputs M for a conventional mux-based SC adder (black) and CeMux 
(blue). SN length is 29 bits. 

to the probability that its bits take value 1. A major advantage of this encoding scheme is that it enables the use of 

simple digital circuits to implement important arithmetic operations like multiplication and addition. SC is 

especially appealing for use in neural networks [17][18][19], image processing [8] or finite impulse response filters 

(FIRs) [4][5][6][7][10]. These applications rely heavily on the weighted addition operation which is expensive to 

implement in traditional non-stochastic or “binary” computing (BC). In contrast, weighted addition can be 

implemented very efficiently by SC using low-cost trees of multiplexers (muxes). 

Some prior studies of SC mux-based weighted adders for digital filters and similar applications [7][11][17] have 

found that muxes can have unacceptably low accuracy when the number of summands is large. This inaccuracy 

stems from SC’s use of random bits which lead to random fluctuation errors in computed output values. Longer bit-

streams mitigate the random errors, but they lead to unacceptable latency and high energy use. The inaccuracy of 

mux adders has increased interest in other, more expensive SC adders such as the accumulative parallel counter 

type [25]. 

Unexpectedly, recent work [1] has pointed out that small mux adders can be made far more accurate than 

expected via careful use of SC properties like correlation. That this can also be done efficiently for large, multi-input 

adders is a major conclusion of this paper. To illustrate, consider an experiment that compares a conventional mux 

adder [6][7] to our correlation-enhanced mux adder CeMux, which is presented in Sec. 4. Each adder is configured 

to implement weighted addition with 2𝑚 summands and all weights randomly set to ±1/2𝑚 for a range of 𝑚 values. 

In Fig. 1, both designs are simulated with input values that are randomly chosen from the interval [−1,1]. The 

estimated root mean squared error (RMSE) defined as 

RMSE(𝑍, 𝑍̂) = √
1

𝑅
∑(𝜇Zi

− 𝜇̂Zi
)
2

𝑅

𝑖=1

(1) 

is recorded, where 𝜇𝑍𝑖
 and 𝜇̂𝑍𝑖

 are, respectively, the circuit’s target value and actual output value during simulation 

run 𝑖. Fig. 1 shows that as m increases, CeMux’s error is 3.4x to 12x lower than the conventional design’s error.  

In this work, we first identify the main error sources in mux adders through analysis that explores new angles 

of SC theory. This analysis leads to the concepts of precise sampling and full correlation which leverage aspects of  



3 

 

Figure 2: Stochastic computing circuits and elements. (a) Unipolar multiplier circuit; (b) Stochastic number generator based on an LFSR 

random number source and a comparator; (c) Multiplexer used in an SC weighted adder. 

correlation to reduce randomness in the operation of mux trees and thereby lower error levels. Implementing these 

techniques efficiently in hardware is at the heart of the CeMux design and the fact that it is orders of magnitude 

more accurate than alternative mux-based adders. The paper culminates in an application of CeMux to 

electrocardiogram (ECG) filtering. 

The key contributions of this work are: 

1. Formulation of mux adder variance as the sum of three components which provides key insights into how 

variance can be decreased. Exact expressions are derived for mux adder variance in typical scenarios. 

2. Introduction of the error-reduction techniques precise sampling and full correlation for mux adders. 

3. Design of CeMux, a new mux adder design that exploits these techniques along with a low discrepancy 

number source to achieve high accuracy, even for large input sizes. 

4. An ECG case study that demonstrates not only CeMux’s superior accuracy, but also the fact that it greatly 

reduces both latency and area compared with existing SC designs. 

2 BACKGROUND 

First, we introduce relevant background information on stochastic computing. We adopt a slightly non-standard, 

but consistent notation for SC concepts that will simplify various equations.  

2.1 Stochastic Computing Basics 

2.1.1 Stochastic Numbers 

Stochastic computing (SC) uses (pseudo) random bit-streams called stochastic numbers (SNs) to encode and 

process information. An SN 𝐗 is a stream of random bits 𝑋1𝑋2 …𝑋𝑁 which all have the same probability of taking 

value 1: ℙ(𝑋𝑖 = 1) = 𝑃𝑋 for 1 ≤ 𝑖 ≤ 𝑁. The numerical value 𝜇𝑋 of X is derived from 𝑃𝑋 and depends on the SN format 

used. Two popular formats are unipolar where 𝜇𝑋 = 𝑃𝑋, and bipolar where 𝜇𝑋 = 2𝑃𝑋 − 1. When using unipolar 

format, SN values are restricted to the unit interval [0,1] while bipolar format extends SN values to the negative 

domain [−1,1]. This work mainly uses the bipolar format, but the results also extend to the simpler unipolar case. 

The usefulness of the stochastic encoding is best demonstrated with an example. Consider an AND gate with 

unipolar SN inputs X, Y and output Z (Fig. 2a). The output value of this simple circuit is 𝜇𝑍 = ℙ(𝑍𝑖 = 1) =

ℙ(𝑋𝑖 ∧ 𝑌𝑖 = 1) which, if X and Y are uncorrelated, becomes ℙ(𝑋𝑖 = 1)ℙ(𝑌𝑖 = 1) = 𝜇𝑋𝜇𝑌. Thus, 𝜇𝑍 = 𝜇𝑋𝜇𝑌  implying  
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Figure 3: Generating cross-correlated SNs X1, X2. (a) maximally correlated SCC(X1, X2) = 1; (b) maximally anti-correlated SCC(X1, X2) = 

−1. 

that the AND gate acts as a single-gate unipolar SN multiplier. Similarly, in bipolar format, an XNOR gate performs 

multiplication on uncorrelated inputs. The simplicity of multiplication in SC is a principal driving force for interest 

in the field. 

A drawback of the AND gate multiplier (or any single-output SC circuit) is that its output is not 𝜇𝑍, but rather a 

stream of random bits 𝒁 = 𝑍1𝑍2 …𝑍𝑁  which give an approximate estimate of 𝜇𝑍. The most common estimator for 

unipolar SNs is the frequency of 1s in Z. 

𝜇̂𝑍 =
1

𝑁
∑𝑍𝑖

𝑁

𝑖=1

(2) 

This estimator can be implemented with only a counter provided that the SN length 𝑁 is a power of 2 so that division 

by 𝑁 is effectively implemented by the radix point’s implicit location in the counter’s state. The estimator for bipolar 

SNs where 𝜇𝑍 = 2𝑃𝑍 − 1 is similarly 

𝜇̂𝑍 = 2(
1

𝑁
∑𝑍𝑖

𝑁

𝑖=1

) − 1 (3) 

which can be implemented with an up-down counter [3]. The difference between Z’s value 𝜇𝑍 and Z’s estimated 

value 𝜇̂𝑍 is the circuit error which fluctuates due to the randomness of the bits used to measure 𝜇̂𝑍. Typically, the 

expectation of Z’s estimated value is very close to Z’s actual value, 𝔼[𝜇̂𝑍] ≈ 𝜇𝑍. However, subtle changes in the 

circuit’s design can greatly affect the variance of 𝜇̂𝑍 and the circuit’s accuracy. As exemplified in Sec. 3, 

understanding the relationship between logic design and the statistics of 𝜇̂𝑍 is crucial to managing error in SC. 

On the input side of a stochastic circuit lie the stochastic number generators (SNGs) used to generate input SNs. 

A typical SNG consisting of a linear feedback shift register (LFSR) [3] and a comparator is shown in Fig. 2b. The 

LFSR’s state 𝑅 cycles through integers in the range [1, 2𝑛 − 1] in a pseudo random order and acts as a pseudo 

uniform random number source. Each clock cycle, 𝑅 is compared to 𝑃𝑋 to produce 𝑋𝑖  where ℙ(𝑋𝑖 = 1) ≈ 𝑃𝑋. By 

changing the control input 𝑃𝑋, the SNG generates SNs with desired values. 

2.1.2 Stochastic Cross Correlation 

Stochastic computing elements are usually designed to operate on statistically independent or uncorrelated SNs, 

although some designs require correlated inputs. When the intended level of input correlation is not realized, the 

circuit can have a biased output which can lead to serious errors [14][22]. The correlation between bits of two SNs, 

𝐗1 and 𝐗2, is usually quantified by the stochastic cross correlation (SCC) metric, which measures the expected  
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Figure 4: M-way weighted mux adder design. Each 2-way mux has a single select input; the input generation circuits may contain 

stochastic number generators in various configurations. 

overlap between the 1s in 𝐗1 and 𝐗2 [14]. SCC takes values in [−1,1] where SCC(𝐗1, 𝐗2) = 0 implies that 𝐗1 and 𝐗2 

are uncorrelated. An SCC(𝐗1, 𝐗2) of +1 (−1) implies that the 1s in 𝐗1 and 𝐗2 overlap the maximum (minimum) 

number of times as determined by 𝑃𝑋1
and 𝑃𝑋2

. For example, 𝐀 = 010110 (𝑃𝐴 = 1/2) and B = 010010 (𝑃𝐵 = 1/3) 

have an estimated SCC of +1 because their 1s overlap as much as possible based on 𝑃𝐴 and 𝑃𝐵, while A and C = 

101011 (𝑃𝐶  = 2/3), have an estimated SCC of −1 because their 1s overlap as infrequently as possible based on 𝑃𝐴 

and 𝑃𝐶 . 

