Petroleum Market Model of the National Energy Modeling System: Model Documentation 2012 Part 1 - Report and Appendix A **July 2012** Office of Energy Analysis U.S. Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. # **Update Information** This edition of the *Petroleum Market Model (PMM) of the National Energy Modeling System— Model Documentation 2012* continues to reflect primarily changes made to the PMM over the *Annual Energy Outlook 2011* production cycle. As most refining team resources were dedicated to the creation of the new Liquid Fuels Market Model, only minimal updates (primarly to updated historical information) were performed for the *Annual Energy Outlook 2012*. ## TABLE OF CONTENTS | Section | n | | Page number | |---------|----------------------------------|---|-------------| | 1.1 Pu | rpose of | f this Report | 1 | | 1.4 Re | port Or | ganization | 2 | | 2. Mod | del Purp | oose | 1 | | APPE | NDIX A | A PMM Data and Outputs | 1 | | A.1.1 | PMM | LP and NEMS Variable Names Cross References | 1 | | A.2.1 | Proces | s Technology and Cost Data | 53 | | A.2.2 | Refine | ry Capacity Construction and Utilization Data | 54 | | A.2.3 | Crude | Supply and Product Demand Data | 54 | | A.2.4 | Produc | ct Specification/Grade Split Data | 55 | | A.2.5 | Transp | portation Data | 55 | | A.2.6 | Produc | ct Yield and Quality Blending Data | 56 | | A.2.7 | Units o | of Measurement | 56 | | A.3 PN | MM Mo | odel Data Tables | 58 | | A.3.1 | Matrix | Control | 59 | | A.3.3 | Other 1 | Raw Materials Availability | 63 | | A.3.4 | Product Imports | | | | A.3.5 | Product Demands | | | | A.3.6 | Crude and Product Transportation | | | | A.3.7 | Refine | ry Capacities and Operations | 72 | | A.3.8 | Produc | ct Blending and Specifications | 85 | | | .9 Refining Technology | | | | | I.1 | Model Purpose | | | | I.2 | Fundamental Assumptions | I-1 | | | | Corn-Based Ethanol | I-1 | | | | Cellulose-Based Ethanol | I-3 | | | | Advanced Ethanol | I-5 | | | I.3 | Key Computations and Equations | | | | | Corn-Based Ethanol | | | | | Cellulose-Based Ethanol | | | | | Advanced Ethanol | | | | I.4 | Inventory of Variables, Data, and Parameters | I-10 | | | Corn-Based Ethanol | I-10 | |------------|--|------| | | Cellulose-Based Ethanol | I-12 | | | Advanced Ethanol | I-15 | | I.5 | Ethanol Transportation Costs | I-15 | | APPENDIX J | Biodiesel Supply Model | J-1 | | J.1 | Model Purpose | J-1 | | J.2 | Fundamental Assumptions | J-1 | | J.3 | Key Components and Equations | J-3 | | J.4 | Inventory of Variables, Data, and Parameters | J-∠ | # LIST OF FIGURES | | | | Section | |---------|------------|--|-------------| | | | | Page number | | | | | _ | | | Figure 2.1 | PMM Input - Output Flow Diagram | | | | Figure 3.1 | PMM International Regions | | | | Figure 4.1 | PMM Flow Diagram | | | | Figure 4.2 | Matrix Preprocessing Subroutines (PMMLP) | 4-5 | | | Figure 4.3 | Matrix Post-processing Subroutines | 4-6 | | | Figure 4.4 | Capacity Expansion Subroutines (XPMMLP) | | | | Figure 4.5 | Report Subroutines | | | | Figure H.1 | Database Linkages | | | - | Figure H.2 | Sample Database Queries | H-4 | | | | LIST OF TABLES | | | Section | | | | | | | | Page number | | | Table A1. | PMM/NEMS Cross References | A-1 | | | Table A2. | Aggregate Crude Oil Categories for PMM/NEMS | A-63 | | | Table A3. | Atmospheric Residual Oil Qualities | | | | Table A4. | Oxygenate Products | | | | Table B1. | PMM Linear Program Structure | | | | Table E1. | Sources of Markup Inputs | | | | Table F1. | Location Multipliers for Refinery Construction | | | | Table F2. | State and Federal Corporate Income Tax Rate | | | | Table F3. | Location Multipliers for Refinery Operating Labor | | | | Table F4. | Capital-Related Fixed Operating Cost Multipliers | | | | Table F5. | Gas Plant Model Liquid Component Yields | | | | Table F7. | Chemical Industry Demand for Methanol | | | | Table F8. | Estimated Annual Reid Vapor Pressure | | | | Table F9. | Complex Model Standards | | | | Table F10. | Directional Emission Effects of Gasoline Property Changes | | | | Table F11. | PMM Reformulated Gasoline Specifications | | | | Table F12. | Source of PMM Natural Gas Prices | | | | Table F13. | Source of PMM Electricity Prices | | | | Table F14. | PADD to Census Division Conversion Factors | | | | Table F15. | NACOD Regions and NEMS/PMM Census Regions | | | | Table F16. | Petroleum Product Pipeline Capacities and Tariffs | | | | Table F17. | LPG/NGL Pipelines Capacities and Tariffs | | | | Table H1. | Park List Sample | | | | Table H2. | Components of PMM Variables | H-5 | | | Table I1. | Corn Price Function (CF in section I.2) Parameters by Year | | | | Table I2. | Cost Components and Parameters by Corn Ethanol Plant Type | | | | Table I3. | Cost Components and Parameters for Cellulose Ethanol Plant | | | | Table I4. | 2012 Ethanol Shipments and Freight Costs by Census Divisio | | | Table I5. | DAI Regions and NEMS Regions | I-16 | |-----------|--|------| | Table I6. | 2004 Ethanol Shipments and Freight Costs by Census Divisions | I-16 | # **Acronyms and Abbreviations** AEO EIA Annual Energy Outlook API American Petroleum Institute ASTM American Society of Testing Materials BAU Business as Usual bbl Barrel bbl/cd Barrels Per Calendar Day Bcf Billion cubic feet Btu British thermal unit BTX Benzene, Toluene, and Xylene Aromatics BPSD Barrels Per Stream Day CAAA Clean Air Act Amendments CARB California Air Resources Board CBTL Coal-Biomass-To-Liquids (converting coal-biomass mix to diesel-grade blending streams) CD Census Division CG Conventional Gasoline (referred to as TRG in the PMM code) CHP Combined Heat and Power Cn Represents a hydrocarbon stream containing n atoms of carbon, i.e. C1 is methane, C2 is ethane, C3 is propane, C4 is butane, etc. CTL Coal-To-Liquids (converting coal to diesel-grade blending streams) COE Crude Oil Equivalent DOE Department of Energy E85 Gasoline blend of 85 percent ethanol and 15 percent conventional gasoline (annual average of ethanol content in E85 is lower when factoring in cold start need in winter) EIA U.S. Energy Information Administration EOR Enhanced Oil Recovery EPA Environmental Protection Agency EPACT05 Energy Policy Act of 2005 ETBE Ethyl Tertiary Butyl Ether FCC Fluid Catalytic Cracker FOE Fuel Oil Equivalent GWh Gigawatt-hour GTL Gas-To-Liquids (converting natural gas to diesel-grade blending streams) IEA International Energy Agency IEO EIA International Energy Outlook ISBL Inside the battery limit KWh Kilowatt-hour LCFS Low Carbon Fuel Standard LP Linear Programming LPG Liquefied Petroleum Gas M85 Gasoline blend of 85 percent methanol and 15 percent conventional gasoline M-B Mansfield-Blackman methodology for new technology market penetration Mbbl/cd Thousand Barrels Per Calendar Day Mbtu Thousand British Thermal Units Mcf Thousand cubic feet MG Motor gasoline MMbbl/cd Million Barrels Per Calendar Day MMbtu Million British Thermal Units MSAT Mobile Source Air Toxics (Rule) MTBE Methyl Tertiary Butyl Ether MRM Multi-Refining Model MW Megawatts, electric generation capacity MWh Megawatt-hour N2H No. 2 Heating Oil NACOD North American Crude Oil Distribution NEMS National Energy Modeling System NES National Energy Strategy NETL National Energy Technology Laboratory NGL Natural Gas Liquid NOx Nitrogen Oxide NPC National Petroleum Council NPRA National Petrochemical and Refiners Association OB1 Optimization with Barriers 1 OGSM Oil and Gas Supply Module OML Optimization and Modeling Libraries ORNL Oak Ridge National Laboratory OVC Other Variable Costs PADD Petroleum Administration for Defense District PCF Petrochemical Feed PGS Still gas Petcoke Petroleum Coke PMM Petroleum Market Model ppm Parts per million PSA Petroleum Supply Annual RFG Reformulated Gasoline RFS Renewable Fuels Standard RHS Right-hand side RVP Reid vapor pressure RYM Refinery Yield Model (EIA) SCF Standard Cubic Feet SIC Standard Industrial Classification SPR Strategic Petroleum Reserve STEO Short-Term Energy Outlook Syngas Products from gasified hydrocarbons (mostly CO and H₂) TAME Tertiary amyl methyl ether TAP Toxic Air Pollutant TAPS Trans-Alaska Pipeline System TRG Conventional gasoline (replacing old nomenclature for traditional gasoline) ULSD Ultra-Low Sulfur Diesel VOC Volatile Organic Compound WOP World Oil Price WORLD World Oil Refining Logistics Demand (model) ## 1. Introduction ## 1.1 Purpose of this Report The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide details on how it works. This report is intended as a reference document for model analysts and users. It is also intended as a tool for model evaluation and improvement. Documentation of the model is in accordance with EIA's legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). An overview of the PMM and its major assumptions can also be found in two related documents: The National Energy Modeling System: An Overview 2010, DOE/EIA-0581(2010) and Assumptions to the *Annual Energy Outlook of 2012*, DOE/EIA-0554(2011). This volume documents the version of the PMM used for the *Annual Energy Outlook 2012* (*AEO2012*) and thus supersedes all previous versions of the documentation. ## 1.2 Model Summary The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production
of natural gas liquids in gas processing plants, domestic methanol, ethanol, and biodiesel production, biomass pyrolysis, and domestic gas-, coal-, and biomass-to-liquids production. The PMM projects domestic petroleum product prices and input supply quantities for meeting petroleum product demands by supply source, fuel, and region. These input supplies include domestic and imported crude oil; alcohols, biodiesel, ethers, and other biofuels; domestic natural gas plant liquids production; petroleum product imports; and unfinished oil imports. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census Division (CD) level and much of the refining activity information is at the Petroleum Administration for Defense District (PADD) level. As of *AEO2009*, crude oil and product import supply curves have been replaced with a simplistic representation of the international petroleum market (net of the United States). In brief, it is represented by international crude supply and product demand curves, a simplistic aggregate refinery to process crude and produce product (net of refinery fuel use), and import/export links for crude and petroleum products to the U.S. market. #### 1.3 Model Archival Citation The PMM is archived as part of the National Energy Modeling System (NEMS) for *AEO2012*. The model contact is: William Brown Mail Code: EI-33 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 (202) 586-8181 ## 1.4 Report Organization The remainder of this report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, PMM Data and Outputs; Appendix B, Mathematical Description of Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation Methodologies; Appendix G, Matrix Generator Documentation; Appendix H, Historical Data Processing; Appendix I, Ethanol Supply Model; and Appendix J, Biodiesel Supply Model. # 2. Model Purpose ## 2.1 Model Objectives The Petroleum Market Model (PMM) models petroleum refining, liquid fuels production, and marketing. The purpose of the PMM is to project petroleum product prices, refining activities, and movements of petroleum into the United States and among domestic regions. In addition, the PMM estimates capacity expansion and fuel consumption in the refining industry. The PMM is also used to analyze a wide variety of petroleum-related issues and policies in order to foster a better understanding of the petroleum refining and marketing industry, and the effects of certain policies and regulations. The PMM simulates the operation of petroleum refineries in the United States, with a simplistic representation of the international refinery market used to provide competing crude oil¹ and product import prices and quantities. Although at different levels of detail, both the U.S. and the international representations include the supply and transportation of crude oil to refineries, regional processing of these raw materials into petroleum products, and the distribution of petroleum products to meet regional demands. The production of natural gas liquids from gas processing plants, the production of distillate blending streams from natural gas (gas-to-liquids, GTL, in Alaska), coal (coal-to-liquids, CTL), or biomass (biomass-to-liquids, BTL), the processing of renewable fuels (corn, biomass, seed oils, and greases) into alcohol and biodiesel liquid blends, and the production of combined heat and power (CHP) from petroleum coke (petcoke) gasification technologies are also represented in the U.S. component. The essential outputs of this model are domestic product prices, a petroleum supply/demand balance, demands for refinery fuel use, and capacity expansion. PMM inputs include domestic and international petroleum product demands, domestic crude oil production levels and international crude oil supply curves, and import/export links between domestic and international regions. In addition, the costs of refinery inputs such as natural gas and electricity are needed, as well as the costs and available quantities of feedstocks used to produce blending components such as ethanol and biodiesel. Yield coefficients for crude oil distillation and other processing units, existing processing unit capacities, investment costs for capacity additions, capacities and costs for pipeline and other transportation modes, product specifications, and policy requirements are other essential model inputs. ¹The International Energy Model (IEM) contains price and quantity representation for foreign crude supplies. From these inputs, the PMM produces a slate of domestic prices for petroleum products, the quantity of domestic crude oil processed, imports of crude oil and petroleum products, estimates of other refinery inputs and processing gain, domestic refinery capacity expansion, and refinery fuel consumption. The PMM is used to represent the petroleum refining and marketing sector in projections published in the *Annual Energy Outlook*. The model is also used for analysis of a wide variety of petroleum-related issues. The PMM is able to project the impact on refinery operations and on the marginal costs of refined products associated with changes in any demands for various kinds of petroleum products; crude oil prices; refinery processing unit capacities; changes