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Two Papers of Henri Poincaré on
Mathematical Physics

by H. A. Lorentz

The following pages cannot at all give a complete idea of what
theoretical physics owes to Poincaré. I would have been happy to
pay homage to his memory by presenting to the reader such a
general picture, but I moved back in front of this task, that
cannot be done with dignity without long and serious studies for
which there was no time for me. I limited thus myself to two
papers, that on the Dynamics of the electron, written in 1905 and
published the following year in Rendiconti del Circolo
Matematico di Palermo, and the study on the quantum theory
which appeared in the Journal de Physique at the beginning of
1912.

To fully appreciate the first of this works, I will have to enter in
some details on the ideas whose development led to the principle
of relativity. Thus let us speak a little about the part that I
contributed to this development, I must say first that I have
found a valuable encouragement in the benevolent interest that
Poincaré constantly took with my studies. Moreover, we will see
soon by which degree he surpassed me.
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It is known that Fresnel had based the explanation of the
astronomical aberration on the assumption of a motionless ether
that the celestial bodies would cross without entraining it. We
also know his famous theorem, a necessary complement of this
fundamental assumption, of the partial entrainment of light
waves by moving matter. An transparent body animated by
translation will communicate to the rays only a fraction of its
own speed, a fraction which is determined by the "coefficient of

Fresnel" 1%, in which N is the index of refraction of the
n

medium.

When, thanks to the work of Clerk Maxwell, our views on the
nature of light had been profoundly changed, it was natural to try
a deduction of this coefficient based on the principles of the
electromagnetic theory. That's the goal I set myself, which could
be achieved without too much difficulty in the theory of
electrons.

The majority of the phenomena which are connected to
aberration, and in particular the absence of an influence of the
earth's motion in all the experiments where the collective system
of devices is at rest in respect to our planet, could now be
explained in a satisfactory way. It was only necessary to make
the restriction, that the considered effects were of first order of
magnitude compared to the speed of the Earth divided by the
speed of light, terms of the second order have been neglected in
calculations.

However, in 1881 Mr. Michelson succeeded to interfere two light
rays, that were departed from a single point and came back after
following rectilinear and mutually perpendicular paths of equal
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length. He found that the observed phenomena are again
insensitive to the earth’s motion; the interference fringes
preserved the same positions, whatever were the directions of the
arms of the device.

This time it was indeed an effect of the second order and it was
easy to see that the hypothesis of the stationary aether alone is
not sufficient for the explanation of the negative result. I was
obliged to make a new assumption which consists in admitting,
that the translation of a body through the aether produces a slight
contraction of the body in the direction of motion. This
assumption was indeed the only possibility; it had also been
imagined by Fitzgerald and it found the approval of Poincaré,
who however did not conceal the lack of satisfaction that the
theories gave him in which one multiplies special assumptions
invented for particular phenomena. This criticism was for me an
additional reason to seek a general theory, in which the same
principles would lead to the explanation of the experiment of Mr.
Michelson and all those that were undertaken after him to
discover effects of the second order. In the theory that I
proposed, the absence of phenomena due to the collective motion
of a system should be demonstrated for any value of speed less
than that of light.

The method to be followed was indeed indicated. It was
obviously necessary to demonstrate that the phenomena which
take place in a material system can be represented by equations
of the same form, the system may be at rest or being animated by
a uniform translatory motion, and this equality of form has to be
obtained using a suitable substitution of new variables. It was a
question of finding transformation formulas, suitable for the
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independent variables, the coordinates x, y, z and time t, as well
as for the various physical magnitudes, speeds, forces, etc, and
by showing the invariance of the equations for these
transformations.

The formulas that I established for coordinates and time can be
put ast!

1) o' =kl(z+et),y =ly, 2 =1z, t =Ekl(t + ex),

where ¢, k, | are constants which are, however, reduced to one.
We see immediately that the origin of the new coordinates (
' =0)is

r = —¢t

so the point moves in the system x, y, z, t with speed -¢ in the
direction of the x-axis. The coefficient k is defined by

1

k= (1 — 62)_5

and ¢ is a function of [ that has the value 1 for € = 0. I initially
left it undetermined, but I found in the course of my calculations,
that to obtain the invariance (that I had in mind) we must put | =
1.