Two SNs, 𝐗1 and 𝐗2 can be generated with zero SCC by using separate and statistically uncorrelated RNSs in 

their SNGs. An SCC of +1 or −1 can be obtained by sharing an RNS between the SNGs, as shown in Fig. 3. Sharing in 

this manner saves hardware but increases the overall error if the circuit function requires uncorrelated inputs.  

2.2 Mux Adders 

We turn now to another fundamental SC operation, weighted addition, which is most often implemented by a 

multiplexer (mux), the focus of this paper. Fig. 2c shows a 2-input mux, which has two data inputs and a control 

input called the select line. If SNs A and B are applied to the data inputs, then the output Z’s value is a weighted sum 

of A’s value and B’s value where the sum’s weights are determined by the value of an SN S applied to the select line. 

The weights of A and B must sum to one which enables a small range of adder types to be implemented and ensures 

that the sum is restricted to the probability range [0,1]. For instance, the mux in Fig. 2c is usually configured to 

compute 

𝜇𝑍 =
1

2
𝜇𝐴 +

1

2
𝜇𝐵 (4) 

by setting S’s value 𝜇𝑆 to 1/2 implying that A and B are equally weighted. One way to understand (4) is to envision 

the mux as a sampling unit, where each clock cycle the control input S determines which input, A or B, is sampled, 

and has its bit propagated to the output. Since 𝜇𝑆 = 1/2, A and B have an equal chance of being sampled each clock 

cycle implying that, on average, half of Z’s bits will be from A and half from B. Thus, Z’s value is given by (4). The  
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Figure 5: Three-input weighted mux adder that implements (6) and uses a hardwired mux tree [7]. The magnitudes of the normalized 

weights 𝑤̃𝑖 = 𝑤𝑖/∑ 𝑤𝑖𝑖  are encoded in the wiring of the data inputs of the mux tree and the signs of the weights are accounted for by 
the XNOR gate array. 

viewpoint of muxes as sampling units will serve an important role in understanding how correlation can be used to 

improve the accuracy of mux adders. 

The 2-input mux generalizes to an 𝑀-input mux circuit which computes 

𝜇𝑍 =
1

∑ |𝑤𝑖|
𝑀
𝑖=1

∑𝑤𝑖𝜇𝑋𝑖

𝑀

𝑖=1

(5) 

where X1, X2, …, XM are bipolar input SNs with weights 𝑤1, 𝑤2, … , 𝑤𝑀 , respectively. Conventional SC mux adders that 

compute (5) often have two stages: an XNOR gate array of bipolar multipliers followed by a mux adder tree as shown 

in Fig. 4a [4][6][7][10]. The XNORs multiply each bipolar data input with the sign of its corresponding weight. Then, 

each Yi (𝜇𝑌𝑖
= sign(𝑤𝑖)𝜇𝑋𝑖

) is routed into a mux tree which computes 𝜇𝑍 =
1

∑ |𝑤𝑖|
𝑀
𝑖=1

∑ |𝑤𝑖|𝜇𝑌𝑖

𝑀
𝑖=1 . 

There are various mux tree designs that, together with an XNOR array, implement (5) and they mainly differ in 

how they use the mux select inputs to encode the normalized magnitude of each weight |𝑤̃𝑖| = |𝑤𝑖|/∑ |𝑤𝑖|
𝑀
𝑖=1 . One 

basic design, the so-called “hardwired” mux tree [7] is best explained with an example. The hardwired mux tree in 

Fig. 5b computes 

𝜇𝑍 =
1

2
𝜇𝑌1

+
3

8
𝜇𝑌2

+
1

8
𝜇𝑌3

. (6) 

Here, the mux select inputs S2, S1 and S0 all have value 1/2 and are shared amongst muxes on the same level of a full 

mux tree. With this configuration, all 8 mux tree inputs have probability 1/8 of being sampled each clock cycle. Y2 

is then hardwired to three of the eight mux tree inputs because |𝑤̃2| = 3/8. Likewise, Y1 is hardwired to half the 

mux tree inputs since |𝑤̃1| = 4/8 and Y3 is hardwired to just one input because |𝑤̃1| = 1/8. Thus, through 

hardwiring each Yi to one or more input slots of the mux tree, weighted addition is implemented. In general, the 

height of the mux tree determines the values to which the normalized weights must be quantized, and Algorithm 1 

describes the quantization procedure. In Fig. 5, the height is 3 and all 𝑤̃𝑖  are quantized to 3-bit precision. The 

hardwired mux tree is most useful in resource-limited applications where the weights are not expected to be 

updated, such as in hearing aid filters [31] or electrocardiogram filtering [32]. 
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Algorithm 1: Mux Tree Weight Normalization and Quantization 

Input: weights 𝒘 = [𝑤1, … ,𝑤𝑀] and height of hardwired mux tree 𝑚 

Output: absolute values of the quantized, normalized weights [|𝑤̃1|, … , |𝑤̃𝑀|]  

 

a = 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒_𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝑣𝑎𝑙𝑢𝑒(𝒘) 

t = 2𝑚𝒂/𝑠𝑢𝑚(𝒂)  // t is the numerator of the normalized weights which have denominator 2𝑚. 

q = 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒_𝑟𝑜𝑢𝑛𝑑_𝑡𝑜_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝒕) // q is the quantized version of t 

 

// Sometimes after rounding, the quantized normalized weights do not sum to 1 and slight adjustments are 

// are needed. q represents the numerator of these weights which have denominator 2𝑚. 

 

// If the sum of q exceeds 2𝑚, decrement the numerator that results in smallest bias. 

while 𝑠𝑢𝑚(𝒒) > 2𝑚 do 

     𝑖 = argmax(𝒒 − 𝒕) 

     𝑞𝑖 = 𝑞𝑖 − 1 

end 

 

// If the sum of q is below 2𝑚, increment the numerator that results in smallest bias. 

while 𝑠𝑢𝑚(𝒒) < 2𝑚 do 

     𝑖 = argmax(𝒕 − 𝒒) 

     𝑞𝑖 = 𝑞𝑖 + 1 

end 

return 𝒒/𝟐𝒎 

 

In cases where weights are expected to be updated, the “biased selector” mux tree introduced in [5] is another 

design that can be used to implement weighted addition. In this case, the weights are not hardwired, but rather are 

encoded into the select input SNs’ values which are no longer all set to be 0.5. When a change in summand weights 

is needed, the select input values can be updated. The weight flexibility comes at a high area cost, however, since 

many additional SNGs are needed for the select input SNs. Recent work aims at reducing this SNG overhead [4][6]; 

see Sec. 3 in [4] for a detailed explanation of the biased selector mux tree design. Note that the terminology “biased 

selector tree” is not used in [4], but was introduced here to help differentiate mux tree designs. 

The central idea of this work is a new way to use correlation in mux trees. In [4][6], the authors use correlation 

to reduce the biased selector tree’s SNG area while sacrificing as little accuracy as possible. Our work is distinct 

from [4][6] because here we use correlation to improve the accuracy of mux trees while incidentally decreasing 

their area. Additionally, our correlation techniques’ impact on accuracy is validated by simulation in Sec. 5 as well 

as the analysis presented in Sec. 3 and the Appendix. 

3 MUX ADDER ANALYSIS AND OPTIMIZATION 

This section introduces our main accuracy enhancement techniques, precise sampling and full correlation, and 

demonstrates their effectiveness through a new analysis of mux tree errors. 
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Figure 6: Variance of bipolar mux adders versus the number of mux inputs M when input values are uniformly random and weights are 
randomly set to ±1/𝑀. (a) An unoptimized mux circuit; (b) A mux circuit with precise sampling and full correlation implemented. All 

values are normalized by multiplying by 𝑁, the bitstream length.  

3.1 Mux Adder Error  

A stochastic circuit’s error 𝜖𝑍 is the difference between the output Z’s estimated value, 𝜇̂𝑍, found using a counter, 

and its target value, 𝜇𝑍
∗  found, in the case of mux adders, using (5): 

𝜖𝑍 = 𝜇̂𝑍 − 𝜇𝑍
∗ (7) 

The mean squared error, MSE(𝜇̂𝑍, 𝜇𝑍
∗ ) = 𝔼[𝜖𝑍

2], can be expressed in the form of a bias-variance decomposition [2] 

MSE(𝜇̂𝑍, 𝜇𝑍
∗ ) = Bias(μ̂Z, 𝜇𝑍

∗ )2 + Var(μ̂Z) (8) 

where the bias (variance) quantifies the systematic (random) error of the circuit. 