in certain petroleum product specifications; energy policies and regulations; and taxes, tariffs, and subsidies. The model has been annually enhanced to incorporate new legislation affecting product specifications or tax credits, such as: the highway and non-road ultra-low-sulfur diesel (ULSD) rules requiring 15-ppm diesel starting mid-2006; American Jobs Creation Act of 2004; Energy Policy Act of 2005 (EPACT2005); the Energy Independence and Security Act of 2007 (EISA2007), andCalifornia's low carbon fuel standard (California Executive Order S-01-07). Alternative fuels such as gas-to-liquids (GTL), liquids from coal and biomass (CTL, BTL, CBTL, pyrolysis oils), ethanol (from starchs or cellulose), and biodiesel are also represented in the model to reflect the growing potential for such fuels in transportation. The PMM is based upon five geographical regions formally recognized as the Petroleum Administration for Defense Districts (PADDs). Individual refineries in each PADD are aggregated into two refinery representations for that region—a complex refinery and a marginal refinery. Product demands are input at the Census Division level and end-use product prices are produced by U.S. Census Division. A transportation structure linking the PADD refining regions to the Census Division demand regions is also represented. The international component is represented by four non-U.S. regions: Asia, Europe, Non-U.S. Americas, and "rest-of-world." A simplistic refinery representation is included for each international region, processing crude oil and producing a basic slate of products to meet international demands. These international regions are economically and physically linked to the U.S. regions to help meet U.S. import crude and product demands. The PMM produces annual projections from 2009 through 2035. # 2.2 Relationship to Other Models The PMM is part of the National Energy Modeling System (NEMS), representing the petroleum refining and marketing sector. The PMM projects petroleum product prices and supply sources. These projections are generated as part of a NEMS supply/demand/price equilibrium solution. The PMM does not examine inventories or inventory changes between projection years. Several other models in NEMS provide inputs to the PMM. These inputs are defined below. - Demands for petroleum products are provided by the Residential, Commercial, Industrial, Transportation, and Electricity Market Models. The demands include motor gasoline, jet fuel, kerosene, heating oil, low-, ultra-low-sulfur, and CARB diesel fuels, low- and high-sulfur residual fuel, liquefied petroleum gases (LPG), petrochemical feedstocks, petroleum coke, and other petroleum products. - Benchmark crude price is provided by the International Energy Model (IEM). The crude oil supply curve is provided for light sweet crude delivered to Cushing, Oklahoma. Prices for the four other types of crude are computed in the model by adjusting from the benchmark by the quality and delivery point basis. - Domestic crude oil production levels are provided by the Oil and Gas Supply Module (OGSM). The crude oil is categorized into the same five types incorporated into the import supply curves. Natural gas liquids, which are among the non-crude inputs to refineries, are also estimated using domestic natural gas production from OGSM. - Coal supply information (prices and quantities on supply curve, coal type, transportation network, emissions, and other consumption) used for feedstock to produce CTL and CBTL are provided by the Coal Market Module (CMM). - Natural gas and electricity prices are provided by the Natural Gas Transmission and Distribution Module (NGTDM) and the Electricity Market Module (EMM), respectively. The PMM estimates the refinery consumption of these energy sources. - Certain macroeconomic parameters from the Macroeconomic Activity Model (MAM). The Baa average corporate bond rate is used for the cost of debt calculation, and the 10-year Treasury note rate is used for the cost of equity calculation. Both rates are used in estimating the capital-related financial charges for refinery investments. Discount rates are also provided by the MAM. - Cellulosic feedstock prices and quantities are provided by the Renewable Fuels Module (RFM). - The logit function and other parameters used to establish fuel (motor gasoline versus E85) used by flex fuel vehicles (FFV) are provided by the Transportation and Distribution Module (TDM). The PMM also provides information to
other NEMS modules. The output variables include petroleum product prices, petroleum supply sources, refinery fuel consumption, and capacity expansion. #### Output variables include: - Prices of petroleum products are passed to the Residential, Commercial, Industrial, Transportation, Electricity Market, and Natural Gas Transmission and Distribution Modules. The prices are used to estimate end-use demands for the various fuels. - Supply balance quantities, including crude oil production, non-crude refinery inputs, and processing gain, are provided for reporting purposes. - Capacity expansion and utilization rates at refineries (mainly for reporting purposes). - Fuel consumption from refineries. This information is passed to the Industrial Demand Module for inclusion in the industrial sector totals. In addition, refinery combined heat and power (CHP) capacity and generation levels are also sent to the Industrial Demand Module. - The market prices and consumption of ethanol and methanol. - Cellulosic, seed oil, and grease feedstock consumption. Figure 2.1 provides a PMM Input/Output flow diagram with other models and Figure 2.2 provides an Input/Output flow diagram within the PMM. Figure 2.1 PMM Input – Output Flow Diagram #### 3. Model Overview and Rationale ## 3.1 Theoretical Approach The National Energy Modeling System (NEMS) is a general energy-economy equilibrium model that solves for quantities and prices of fuels delivered regionally to end-use sectors. The solution algorithm (Gauss-Seidel) is an iterative procedure used to achieve convergence between prices and quantities for each fuel in each region. For example, the various demand modules use the petroleum product prices from the Petroleum Market Module (PMM) to estimate product demands. The PMM then takes the petroleum product demands as given, and estimates petroleum product prices. When successive solutions of energy quantities demanded and delivered prices are within a pre-specified percentage (convergence tolerance), the NEMS solution is declared converged. If the computed prices have not converged, new demand quantities are computed, passed to PMM, and the cycle is repeated. This process continues until a converged solution is found. See the description of the integrating module for NEMS for a more complete description of the iterative process and convergence tests. Within the PMM, a linear program (LP) is used to represent domestic refinery operations, renewable fuels production and distribution, and liquid fuels transportation, as well as a simplistic representation of the international refinery market. In the model, five U.S. regions are defined by the Petroleum Administration for Defense Districts (PADD), and four international (non-U.S.) regions are defined to represent Europe, Asia, Non-U.S. Americas, and the rest of the world. Each model region represents an aggregation of the individual refineries in the region. For the U.S. component, a transportation structure is used to move crude oils to the refining regions and products from the refining regions to the end-use Census Division demand regions. Changes in one refining region can affect operations in other refining regions because each demand region can be supplied by more than one refining region (if the transportation connections exist). Similarly, a transportation structure is defined for international crude supply and product demand, with additional links between the U.S. and international markets to allow for crude and product imports and exports to occur. An optimal solution is found by maximizing a proxy for net profits while simultaneously meeting the demands in all regions. Revenues are derived from prices and product sales in the previous iteration, and costs are incurred from the purchase and processing of raw materials and the transportation of finished products to the market. The refining activities are constrained by material balance requirements on the crude oil and intermediate streams, product specifications, processing and transportation capacities, demand, and policy requirements. Economic forces also govern the decision to import crude oil or refined products into the U.S. regions. See Appendix B for a complete description of the column activities and constraints related to the LP matrix that represents the refining. ## 3.2 Fundamental Assumptions The PMM assumes the petroleum refining and marketing industry is competitive. The market will move toward lower-cost refiners who have access to crude oil and markets. The selection of crude oils, refinery process utilization, renewable fuel blends, and logistics will adjust to minimize the overall cost of supplying the market with petroleum products. Although the petroleum market responds to pressures, it rarely strays from the underlying refining costs and economics for long periods of time. If petroleum product demand is unusually high in one region, the price will increase, driving down demand and providing economic incentives for bringing supplies in from other regions, thus restoring the supply/demand balance. Because the PMM is an annual model, it cannot be used to analyze short-term petroleum market supply/demand/price issues. For the U.S. component, the PMM represents five refining regions: PADDs I through V. Two types of refineries are represented in each refining region: a complex refinery and a marginal refinery. Because of how the PMM aggregates refineries, the model is not suited to fully analyze small refineries. Capacity is allowed to expand, with some limitations, but the model does not distinguish between additions to existing refineries and the building of new facilities. Investment criteria and the decision to invest are endogenous. The model uses the best available information concerning future prices, demands, and market conditions as the basis for investment decisions. For the international component, the PMM represents four non-U.S. regions: Europe, Asia, Non-U.S. Americas, and the rest of the world (See Figure 3-1). Each region models two types of refineries (simple and complex), which produce liquid products to meet both regional demands and U.S. imports. Refinery operating levels are determined endogenously for each region, and are allowed to operate up to a specified limit each forecast year. International crude oil supply and product demand curves are defined based on information from the International Market Module in NEMS, and the model results from the previous forecast year. Figure 3-1 International Regions Existing U.S. regulations concerning product types and specifications, the cost of environmental compliance, and Federal and State taxes are also modeled in the PMM. The PMM reflects recent National and regional legislative and regulatory changes that will affect future petroleum supply and product prices. It incorporates taxes imposed by the 1993 Budget Reconciliation Act and the 1997 Taxpayer Relief Act, as well as costs resulting from the Clean Air Act Amendments (CAAA) of 1990 and other environmental legislation such as lowering the sulfur content in both gasoline and diesel. Recent legislation such as the American Jobs Creation Act of 2004, the Energy Policy Act of 2005, and the Energy Independence and Security Act of 2007 (EISA2007) are also included. State rulings are also modeled, such as the Low Carbon Fuel Standard (LCFS) in California, and the ultra-low sulfur heating oil requirement in Northeastern States. The costs of producing new formulations of gasoline and diesel fuel that are required by U.S. State and Federal regulations are determined within the linear programming (LP) representation by incorporating specifications and demands for these fuels. The PMM assumes that the specifications for gasoline will remain the same as specified in current legislation. The PMM includes ultra-low-sulfur diesel (ULSD, with a maximum cap of 15 ppm sulfur content) to represent the phase-in of ULSD in both the highway diesel and the non-road diesel. ## **Motor Gasoline Specifications** The PMM models the production and distribution of three different types of gasoline in the United States: conventional, reformulated, and gasoline that meets California Air Resource Board (CARB) standards (referred herein as CARB gasoline). The following specifications are included in the PMM to differentiate between conventional and reformulated gasoline blends: octane, oxygen content, Reid vapor pressure (RVP), benzene content, aromatic content, sulfur content, olefin content, and the percent evaporated at 200 and 300 degrees Fahrenheit (E200 and E300, respectively). The sulfur specification for gasoline reflects recent regulations requiring the average annual sulfur content of all gasoline used in the United States to be phased down to 30 ppm by 2007 (and by 2004 for reformulated gasoline (RFG)). The regional assumptions for phasing down the sulfur in conventional gasoline account for less-stringent sulfur requirements for small refineries and refineries in the Rocky Mountain region. The 30-ppm annual average standard was not fully realized in conventional gasoline until 2008 due to allowances for small refineries. The specifications for conventional gasoline reflect the Environmental Protection Agency's (EPA) latest available survey data on gasoline properties. These specifications prevent the quality of conventional gasoline from eroding over time, which is the intent of the EPA's "antidumping" requirements. Oxygenated gasoline, which has been required during winter in many U.S. cities since October 1992, requires an oxygen content of 2.7 percent by weight. Oxygenated gasoline is assumed to have specifications identical to conventional gasoline with the exception of a higher oxygen requirement. Some areas that require oxygenated gasoline will also require reformulated gasoline. For the sake of simplicity, the areas of overlap are assumed to require gasoline meeting the reformulated specifications.