These were the considerations published by me in 19504 which
gave place to Poincaré to write his paper on the dynamics of the
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electron, in which he attached my name to the transformation to
which I will come to speak. I must notice on this subject that the
same transformation was already present in an article of Mr.
Voigt published in 1887, and that I did not draw from this artifice
all the possible parts. Indeed, for some of the physical quantities
which enter the formulas, I did not indicate the transformation
which suits best. That was done by Poincaré and then by Mr.
Einstein and Minkowski.

To find the "transformations of relativity", as I will call them
now, it is sufficient in some cases to describe the phenomena in
the system z',4/, 2',t exactly in the same way as we do it in
system X, y, z, t. Let us consider, for example, the motion of a
point. If, in time dt the coordinates x, y, z undergo the changes
dx, dy, dz, then we have for the velocity components

dx

dy dz
E—E’ aac—%

However, by these relations the variations dx, dy, dz, dt contain
the changes

2) dz’ = ki(dz + e dt), dy = ldy, d7 =ldz, dt' = kl(dt + € dz)

of the new wvariables. It is natural to define the velocity
components in the new system by the formulas

dz’ ! dy

dz
W, t,a C

3) § = m

which gives us
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To have another example, we can imagine a great number of
mobile points whose velocities are continuous functions of the
coordinates and time. Let dtr an element of volume located at
point x, y, z and let us fix the attention to the points of the system
which are in this element at one given moment t. Let ¢;, be the

special value of ¢’ which corresponds to x, , z, t by the equations
(1), and consider for the various points the values of z',4', 2/
which correspond to the given value ' = t/; in other words, let
us consider the positions of the points in the new system, all
taken for the same value of "time" #'. One might ask after the
extension of the element d7’ of space z',%/, 2/, in which are at
this moment ¢;, the selected points which are in dr at the time ¢.

A simple calculation, which I omit here, led to the relation

, B

= — d
k14 €€ T

(5) dr

Finally, let us suppose that the points in question carry equal
electric charges, and admit that in two systems x, y, z, t and
x',y,2,t' we attribute the same numerical values to these
charges. If the points are sufficiently close to each other, we
obtain a continuous distribution of electricity and it is clear that
the charge contained in the element dr at the moment t is equal to
that which is in d7’ at the moment ¢'. Consequently, if p and p’
are the densities of these charges,



(6) pdr=pdr

and, by virtue of (5)

, k
7) P =51+ep

By this formula, combined with (4), we deduce again

k 1 1
pe = l—39(£+ €), Pl = 2 P p'¢ = l—3pC

These are the transformation formulas for the convection current.

For other physical quantities such as electric and magnetic
forces, it is necessary to follow a less direct method; we will
seek, perhaps with a little groping, the formulas of
transformation suitable to ensure the invariance of the
electromagnetic equations.

The formulas (4) and (7) are not in my memoir of 1904. Because
I had not thought of the direct way which led there, and because
I had the idea that there is an essential difference between
systems x, y, z, t and ’,4/, 2/, . In one we use - such was my
thought - coordinate axes which have a fixed position in the
aether and which we can call "true" time; in the other system, on
the contrary, we would deal with simple auxiliary quantities
whose introduction is only a mathematical artifice. In particular,



the variable ¢’ could not be called "time" in the same way as the
variable t.

In this order of ideas I did not think of describing the phenomena
in the system 2,4/, 2/, ¢, exactly in the same way as in system
X, Y, z, t, and I did not define by the equations (3) and (7) the
quantities &', n', ', p' which will correspond to &, n, ¢, p. It is
rather by groping that I arrived at my formulas of transformation
which, with our current notation, take the form

6, = k2(£+€)a 77, +k777 CI = kCa pl = ﬁ

and that I wanted to choose, so as to obtain in the new system the
simplest equations. Later, I could see in the paper of Poincaré
that when proceeding more systematically I could have reached
an even greater simplification. Not having noticed it, I did not
succeed in obtaining the exact invariance of the equations; my
formulas remained encumbered with certain terms which should
have disappeared. These terms were too small to have an
appreciable effect on the phenomena and I could thus explain the
independence of the earth's motion that was revealed by
observations, but I did not establish the principle of relativity as
rigorously and universally true.