Bias(𝜇̂𝑍, 𝜇𝑍
∗ ) = 𝔼[𝜇̂] − 𝜇𝑍

∗ (9) 

Var(𝜇̂𝑍) = 𝔼[(𝜇̂𝑍 − 𝔼[𝜇̂𝑍])2] = 𝔼[𝜇̂𝑍
2] − 𝔼[𝜇̂𝑍]

2 (10) 

In the context of mux trees, the bias is error resulting from quantizing the input values and weights in (5) while 

the variance is error resulting from random fluctuations in the realized SN bit patterns. The variance is normally 

much greater than the bias in SC, so the bias is often approximated as zero. A key conclusion of the traditional 

Bernoulli model of SC is that the variance of any combinational circuit with bipolar output SN Z can expressed as 

Var(μ̂Z) =
1 − 𝔼[𝜇̂𝑍]2

𝑁
(11) 

where N is the length of Z [23]. Eq. (11) is useful because 𝔼[𝜇̂𝑍] is easy to compute for a given circuit. For instance, 

the variance of a mux adder that computes (5) can be expressed as 

Var(𝜇̂𝑍) =
1 − (∑ 𝑤̃𝑖𝜇𝑋𝑖

𝑀
𝑖=1 )

2

𝑁
(12) 
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where 𝑤̃𝑖 = 𝑤𝑖/∑ |𝑤𝑖|
𝑀
𝑖=1  and 𝜇𝑋𝑖

 have been quantized to the precision of the circuit. 

In many cases, (11) and (12) overestimate the variance of a circuit that employs typical LFSR SNGs (Fig. 2b) 

because these SNGs do not produce Bernoulli-type SNs. Instead, the hypergeometric SN model can be used to obtain 

better estimates of variance for LFSR SNGs [1]. 

We now present a new formula for mux circuit variance that flexibly applies to both the Bernoulli and 

hypergeometric SN models: 

Var(μ̂Z) = 𝜖𝑛𝑜𝑖𝑠𝑒 + 𝜖𝑠𝑎𝑚𝑝 + 𝜖𝑐𝑜𝑟𝑟 (13) 

Formal definitions and derivations for 𝜖𝑛𝑜𝑖𝑠𝑒 , 𝜖𝑠𝑎𝑚𝑝, and 𝜖𝑐𝑜𝑟𝑟 are given in the Appendix. Here, we focus on a high-

level explanation of (13). 

Like (12), 𝜖𝑛𝑜𝑖𝑠𝑒 , 𝜖𝑠𝑎𝑚𝑝  and 𝜖𝑐𝑜𝑟𝑟 all depend on the SN length N, the input values, and the weights. Decomposing 

mux variance into these three specific components highlights how precise sampling and full correlation improve 

mux accuracy. For instance, Fig. 6 illustrates how 𝜖𝑛𝑜𝑖𝑠𝑒 , 𝜖𝑠𝑎𝑚𝑝  and 𝜖𝑐𝑜𝑟𝑟 vary with the number of mux inputs M for 

a mux adder that has random bipolar input values and all weights randomly set to ±1/𝑀. Fig. 6a corresponds to a 

conventional mux adder and shows that as the number of inputs increases, the variance quickly saturates to a high 

value of 1/𝑁 [11]. Fig. 6b corresponds to a mux adder with our proposed precise sampling and full correlation 

methods. It shows that precise sampling reduces 𝜖𝑠𝑎𝑚𝑝 to zero, and full correlation pushes 𝜖𝑐𝑜𝑟𝑟 below zero to about 

−1/(3𝑁). Together these techniques lead to a significant overall variance reduction of 67%. In Sec. 5, we will show 

that this accuracy improvement is further amplified when a low discrepancy RNS is used in place of an LFSR-type 

RNS. 

Similar to (13), other equations that decompose stochastic circuit error into distinct components have been 

proposed in research that does not specifically focus on mux adders. In [16], the authors express circuit error as a 

sum of approximation, quantization, and fluctuation errors. The former two errors are systematic and together 

constitute the bias of the circuit whereas the latter error is the variance. In [22], the authors express error with a 

correlation term and a variance term. Their correlation error is a non-negative bias term and is distinct from 𝜖𝑐𝑜𝑟𝑟 

which can take negative values and quantifies how correlation affects circuit variance. In [24], the authors introduce 

a hypergeometric decomposition method which maps a circuit’s variance into a function of the input values and 

input variances. Our analysis differs from most prior error analyses [7][11][16][22][23] because, like [1] and [24], 

it applies to the hypergeometric model of SNs which much better represent SNs derived from typical LFSR SNGs.  

3.2 Sampling Error and Precise Sampling 

Mux addition relies on sampling the input SNs, and 𝜖𝑠𝑎𝑚𝑝 measures the variation of that sampling process. For 

instance, consider the mux tree of Fig. 5b with independent inputs Y1, Y2, Y3 that have length 𝑁 = 16. Since |𝑤̃2| =

3/8, Y2 is expected to be sampled six times (|𝑤̃2|𝑁 = 6), but Y2 may be sampled anywhere from zero to sixteen 

times due to random fluctuations in the mux select inputs S2, S1 and S0. When an input is not sampled its expected 

number of times, the mux output will be biased thus causing error that is characterized by 𝜖𝑠𝑎𝑚𝑝. If 𝐶𝑖 is the number 

of times bipolar input Yi is sampled, then for the mux tree in Fig. 5b,  

𝜖𝑠𝑎𝑚𝑝 =
1

162 ∑∑𝜇𝑌𝑖
𝜇𝑌𝑗

Cov(𝐶𝑖 , 𝐶𝑗)

3

𝑗=1

3

𝑖=1

(14) 
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Figure 7: Sampling inputs from a hardwired mux tree where each input is equally weighted. (a) Noisy sampling where the select lines 
are generated from independent RNSs; (b) precise sampling where the select lines are derived from a single RNS state. Note how in (b) 

each evenly weighted input is sampled exactly 25% of the time. 

where Cov(𝐶𝑖 , 𝐶𝑗) is the covariance between 𝐶𝑖 and 𝐶𝑗 and Cov(Ci, Ci) = Var(Ci). Eq. (14) highlights the fact that 

𝜖𝑠𝑎𝑚𝑝 (and thus part of the mux’s variance) is dependent on the variation in the number of times each input is 

chosen. Reducing this variation motivates the concept of precise sampling.  

Let N-bit SNs Y1, Y2, …, YM with normalized weights |𝑤̃𝑖|, be input to a mux tree and let 𝐶𝑖 be the number of times 

Yi is sampled by the tree. A mux tree performs precise sampling when, with probability 1, each input is sampled its 

expected number of times, up to a rounding error. Formally, precise sampling is when ℙ(|𝐶𝑖 − 𝔼[𝐶𝑖]| < 1) = 1 for 

1 ≤ 𝑖 ≤ 𝑀. After quantizing 𝔼[𝐶𝑖] = |𝑤̃𝑖|𝑁 to the nearest integer, implementing precise sampling guarantees that 

𝜖𝑠𝑎𝑚𝑝 is always zero. 

Conventional hardwired mux trees such as HWA [7] do not perform precise sampling because separate and 

independent RNSs are used to feed the mux select lines, and fluctuations between these RNSs causes sampling 

variation as seen in Fig. 7a. Instead, when the SN length is 2𝑛, precise sampling can be performed by a height ℎ 

hardwired mux by deriving the mux select lines from the state of a single RNS as shown in Fig. 7b. A key feature of 

the chosen RNS is that it generates numbers from [0,2𝑛 − 1] without repetition. This construction ensures that each 

mux input slot is sampled exactly 2𝑛−ℎ times and eliminates variation in the number of times an input is sampled 

implying that 𝜖𝑠𝑎𝑚𝑝 = 0. Moreover, our new construction (Fig. 7b) replaces the ℎ RNSs of the conventional design 

(Fig. 7a) with a single RNS thus saving considerable area. Suitable choices for a precise sampling (pseudo) RNS 

include an 𝑛-bit LFSR with the all-0 inserted to its state sequence making it nonlinear [1], and an n-bit counter. 

3.3 Full Correlation 

Fig. 3 shows two SNGs sharing a single RNS. The sharing of a single RNS amongst the 𝑀 data inputs of a mux adder 

is common practice in SC because it saves considerable area and because correlation among the mux data inputs 

was believed to have no effect on output error. This assumption of correlation insensitivity was disproven recently 

when it was shown that correlation can greatly increase the accuracy of a mux [1]. 

To illustrate, consider the mux tree in Fig. 8a with four uncorrelated inputs Y1, Y2, Y3, Y4 each with unipolar value 

1/2, length 8 and weight 1/4. During each clock cycle 𝑖, some of the input bits (𝑌1,𝑖 , 𝑌2,𝑖 , 𝑌3,𝑖 , 𝑌4,𝑖) are 0 and others 1. 

By happenstance, it is possible for the mux to propagate a 0 every single clock cycle resulting in 𝐙 = 00000000. In 

this case, Z’s estimated value is 0 which poorly represents Z’s actual value of 1/2. 
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Figure 8: Effect of data correlation on mux behavior; (a) Possible outcome of mux tree with uncorrelated inputs; (b) unique outcome 
of mux tree with maximally correlated inputs of the same value. 

In contrast, Fig. 8b shows the same mux adder configuration, but when Y1, Y2, Y3, Y4 are maximally correlated by 

sharing an RNS. Here, Y1, Y2, Y3, Y4 are identical since they all have the same value and share an RNS. Regardless of 

the mux select inputs, the output Z will always be a copy of one of the mux’s four identical inputs and Z’s estimated 

value is the correct value of 1/2.  