Reformulated gasoline has been required in many areas of the United States since January 1995. Beginning in 1998, the EPA has certified reformulated gasoline using the "Complex Model," which allows refiners to specify reformulated gasoline based on emissions reductions either from their companies' 1990 baseline or from the EPA's 1990 baseline. The PMM reflects "Phase 2" of the Complex Model requirements which began in 2000. The PMM uses a set of specifications that meet the Complex Model requirements, but it does not attempt to determine the optimal specifications that meet the Complex Model. In addition, *AEO2012* also reflects the "overcompliance" nature of gasoline in general by adopting the EPA survey of RFG properties in 2007.³ The State of California currently uses its own set of performance-based gasoline standards instead of the Federal Complex Model standards. The PMM assumes that all reformulated gasoline produced by West Coast refiners must meet the current California Air Resources Board "CARB3" requirements. AEO2012 assumes MTBE is phased out by the end of 2006 as a result of decisions made by the petroleum industry to discontinue MTBE blending with gasoline. The oxygen requirement on RFG is no longer required after the passage of the Energy Policy Act of 2005, so the decision to keep blending oxygenate in RFG would be largely based on the economics between the oxygenate and other gasoline blending components. The PMM assumes that ethanol is blended ² Information on Reformulated Gasoline (RFG) Properties and Emissions Performance by Area and Season, U.S. EPA Office of Transportation and Air Quality, http://www.epa.gov/otaq/regs/fuels/rfg/properf/rfgperf.htm into RFG at 10 percent per volume where MTBE is banned.4 Arizona has a reformulated gasoline program for the Phoenix area which is mandated by State law. Phoenix had previously been part of the Federal RFG program but opted out when State requirements were adopted. Phoenix is required to use CARB gasoline in the winter but may use either CARB or Federal RFG in the summer. Arizona is in a different model region than California and, for the sake of simplicity, is assumed to use RFG meeting Federal specifications. RVP limitations are effective during summer months, which are defined differently in different regions. In addition, different RVP specifications apply within each refining region, or PADD. The PMM assumes that these variations in RVP are captured in the annual average specifications, which are based on summer RVP limits, winter RVP estimates, and seasonal weights. #### **Motor Gasoline Market Shares** Within the PMM, total gasoline demand is disaggregated into demand for conventional, oxygenated, reformulated, and CARB gasolines by applying user-specified assumptions about the annual market shares for each type. Annual assumptions for each region account for the seasonal and city-by-city nature of the regulations. The market shares are assumed to remain constant at the 2010 level, with minor adjustments reflecting known changes in oxygenated or reformulated gasoline programs. In Census Division 9, 75 percent of gasoline is assumed to be reformulated. Starting in 2004 when MTBE was banned in California, this portion of reformulated gasoline was broken out into two groups: CARB gasoline that does not require compliance to the Federal RFG program and gasoline in the four areas of California covered by the Federal RFG program (Los Angeles, San Diego, Sacramento, and San Joaquin Valley). The market shares assume that 60 percent of the gasoline in Census Division 9 will continue to meet the Federal RFG requirement, and 15 percent will meet CARB standards. Although the shares are assumed to remain constant after 2010, the PMM structure allows for them to change over time based on alternative assumptions about the market penetration of new fuels. This allows for flexibility to analyze the impact of differing market share assumptions and to adjust the assumptions over time based on updated information about announced participation in the oxygenated and reformulated gasoline programs. ⁴ The previous *AEO* capped the ethanol volume percentage in RFG at 5.7% for California. However, the Phase 3 California Reformulated Gasoline Regulations were amended effective August 29, 2008 to allow up to 10% ethanol in gasoline. See http://www.arb.ca.gov/regact/2007/carfg07/finalreg07.pdf and http://www.arb.ca.gov/fuels/gasoline/faq/faq.htm ("...ethanol is not required under either the current or the amended regulation. However, increasing ethanol from 5.7 percent to 10 percent helps to mitigate permeation emissions under the amended Predictive Model.") #### **Diesel Fuel Specifications and Market Shares** "Ultra-low-sulfur diesel" (ULSD) is the predominant distiallate grade used in the PMM today as a result of regulations issued in January 2001 for highway applications and in June 2004 for non-road applications. ⁵ By definition ULSD is diesel that contains no more than 15 parts per million (ppm) of sulfur at the pump. A limited amount of legacy "Low" sulfur Diesel authorized by the 2004 rule is produced to meet Non-road demand. Non-road applications, which also contain separate provisions for locomotive and for marine applications, are on a separate timeline from 2010 to 2014. The non-road implementation schedule is more fully described in Section F.8. Full impacts for non-road applications correspond to a staggered phase-in schedule for these fuels. Major assumptions related to implementation of the ULSD rules include: - Highway diesel at the refinery gate will contain a maximum of 7 ppm sulfur. Although sulfur content is limited to 15 ppm at the pump, there is a general consensus that refineries will need to produce diesel below 10 ppm in order to allow for contamination during the pipeline distribution process. - The amount of ULSD downgraded to a lower-value product because of sulfur contamination in the distribution system is assumed to be 4.4 percent. - The PMM has been recalibrated to reflect individual fuel uses for 500- and 15-ppm distillate fuels in the various market sectors including highway, commercial, and industrial, and key subsectors including non-road, farm, locomotive, marine, and military. - ULSD production is modeled through improved distillate hydrotreating. Revamping (retrofitting) existing units to produce ULSD would be undertaken by refineries representing two-thirds of highway diesel production; the remaining refineries would build new units. The capital cost of a revamp is assumed to be 50 percent of the cost of adding a new unit. - There is no significant change in the sulfur level of non-road diesel compared to highway diesel over the long term other than a small market of residential heating oil in states that have not yet passed legislation to reduce sulfur concentrations. #### **End-Use Product Prices** End-use petroleum product prices for the U.S. are based on marginal costs of production, plus transportation costs, distribution costs, and taxes on transportation fuels. The marginal costs of production are determined by the model and represent both fixed and variable costs of production including additional costs for meeting Tier 2 gasoline and ULSD regulations. ⁵ U.S. Environmental Protection Agency, Control of Emissions of Air Pollution From Non-road Diesel Engines and Fuel; Final Rule, 40 CFR Parts 9, 69, et al., June 29, 2004. Investments related to reducing emissions at refineries are represented in other variable costs (OVC) associated with each refining unit. The costs of distributing and marketing petroleum products are represented by adding distribution costs to the wholesale prices of products. The distribution costs are applied at the Census Division level and are assumed to be constant throughout the forecast and across scenarios. Distribution costs for each product, sector, and Census Division represent average historical differences between end-use (excluding taxes) and wholesale prices. The costs for kerosene are the average difference between end-use prices of kerosene and wholesale distillate prices. Additional distribution costs are added to the historical average diesel costs to account for increased capital and operating costs related to ULSD requirements. End-use prices also include a variable which calibrates model results to historical levels. The calibration variable is specified by product and region. State and Federal taxes are also added to transportation fuels to determine final end-use sector prices. Tax trend analysis indicated that State taxes increase at the rate of inflation, while Federal taxes do not.⁶ In the PMM, therefore, State taxes are held constant in real terms throughout the forecast while Federal taxes are deflated at the rate of inflation. The local taxes for transportation fuels are assumed to be a small percentage of the wholesale fuel prices that are updated every year. ## **Crude Oil Quality** In the PMM, the quality of crude oil is characterized by average gravity and sulfur levels. Both domestic and imported crude oils are divided into five categories as defined by the ranges of gravity and sulfur shown in Table A2 in Appendix A. A composite crude oil with the appropriate yields and qualities is developed for each category by averaging the characteristics of specific crude oil streams that fall into each category. While the domestic and foreign crude types have the same definitions, the composite crude oils for each category may differ because different crude streams make up the composites. For domestic crude oil, an estimate of total production is made first, and then shared out to each of the five categories based on historical data. For imported crude oil, a separate
supply curve is provided for each of the five categories, to serve as a link between the U.S. refining regions and the international crude supply regions. ## **Regional Assumptions** The PMM includes five refining regions, representing the five Petroleum Administration for Defense Districts (PADDs). Individual refineries are aggregated into two representations for ⁶ U.S. Energy Information Administration, *Issues in Midterm Analysis and Forecasting 1998 – Motor Fuels Tax Trends and Assumptions, by Stacy MacIntyre.* each region. In order to interact with other NEMS modules with different regional representations, certain PMM inputs and outputs are converted from a PMM region to a non-PMM regional structure and vice versa. The PMM also represents four non-U.S. international regions: Europe, Asia, Non-U.S. Americas, and the rest of the world. Each region models two simplified types of refineries, which produce liquid products to meet both regional demands and U.S. imports. These regions are linked to the U.S. regions via crude and product import curves and export vectors. ## **Capacity Expansion Assumptions** The PMM allows for capacity expansion of U.S. refinery processing units including distillation capacity, vacuum distillation, hydrotreating, coking, fluid catalytic cracking, hydrocracking, and alkylation. The PMM also models the capacity expansion of U.S. renewable fuels (ethanol, biodiesel) and other non-crude (coal-to-liquids, biomass-to-liquids, pyrolysis oils, etc.) production units. Capacity expansion occurs by processing unit, starting from base-year capacities established from historical data for each region. Expansion proceeds in the PMM when the value received from the additional product sales exceeds the investment and operating costs of the new unit. The investment hurdle rate for a new unit build is calculated by the weighted average of 40 percent debt to 60 percent equity financing. The cost of equity is assumed to be the 10-year Treasury note rates plus a "risk premium," and the cost of debt is determined by forecast of the Moody's Baa Industrial bond rate (IBR) reported by the Macroeconomic Activity Module in the year of the build decision. The operational rate of return is determined in the same manner. These variables may be adjusted for sensitivity analysis, and the assumed hurdle rate and the rate of return may be different. Investment calculations are more fully described in Appendix F.1. Capacity expansion is done in 3-year increments. For example, the PMM looks ahead in 2011 and determines the optimal capacities needed