Poincaré, on the contrary, obtained a perfect invariance of the
equations of electrodynamics, and he formulated the "postulate
of relativity", terms which he was the first to employ. Indeed,
stating from the point of view that I had missed, he found the



formulas (4) and (7). Let us add that by correcting the
imperfections of my work he never reproached me for them.

I can not explain here all the beautiful results obtained by
Poincaré. Let us insist however on some points. Initially, he was
not satisfied to show that the transformations of relativity leave
intact the form of the electromagnetic equations. He explains the
success of substitutions by noticing that these equations can be
put in the form of the principle of least action and that the
fundamental equation which expresses this principle, as well as
the operations by which we deduce the field equations, are the
same in systems x, y, z, tand =, 9/, 2, t’.

In the second place, in accordance with the title of his paper,
Poincaré particularly considers the way in which the deformation
of a moving electron occurs, comparable with that of the arms of
the device of Mr. Michelson, which is required by the postulate
of relativity. Two different assumptions had been proposed on
this subject. According to both an electron, presumably spherical
in the state of rest, would change by a translation into an oblated
ellipsoid of revolution, the axis of symmetry coincide with the
direction of motion and the ratio of this axis to the diameter of

the equator being given by /1 — v? », if v is the velocity. But the
assumptions differed between them with regard to the length of
the axes and consequently the volume of the electron. While I
had been led to admit that the radius of the equator remains equal
to that of the original sphere, Mr. Bucherer and Mr. Langevin
rather wanted to assign a constant size with volume. The first

assumption corresponds to [ = 1, the second with kI3 = 1. Let us
immediately add that the first value is the only one which is
compatible with the postulate of relativity.
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If one wants to realize the persistence and the balance of an
electron while making use of the ordinary notions of mechanics,
it is obviously not sufficient to consider the electrodynamic
actions. The particle - that we consider here as a sphere carrying
a surface charge - would immediately explode because of the
mutual repulsions or, which is to same, of the stresses of
Maxwell exerted on its surface. Therefore another concept
should also be introduced, and Poincaré distinguishes at this
place between the "bindings" and the "supplementary forces". He
initially supposed that there is only the connection represented
by the equation

r = bd™

r is the semi-axis of the electron, rf its equatorial radius, b and m
variables that remain constant when r and 6 (or one of these
quantities) vary with the translation speed v. This granted, we
know for any value of v the dimensions of the electron - because

1
we know that § = (1 — '112)_E - and by the ordinary formulas

of electromagnetic field, the energy, momentum and the
Lagrange function can be calculated. Between these values,
considered as functions of v, there must be well known relations.

Poincaré shows that they are verified only for m = —%, which

brings us back to the constancy of volume, that is to say, the
hypothesis of Mr. Bucherer and Langevin. But we know already
that it is not this hypothesis, but only that of a constant equatorial
radius, which is in agreement with the postulate of relativity. It is
thus necessary to have recourse to additional forces.
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By supposing that they depend on a potential of the form Ar®§?,
where A, o and [3 are constants, Poincaré finds that the constancy
of the equatorial radius requires o = 3, = 2, i.e. the potential in
question must be proportional to volume. It results from it that
the sought supplementary forces are equivalent to a pressure or a
normal tension exerted on the surface and whose magnitude per
unit of area remains constant, whatever the speed of translation.
It is immediately seen that only a tension directed towards the
interior is appropriate; we will determine the magnitude by the
condition of an electron at rest and which has consequently the
shape of a sphere, and it must be in equilibrium with the
electrostatic repulsions. So when the particle is set into motion,
the stress of Poincaré is united with the electrodynamic actions,
and will inevitably produce the oblateness which is required by
the principle of relativity.