In general, when the data inputs have different values, correlation amongst mux tree data inputs lessens the 

possibility of high error caused by the mux selection process (as in Fig. 8a). Correlation’s impact on accuracy 

(quantified by 𝜖𝑐𝑜𝑟𝑟 in (13)) is greatest when correlation is maximized. Thus, to maximize accuracy, mux trees 

should achieve full correlation which occurs when the SCC is +1 between all pairings of mux data inputs. Full 

correlation can be achieved by careful sharing of RNSs; an example is given in our CeMux design (Sec. 4.1) whose 

mux tree achieves full correlation. Note that full correlation can be applied to improve accuracy when using a 

hardwired mux tree and also when using a biased selector mux tree like the designs in [4][6].  

4 CEMUX 

Now we formally introduce CeMux, a bipolar weighted mux adder which combines our two correlation-inspired 

techniques, precise sampling and full correlation, with other recent advances in SC to form a particularly efficient 

design. CeMux (Fig. 9) implements weighted addition (5) using an XNOR multiplier array and hardwired mux tree 

as in the general mux adder structure of Fig. 4. Since the weights are fixed and known ahead of time, Fig. 9 simplifies 

the XNOR array of Figs. 4 and 5a by explicitly showing that inputs with negative weights are inverted by the XNOR 

array and inputs with positive weights are unmodified by the XNOR array. The following subsections explain the 

remainder of the design in a component-wise manner, while Algorithm 2 summarizes the overall design procedure. 

4.1 Data Input RNS and Full Correlation 

Like other mux adders [4][6][7], CeMux uses a single RNS to generate its data input SNs. Recently, it has been shown 

that stochastic circuit’s accuracy can be improved by using low discrepancy (LD) sequence generators as the RNS 

for SN generation [9][19][28][29]. LD sequences are deterministic sequences sometimes used to emulate a 

sequence of uniformly random numbers, but with lower variance. Well-known examples are the Halton, Sobol and 

van der Corput sequences [28][29]. Examples of a LD-generated SNs (LD SNs) are A = 10101010 (𝑃𝐴 = 1/2) and  
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Algorithm 2: Designing a CeMux Adder 

Input: weights 𝒘 = [𝑤1, … ,𝑤𝑀], precision 𝑛 and SN length 2𝑛 

 

Data RNS: Introduce an n-bit Sobol LDS generator [9]. Connect its output to the probability conversion (PCC) 
array. 

Correlation Inverters: Use a set of n inverters to generate the inverted Sobol RNS value which is also connected 
to the PCC array. 

PCC Array: Construct an array of n-bit comparators that compare data inputs 𝜇2
+, 𝜇2

+, … 𝜇𝑋𝑘

+  with positive weights 

to Sobol RNS value and compare inputs, 𝜇𝑋1

− , 𝜇𝑋2

− …𝜇𝑋𝑀−𝑘

−  with negative weights to the inverted Sobol RNS value. 

The output of this array is a set of 𝑀 SNs, X1, X2, … XM. 

Sign Inverter Array: Place inverters on all Xi whose 𝑤𝑖 < 0. Leave other Xi’s untouched. The output of this array is 
a set of SNs Y1…YM. Note this inverter array is equivalent to the XNOR array of conventional mux designs [4][6][7]. 

Precise Sampling RNS: Assemble an n-bit counter whose i-th MSB is connected to the select line of all muxes on 
the i-th level of the mux tree (the tree root is level 1). 

Hardwired Mux Tree: Utilize Algorithm 1 with inputs 𝒘 and 𝑛 to derive the absolute values of the normalized 
weights |𝑤̃1| … |𝑤̃𝑀|. Each Yi input is hardwired to |𝑤̃𝑖|2

𝑛 mux tree input slots. The output of this tree is CeMux’s 
output SN Z. 

Output Counter: Insert an 𝑛-bit up-down counter that increments when Z’s bit is 1 and decrements when Z’s bit 
is 0. The output of this counter is Z’s estimated value 𝜇̂𝑍. 

 

Figure 9: The proposed CeMux design for computing (5). Instead of an array of XNOR gates, inverters are explicitly shown for inputs 
with negative weights. 

𝐁 =  11101110 (𝑃𝐵 = 3/4) which exhibit the key feature of LD SNs⎯the 1s are roughly uniformly distributed 

throughout the SN rather than randomly distributed. This uniform distribution of 1s reduces random fluctuation in 

the circuit operation and can often lead to more accurate results. The accuracy improvement is more significant 

when the circuit has few RNSs such as in the CeMux design which uses just a single RNS. Thus, the simplest Sobol  
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Figure 10: Visualizing the correlation of mux tree inputs Y1, Y2, Y3, Y4 with 𝑤1,𝑤4 > 0 and 𝑤2, 𝑤3 < 0. (a) conventional SN generation 

where all SNs are generated using the same RNS output. (b) full correlation generation method where SNs with positive weights are 
generated using the RNS output while SNs with negative weights are generated using the inverted RNS output. All data SNs in (b) are 

fully correlated as they enter the hardwired mux tree. 

sequence generator (implemented using the reverse state of a standard counter [9]) serves as CeMux’s RNS. 

CeMux’s mux tree achieves full correlation when SCC(𝐘i, 𝐘j) = +1 for all i,j. Ensuring this happens is not as 

straightforward as simply sharing the RNS amongst all data input SNGs. Fig. 10a demonstrates this point where a 

mux containing four inputs X1, X2, X3, X4 with corresponding weights 𝑤1, 𝑤4 > 0, and 𝑤2, 𝑤3 < 0 is shown. The 

pairwise SCC amongst X1, X2, X3, X4 is 1. However, since 𝑤2, 𝑤3 < 0, X2 and X3 are inverted which results in 

SCC(𝐘1, 𝐘4) = SCC(𝐘2, 𝐘3) = 1 and SCC = −1 for all combinations of Y1, Y2, Y3, Y4. Thus, full correlation is not 

achieved for the mux tree in Fig. 10a. 

In contrast, CeMux’s proposed SNG configuration for these SNs is shown in Fig. 10b. A single RNS is shared by 

the SNGs, but the RNS output is inverted for X2’s and X3’s SNGs. The result is SCC(𝐗1, 𝐗4) = SCC(𝐗2, 𝐗3) = 1, and 

SCC = −1 for all other SN pairings. Following the inversion of X2 and X3, we have that SCC(𝐘i, 𝐘j) = 1 for all i,j and 

full correlation is achieved by the mux tree. More generally, to achieve full correlation in CeMux, all inputs share an  

RNS, but inputs with negative weights use the inverted RNS output for SN generation while inputs with positive 

weights use the unaltered RNS output for SN generation. 

4.2 Probability Conversion Circuits 

The comparator used in an SNG can be generalized to what is known as a probability conversion circuit (PCC) and 

another choice for an SNG’s PCC is a weighted binary generator (WBG) [21]. A study by Zhong et al. [6] on mux 

adders showed that using WBGs in place of comparators can reduce circuit area by over 50% because about half of 

the WBG circuit can be shared amongst all SNGs. WBGs’ area efficiency suggests that they may be useful in CeMux, 

however, extensive simulation experiments show that input SNs cannot be reliably correlated when WBGs replace 

comparators in SNGs. In other words, full correlation cannot be achieved with WBGs, implying that their use 

degrades CeMux’s accuracy. To maximize accuracy, comparators are used as CeMux’s PCCs. Nevertheless, due to 

the WBG’s impressive area efficiency, we evaluate a version of CeMux that uses WBGs in the case study (Sec. 5.3). 
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Figure 11: CeMux’s hardwired mux tree implementation. (a) DDG tree corresponding to random variable 𝑋 with distribution ℙ𝑋(𝑂1) =

7/16, ℙ𝑋(𝑂2) = ℙ𝑋(𝑂3) = 1/4 and ℙ𝑋(𝑂4) = 1/16; (b) corresponding DDG-style hardwired mux tree that implements (15). (c) using 
a counter to implement precise sampling for a mux tree that implements 𝜇𝑧 = 1/4(𝜇𝐴 + 𝜇𝐵 + 𝜇𝐶 + 𝜇𝐷). 

4.3 Hardwired Mux Tree and Precise Sampling 

CeMux’s hardwired mux tree height is set to 𝑛 where 2𝑛 is the SN length. This is the largest tree height that enables 

precise sampling to function fully and yields the lowest quantization error. Increasing 𝑛 might seem to imply a large 

increase in hardware due to the exponential increase in mux numbers. That is not the case, however, because many 

of the 2-way muxes in a hardwired mux tree have identical data inputs and thus can be eliminated. For instance, all 

the shaded muxes in Fig. 5b can be removed, reducing the mux count from seven to three. In general, the number 

of muxes in a hardwired mux tree grows linearly with 𝑛. 

The scaling of the number of non-redundant muxes in a hardwired mux tree can be understood by relating it to 

Knuth and Yao’s discrete distribution generating (DDG) trees for random number generation [15]. A DDG tree 

describes an algorithm that uses a series of fair coin flips to sample from the given discrete distribution. Each 

internal node in a DDG tree corresponds to a coin flip and each leaf node corresponds to an outcome of the given 

distribution; an example is show in Fig. 11a. In terms of our work, each 2-way mux in a hardwired mux tree 

corresponds to a DDG tree internal node, each hardwired mux input Y1, Y2, …, YM corresponds to a DDG tree leaf 

node and the normalized weights |𝑤̃1|, |𝑤̃2|, … , |𝑤̃𝑀| correspond to the DDG tree’s target distribution. Bearing in 

mind this connection, Knuth and Yao’s work tells us that an optimal height-n hardwired mux tree can be constructed 

simply by inspecting the 𝑛-bit binary expansions of the normalized weights. 