to meet the expected petroleum product demands and expected prices for the 2014 forecast year. The PMM then allows a maximum of this amount to be built in the first year. Any remaining capacity available can then be built in the next years. At the end of 2014, the cycle begins anew, looking ahead to 2017. *AEO2012* used the October 2011 Short-Term Energy Outlook (STEO) to overwrite PMM projections for 2011 and 2012. ## Strategic Petroleum Reserve Fill Rate The PMM assumes no additions for the Strategic Petroleum Reserve (SPR) during the forecast period. Any SPR draw is assumed to be in the form of a swap with a zero net annual change. However, additions to the SPR could be made for sensitivity analysis. ## Legislation The PMM reflects recent national and regional legislative and regulatory changes that will affect future petroleum supply and product prices. It incorporates taxes imposed by the 2005 Energy Policy Act, The American Jobs Creation Act of 2004, 1993 Budget Reconciliation Act and the 1997 Taxpayer Relief Act, as well as costs resulting from environmental legislation. The Energy Policy Act of 2005 (EPACT05) included adjustments to highway excise taxes. Section 11113 outlined the following volumetric excise tax credits for alternative fuels. The credit is 50 cents per nominal gallon, except for non-liquid fuels, which are credited at 50 cents per gasoline-energy-equivalent gallon. IRS Notice 2006-92 states that the credit is 50 cents per nominal gallon, except for compressed natural gas (CNG), which is credited at 50 cents per 121 cubic feet. The credits are in effect from October 1, 2006 through September 30, 2009, except for the credit for liquefied hydrogen which is in effect through September 30, 2014. The Budget Reconciliation Act imposes a tax increase of 4.3 cents per gallon on transportation fuels including gasoline, diesel, liquefied petroleum gases, and jet fuel. The tax has been in effect since October 1, 1993, for all fuels but jet fuel. Onset of the jet fuel tax was delayed until 1996. The American Jobs Creation Act of 2004 signed into law in October 2004, however, phased out the 4.3 cent fuel tax on railroads and inland waterway transportation between January 1, 2005, and January 1, 2007. *AEO2012* reflects the ongoing absence of these excise taxes into the future. The Taxpayer Relief Act of 1997 reduced excise taxes on liquefied petroleum gases and methanol produced from natural gas. The reductions set taxes on these products equal to the Federal gasoline tax in terms of energy content (in Btu). With a goal of reducing tailpipe emissions in areas failing to meet Federal air quality standards (nonattainment areas), Title II of the CAAA90 established regulations for gasoline formulation. Starting in November 1992, gasoline sold during the winter in carbon monoxide nonattainment areas was required to be oxygenated. Starting in 1995, gasoline sold in major U.S. cities which are the most severe ozone nonattainment areas must be reformulated to reduce volatile organic compounds (which contribute to ozone formation) and toxic air pollutants, as well as meet a number of other new specifications. Additional areas with less severe ozone problems have chosen to "opt- in" to the reformulated gasoline requirement. Since 1998, reformulated gasoline has been required to meet a performance-based definition, the "Complex Model." The more stringent "Phase 2" Complex Model performance measures have been in effect since January 2000. _ ⁷Oxygenated gasoline must contain an oxygen content of 2.7 percent by weight. Title II of the CAAA90 also established regulations on the sulfur and aromatics content of diesel fuel that took effect on October 1, 1993. All diesel fuel sold for use on highways now contains less sulfur and meets new aromatics or cetane level standards. "Tier 2" Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements were finalized by EPA in February 2000. This regulation requires that the average annual sulfur content of all gasoline used in the United States be phased down to 30 ppm between the years 2004 and 2007. The 30 ppm annual average standard was not fully realized in conventional gasoline until 2008 due to allowances for small refineries. The Federal Highway Bill of 1998 extended the current tax credit for ethanol through 2007 but stipulated that the 52 cents per gallon credit be reduced to 51 cents in 2005. The American Jobs Creation Act of 2004 extended the ethanol tax credit through 2010. The Act also instituted income tax credits for biodiesel blending until 2006, which was again extended by the Energy Policy Act of 2005 to 2008. This was followed by the new Farm Bill of 2008 which reduced the ethanol subsidy by 6 cents in 2009 (down to 46 cents for 2009 and 2010), added a new cellulosic ethanol subsidy (maximum of 1.01\$/gal) for 2009-2012, and extended the ethanol import tariff to 2010. All provisions are modeled in the PMM. The PMM reflects an assumption that the corn ethanol credit and ethanol import tariff will no longer be available after 2011, and the cellulosic ethanol credit will expire after 2012, as stated. The biodiesel blending credits have been extended through 2011. A number of pieces of legislation are aimed at controlling air, water, and waste emissions from refineries themselves. The PMM incorporates related environmental investments as refinery fixed costs. The estimated expenditures are based on results of the 1993 National Petroleum Council Study.⁸ These investments reflect compliance with Titles I, III, and V of CAAA90, the Clean Water Act, the Resource Conservation and Recovery Act, and anticipated regulations including the phase-out of hydrofluoric acid and a broad-based requirement for corrective action. No costs for remediation beyond the refinery site are included. • AEO2012 includes provisions outlined in the Energy Independence and Security Act of 2007 concerning the petroleum industry, including a Renewable Fuels Standard which increases the total U.S. consumption of renewable fuels. Although the statute calls for higher levels, due to uncertainty about whether the new RFS schedule can be achieved and the stated mechanisms for reducing the cellulosic biofuel schedule, the final schedules in PMM were assumed to be: 1) 30.9 billion gallons in 2023 for all fuels; 2) 15.9 billion gallons in 2023 for advanced biofuels; 3) 10.9 billion gallons in 2023 for cellulosic biofuel; and 4) one billion gallons of biodiesel by 2012 and beyond. ⁸National Petroleum Council, *U.S. Petroleum Refining - Meeting Requirements for Cleaner Fuels and Refineries*, Volume I (Washington, DC, August 1993). #### 4. Model Structure During each NEMS iterative solution, product demand quantities and other variables provided by the other NEMS demand and supply modules are used to update the PMM linear programming (LP) matrix. Once an optimal solution is obtained from the updated LP matrix, marginal petroleum product prices and other material balance information are extracted. Post-processing takes place on the petroleum product prices and refinery input and output volumes, system variables are updated, and reports are produced. The modification and optimization of the PMM LP matrix are accomplished by executing FORTRAN callable LP subroutines available from an LP subroutine library. Appendix B describes the formulation of the
linear programming representation in the PMM. The PMM LP matrix (an MPS° file) is generated offline, prior to NEMS processing. The generation process uses a data-driven mathematical programming language (OML) to create the MPS file. The control program and optimizer are compatible with the MPS matrix format. FORTRAN and FORTRAN callable subroutines for data table manipulation, matrix generation, and solution retrieval programs for report writing are currently being used. Appendix A describes the input data tables used to develop the input LP matrix of the PMM. Appendix G documents the LP matrix generator source code and data tables. Appendix B presents the objective function and constraints defined in the PMM LP matrix. The REFINE subroutine (called by NEMS) is the main controlling subroutine for the PMM. Through subroutine calls, it initializes variables, reads in data, updates and solves the LP matrix, retrieves and processes results, and generates reports. The following paragraphs describe the REFINE process flow, which is illustrated by flow diagrams in Figures 4.1 through 4.5. The flow diagrams refer to PMM FORTRAN subroutine names, which are described in detail in sections 4.1 through 4.4. Additionally, the REFINE subroutine calls the ETHANOL subroutine, which provides the PMM with cost components and feedstock supply curves for corn ethanol, cellulosic ethanol, and biodiesel production, as well as ethanol import curves and other renewable liquid fuels production components. The Ethanol Supply Model is documented in Appendix I. The REFINE subroutine initializes variables and reads fixed data during the first year and first iteration of any NEMS simulation (as presented at the top of Figure 4.1 and described in Section 4.1). The subroutine then follows one of five branches depending on the type of NEMS iteration as classified below: ¹³Mathematical Programming System (MPS). - (Setup) If the history switch (a FORTRAN conditional variable) is on and it is the first year and first iteration (Figure 4.1), historical values are read in subroutine RFHIST1 (described in Section 4.1) and the LP matrix is loaded into memory to await processing in the PMM base year. - (History Year)¹⁰ If the history switch is on and it is a historical year after the first year and first iteration, then the PMM performs no operations but simply returns to the NEMS system operations. No operations are performed because all historical data were retrieved and variables were updated on the first iteration of the first year. - (Iterative NEMS Solution) If the history switch is on, it is not a historical year, and it is not a reporting iteration; or if the history switch is off and it is not a reporting iteration; then the PMM LP matrix is updated with data from other NEMS models and static PMM input data variables, and an optimal solution is calculated (Figures 4.1 and 4.2). Petroleum product prices and other PMM output data are retrieved from the LP optimal solutions and output variables are updated (Figures 4.3 and 4.5). These subroutines are described in Section 4.2. - (Reporting/Capacity Expansion) If it is a reporting iteration, the history switch is on, and it is not a historical year; or if it is a reporting iteration and the history switch is off; then several internal PMM analyst reports are updated (Figures 4.1, 4.3, and 4.5). If it is also a capacity expansion year, then the PMM LP is updated and solved using input data representing expectation values for a future year to determine processing unit expansion for the intervening years (see Figures 4.1, 4.4, and 4.5, and Sections 4.2 and 4.4). The capacity expansion methodology is described in more detail below. - (Pre-Base Year Capacity Expansion) If it is a reporting iteration, the Short-Term Energy Outlook (STEO) benchmarking switch is on, and it is NEMS year 16 (2005); then the PMM LP is solved using input data representing expectation values for a future year to determine processing unit expansion for the intervening years (see Figures 4.1 and 4.4, and Sections 4.2 and 4.4). ## **Capacity Expansion Methodology** The PMM models capacity expansion for U.S. refinery processing units at the PADD level. The units that are allowed to expand include, but are not limited to, distillation capacity, vacuum distillation, hydrotreating, coking, fluid catalytic cracking, hydrocracking, alkylation, and ether manufacture. Coal-, biomass-, and natural-gas-to-liquids production units (CTL, BTL, GTL, and the combined CBTL) are also modeled at the PADD level, and allowed to expand (after their specified first build year). Capacity expansion for renewable fuels pyrolysis oils production is also modeled, but at the Census Division (CD) level. Initial base year capacities are established for each PADD or CD using historical data. Expansion is then determined by the LP when the value received from the additional product sales exceeds the investment and operating costs of the