After having found his supplementary force, Poincaré showed
that the transformations of relativity do not change the form of
the terms which it represents; thus he showed that arbitrary
motions of a system of electrons can take place in the completely
same manner in system x, y, z, t and in the system z’, ¢/, 2/, ¢'.

I already spoke about the necessity for posing | = 1 (constancy of
the equatorial radius of the electron). I will not repeat here the
demonstration given by Poincaré and I will only say that he
showed the mathematical origin of this condition. One can
consider all the transformations which are represented by
formulas (1), with different values for speed -e, and the
corresponding values of k and I, this last coefficient has to be
regarded as a function of & we can add to it other similar
transformations which we deduce from (1) by changing the
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directions of the axes, and finally by arbitrary rotations. The
postulate of relativity requires that all these transformations form
a group and that is only possible if I has the constant value 1.

The "group of relativity" obtained, consists of linear substitutions
which do not affect the quadratic form

2+ 22—

The paper ends with the application of the postulate of relativity
on the phenomena of gravitation. Here, it is the question of
finding the rule which determines the propagation of it, and the
formulas which express the components of the force according to
the coordinates and the speed, as well as of the attracted body as
of the attracting body. By considering these questions, Poincaré
starts by seeking the invariants of the group of relativity; indeed,
it is clear that it must be possible to represent the phenomena by
equations which contain only these invariants. However, the
problem is undetermined. It is natural to admit that the
propagation velocity is equal to that of light and that the
variations of the law of Newton must be of second-order
magnitude in respect to the velocities. But even with these
restrictions, there is the choice between several assumptions,
among which there are two that were especially indicated by
Poincaré.

In this last part of the article one finds some new concepts which
I must especially announce. Poincaré notices, for example, if x, y,
z and t4/—1 are considered as the coordinates of a point in four-

dimensional space, the transformations of relativity are reduced
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to rotations in this space. He also had the idea of adding to the
three force-components X, Y, Z the magnitude

T=Xt+Yn+ Z¢

which is nothing but the work of the force per unit time and
which we can (to some extent) regard as a fourth component.
When we ask after the force that a body experiences per unit
volume, the magnitudes X, Y, Z, T\/—_l are affected by a

transformation of relativity in the same way as the magnitudes x,

Y, z, t4/—1.

I recall these ideas of Poincaré because they are similar to
methods that Minkowski and other scientists have later used to
facilitate mathematical operations that arise in the theory of
relativity.

Let us pass now to the paper on the quantum theory. Towards the
end of 1911 Poincaré had attended the meeting of the Council of
Physics convened in Brussels by Mr. Solvay, in which we had
especially dealt with the phenomena of the calorific radiation and
the hypothesis of the elements or quanta of energy imagined by
Mr. Planck to explain them. In the discussions, Poincaré had
shown all the promptness and the penetration of his spirit and we
had admired the facility with which he could enter the most
difficult questions of Physics, even in those which were new for
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him. At the return to Paris, he did not cease dealing with the
problem of which he felt the high importance. If the hypothesis
of Mr. Planck were true, "the physical phenomena would cease
obeying laws expressed by differential equations, and it would
be, undoubtedly, the greatest and most profound revolution that
natural philosophy suffered since Newton".

But are these new conceptions really inevitable and is there no
way to arrive at the radiation law without introducing these
discontinuities which are in direct opposition with the notions of
traditional mechanics? Here is the question that Poincaré poses
in his paper and to which he gives an answer that I will allow
myself to briefly summarize.

Let us consider a system made up of n resonators of Planck and
p molecules, n and p being very great numbers; let us suppose
that all the resonators are equal between them and that it is the
same for the molecules. Let us indicate by &1,...,&p the

energies of the molecules and by 7;,...,m, those of the

resonators; each one of these variables will be able to take all the
positive values.