For example, consider the hardwired mux tree construction in Fig. 11b which computes 

𝜇𝑍 =
7

16
𝜇𝑌1

+
1

4
𝜇𝑌2

+
1

4
𝜇𝑌3

+
1

16
𝜇𝑌4

(15) 

This construction can be arrived at in the following manner. Let level 1 be the root of the mux tree. First, Y1 is 

connected to a mux on level 2, level 3, and level 4 of the tree because 𝑤̃1’s binary expansion (0.01112) has a 1 in the 

2−2, 2−3 and 2−4’s place. Likewise, 𝑤̃2 = 𝑤̃3 = 0.01002 implies Y2 and Y3 should both be connected to a mux on level 

2 of the tree. Finally, 𝑤̃4 = 0.00012 implies Y4 is to be connected to a mux on level 4. 

Generally, the DDG method of constructing a height-n hardwired mux trees implies that the total number of 

muxes in the simplified tree is one less than the total number of 1s in the n-bit binary expansions of the normalized 

weights. For an 𝑀-input height-n hardwired mux tree, the (often impossible) worst-case is when every weight has  
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an all-1s binary expansion. Combining this worst-case with the consideration that a height-𝑛 mux tree can have at 

most 2𝑛 − 1 muxes implies a (loose) upper bound of min(𝑀𝑛 − 1, 2𝑛 − 1) on the maximum number of muxes. 

Hence, the number of muxes grows linearly rather than exponentially with n. 

CeMux implements precise sampling by using an n-bit counter’s state as the mux select input lines. The counter’s 

𝑖-th MSB is connected to muxes on the 𝑖-th level of CeMux’s hardwired mux tree as in Fig. 11c. With this construction, 

the output Z tends to consist of runs of bits from the same SN (also seen in Fig. 11c). Since CeMux uses a low-

discrepancy RNS that uniformly distributes the 1s in each input SN, this method of precise sampling leads to a highly 

accurate output. 

5 EXPERIMENTAL EVALUATION 

Finally, we evaluate the effectiveness of full correlation and precise sampling experimentally and compare CeMux 

to alternative weighted-adder designs. 

5.1 Full Correlation and Precise Sampling with Random Data 

We first consider using CeMux to compute (5) in the case where 𝑤𝑖  and 𝜇𝑋𝑖
 are randomly chosen from [−1,1]. 

CeMux’s precision 𝑛 is fixed at 10, and the number of inputs (𝑀 in (5)) is varied from 8 to 256. The SN length is 210 

and 𝑅 = 5,000 simulation runs are used. The RMSE (1) is measured when simulating CeMux both with and without 

full correlation and/or precise sampling. The results are shown in Fig. 12a. The RMSE for every configuration 

increases as 𝑀 is increased, which is consistent with other mux adder studies [4][6][7][11]. 

Full correlation is removed from CeMux by deleting the 𝑛 leftmost inverters in Fig. 9. Removing full correlation 

increases the RMSE by about 25% for all values of 𝑀, as shown in Fig. 12a. On the other hand, when precise sampling 

is removed from CeMux (by replacing the bottom RNS in Fig. 9 with a set of 𝑛 = 10 LFSRs), the RMSE rises by about 

114-630% depending on 𝑀. This larger RMSE increase indicates that precise sampling improves accuracy much 

more than full correlation. Finally, CeMux without either correlation technique has the worst RMSE which is about 

160-810% higher than full CeMux’s RMSE.  

We then repeated the foregoing experiment but replaced CeMux’s Sobol RNS with an LFSR to evaluate the 

usefulness of the low discrepancy RNS. The results are plotted in Fig. 12b and show that CeMux with the Sobol RNS 

is more accurate than CeMux with an LFSR RNS. Thus, the low discrepancy sequence complements our correlation 

techniques and further improves accuracy. For additional reference, also plotted in Fig. 12b is the RMSE when using 

HWA from [7]. In all, CeMux is found to be 1.5x – 5.7x more accurate than CeMux with an LFSR, and 2.6x – 9.3x more 

accurate than HWA, a standard mux adder design. 

5.2 CeMux Variants 

In the previous section, we observed that accuracy is degraded by removing full correlation or precise sampling 

from CeMux. These correlation techniques always maximize accuracy, but useful accuracy-area trade-offs are 

possible and may sometimes be worth considering. First, as discussed in Sec. 4.2, WBGs can be used in place of 

comparators to save a large amount of area in return for the loss of full correlation. Second, CeMux’s precise 

sampling method is built around a hardwired mux tree whose design cannot readily adapt to a change in summand 

weights. A biased selector mux tree can replace CeMux’s hardwired mux tree resulting in a design that implements 

full correlation, but not precise sampling. Importantly, this design variant can adapt to changes in summand weights 

by updating the appropriate registers. 
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Figure 12: Errors vs. number of mux inputs for various mux adders given random bipolar input values and weights. SN length is 210 and 

RMSE is normalized by multiplying by √210. (a) RMSE for CeMux with and without its correlation techniques; (b) RMSE for CeMux with 
and without its Sobol RNS, as well as RMSE for HWA; (c) RMSE for CeMux and two of its variants. 

To explore these tradeoffs further, the following analysis considers CeMux along with two variations on its 

design. The first variant, “CeMux with WBGs” has better area than CeMux while the second variant “CeMux biased 

selector” has more flexibility in updating summand weights, but worse area. However, both designs will have worse 

accuracy than CeMux. Demonstrative of this point is Fig. 12c which uses the same experimental set-up as Sec. 5.1 

but has these CeMux variants as the designs under consideration. The data in Fig. 12c reveals that the CeMux 

variants have lower accuracy than CeMux and the trends in the RMSE data match that of Fig. 12a where correlation 

techniques were explicitly removed from CeMux. 

5.3 ECG Case Study 

Next, we present an electrocardiogram (ECG) filtering case study which evaluates the performance of CeMux and 

other SC designs in the context of a practical application in the biomedical device field. Analysis of denoised ECG 

signals is used to monitor patient cardiovascular health and, for example, detect conditions like arrhythmia [12]. 

Noise is often removed from an ECG signal with a finite impulse response (FIR) filter, but FIR designs tend to place 

large computational demand on an ECG monitor’s limited computational resources [26][32][32].  The simplicity of 

SC digital filters suggests a promising direction for filter design in the ECG domain. In this case study, we 

demonstrate that CeMux is the most promising SC design candidate for ECG digital filtering. 
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Table 1: SC Mux-based Filter Design Specifications and Features 

Design 

Name 

Mux Tree 

Type 

Mux Data 

PCC 

Mux Select 

RNS 

Mux Select 

PCCs 

Full 

Correlation? 

Precise 

Sampling? 

Adaptable 

Weights? 

CeMux* hardwired comparators counter --- Yes Yes No 

CeMux with WBGs* hardwired WBGs counter --- No Yes No 

CeMux biased selector* biased selector comparators LFSRs WBGs Yes No Yes 

Basic hardwired hardwired WBGs LFSRs --- No No No 

Basic biased selector biased selector WBGs LFSRs WBGs No No Yes 

* Indicates our proposed design and its variants. 

5.3.1  Digital Filter Design 

An M-tap digital finite impulse response FIR filter implements 𝑍𝑖 = ∑ ℎ𝑗𝑋𝑖−𝑗
𝑀−1
𝑗=0  where the {𝑋𝑖} are samples from a 

digital signal, {ℎ𝑖} are the constant filter coefficients, and {𝑍𝑖} is the filtered signal. Filters with more taps tend to 

perform better filtering, but at the cost of higher computational resources such as more multipliers. Eq. (5) is a 

scaled version of the filter equation and thus mux adders are well-suited for SC-based filter design [5]. 

Muscle contractions, device noise and electrosurgical noise are three major ECG noise types that can be modeled 

by random noise [20]. We thus add random noise to a benchmark ECG signal [12][13] to generate a suitable test 

input. Then, as is common practice in filter design, we utilize MATLAB to derive the coefficients of an 𝑀-tap lowpass 

filter with a cutoff frequency of 0.1𝜋 rad/sample. The purpose of this lowpass filter is to remove the high frequency 

noise from the ECG signal. 

Next, we compare CeMux and its variants mentioned in Sec. 5.2 to other SC designs for the ECG filter application. 

One design we compare against is built around a hardwired mux tree (like HWA [7]) while another is built around 

a biased selector mux tree (like MWA [7] and the designs found in [4][6][10]). We also compare our designs with a 

typical accumulative parallel counter (APC) design [25]. For the APC case, an array of XNOR gates is used to perform 

SC multiplication between each signal input and its corresponding filter coefficient. Then, each product bit-stream 

is accumulated by the parallel counter which exhaustively counts all the incident bits. Only two Sobol RNSs [9] are 

needed in an 𝑀-input APC design, one RNS for the 𝑀 signal inputs and one RNS for the 𝑀 filter coefficients.  