new unit. In general, the investment costs are based on a 20-year plant life (15-year for xTL ¹⁰ For AEO2012, year 2011 and earlier are historical years. and pyrolysis oil production), a rate of return calculated by assuming 60 percent equity and 40 percent debt, and other economic factors. For more details on the calculation of the investment costs, refer to Appendix F.1 on Refinery Investment Recovery Thresholds. Initial capacities in 2010 are determined by the existing capacities defined by the Oil and Gas Journal and the Petroleum Supply Annual. Typically, the capacity expansion in the PMM is done in 3-year increments. In a particular model year, the PMM looks ahead three years to determine the optimal capacities given the estimated demands and prices expected for that future year. The model is then allowed to decide what the phase-in build pattern should be over the next 3-year period. This is accomplished by allowing each processing unit in the first installation year (after the build decision) to utilize all of the new capacity resulting from the 3-year look-ahead decision. Any capacity not utilized is made available the next installation year. If there is unused "new" capacity after the third installation year, then the extra capacity from that 3-year decision is never built. At the end of the third year the cycle begins anew. **Figure 4.1 PMM Flow Diagram**Error! Objects cannot be created from editing field codes. Figure 4.2 Matrix Preprocessing Subroutines (PMMLP) Error! Objects cannot be created from editing field codes. **Figure 4.3 Matrix Post-Processing Subroutines** Error! Objects cannot be created from editing field codes. | Figure 4.4 Capacity Ex | countines spansion Subroutines | (XPMMLP |) | |------------------------|--------------------------------|---------|---| |------------------------|--------------------------------|---------|---| Error! Objects cannot be created from editing field codes. #### **Figure 4.5 Report Subroutines** Error! Objects cannot be created from editing field codes. #### 4.1 Main Subroutines Section 4.1 describes the functions of the subroutines in Figure 4.1, the main controlling subroutines. (**REFINE**) Main controlling subroutine for the PMM. **Purpose:** REFINE is the driver subroutine for the PMM. It uses basic FORTRAN controlling structure, NEMS integrating model common variables, and PMM internal variables to set up and process the PMM LP and to update NEMS variables based on an optimal LP solution. It also overwrites PMM results for STEO years using STEO data. #### **Equations:** | CAPYR1ST | = 16 | ! 1st model year for capacity expansion | |------------------|-----------------|--| | BLDPD | = 3 | ! Number of years between capacity expansions | | NEMSYR1 | = 1990 | ! NEMS 1st model year | | CFN2HQ | = CFDSQ | ! Initial conversion factor for heating oil | | CFDSLQ | = 0.993 *CFN2HQ | ! Initial conversion factor for low S diesel | | CFDSUQ | = 0.995 *CFDSLQ | ! Initial conversion factor for ultra-low-sulfur diesel | | OML_TYP | = 0 | ! Flag: Actfile (0), in-memory (1) updates | | $SV_PMM_ACT = 3$ | | ! Flag, save Actfile forecast year (1), capacity expansion | | | | year (2), both (3) | ## (INITPMM) Initialize variables. **Purpose:** Opens PMM iteration report file and PMM solution print file, and initializes certain variables. **Equations:** Initialization of runtime parameters #### (FIXDPMM) Read fixed inputs. **Purpose:** FIXDPMM reads in and initializes internal data required for processing the PMM. Also, calls subroutines PMM_DIESEL, Read_IPMM_Demand_Input, READ_IPMM_MISC, RFREAD_TCHCHNG, RFREAD_BLDSPLT, RFREAD_INVST, and PMMREAD_PRDIMP to read specific data. *AEO2008* introduced the Energy bill passed in December 2007, and was switched on with the flag RFHR6FLAG=2. This activated four renewable fuels limits that set the lower limits on total biodiesel produced and sold (C@BIOTOT), total biomass converted into motor vehicle fuel (C@CLLTOT), total advanced renewable fuels generated for motor vehicle use (C@ETHBIO), and total renewable liquids produced for motor vehicle use (C@CLLBIO). Also, the EPACT2005 gasification unit credit applied to the CTL is defined, assuming 35% of the CTL capital recovery costs (CTL_CAPREC) is for the gasifier, the EPACT credit is 20% of the gasifier cost (which equals 7% of CTL_CAPREC), with a max allowed EPACT credit of 350 MM\$(2006\$). #### **Equations:** PMMRGNS=5 DMDRGNS=9 Add 1% locality tax to motor gasoline tax data (transportation sector) MGMUTR_{pd,vr,2}=MGMUTR_{pd,vr,2}+ (PMGTR_{pd,vr}*.01) Set industrial and commercial motor gasoline markups equal to transportation markups. Set base year and last historical year for PMM (PMMBSYR, HISTLYR) #### **Input File:** MU1PRDS Sectoral end-use markups MU2PRDS Tax input data RFCTRL Fixed Data input file; includes control variables for ULSD and other rulings, capacity expansion signals, and definition of scenarios for special studies
RFINVEST Investment Data input file; includes GTL and CTL unit data RFNGPL Spreadsheed containing plant characteristics and yields for natural gas plant liquids (NGPL) (**READ_IPMM_DEMAND_INPUT**) Read input data needed to populate international product demands. **Purpose:** READ_IPMM_DEMAND_INP reads demand region and product codes and defines the P/Q pairs for the international product demand curves. **Equations:** None. #### Input File: RFCTRL Fixed Data input file; also allows definition of scenarios **(READ_IPMM_MISC)** Read input data related to planned capacity and capacity growth for the international refinery representation. Purpose: READ_IPMM_MISC reads growth factors **Equations:** None. Input File: RFCTRL Fixed Data input file; also allows definition of scenarios (RFREAD_TCHCHNG) Read inputs. **Purpose:** RFREAD_TCHCHNG reads user-specified technology improvements information. **Equations:** None. **Input File:** RFCTRL Fixed Data input file; also allows definition of scenarios #### (**RFREAD_BLDSPLT**) Read inputs. **Purpose:** RFREAD_BLDSPLT reads information to define capacity expansion ratios for specified units during a 3-year expansion cycle. **Equations:** None. Input File: RFCTRL Fixed Data input file; also allows definition of scenarios Note: Data no longer used, as of AEO2007. #### (RFREAD INVST) Read inputs. **Purpose:** RFREAD_INVST reads refinery investment information, GTL, CTL, and BTL input data, and some coefficient info for coke gasification processing. **Equations:** None. Input File: Fixed Data input file. **RFINVEST** (PMMREAD PRDIMP) Read inputs. **Purpose:** PMMREAD PRDIMP reads product import results from a previous run -- only if the scenario prescribes constant product imports. **Equations:** None. Input File: Fixed Data input file containing product imports, by year, region RFPRDIMP (WRTPRDCURV) Write product import curves for use in a constant import scenario. **Purpose:** If the PRDIMPWR switch = 1, then this subroutine writes resulting product import quantities and prices to the output file RFPRDIMP. This file will be read by subroutine PMMREAD_PRDIMP in a scenario that prescribes constant product imports. **Equations:** None. **Output File:** RFPRDIMP Fixed Data input file containing product imports, by year, region **(RDPMMXP)** Read in the PMM specific expectation values from an input file. **Purpose:** The RDPMMXP subroutine reads the SPRFLRT input file (which is generated from a previous PMM capacity expansion cycle) and updates PMM specific expectation values. These values are used for refinery capacity planning. This subroutine also reads and updates the renewable fuels standards (RFS) that resulted from the PMM's ability to meet the RFS in the previous NEMS cycle. **Equations:** None. Input file: **SPRFLRT** PMM specific expectations input file. (**LOADPMM**) Set up the PMM LP for processing by the OML. **Purpose:** This subroutine defines the Optimization Modeling Library (OML) model space for PMM LP matrix. Loads the PMM LP matrix into memory and initializes OML model specific variables. **Equations:** None. (**RF ETHNE85**) Define percent ethanol and TRG in E85. **Purpose:** Define variables ETHNE85 and TRGNE85 (% ethanol and % TRG in E85) to be consistent with coefficient used in the PMM LP matrix (column X(cd)ETHE85, row D(cd)ETH). **Equations:** None. **(DEFLP)** Define the OML LP matrix model space and initialize common control variables for a given model. **Purpose:** Defines and OML LP matrix model space and initializes common control variables for a given model using the OML function WFDEF. **Equations:** None. Data Passed: MODEL, model name, SIZE, model size (CLOSE_DB) End of Matrix processing **Purpose:** Closes the database, defines an area of RAM for the PMM model, and loads the model from the database into memory. **(SAVE_ACT)** Save the ACTFILE to the NEMS server **Purpose:** Saves the information related to the PMM LP and solution to a temporary ACTFILE file (PMM_WORK.bat) each NEMS year. The temporary file is copied into a year-specific set of files, PMM (year).act. (MPSINLP) Convert a model from the MPS format file and stores it in the model database. **Purpose:** Converts a model from and MPS format file to an OML model format and stores it in the model database using the OML function WFMSPIN. **Equations:** None. **(LOADLP)** Load the LP model from the database into memory. **Purpose:** Loads the LP model from the OML model database into memory and prepares it for optimization using the OML function WFLOAD. **Equations:** None. (**SETCAPI**) Set initial refinery unit capacity. **Purpose:** SETCAPI retrieves the existing capacity value for U.S. refinery processing units and puts it into a variable PMMCAPI. Lower bound is set for ACU based on historical utilization. Processing units not allowed to build (as defined in the rfctrl.txt file) are initialized with upper bound on builds equal to zero. Existing, planned, and unplanned refinery capacity for international refinery representation is also defined for each forecast year, and stored in the variables IPMM_CAP, IPMM_IMCCAP, and IPMM_FLLCAP. **Equations:** None. (**RF_1RFSSAFE**) Set the biomass RFS safety equal to other RFS safety. **Purpose:** RF_1RFSSAFE sets the biomass RFS safety valve equal to the other RFS safety valve if the flag L_CUSCREDB (model biomass RFS safety separate from other RFS safety) is off. This is done by adding a new row constraint (RFSSAFE) to the PMM LP, and setting vectors CUSCREDT = CUSCREDB. **Equations:** None. (**RF_RFSXSAFE**) Set the EPA credit purchases for cellulosic RFS. **Purpose:** Add the LP vectors CUSXCRT and CUSXCRT1 to the cellulosic RFS constraint (C@CLLTOT) to reflect the EPA credit purchases, if need be. **Equations:** None. (**INITBIM**) Initialize the supply curve for biodiesel feedstock. **Purpose:** INITBIM initializes the biodiesel feedstock supply to zero. **Equations:** None. (RFHIST1) Read in history data and STEO data for 1990 through 2006. **Purpose:** RFHIST1 reads in history data (price and quantity for crude processing and liquid fuels production) from an external file and updates PMM output data for history years 1990 to 2009 and STEO years 2010 and 2011. Set consumption of electricity, natural gas, and coal at ethanol plant. Determine historical fuel use splits (nationally) at refineries and percent of refinery-generated electricity (CHP) sold to the grid. The historical data between 1990 and 1994 are not reported by NEMS, however. #### **Equations:** CFINPOT=4.63 Regional Crude Exports as percent of total U.S.: PCTEXCRD(0) = 0.0! Alaska PCTEXCRD(1) = 0.707! OGSM 1 PCTEXCRD(2) = 0.0! OGSM 2 PCTEXCRD(3) = 0.0! OGSM 3 PCTEXCRD(4) = 0.0! OGSM 4 PCTEXCRD(5) = 0.293! OGSM 5 PCTEXCRD(6) = 0.0! OGSM 6 Biodiesel production for 2008, 2009, Mbbl/day: BIMOTYCD(1,11,19)=42.66 ! virgin, 2008 BIMQTYCD(2,11,19)=1.86 ! non-virgin, 2008 BIMQTYCD(1,11,20)=47.00 ! virgin, 2009 BIMQTYCD(2,11,20)=1.90 ! non-virgin, 2009 Input File: RFHIST PMM historical data input file **(PMM_NEXTDATA)** Advance file pointer one record. **Purpose:** This subroutine is used to automate reading the historical data file. It advances the file pointer one record until the historical data record is located. **Equations:** None. (INITIMPHIST) Transfer historical PMM data into NEMS report variables. **Purpose:** Transfer the regional P/Q data from local PMM variables into NEMS report variables, and compute national prices and quantities for historical years. Includes imported products and crude. **Equations:** None. (RF_EMM2CTL) Map cogenerated electricity transmission cost data from NERC regions to PADDs and CDs. **Purpose:** RF_EMM2CTL maps the overnight and fixed charge factors (TRCTLOVR, TRCTLFCF) associated with the cogenerated electricity transmission cost data from 22 NERC to 5 PADD regions. It also maps the wholesale electricity price (EWSPRCN) from NERC to PADD regions. **Equations:** None. (ADJCTLCST) Adjust CTL investment costs over forecast. **Purpose:** Have CTL investment costs reflect learning and diminished resources. A decline rate in investment costs is used to model learning. A special algorithm was developed to model the impact of resource competition on investment costs, beginning when total capacity exceeds 200 thousand bbl/cd. # **Equations:** Learning-- The base investment cost is declined annually after the first year builds are allowed. ``` CTL_INVC = CTL_INVBAS *(1.