Poincaré showed first that the probability so that the quantities of
energy are between the limits & and & +d&q,...,&, and

& +d&p, m and m +dm1, ..., M, Mp and 9y, + dny, can be
represented by

wm)...wmp)dm ...dnpdés ... d&,

where @ is a function for which we can make different
hypotheses.
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Once we know this function we can tell how much energy h will
be distributed over the molecules and resonators. For this
purpose, we can imagine a space of p + n dimensions,
&1,---,&,M, - .., Mn, the infinitely thin layer S, in which the

total energy
§1+"°+£p+nl+“'+lr]n

lies between h and an infinitely close value h + dh. The three
integrals will be calculated

I=[w(m)...w(m)dm ...dp,dé ... d&,
I'=[zw(m)...w(m)dm ...dg,d& ... dE&,

I"=f(h—2)w(m)...w(m)dn ...dpnd&; ... d&
(=m+-+1mm)

extended to the layer S, and we have ITI for the energy that the

1
resonators take, and IT for that of all the molecules. Therefore,

if Y is the mean energy of a resonator, and X is that of a
molecule,

nYI =TI, pXI=1I"

To calculate the integral I, we may first give fixed values to
variables 71, . . ., 7n, and consequently to their sum x, and extend

the integration over & for all positive values of these variables,
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for which the sum & + - -+ + &, is between h - x and h - x + dh.
This gives us

1
dg; ...d¢, = ————(h— z)P1dh
/ 1 & (p—1)! ( )
Then we can calculate the integral

/w(m)...w(nn)dnl...dnn

extended to positive values of n such that ny +---+ 7, lies
between x and x + dx. Let

(8) /w(m) ceew(ny)dny ... dn, = o(z)de

@ is a function that depends on the function w and we have

(p—l)'/ (h— 2 o(a)ds

I' and I" are calculated in the same manner, we only need to
introduce under the sign of integration the factor x or the factor h
- x. Ultimately, we can write

h
9) nY = C/ z(h —z)? Lo(z)d
0

h
(10) pX = C’/ (h — x)Pp(z)dx
0
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where the factor C is the same in both cases. We do not have to
deal with it because it is sufficient to determine the ratio of X to
Y.

Now we obtain the Planck formula - which can be regarded as an
expression of reality - if we make on the function o the
following hypothesis, which is consistent with quantum theory.

Let ¢ be the magnitude of the quantum of energy which is
specific to the resonators considered, and denote by & an
infinitely small quantity!2). The function w is zero, except in the
intervals

ke <n< ke+9d

ke+6

and for each of these intervals the integral / w dn has the
ke

value 1.

These data are sufficient for determining the function ¢ and the
Y
X
Planck's theory. I did not stop at these calculations and I pass
immediately to the principal question, whether the
discontinuities that I just mentioned must necessarily be

admitted.

ratio == for which we find, as I said before, the value given by

I will reproduce the reasoning of Poincaré, but I will at first say
that in the formulas that we will encounter, a indicates a complex
variable of which the real part c, is always positive. In the
representation we will limit ourselves to the half of plane «a
characterized by a, > 0, and in integrations in respect to o we
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will follow a straight line I perpendicular to the axis of real a,
and prolonged indefinitely on the two sides. The values of the
integrals will be independent of the length of the distance
a, > 0 of this line at the origin of a.

Poincaré introduced an auxiliary function that defines the
equation

(11) ®(a) = / w(m)e *"dn
0

and demonstrated that the function » and the derived function ¢
can be be expressed by using .

We obtain at first, by inverting (11)

1
12 o) = 5z [ @(a)ernde

For a similar formula for ¢(z) we notice that in equation (11)
we can replace n by any of the variables 71, . . . , ,. Multiplying
the n equations which we obtained, we find

[®(a)]" = /000.../Ooow(m)...w(nn)e_a“’dm ...dny,

or, by virtue of the formula (8)

()" = / " p(z) **da
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and by inversion

1

pl@) = 2mi

/ [®(a)]"e* da
(L)
The formulas (9) and (10) now become

2im fO f(L) o :B p 1[(1)( )]neazdw do

= Jo Jipy (b — 2PP[®()]"e* d dor

and Poincaré again transforms them by substitutions

w=nw,h=n/8,p=nk

which give

CnPt1l B W n
nY = % fo »f(L) ,B—_w@ dw da

pX =2 [7 [, O"dw do

T 2w

he posed

0 = &(a)e™ (B — w)*
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Note that ® is nothing else than the average energy of a single
resonator for the case

Mt =2

that 3 is the value that would be o if all available energy h was in
the resonator, and that k is the ratio between the number of
molecules and the resonators.