Table 1 summarizes the mux-based SC designs under consideration and their features. All designs employ a 

shared Sobol RNS for the mux data input SNs which gives the best accuracy. WBGs are used and shared [6] whenever 

possible because they need less area than comparators. Designs that feature a hardwired mux tree do not need PCCs 

for the mux select input SNs because those SNs always have value 0.5 and so can be produced from the RNS directly. 

We do not consider ad hoc accuracy-sacrificing techniques like circular shifting which degrade accuracy to improve 

area [4]. For all designs including the APC case, the bit-width of all RNSs, counters, WBGs and comparators is set to 

𝑛 bits where 𝑛 is varied throughout the case study. Bit-stream length is always set to 𝑁 = 2𝑛. 

5.3.2 Accuracy and Latency Analysis 

First, each hardware filter design listed in Sec 5.3.1 is simulated with the derived filter coefficients and the noisy 

ECG signal as input. The RMSE (1) is estimated using 𝑅 = 10,000 simulation runs when the precision of each circuit 

is set to 𝑛 = 10 bits and the number of filter taps 𝑀 is varied. The results are plotted in Fig. 13a. CeMux’s RMSE 

ranges from 4x to 12x lower than all the other SC designs, indicating its superior accuracy. Further, CeMux maintains 

its low RMSE as 𝑀 is increased and never exceeds an RMSE of 2−7, indicating that CeMux remains accurate with 

large input sizes. CeMux’s variants are also significantly more accurate than the traditional SC designs because they 
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Figure 13: Error analysis of various SC digital filters for ECG case study. (a) RMSE versus number of inputs, 𝑀; (b) RMSE versus latency 

and SN length, 𝑁. RMSE is normalized in (a) by multiplying by √210. 

each implement one of our two correlation techniques. 

Surprisingly, CeMux’s accuracy far exceeds that of the APC design, which usually has very high accuracy due to 

the use of an expensive parallel counter to perform deterministic summation [19][25]. In the present case, however, 

we find RNS sharing leads to high summation error caused by highly correlated intermediate errors. Not sharing 

RNSs would improve accuracy but lead to unreasonable area cost. Note that RNS sharing does not always lead to 

high error in the APC design, which has been shown to perform accurately in neural networks [19]. 

Next, to understand the latency of each design, we perform a similar experiment where the input size 𝑀 is fixed 

to 150 while the precision 𝑛 and bit-stream length 𝑁 = 2𝑛 are varied. Fig. 13b plots the RMSE estimated by 

simulation against the latency 𝑁 of each design. The latency needed for CeMux to surpass certain accuracy 

thresholds is always much lower than its SC counterparts. For instance, CeMux achieves an RMSE below 2−4 with 

64-bit SNs whereas the other mux designs require 256-bit SNs to meet the same target. The slope of the CeMux 

curve is also steeper than the other mux designs’ curves indicating CeMux’s latency improvement increases when 

more stringent accuracy thresholds are required. Overall, to hit a given accuracy threshold, CeMux and its variants 

require a latency around 4x to 16x lower than their counterpart SC designs.  

5.3.3 Area Analysis 

Next, we use Synopsys Design Compiler with the Nangate 45nm open cell library to synthesize the various filters 

and estimate the area of their weighted addition datapath. We do not consider the memory used to store prior signal 

values since each design requires the same amount of memory. Fig. 14a shows CeMux’s component-wise area 

breakdown for an 𝑛 = 10-bit precision design that implements an 𝑀 = 100 tap filter. CeMux’s 100 comparators 

take up 80% of the overall area, indicating efforts to improve CeMux’s area should target these components. One 

such approach would be to decrease the bit-width of CeMux’s comparators which saves area but will increase the 

quantization error of CeMux. For instance, changing CeMux’s comparator’s bit-width from 10 to 9 bits would reduce 

the comparator area by about 10% and while increasing the quantization error from ~
1

210 to ~
1

29 [7]. 
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Figure 14: Component wise area breakdown for (a) CeMux; (b) CeMux with WBGs. Precision 𝑛 is 10 bits and the number of filter taps 
𝑀 is 100. 

 

Figure 15: Area vs. input size for various SC digital filter designs. Precision 𝑛 is 10 bits for all designs.  

For comparison, we also synthesized CeMux with WBGs and plotted the results in Fig. 14b. In this case, the WBGs 

take up 60% of the overall area. The total circuit area of CeMux with WBGs is 50% less than the standard CeMux 

design which, along with Fig. 13, again indicates that using WBGs can lead to area savings at the cost of accuracy.   

Finally, we synthesize the various SC filter designs while varying the filter size. Fig. 15 plots the circuit area 

versus number of filter taps 𝑀 for 𝑛 = 10 bit precision. CeMux is smaller than other SC designs, achieving an average 

35% area reduction over other conventional SC designs because it replaces costly SNGs for weights or mux select 

inputs with a simple but precise sampling counter. As before in Fig. 14, Fig. 15 shows that using WBGs instead of 

comparators in CeMux reduces the area by about half due to the WBGs’ area efficiency. Thus, at the expense of 

accuracy (see Fig. 13) the area of CeMux can be further reduced by employing WBGs. 
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Table 2: Cost and Performance of a CeMux Filter and a Sequential Binary (SB) Filter 

 10-bit CeMux Filter  8-bit Sequential Binary Filter 

 

Input Size, 𝑀 

Area 

(𝜇𝑚2) 

Power 

(𝜇𝑊) 

RMSE 

(× 10−3) 

 Area 

(𝜇𝑚2) 

Power 

(𝜇𝑊) 

RMSE 

(× 10−3) 

25 566 13.16 4.17  1158 20.67 5.06 

50 853 20.16 4.47  1385 23.45 3.49 

75 1085 25.71 4.57   1603 28.51 3.99 

100 1212 28.82 4.87  1761 29.64 3.61 

125 1314 31.42 5.16  1855 30.83 3.13 

150 1465 35.52 5.41  2066 36.58 4.69 

175 1578 37.50 5.62  2119 37.99 4.85 

200 1670 39.79 5.64  2293 39.71 3.55 

225 1658 39.44 6.26  2324 39.70 4.19 

250 1813 43.20 6.05  2477 41.70 4.12 

 

Fig. 15 also shows that the three largest designs are conventional biased selector, APC, and CeMux biased 

selector. These designs have higher area because they use more SNGs and because, unlike the other designs, they 

are flexible in their ability to update filter coefficients stored in an external memory whose cost is not considered 

here. CeMux biased selector is the costliest design because it uses comparators rather than WBGs as the PCCs. 

Importantly, however, this CeMux variant’s accuracy leads to better latency than the APC and the conventional 

biased selector designs (Fig. 12b) making it a suitable alternative or accuracy stringent applications. While 

flexibility in updating filter coefficients is a convenient feature, FIR designs for resource limited applications like 

ECG filtering [32] and hearing aids [31] often assume and benefit from fixed filter coefficients. 

5.3.4 Comparison with Binary Computing 

The focus of this work has been on the analysis and improvement of SC mux adders. We have demonstrated 

that CeMux is the best mux-based SC adder in terms of accuracy (Fig. 13) and area (Fig. 15). For completeness, we 

also give a brief comparison with a conventional binary design. We compare a 10-bit CeMux filter with a traditional 

sequential binary (SB) filter designed using MATLAB’s Filter Design HDL coder. The SB design is synthesized 

assuming the filter coefficients are fixed, and the SB design employs standard optimizations like the exploitation of 

symmetric coefficients which greatly reduces multiplier count. Note that the designs’ precision levels are chosen to 

give them similar accuracy. Both designs are also configured to operate in real-time which requires each one to 

process digitized ECG samples at the sampling rate of 360 Hz. 

Table 2 shows the area, power and RMSE of the CeMux and SB filters as the filter length is varied from 𝑀 = 25 

to 𝑀 = 250. CeMux’s area is 49% to 73% lower than the SB design’s area due to the use of cheap SC computational 

units. The CeMux design must process the entire 1024-bit SN at a rate of 360 Hz to meet the real-time latency 

constraint. Consequently, CeMux’s digital clock frequency is set to be faster than the SB’s design digital clock 

frequency which results in both designs having similar power despite CeMux having lower area. Finally, the SB 

design has better RMSE, especially as input size grows. Based on the data presented in Table 2, we conclude that 

CeMux, a mux-based SC adder, has the potential of being a lower-cost alternative to conventional binary designs. 

Besides being smaller, SC designs also offer greater fault tolerance [7] which is one avenue for future exploration 

with CeMux. 
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Figure 16: Noisy ECG waveform (bottom) filtered by various 10-bit precision SC designs; SN length is 210. 