-CTL_DCLCAPCST)**(L4- CTL_FSTYR) ``` Diminished Resource— The learning-adjusted price is increased by a price delta defined by the following algorithm, but only after total capacity exceeds 200 thousand bbl/cd. ``` CSTADD = 15*TANH(0.4*(AMAX1(0.,(CTLPRODC /0.2)-1.))) ``` ``` CTL_INVC = CTL_INVC + CSTADD ``` Where: ``` CTL_DCLCAPCST = 0.005 ! 0.5% decline each year beginning 2015 CTL_INVBAS = calc'd ! Base investment costs for CTL 87$/bbl ``` CTL_INVC = calc'd ! Learning-adjustment + resource-adjusted price 87\$/bbl CSTADD = calc'd ! Resource adjustment 87\$/bbl CTLPRDC = calc'd ! Total CTL capacity million bbl/cd (ADJBTLCST) Adjust BTL investment costs over forecast. **Purpose:** Have BTL investment costs reflect learning over the forecast year. Learning-by-doing represents the decrease in capital cost of a plant component as more experience is gained through the construction of additional plants. This learning concept is also applied to pyrolysis oil production, and to ethanol production from cellulose (described further in Appendix I: Ethanol Supply Model, subsection Cellulose-Based Ethanol). # **Equations:** ``` IF (MAXPLTNUM.LE.BTL_PhaseIcut)THEN BTLLNRATE= (BTL_PhaseIa * MAXPLTNUM**- BTL_PhaseIb) ELSE IF (MAXPLTNUM.LE. BTL_PhaseIIcut)THEN BTLLNRATE= ((BTL_PhaseIIafast * MAXPLTNUM**- BTL_PhaseIIbfast) + (BTL_PhaseIIaslow * MAXPLTNUM**- BTL_PhaseIIbslow)) ELSE BTLLNRATE= ((BTL_PhaseIIIafast * MAXPLTNUM**- BTL_PhaseIIIbfast) + (BTL_PhaseIIIaslow * MAXPLTNUM**- BTL_PhaseIIIbslow)) ```
``` BTL_INVC = BTL_INVBAS * BTLLNRATE ``` Where: BTL INVC= adjusted capital cost coefficient for BTL, 1987\$/bbl BTL INVBAS= base capital cost coefficient for BTL, 1987\$/bbl BTL INLRATE = cost factor reduction due to learning MAXPLTNUM = maximum number of BTL units expected to be built BTL PhaseIcut= maximum number of units considered to be Phase I BTL PhaseIIcut= maximum number of units considered to be Phase II BTL_PhaseIa, BTL_PhaseIb = parameters associated with the phase I learning BTL PhaseIIafast, BTL PhaseIIbfast = parameters associated with the phase II fast learning BTL_PhaseIIaslow, BTL_PhaseIIbslow = parameters associated with the phase II slow learning BTL PhaseIIIafast, BTL PhaseIIIbfast = parameters associated with the phase III fast learning BTL_PhaseIIIaslow, BTL_PhaseIIIbslow=parameters associated with the phase III slow learning # (ADJBPUCST) Adjust BPU investment costs over forecast. **Purpose:** Have BPU (biomass pyrolysis) investment costs reflect learning over the forecast year. Learning-by-doing represents the decrease in capital cost of a plant component as more experience is gained through the construction of additional plants. This learning concept is also applied to BTL production, and to ethanol production from cellulose (described further in Appendix I: Ethanol Supply Model, subsection Cellulose-Based Ethanol). # **Equations:** ``` IF (MAXPLTNUM.LE.BPU_PhaseIcut)THEN BPULNRATE= (BPU_PhaseIa * MAXPLTNUM**- BPU_PhaseIb) ELSE IF (MAXPLTNUM.LE. BPU_PhaseIIcut)THEN BPULNRATE= ((BPU_PhaseIIafast * MAXPLTNUM**- BPU_PhaseIIbfast) + (BPU_PhaseIIaslow * MAXPLTNUM**- BPU_PhaseIIbslow)) ELSE BPULNRATE= ((BPU_PhaseIIIafast * MAXPLTNUM**- BPU_PhaseIIIbfast) + (BPU_PhaseIIIaslow * MAXPLTNUM**- BPU_PhaseIIIbslow)) END IF BPU_INVC = BTL_INVBAS * BPULNRATE Where: BPU_INVC = adjusted capital cost coefficient for BPU, 1987$/bbl ``` ``` BPU_INVBAS = base capital cost coefficient for BPU, 1987$/bbl BPU_INLRATE = cost factor reduction due to learning MAXPLTNUM = maximum number of BPU units expected to be built BPU_PhaseIcut = maximum number of units considered to be Phase I BPU_PhaseIIcut = maximum number of units considered to be Phase II BPU_PhaseIa, BPU_PhaseIb = parameters associated with the phase I learning BPU_PhaseIIafast, BPU_PhaseIIbfast = parameters associated with the phase II fast learning BPU_PhaseIIafast, BPU_PhaseIIbslow = parameters associated with the phase III slow learning BPU_PhaseIIIafast, BPU_PhaseIIIbfast = parameters associated with the phase III fast learning BPU_PhaseIIIaslow,BPU_PhaseIIIbslow=parameters associated with the phase III slow learning ``` (ADJCBLCST) Adjust CBTL investment costs over forecast. **Purpose:** Have CBTL investment costs reflect learning and diminished resources. The learning is modeled by adding a decline rate in investment costs. A special algorithm was developed to model the impact of resource competition on investment costs, beginning when total production capacity exceeds 200 thousand bbl/cd. # **Equations:** Learning-- The base investment cost is declined annually after the first year builds are allowed. ``` CBTL_INVC = CBTL_INVBAS *(1.-CBTL_DCLCAPCST)**(L4- CBTL_FSTYR) Diminished Resource-- The learning-adjusted price is increased by a price delta defined by the following algorithm, but only after total capacity exceeds 200 thousand bbl/cd. CSTADD = 15*TANH(0.4*(AMAX1(0.,(CBTLPRODC /0.2)-1.))) CBTL_INVC = CBTL_INVC + CSTADD Where: ``` ``` CBTL_DCLCAPCST = 0.005 ! 0.5% decline each year beginning 2015 CBTL_INVBAS = calc'd ! Base investment costs for CBTL 1987$/bbl CBTL_INVCST = calc'd ! Learning-adjustment + resource-adjusted price 1987$/bbl CSTADD = calc'd ! Resource adjustment 1987$/bbl CBTLPRDC = calc'd ! Total CBTL capacity million bbl/cd ``` (RFTAX) Convert nominal Federal petroleum product taxes to Real 1987\$. **Purpose:** RFTAX converts nominal Federal petroleum product taxes to Real 1987\$, and aggregates (using qty-wt) regional markups to national level. **Equations:** for each product type, convert nominal to real dollars, $RLMUFTAX^{yr,prd} = MUFTAX^{yr,prd} / MC_JPGDP_{vr}$ #### Where: prd = product type yr = year RLMUFTAX = real 1987 Federal Tax per product type MUFTAX = nominal Federal Tax per product type MC_JPGDP = GDP conversion **(ADJMU1_PRD)** Use PPI index (per FERC regulations) to change end-use markups in forecast years. **Purpose:** Change markup tariff using PPI/ FERC methodology (based on growth in transportation diesel price). (Called by subroutine RFTAX.) # **Equations:** ``` MU1ADJFAC = 0.9 + 0.1 * PDSTR(I,MYR) / PDSTR(I,MU1ADJYR-1) MGMUTR(I,MYR,1) = MGMUTR(I,MU1ADJYR-1,1) * (MU1ADJFAC) DSMUTR(I,MYR,1) = DSMUTR(I,MU1ADJYR-1,1) * (MU1ADJFAC) DSMURS(I,MYR,1) = DSMURS(I,MU1ADJYR-1,1) * (MU1ADJFAC) ``` #### Where: PDSTR = transportation diesel price (1987\$/MMBtu) MU1ADJFAC = resulting adjustment factor for MU1 markups MGMUTR = markup tariff for transportation gasoline DSMUTR = markup tariff for transportation diesel DSMURS = markup tariff for residential distillate (**RFTAXHIST**) Set historical State petroleum product taxes and national markups. **Purpose:** RFTAXHIST sets historical States' petroleum taxes and national markups. (Called by subroutine RFTAX.) **Equations:** Regional and national petroleum product taxes are set based on State tax. (**DEMDPMM**) Convert NEMS demands. **Purpose:** Convert NEMS demands from trillion Btu per year to thousands of barrels per day for input into the refinery LP. Disaggregate gasoline and distillate fuel into types. Calculate U.S. total petroleum product demand by sectors. **Equations:** The conversion from trillion Btu to Mbbl/d is as follows: $$PRDDMD_{cd,yr,pd} = (((Q(PR)AS_{cd,yr}-Q(FPR)RF_{cd,yr})/CF(PR)Q_{yr})/365)*1000$$ (1) The conversion from trillion Btu to MMbbl/d is captured in the following product-specific variables: $$RFQ(PR)_{cd,vr} = (Q(PR)AS_{cd,vr}/CF(PR)Q_{vr})/365$$ (2) The shares of M85 and E85 in motor vehicle use are also added to the total motor gasoline demands such that: $$RFQMG_{cd,yr} = ((QMGAS_{cd} + QMETR_{cd}*0.15 + QETTR_{cd}*TRGNE85)/CFMGQ/365)$$ (3) Where: PRDDMD = product demand by Census Division (Mbbl/d) RFQ(PR) = product demand by Census Division (MMbbl/d) Q(PR)AS = product demand in all sectors (Trill Btu/yr) Q(FPR)RF = product consumed for refinery fuel (applies only to products LG, RL, RH, DS, PC, SG, and OT), (Trill Btu/yr) CF(PR)O = conversion factor (MMBtu/bbl) (PR) = product types (FPR) = refinery fuel products identifier cd = Census Divisions 1 through 9 pd = refinery regions 1,2,3,4,5 (PADDs I, II, III, IV, V) yr = forecast year 0.15 = Motor gasoline share of M85 TRGNE85 = Motor gasoline share of E85 (0.26 was used for annual E85 average) 365 = days per year 1000 = millions to thousands Refinery fuel consumption, Q(FPR)RF, is subtracted from the product demands since the refinery model is designed to meet demand for saleable products. The variables RFQ(PR), Q(PR)AS, and Q(FPR)RF, and CF(PR)Q are defined explicitly in Appendix A 1.2, Refine Module Variables. Four types of gasoline are derived from total gasoline demand by applying market share estimates: $$PRDDMD_{cd,vr,t+1} = ((QMGAS_{cd,vr}/CFMGQCD) / 365 * 1000) * MGSHR_{vr,t,cd}$$ (4) Where: PRDDMD = product demand by Census Division CFMGQCD = average motor gasoline conversion factor (MMBtu/bbl) t = motor gasoline product designator index (1,2,3,4) MGSHR = motor gasoline market shares Refer to Appendix F (F.7) for more information on the derivation of the gasoline market shares, MGSHR. Heating oil, low-sulfur (500 ppm) diesel, ultra-low-sulfur (15 ppm), and CARB diesel demands are determined as a share of regional distillate demand (using subroutines PMM_DIESEL and PMMPRDEXP), adjusted for expected downgrade contamination (as defined below). CARB diesel (meets California Air Resources Board standards) quantity is then split from ultra-low-sulfur diesel using a share factor (in PADD 5 only). ``` PRDDMD_{cd,yr,7} = DMDN2H_{cd,yr} - DSULOS! Heating oil (5) ``` $PRDDMD_{cd,yr,13} = DMDDSL_{cd,yr}$ ! DSL $TOTDSUDMD = DMDDSU_{cd,yr} + DSULOS \qquad ! DSU+DSC$ $PRDDMD_{cd,yr,25} = DSCSHR_{cd,yr} * TOTDSUDMD \quad ! \ DSC$ $PRDDMD_{cd,vr,24} = (1-DSCSHR_{cd,yr}) * TOTDSUDMD$ ! DSU ``` DSULOS = DMDDSU_{cd,yr} + PEXPDS_{cd,yr} * ! Adjustment due to downgrade PCT_DWNGRD_{vr} / (1. - PCT_DWNGRD_{vr}) ``` Where: PRDDMD = product demand (M bbl/cd) 7, 13, 24 = product index for heating oil, low-sulfur diesel (DSL), ultra-low-sulfur diesel (DSU) DMDDSU_{cd,vr} = Actual ultra-low-sulfur diesel demand (M bbl/cd) $DMDDSL_{cd,vr} = Actual low-sulfur diesel demand (M bbl/cd)$ $DMDN2H_{cd,vr}$ = Actual heating oil demand (M bbl/cd) DSULOS = adjustment due to expected downgrade (M bbl/cd) $DSCSHR_{cd,vr} = DSC$ share of DSC+DSU by cd $PCT_DWNGRD_{yr}$ = expected percent downgrade (fraction) Methanol consumed in the transportation sector is assumed to be a blend of 85 percent methanol and 15 percent gasoline. E85 is assumed to be a blend of 74 percent ethanol (ETHNE85) and 26 percent gasoline (TRGNE85) from the annual average when taking into account the winter months' drivability consideration which requires more gasoline blending than 15 percent. Therefore, the demands for transportation ethanol and methanol in the PMM use the respective percentages of total transportation alcohol demands, with the balance percentages of the total transportation alcohol demands added to gasoline demand. Finally, U.S. totals are calculated: $$PRDDMD_{11,yr,pr} = \Sigma PRDDMD_{cd,yr,pr}$$ (6) Where: 11 = total U.S. demand index pr = product index 1 through 24 cd = Census divisions 1 through 9 yr = NEMS year index 1 through 41 (RFRESET_COKN67) Split QRLEL into QPCEL and QRLEL (petcoke and LS resid). **Purpose:** Until QPCEL is filled by EMM, QRLEL is split into QPCEL and QRLEL (petcoke and LS resid). Equations: Splits were based on historical data, with the following results (by CD): SPLT_PCTINTRL = pet coke demand