When, in the applications of the probability theory to the
molecular theories, we seek the state of a system that presents
the maximum of probability, we always find that, thanks to the
immense number of the molecules, this maximum is so
pronounced that one can neglect the probability of all the states
which deviate appreciably from the most probable state. In the
case which occupies us, there is something similar.

Let us admit with Poincaré that, for values given of h and f3, the
function ® has a maximum for a = o, ® = 0y and passes through

the point o, the place of the maximum, the line / whose distance
o, in the beginning could be selected at will. As the exponent n

is very high, the maximum of ®" is extremely pronounced and
the only elements of the integrals which we have to take into
account, are those who are in the immediate vicinity of o, and of

®. That immediately gives us for the sought ratio

nyY . wWo
pX B —wo
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and, by virtue of the equation

nY =pX =h=np

(13) Y = w0
B — wo
k

To determine the values of aj and w,, we can use equations

(14) X =

Olog© Olog ©
=0, =0
Oa Ow

from which we derive

& (o) -
(15) o (ao) +wy =0
and

k
(16) ao—ﬁ_wozo

We see from these formulas that oy and ®, depend on the

quantity [3, that is to say the total amount of energy h which was
communicated to the system; this is a result which was to be
expected. Equation (16) tells us further that o will always be
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real. This quantity determines immediately the average energy of
a molecule as it follows from (14) and (16)

I
X=—
87)]

Now we see that the average energy of a molecule is
proportional to absolute temperature T. We can write

C
a():f

where c is a known constant, and equation

&' ()

(17) Y =-—
® (ao)

which we draw from (13) and (15), gives us the average energy
as a function of temperature. We see that this result is
independent of the ratio between the numbers n and p.

Suppose now that we know for all temperatures the average
energy of a resonator. By (17) we will thus know for all positive
dlog ®(a)
da
®(a) except for a constant factor. Of course, these findings will
at first be limited to real values of a, but the function ®(«a) is

assumed to be as determined throughout the semi-plane a about

values of o the derivative ; we will deduce from them
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which we spoke, when it is given at all points of the real and
positive semi-axis.

Finally, the formula (12) will provide us the function of
probability o for an unspecified positive value of n. It is true that
the unspecified factor of function ®(a) will be found in w, but
such a factor does not have any importance.

We can thus say that the probability o is entirely given as soon
as we know the distribution of energy for all temperatures. There
is only one function w for a distributions which is given as a
function of the temperature. Consequently, the assumptions that
we made on ® and which lead to the law of Planck are the only
ones that we can admit.

That is the reasoning by which Poincaré established the necessity
of the quantum hypothesis.

We see that the conclusion depends on the assumption that
Planck's formula is an accurate image of reality. This could be
drawn into question, and the formula could only be approximate.
It is for this reason that Poincaré takes up the problem by
abandoning Planck's law and using only the relationship that this
physicist has found between the energy of a resonator and that of
black body radiation. The reassessment led to the conclusion that
the total energy of the radiation will be infinite unless the

o
integral / w dn does not tend to zero with ng. The function w
0

must have at least one discontinuity (for n = 0), similar to those
given by quantum theory!3,
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1. 1 I follow here the notations of Poincaré and I choose the
units of length and time so that the speed of light is equal to
1.

2. 1 This is the first theory of Planck, in which it is assumed
that the energy of a resonator can only have values 0, ¢, 2,
3¢, etc..

3. 1 This result was found by P. Ehrenfest, see Ann. Physik, t.
36, 1911, p. 91.
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