6 CONCLUSION 

As a closing, example, we compare the performance of all the SC filter designs considered here in the case of a 

noisy ECG signal filtered by an 𝑀 = 100 tap filter with precision n set to 10.  As Fig. 16 shows, the CeMux-based 

filters produce the smoothest, most noise-free curves, another reflection of CeMux’s superior accuracy. In general, 

we have seen that CeMux is the best SC design developed so far for large weighted-adder networks, in terms of both 

accuracy and accuracy-area tradeoffs. These properties result from two key design features: full data correlation 

and precise sampling, both of which exploit correlation in new ways to reduce errors in stochastic signals. CeMux 

can thus be considered a major step towards practical implementation of many-input, compact adders for a variety 

of SC applications. 
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APPENDICES 

Here we derive analytic expressions for mux adder variance and various adder configurations using the 

Bernoulli and hypergeometric SN models. Expressions derived with the hypergeometric SN model match the 

simulated variance of circuits that employ LFSR SNGs but overestimate the variance of CeMux when a low 

discrepancy random number source is used. 

In the following derivations, a bipolar SN’s bits are defined to take values {−1,1} rather than {0,1} where −1 acts 

as logical 0. Consequently, an N-bit bipolar SN X’s estimated value becomes 
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1  and its expected bit value 𝔼[𝑋𝑖] 

becomes 𝜇𝑋𝑖
 both of which match the unipolar case. Ultimately, changing the definition of bipolar bits allows some 

of the following expressions to simultaneously apply to both unipolar and bipolar SNs. The analysis also assumes 

that the bits of all input SNs are identically distributed which is the case in both the Bernoulli and hypergeometric 

SN models. It is helpful to note that the expectation operation, 𝔼[∙] is linear. 

A1. Mux Variance Decomposition (13) 

Consider a mux tree with 𝑀 data input SNs, X1X2…XM that have values 𝜇𝑋1
, 𝜇𝑋2

, … , 𝜇𝑋𝑀
 and length 𝑁. The mux 

tree has a select input S which is a stream of identically distributed random words. S’s value determines which data 

input is selected during clock cycle 𝑗. Let |𝑤̃𝑖| be the probability that Xi is sampled during any given clock cycle. Let 

the output of the mux tree be SN 𝐙 = [𝑍1, 𝑍2, … , 𝑍𝑁]𝑇  whose estimated value is 𝜇̂𝑍 =
1

𝑁
∑ 𝑍𝑖

𝑁
𝑖=1 . The variance of the 

mux tree output estimator is 

Var(μ̂Z) = 𝔼[(𝜇̂𝑍 − 𝔼[𝜇̂𝑍])2] (16) 

Let 𝐶𝑖 be a random variable representing the number of times that Xi is sampled by the mux tree. First, it can be 

shown that since the input SN bits are identically distributed, the output SN’s value can expressed as follows. 

𝜇̂𝑍 =
1

𝑁
∑𝑍𝑖

𝑁

𝑖=1

=
1

𝑁
∑∑𝑋𝑖,𝑗

𝐶𝑖

𝑗=1

𝑀

𝑖=1

(17) 

 where 𝑋𝑖,𝑗 represents Xi’s bit when it is sampled for the 𝑗𝑡ℎ  time rather than Xi’s 𝑗𝑡ℎ  bit. 

𝔼[𝜇̂𝑍] =
1

𝑁
∑𝔼[∑𝑋𝑖,𝑗

𝐶𝑖

𝑗=1

]

𝑀

𝑖=1

(18) 

Because 𝐶𝑖 is a random variable, 𝔼 [∑ 𝑋𝑖,𝑗
𝐶𝑖
𝑗=1 ] is a random sum of random variables which evaluates to 𝔼[𝐶𝑖]𝔼[𝑋𝑖,𝑗]. 

Further, since 𝐶𝑖 is the number of times Xi is sampled and |𝑤̃𝑖| is the probability that Xi is sampled during any given 

clock cycle, we have 𝔼[𝐶𝑖] = |𝑤̃𝑖|𝑁. Putting these notions together yields 

𝔼 [∑𝑋𝑖,𝑗

𝐶𝑖

𝑗=1

] = 𝔼[𝐶𝑖]𝔼[𝑋𝑖,𝑗] = |𝑤̃𝑖|𝑁𝜇𝑋𝑖
(19) 

Thus, (18) becomes 

𝔼[𝜇̂𝑍] = ∑|𝑤̃𝑖|𝜇𝑋𝑖

M

i=1

(20) 
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In other words, we have that the mux’s expected output value is a weighted sum of its input values as expected. 

The output variance (16) can then be rewritten using (17) and (20) 

Var(μ̂Z) = 𝔼[(
1

𝑁
∑∑𝑋𝑖,𝑗

𝐶𝑖

𝑗=1

𝑀

𝑖=1

− ∑|𝑤̃𝑖|𝜇𝑋𝑖

M

i=1

)

2

] (21) 

Now define 𝜖𝑖 =
1

𝑁
∑ 𝑋𝑖,𝑗

𝐶𝑖
𝑗=1 − |𝑤̃𝑖|𝜇𝑋𝑖

. Then 

Var(𝜇̂𝑍) = 𝔼 [(∑𝜖𝑖

𝑀

𝑖=1

)

2

] = 𝔼 [∑∑𝜖𝑖𝜖𝑗

𝑀

𝑗=1

𝑀

𝑖=1

] (22) 

Var(μ̂Z) = ∑𝔼[𝜖𝑖
2]

M

i=1

+ ∑∑𝔼[𝜖𝑖𝜖𝑗]

𝑀

𝑗=1
𝑗≠𝑖

M

i=1

(23) 

First re-express 𝔼[𝜖𝑖
2]. 

𝔼[𝜖𝑖
2] = 𝔼 [(

1

𝑁
∑𝑋𝑖,𝑗

𝐶𝑖

𝑗=1

− |𝑤̃𝑖|𝜇𝑋𝑖
)

2

] (24) 

Noting (19) and the definition of variance we have 

𝔼[𝜖𝑖
2] =

1

𝑁2
Var(∑𝑋𝑖,𝑗

𝐶𝑖

𝑗=1

) (25) 

∑ 𝑋𝑖,𝑗
𝐶𝑖
𝑗=1  is again a random sum of random variables. Since the 𝑋𝑖,𝑗’s are identically distributed and independent of 

𝐶𝑖, it can be shown that 

𝔼[ϵ𝑖
2] =

1

𝑁2
(Var(∑ 𝑋𝑖,𝑗

𝔼[Ci]

j=1

) + Var(Ci)𝔼[Xi,jX𝑖,𝑘]) (26) 

Now re-express 𝔼[𝜖𝑖𝜖𝑗] 

𝔼[𝜖𝑖𝜖𝑗] = 𝔼 [(
1

N
∑𝑋𝑖,𝑘

𝐶𝑖

𝑘=1

− |𝑤̃𝑖|𝜇𝑋𝑖
)(

1

𝑁
∑𝑋𝑗,𝑙

𝐶𝑗

𝑙=1

− |𝑤̃𝑗|𝜇𝑋𝑗
)] (27) 

Expanding yields 

𝔼[𝜖𝑖𝜖𝑗] = 𝔼 [
1

𝑁2
∑𝑋𝑖,𝑘

𝐶𝑖

𝑘=1

∑𝑋𝑗,𝑙

𝐶𝑗

𝑙=1

−
|𝑤̃𝑗|𝜇𝑋𝑗

𝑁
∑𝑋𝑖,𝑘

𝐶𝑖

𝑘=1

−
|𝑤̃𝑖|𝜇𝑋𝑖

𝑁
∑𝑋𝑗,𝑙

𝐶𝑗

𝑙=1

+ |𝑤̃𝑖|𝜇𝑋𝑖
|𝑤̃𝑗|𝜇𝑋𝑗

] (28) 

Using (19), 

𝔼[𝜖𝑖𝜖𝑗] =
1

𝑁2
𝔼 [∑∑𝑋𝑖,𝑘𝑋𝑗,𝑙

𝐶𝑗

𝑙=1

𝐶𝑖

𝑘=1

− N2|𝑤̃𝑖|𝜇𝑋𝑖
|𝑤̃𝑗|𝜇𝑋𝑗

] (29) 
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Noting ∑ ∑ 𝑋𝑖,𝑘𝑋𝑗,𝑙
𝐶𝑖
𝑙=1

𝐶𝑖
𝑘=1  is a random sum of random variables, 𝔼[𝐶𝑖] = |𝑤̃𝑖|𝑁 and 𝔼[𝑋𝑖,𝑗] = 𝜇𝑋𝑖

  

𝔼[𝜖𝑖𝜖𝑗] =
1

N2 [𝔼[𝐶𝑖𝐶𝑗]𝔼[𝑋𝑖,𝑘𝑋𝑗,𝑙] − 𝔼[𝐶𝑖]𝔼[𝐶𝑗]𝔼[𝑋𝑖,𝑘]𝔼[𝑋𝑗,𝑙]] (30) 

Noting the definition of covariance for two random variables 𝐴 and 𝐵, Cov(A, B) = 𝔼[𝐴𝐵] − 𝔼[𝐴]𝔼[𝐵] 

𝔼[𝜖𝑖𝜖𝑗] =
1

N2
[Cov(𝐶𝑖 , 𝐶𝑗)𝔼[𝑋𝑖,𝑘𝑋𝑗,𝑙] + 𝔼[𝐶𝑖]𝔼[𝐶𝑗]Cov(𝑋𝑖.𝑘 , 𝑋𝑗,𝑙)] (31) 

Putting (23), (26) and (31) together yields 

Var(μ̂Z) =
1

𝑁2

[
 
 
 

∑Var(∑ 𝑋𝑖,𝑗

𝔼[Ci]

j=1

)

𝑀

𝑖=1

+ ∑Var(Ci)𝔼[Xi,jX𝑖,𝑘]

𝑀

𝑖=1

+ ∑∑[Cov(𝐶𝑖 , 𝐶𝑗)𝔼[𝑋𝑖,𝑘𝑋𝑗,𝑙] + 𝔼[𝐶𝑖]𝔼[𝐶𝑗]Cov(𝑋𝑖.𝑘 , 𝑋𝑗,𝑙)]

𝑀

𝑗=1
𝑗≠𝑖

𝑀

𝑖=1
]
 
 
 

 

 For a random variable 𝐴, Var(𝐴) = Cov(𝐴, 𝐴), hence the second summation ∑ Var(Ci)𝔼[Xi,jX𝑖,𝑘]
𝑀
𝑖=1  and first term in 

the final double summation can be combined. 