by EMM as a percent of total petcoke + LSresid SPLT_PCINRL/0.00,0.030,0.838,1.000,0.195,0.887,0.831,0.00,0.106/ **(PMM_DIESEL)** Disaggregate distillate demand into heating oil, low-sulfur diesel, and ultra-low-sulfur diesel demands. **Purpose:** Use historical demand splits to define heating oil, low-sulfur diesel, and ultra-low-sulfur diesel demands from regional distillate demand totals provided by the demand models. Set average heat content of distillate by sector. (Refer to Appendix F-9, Estimation of Diesel Market Shares, for more details.) #### Equations: Use rfctrl.txt input data to split regional distillate demand totals into sector and fuel type (i.e., non-road diesel to commercial sector, heating oil fuel to residential sector, etc.). The data from the rfctrl.txt file are: | HOFTRN | HOFIND | HOFCOM | |------------|------------|------------| | OLMTRN | OLMIND | OLMCOM | | ONRTRN | ONRIND | ONRCOM | | HWYTRN | HWYIND | HWYCOM | | N2HPCT_OLM | DSLPCT_OLM | DSUPCT_OLM | | N2HPCT_ONR | DSLPCT_ONR | DSUPCT_ONR | | N2HPCT_HWY | DSLPCT_HWY | DSUPCT_HWY | #### Where: HOF = heating oil fuel OLM = off-road Locomotive and Marine fuel ONR = off-road non-road fuel HWY = highway (on-road) fuel TRN = transportation sector IND = industrial sector COM = commercial sector N2H = heating oil DSL = low-sulfur diesel DSU = ultra-low-sulfur diesel (DPRDPMM) Update domestic crude wellhead price and gas plant fuel consumption. **Purpose:** Update domestic crude wellhead price and gas plant fuel consumption for the Oil and Gas Supply Model and Natural Gas Transmission and Distribution Model. **Equations:** Percent of NG production consumed as fuel at gas plant for forecast years through 2025, for PADDs I-V, $$\begin{split} & PCTPLT_PADD_{1,yr} = 1.24 \\ & PCTPLT_PADD_{2,yr} = 2.27 \\ & PCTPLT_PADD_{3,yr} = 2.31 \\ & PCTPLT_PADD_{4,yr} = 2.72 \\ & PCTPLT_PADD_{5,yr} = 4.84 \end{split}$$ (ETHANOL) Calculate the ethanol supply and biodiesel supply step functions. **Purpose:** This subroutine reads in data used to define biofuels cost and production processes, and sets other initial biofuels data (including historical biodiesel production levels, historical biofuels feedstock prices, inputs used to calculate E85 infrastructure costs). It also calculates the ethanol feedstock supply step functions for biomass and sugar-based ethanol and ethanol imports, process units' costs, and their associated technology learning factors. This routine also defines the corn supply curves and the process unit costs used to produce ethanol. Ethanol is used in the manufacture of gasoline (E10, E15), E85, and ETBE. This routine determines the biodiesel supply step function for virgin (soybean oil, white grease) and non-virgin (yellow grease) feedstock, and sets historical biodiesel production quantities. Subroutine NEW_CHGBIODV is called to update information related to biodiesel production. Biodiesel is blended into diesel fuel. **Equations:** See Appendices I and J for a more detailed description of the biofuels supply submodules. (**NEW_CHGBIODV**) Defines domestic seed oil supply curves for biodiesel production. **Purpose:** This subroutine fits an exponential curve to the regional (Census Division) seed oil data (availability and costs for various seed oils, including 1) soy bean oil, 2) cotton seed oil, 3) sunflower seed oil, and 4) canola oil). The subroutine then creates a 99-step linearization of the exponential curve for inclusion in the LP. ``` Equations: ``` Note: ``` FSQTYV(M,i) = total amount of feedstock (i) available FSCSTV(M,i) = cost associated with feedstock (i) ``` ``` CUMBIMQ(M,99) = FSQTYV(M,1) + FSQTYV(M,2) + FSQTYV(M,3) + FSQTYV(M,4) ``` ``` ! COMPUTE UNIFORM STEP SIZES DO L = 1,99 ``` ``` INTMEDQ(M,L) = CUMBIMQ(M,99) / 99.0 ENDDO ``` ! COMPUTE CUMULATIVE QUANTITIES QCUM = 0.0 DO L = 1,99 QCUM = QCUM + INTMEDQ(M,L) #### CUMBIMQ(M,L) = QCUM #### **ENDDO** ! Define parameters for the price equation Q1 = FSQTYV(M,1) Q1 = MAX(Q1, 0.0001)! <----- to avoid division by zero Q4 = FSQTYV(M,1) + FSQTYV(M,2) + FSQTYV(M,3) + FSQTYV(M,4) $P1_2 = FSCSTV(M,1) * 0.5; P1 = FSCSTV(M,1); P2 = FSCSTV(M,4)$ ! PARAMETERS FOR EXPONENTIAL FIT EFFORT PA = LOG(P2/P1) / (Q4-Q1) PB = P1 * EXP(-PA * Q1) ! COMPUTE ASSOCIATED PRICES DOL = 1.99 INTMEDP(M,L) = PB * EXP(PA * CUMBIMQ(M,L)) **ENDDO** (PMMLP) Solve PMM LP. **Purpose**: PMMLP calls many subroutines that perform updates to the LP bounds, RHS, and input costs and optimizes the matrix. **Equations:** Refer to Appendix B. (WRTBAS) Write advance basis. **Purpose:** WRTBAS writes the basis for the LP optimal solution to an external file for any given NEMS year by calling the PUNCHLP subroutine. **Equations:** None. **Output File:** BASPMM1 and BAXPMM1 (for capacity expansion) PMM basis output file (SETLP) Activate a specified OML model memory space for processing. **Purpose:** Sets a given OML model space to be active using the WFSET function, such that any OML routines called will be applied to the given model. **Equations:** None. **(SETDB)** Prepare the PMM for matrix revisions. **Purpose:** This subroutine prepares the PMM for matrix revisions. It opens the PMM actfile (DFOPEN), points to the correct problem in the actfile (DFPINIT), and prepares the matrix for manipulations (DFMINIT). This only needs to be done at the beginning of each new NEMS iteration and before the capacity expansion cycle. **Equations:** None. **(OPTLP)** Optimize the model. **Purpose:** Optimizes the model using the OML function WFOPT. **Equations:** None. (WRTANLZ) Write an ANALYZE packed LP matrix and solution file. **Purpose:** WRTANLZ writes an ANALYZE packed LP matrix and solution file the LP matrix and solution specified in memory using the GOMOT subroutine. **Equations:** None. **Output File:** PACKPMM PMM ANALYZE output file (**DWRTANLZ**) Write an ANALYZE packed LP matrix and solution file. **Purpose:** DWRTANLZ writes an ANALYZE packed LP matrix and solution file from the LP matrix and solution specified in memory using the GOMOT subroutine. **Equations:** None. **Output File:** PACKPMM PMM ANALYZE output file (**XCEPMM**) Retrieve and calculate processing unit capacity expansion investment bounds. **Purpose:** XCEPMM retrieves the expected processing investment activity level by using the SCOLLP subroutine and calculates the processing unit build and investment bounds. For all units except the ACU, KRF, and CTL/CBTL, the total expected process capacity is available in all three installation years that follow, up to the maximum build established in the capacity expansion year (see explanation at the beginning of this Section 4). **Equations:** Processing unit cumulative builds and investment bounds (for the ACU, KRF, and CTL/CBTL units only) are calculated such that: $$PUINV_{pd,yr+1,pu} = BLD_{pd,pu,yr+3} / 3$$ $$PUINV_{pd,yr+2,pu} = BLD_{pd,pu,yr+3} / 3$$ $$PUINV_{pd,yr+3,pu} = BLD_{pd,pu,yr+3} / 3$$ $$(8)$$ $$PUINV_{pd,yr+3,pu} = BLD_{pd,pu,yr+3} / 3$$ $$(9)$$ Where: PUINV = processing unit investment bound, Mbbl/cd ``` BLD_{pd,pu,yr+3} = processing unit expansion as determined in expansion year yr pu = processing unit index, 1 through 88 pd = refinery regions E,C,G,M,W (PADDs I, II, III, IV, V) yr = NEMS index years 16,19,22,25,28,31,34,37,40 ``` The decision to allow one-third of the expansion to come on line in each of the expansion years was made because expansions in individual refineries would most likely be spread out evenly over time as the PMM assumes an aggregated refinery for each PADD. Capacity expansion for the crude distillation unit has been limited to 2,800 MBCD for each refining region for all cases except the low price case, where the ACU build limit is set to 2600 MBCD. (BRZETHIMP) Extract ethanol import quantities and prices from Brazil for LP updates. **Purpose:** BRZETHIMP extracts the total ethanol quantity imported from Brazil to fill the variables ETCBRZSUPQ and ETABRZSUPQ. It also extracts the corresponding import prices to fill the variables ETCBRZSUPP and ETABRZSUPP. After the second NEMS iteration, the import quantity is used to re-center the ethanol import supply curves (I@ETCR(s) and I@ETAR(s)) represented in the LP. The prices are used to estimate transportation costs from Brazil to the U.S. (I@ETCUSB and I@ETAUSB) Equation: PRICLP=-1.0* (ETHTRF(L)*42. /MC_JPGDP(L)+ 0.025*ETCBRZSUPP) and PRICLP=-1.0* (ETHTRF(L)*42. /MC_JPGDP(L)+ 0.025*ETABRZSUPP) Where: ETHTRF(L) = tariff cost estimate (nominal \$/gal) MC_JPGDP(L) = GDP deflator to convert from nominal to 1987\$ ETCBRZSUPP, ETABRZSUPP = cellulosic and advanced (respectively) ethanol gate price from Brazil (1987\$/bbl) **(CRNETHCAP)** Extract and add corn ethanol capacity for accounting, LP updates and reporting. **Purpose:** CRNETHCAP accomplishes three goals. 1) Extract and accumulate total corn ethanol capacity builds. 2) Update the corn ethanol capacity in the LP. 3) If operating levels fall below previous-year levels, then move existing capacity from L-var to K-var (no capital investment costs) to promote continued operation of existing units. In CDs 3 and 4, a minimum of 2 and 3 units, respectively, are not transferred to the K-var. **Equations:** None. **(ETAETHCAP)** Extract and add advanced ethanol capacity for accounting, LP updates and reporting. **Purpose:** ETAETHCAP accomplishes three goals. 1) Extract and accumulate total advanced ethanol capacity builds. 2) Update the corn ethanol capacity and capital cost coefficient in the LP. 3) If operating levels fall below previous year levels, then move existing capacity from L-var to K-var (no capital investment costs) to promote continued operation of existing units. **Equations:** None. (**BIOETHCAP**) Extract and add cellulosic ethanol capacity for accounting, LP updates and reporting. **Purpose:** BIOETHCAP accomplishes three goals. 1) Extract and accumulate total cellulosic ethanol capacity builds. 2) Update the cellulosic ethanol capacity in the LP. 3) If operating
levels fall below previous year levels, then move existing capacity from L-var to K-var (no capital investment costs) to promote continued operation of existing units. A minimum of 1 unit is not transferred to the K-var. This routine also sets the planned subsidized capacity (PLNCLZCAP), as well as the LP wholesale price (CDEWSPRCN) for cogenerated electricity sold to the grid. **Equations:** None. **(BDSLCAP)** Extract and add cellulosic ethanol capacity for accounting, LP updates and reporting. **Purpose:** BDSLCAP accomplishes three goals. 1) Extract and accumulate total biodiesel capacity builds and feedstock consumption (from three sources: virgin seed oil, non-virgin yellow grease, virgin white grease). 