Var(μ̂Z) =
1

𝑁2

[
 
 
 

∑Var(∑ 𝑋𝑖,𝑗

𝔼[Ci]

j=1

)

𝑀

𝑖=1

+ ∑∑Cov(𝐶𝑖, 𝐶𝑗)𝔼[𝑋𝑖,𝑘𝑋𝑗,𝑙]

𝑀

𝑗=1

𝑀

𝑖=1

+ ∑∑𝔼[𝐶𝑖]𝔼[𝐶𝑗]Cov(𝑋𝑖.𝑘 , 𝑋𝑗,𝑙)

𝑀

𝑗=1
𝑗≠𝑖

𝑀

𝑖=1
]
 
 
 

(32) 

Define 

𝜖𝑛𝑜𝑖𝑠𝑒 =
1

N2
∑Var(∑ 𝑋𝑖,𝑗

𝔼[Ci]

j=1

)

𝑀

𝑖=1

(33) 

𝜖𝑠𝑎𝑚𝑝 =
1

N2
∑∑Cov(𝐶𝑖 , 𝐶𝑗)𝔼[𝑋𝑖,𝑘𝑋𝑗,𝑙]

𝑀

𝑗=1

𝑀

𝑖=1

(34) 

𝜖𝑐𝑜𝑟𝑟 =
1

N2
∑∑𝔼[𝐶𝑖]𝔼[𝐶𝑗]Cov(𝑋𝑖.𝑘 , 𝑋𝑗,𝑙)

𝑀

𝑗=1
𝑗≠𝑖

𝑀

𝑖=1

(35) 

where 𝐶𝑖 is the number of times Xi is sampled and 𝑋𝑖,𝑘 is the k-th sampled bit of Xi (not the k-th bit of Xi). This 

redefinition of 𝑋𝑖,𝑘 is permitted because both the Bernoulli and hypergeometric SN models assume bits are 

identically distributed. Note that we defined that ℙ(𝐗i is sampled) = |𝑤̃𝑖|. Eqs (33–35) apply to both the unipolar 

SN and bipolar SN cases, but in the bipolar SN case, the bits take value {−1,1} instead of {0,1} where −1 acts as 

logical 0. Finally, if an XNOR array is used before the mux tree as in Fig. 4, (33–35) still apply, but 𝑋𝑖,𝑗 is redefined 

to be sign(𝑤𝑖)𝑋𝑖,𝑗  where sign(𝑤𝑖) = 1 if 𝑤𝑖 ≥ 0 and sign(𝑤𝑖) = −1 otherwise. 

𝜖𝑛𝑜𝑖𝑠𝑒 only depends on the variance of the input SNs which is determined by the SN model (i.e., Bernoulli or 

hypergeometric). 𝜖𝑠𝑎𝑚𝑝 depends mainly on the covariance of the number of times each input is sampled which is 

determined by the sampling method (noisy or precise). 𝜖𝑐𝑜𝑟𝑟 is a function of the covariance between sampled bits 

of two input SNs which depends on the SN model and on the SCC between input SNs. In all, we have 

Var(𝜇̂𝑍𝑖
) = 𝜖𝑛𝑜𝑖𝑠𝑒 + 𝜖𝑠𝑎𝑚𝑝 + 𝜖𝑐𝑜𝑟𝑟 (36) 
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A2. Expressions for Variance Components 

In Table 3, we list expressions for Var(𝜇̂𝑍𝑖
) when the mux tree has bipolar inputs and when an XNOR array is 

used before the mux tree. To derive such expressions, 𝜖𝑛𝑜𝑖𝑠𝑒 , 𝜖𝑠𝑎𝑚𝑝 , and 𝜖𝑐𝑜𝑟𝑟 are re-expressed according to which 

SN model (Bernoulli or hypergeometric), sampling method (noisy or precise) and input correlation level (SCC = 0 

or SCC = +1) is used. Then 𝜖𝑛𝑜𝑖𝑠𝑒 , 𝜖𝑠𝑎𝑚𝑝 and 𝜖𝑐𝑜𝑟𝑟 are summed together. For precise sampling, we assume that |𝑤̃𝑖|𝑁 

is an integer, which is always the case if 𝑁 is a power of 2 and a hardwired mux tree is used. Input correlation of 

SCC = 0 means the pairwise SCC between all mux tree inputs is 0 and input correlation SCC = +1 means the pairwise 

SCC between all mux tree inputs is +1 (as is the case when full correlation is achieved). Note that these derived 

equations were experimentally validated by simulating the stochastic circuits in which they correspond to. 

Finally, for the SCC +1 case, it is helpful to define the order statistics [30] of the mux tree input. Let 𝑠𝑖 = sign(𝑤𝑖) 

and let 𝐴 = {𝑠0𝜇𝑋0
, 𝑠1𝜇𝑋1

, … , 𝑠𝑀𝜇𝑋𝑀
} be the values of the SN inputs to the mux tree. Then 𝑠(𝑖)𝜇𝑋(𝑖)

 is defined to be the 

i-th order statistic of 𝐴. For instance, 𝑠(0)𝜇𝑋(0)
 is the minimum element in 𝐴, 𝑠(𝑀)𝜇𝑋(𝑀)

 is the maximum element in 𝐴 

and, in general, 𝑠(𝑖)𝜇𝑋(𝑖)
 is the i-th largest element in 𝐴. 

Of the six equations presented in Table 3, only the first corresponding to the Bernoulli model with noisy sampling 

has appeared in SC literature before [7][23]. Inspecting the equations in Table 3 reveals that switching from 

Bernoulli to hypergeometric input SNs decreases variance except in atypical cases like when all SNs have value +1, 

all have value −1 in the bipolar case or all have value 0 in the unipolar case. In those cases, variance stays the same 

when switching from Bernoulli to hypergeometric SNs. Likewise, both switching from noisy to precise sampling 

and switching from input SCC level 0 to level +1 decreases variance except in atypical cases where variance stays 

the same.  Thus, according to the hypergeometric and Bernoulli SN models, using precise sampling and achieving 

full correlation are always beneficial. 

Interestingly, when full correlation (SCC level +1) is achieved for hypergeometric SNs, the variance is a function 

of the difference between input SN values rather than a function of the input SN values themselves as in other cases. 

This implies that if the input SN values are similar, the variance is smaller. Indeed, in the example of Fig. 8b, the 

input SNs all have the same value and variance in that case is zero. 

 

Table 3: Derived Variances for Bipolar Mux Adders 

Input 

SN Model 

Sampling 

Method 

Input  

SCC Level 

Derived 

Output Variance 

Bernoulli Noisy Any 
1 − (∑ 𝑤̃𝑖𝜇𝑋𝑖

𝑀
𝑖=1 )

2

𝑁
 

Bernoulli Precise Any 
1 − ∑ |𝑤̃𝑖|𝜇𝑋𝑖

2𝑀
𝑖=1

𝑁
 

Hypergeometric Noisy 0 
1 − (∑ 𝑤̃𝑖𝜇𝑋𝑖

𝑀
𝑖=1 )

2
− ∑ 𝑤̃𝑖

2(1 − 𝜇𝑋𝑖

2 )𝑀
𝑖=1

𝑁
 

Hypergeometric Noisy 1 
∑ ∑ |𝑤̃𝑖||𝑤̃𝑗| (s(j)𝜇𝑋(𝑗)

− s(i)𝜇𝑋(𝑖)
)𝑖−1

𝑗=1
𝑀
𝑖=1

𝑁
 

Hypergeometric Precise 0 
∑ |𝑤̃𝑖|(1 − |𝑤̃𝑖|)(1 − 𝜇𝑋𝑖

2 )𝑀
𝑖=1

𝑁 − 1
 

Hypergeometric Precise 1 
∑ ∑ |𝑤̃𝑖||𝑤̃𝑗| (𝑠(𝑗)𝜇𝑋(𝑗)

− 𝑠(𝑖)𝜇𝑋(𝑖)
)(1 − (𝑠(𝑗)𝜇𝑋(𝑗)

− 𝑠(𝑖)𝜇𝑋(𝑖)
))𝑖−1

𝑗=1
𝑀
𝑖=1

𝑁 − 1
 

 