2) Update the biodiesel capacity in the LP. 3) Set federal subsidy for using biodiesel in product. **Equations:** None. **(CHGBIODIMP)** Set total biodiesel import and export supply curves and regional markup supply curve. **Purpose:** CHGBIODIMP updates the total biodiesel import supply curve price and quantity coefficients in the LP (I@BIMR(s)) using variable BIMIMPP (price) and BIMIMPQ (quantity) variables defined by subroutine SETIMPSUPCURV. The regional markup supply curve (I(d)BIMR(s)) splits the BIMIMPQ into regional maximums (IMPSPLIT) for each markup price step. The biodiesel export curve (5 steps) is also defined. Prices are based on wholesale biodiesel prices in CD 4, and quantities on each step are set at 4% of total U.S. biodiesel consumption. **Equations:** None. (CHGPALMOIL) Set total palm oil import supply curve and regional markup supply curve. **Purpose:** CHGPALMOIL updates the total palm oil import supply curve price and quantity coefficients in the LP (I@PLMR(s)) using variable PLMIMPP (price) and PLMIMPQ (quantity) variables defined by subroutine SETIMPSUPCURV. The regional markup supply curve (I(d)PLMR(s)) splits the PLMIMPQ into regional maximums (PLMSPLIT) for each markup price step. **Equations:** None. (**SETIMPSUPCURV**) Set price and quantity pairs used to update the biodiesel import supply curve. **Purpose:** SETIMPSUPCURV defines the price and quantity variables (BIMIMPP, BIMIMPQ) for each step on the biodiesel import supply curve. **Equations:** None. (**SETPLMSUPCURV**) Set price and quantity pairs used to update the palm oil import supply curve. **Purpose:** SETPLMSUPCURV defines the price and quantity variables (PLMIMPP, PLMIMPQ) for each step on the palm oil import supply curve. **Equations:** None. **(RPT1PMM)** Write report 1, LP solution. **Purpose:** RPT1PMM writes the LP solution to an external file. **Equations:** None. **Output File:** PMMPRNT PMM solution output file (**RFPRTINF**) Write entire solution, if infeasible. **Purpose:** If the LP solution is determined to be infeasible, and error message and the infeasible components are written to the NEMS output file. **Equations:** None. ## **Output File:** nohup.out NEMS output message file **(RPT6PMM)** Write report 6, OML formatted tables, supply curves and demands. **Purpose:** RPT6PMM writes OML tables used for stand-alone PMM matrix generation. **Equations:** None. **Output File:** IMPCURV.txt OML data table output file (**RFHSTRPT**) Write ALPHADN reports for history data. **Purpose:** This subroutine calls the report writer subroutines (including RPT7PMK, RPT7PMM, USTOT, RPT8PMM, RPTA8PMM, FCCRPT, ALKRPT, HH2RPT, COKRPT, SPECRPT, RPTINTL, OCTANE, CETANE, OBJRPT) and overwrites to an external file (PMM analyst reports) each NEMS iteration and at the end of a NEMS run. **Equations:** None. **Output File:** PMMRPTS.txt PMM reports output file **(RPTSPMM)** Write additional reports, PMM forecast reports. **Purpose:** This subroutine calls the report writer subroutines (including RPT7PMK, RPT7PMM, USTOT, RPT8PMM, RPTA8PMM, FCCRPT, ALKRPT, HH2RPT, COKRPT, SPECRPT, RFINRPT, RPTINTL, OCTANE, CETANE, ETHMCST, OBJRPT) and overwrites to an external file (PMM analyst reports) each NEMS iteration and at the end of a NEMS run. **Equations:** None. **Output File:** (ADJFGSCAP) Update the upper limit on the FGS unit. **Purpose:** ADJFGSCAP increases the upper limit on the gasoline fractionation (FGS) processing unit each year based on its utilization in the previous years (beginning after 2007). # **Equations:** ``` \begin{split} FGS_UL_{pd,yr} &= FGS_SOL_{pd} * (1. + FGS_PCT_{pd}) \\ FGS_UL_{pd,yr} &= \text{ upper limit for FGS (Mbbl/cd)} \\ FGS_SOL_{pd} &= \text{ solution for FGS capacity of previous year (Mbbl/cd)} \\ FGS_PCT_{pd} &= \text{ annual percent increase in FGS upper limit (currently at 15\% for each PADD)} \\ pd &= \text{ refinery regions E,C,G,M,W (PADDs I, II, III, IV, V)} \\ yr &= \text{ forecast year} \end{split} ``` (**RFDEBUG**) Write debug information concerning GTL results. **Purpose:** RFDEBUG writes GTL information (e.g., AK natural gas consumption for GTL, GTL production, and GTL exports) to a debug output file. **Equations:** None. # **Output File:** PMMDBG.txt output file (**RPT7PMM**) Write report 7 (U.S. end-use prices without carbon tax), PMM forecast reports. **Purpose:** RPT7PMM extracts solution values from the LP using the SCOLLP and SROWLP subroutines and overwrites to an external file (PMM analyst reports, Tables 1-7) at the end of a NEMS run. **Equations:** Solution values are extracted from solution matrix, reformatted and converted to the proper units. ### **Output File:** PMMRPTS.txt PMM reports output file (**RPT7PMK**) Write report 7 (U.S. end-use prices with carbon tax), PMM forecast reports. **Purpose:** RPT7PMK extracts solution values from the LP using the SCOLLP and SROWLP subroutines and overwrites to an external file (PMM analyst reports, Table 1) at the end of a NEMS run. **Equations:** Solution values are extracted from solution matrix, reformatted and converted to the proper units. # **Output File:** PMMRPTS.txt PMM reports output file **(USTOT)** Calculate totals by PADD, Census Division, and U.S. for RPT7PMM, RPT8PMM, and RPTA8PMM. **Purpose:** Totals various PMM output data. **Equations:** Performs units conversions on some of the totals. **(RPT8PMM)** Write report 8 - continuation of report 7 (RPT7PMM). **Purpose:** RPT8PMM pulls solution values from the LP using the SCOLLP and SROWLP subroutines and writes to an external file PMM analyst reports at the end of a NEMS run. **Equations:** Solution values are extracted from solution matrix, reformatted, and converted to the proper units. ### **Output File:** PMMRPTS.txt PMM reports output file **(RPTA8PMM)** Write report A8 - continuation of report 8 (RPTA8PMM). **Purpose:** RPTA8PMM pulls solution values from the LP using the SCOLLP and SROWLP subroutines and writes to an external file PMM analyst reports (pmmrpts.txt, Tables 8-12) at the end of a NEMS run. **Equations:** Solution values are extracted from solution matrix, reformatted, and converted to the proper units. # **Output File:** PMMRPTS.txt PMM reports output file **(FCCRPT)** Report the fluid catalytic cracker's level of operations. **Purpose:** This subroutine reports (Table 46) the levels of operations for the modes of operation of the fluidized catalytic cracker. **Equations:** None. # **Output File:** PMMRPTS.txt PMM reports output file. (ALKRPT) Print the alkylation report to the PMM forecast reports. **Purpose:** Solution values extracted using the subroutine ALKMODE are reformatted and printed to an output file (Table 47). ## **Output File:** PMMRPTS.txt PMM reports output file. **(HH2RPT)** Print the hydrogen production and consumption report to the PMM forecast reports. **Purpose:** Solution values extracted using the subroutine PMM_HH2RPT are reformatted and printed as Table 48 to an output file. #### **Output File:** PMMRPTS.txt PMM reports output file. (**COKRPT**) Print the petroleum coke gasification results to the PMM reports. **Purpose:** Solution values extracted using the subroutine PMM_COKGSF are reformatted and printed as Table 48a to an output file. ### **Output File:** PMMRPTS.txt PMM reports output file. **(RPTINTL)** Print results from the international component of the LP (new pmmrpts tables 51-53). **Purpose:** Print World Tanker Capacity, World Refinery Capacity, and World Refinery Utilization by international region and year, taken from the PMM LP results and printed as Tables 51-53, respectively. # **Output File:** PMMRPTS.txt PMM reports output file. (**RFINRPT**) Print the refinery financial information report to the PMM forecast reports. **Purpose:** Refinery financial information (including revenues, raw materials, energy costs, petroleum products, operating expenses, blending components, and investment costs) are reformatted and printed as Table 50 to an output file. # **Output File:** PMMRPTS.txt PMM reports output file. **(SPECRPT)** Print the motor gasoline specifications report. **Purpose:** SPECRPT print the motor gasoline specification report to the detailed PMM reports. **Equations:** None. ### **Output File:** PMMRPTS.txt PMM reports output file. **(OCTANE)** Print the octane report for motor gasoline **Purpose:** Determine the motor and research octane averages for RFG and TRG. **Equations:** None. **Output File:** PMMRPTS.txt PMM reports output file. (**CETANE**) Print the cetane report for low-sulfur and ultra-low-sulfur diesel fuels. **Purpose:** Determine the cetane averages for DSL and DSU. **Equations:** None. **Output File:** PMMRPTS.txt PMM reports output file. (ETHMCST) Define the marginal cost of ethanol at motor gasoline blend point in each CD **Purpose:** This routine steps through the PMM regional network and determines the marginal cost of ethanol available to each CD. The process first defines the supply price in each ethanol supply region (CD). Then transportation costs are added to each supply source available in a region (CD). The marginal cost (PETHM) is defined by the highest-priced source that actually provided ethanol to that region (marginal supplier). **Equations:** None. **Output File:**
PMMRPTS.txt PMM reports output file. **(OBJRPT)** Print the objective function report. **Purpose:** OBJRPT print the objective function of the PMM for the NEMS forecast to the PMM detailed reports output file. **Equations:** None. **Output File:** PMMRPTS.txt PMM reports output file. **(WRTPSARPT)** Print refinery capacities formatted according to the Petroleum Supply Annual. **Purpose:** Create an output table reporting refinery capacity aggregated into the same processing unit categories defined in the PSA. **Equations:** None. **Output File:** PMMRPTS.txt PMM reports Table 22x. (PMMRPTHD, PMMRPTHD1) Print the detailed PMM reports header. **Purpose:** PMMRPTHD print the NEMS scenario name, date key and reporting years as a header to each reporting the detailed PMM reports. PMMRPTHD1 uses a slightly different print format. **Equations:** None. **Output File:** PMMRPTS.txt PMM reports output file. (**PMMRPTRW**) Rewind the record pointer during the PMM iterations report. **Purpose:** PMMRPTRW rewinds the record pointer for the PMM iterations reports such that only each year's final iteration reports are retained. **Equations:** None. **Output File:** ALPHADN.txt PMM reports output file. # 4.2 Matrix Preprocessing Subroutines Section 4.2 describes the function of the subroutines in Figure 4.2, preprocessing of the PMM matrix. Many of these subroutines are also used to prepare the matrix for capacity expansion, and are presented in Figure 4.4. (**INSRTLP**) Load an advance basis into the LP model. **Purpose:** Loads a standard format basis from a file into the LP model using the OML function WFINSRT. **Equations:** None. **(CHGPLTRF)** Change pipeline tariff based on Federal Energy Regulatory Commission (FERC) methodology using Producer Price Index (PPI). **Purpose:** Each year, update the transit costs for products and crude using the PPI and the FERC methodology. **Equations:** Using the FERC PPI methodology, the transit cost is increased by the percent change in PPI (current year over previous year), plus 0.013 (PPICHG). The tariff (PRICLP) is not allowed to exceed a maximum set at 50 cents per barrel times the annual PPI change. The equations are presented below. ``` PPICHG = ((1.0 + (((MC_WPISOP3200(myr) - MC_WPISOP3200(myr-1))) / ((MC_WPISOP3200(myr) ((MC_WPISOP3200(myr-1))) ( ``` $MC_WPISOP3200(myr-1)) + 0.013)) / (MC_JPGDP(myr) /$ MC_JPGDP(myr-1))) PRICLP = USPLTRIF(i,myr-1) * (PPICHG) Where: PRICELP = final pipeline tariff for current year, link, product (or crude), 87\$/bbl PPICHG = percent change in PPI plus delta (0.013) USPLTRIF(i,myr-1) = previous year's (myr-1) pipeline (i) tariff, 87\$/bbl MC_WPISOP3200(myr) = FERC Product Pipeline Index for year myr $MC_JPGDP(myr) = GDP deflator for year myr$ (CHGTRNPR) Adjust the transit tariff along transit routes that use diesel. **Purpose:** The transit cost along routes that use diesel should reflect the impact of the WOP. **Equations:** The transit cost is changed by 1% for every 10 cent change in transportation distillate price (reflecting the WOP change) off the 2002 base year. The change in cost is defined discretely: even if the distillate price changes by 16 cents, the transport change will still only be 1%. (CHGTRANS) Update the transportation costs of crude and product. **Purpose:** Update the crude and product transportation cost within the United States. **Equations:** Cost for moving crude and products from the supply regions to the demand regions are updated to reflect changes in the world oil price, WOP. A factor called price delta (PCNTDLT) is calculated as the change between the current year WOP and the previous year's WOP. The price delta is used to adjust the transportation cost for domestic crude and product shipments as the fractional change in price. (CHGAKTRN) Update the transportation costs of Alaska crude and GTLs from Alaska North Slope to Valdez. **Purpose:** CHGAKTRN updates the transportation costs for Alaska crude and GTLs from Alaska North Slope to Valdez. Also defines the natural gas supply curve and maximum supply (using function CUM_AKNGCRV), the remaining capacity for GTL, and GTL subsidies that apply. Also calls subroutine RFGTLCAP to get GTL processing unit capacity used to estimate flows along TAPS. **Equations:** Transportation costs are based on fixed costs for the Trans-Alaska Pipeline System (TAPS), variable charge, estimated flows, and GTL subsidies. The annual NG supply curve is represented as a cumulative supply curve, and a cumulative maximum is defined exogenously. The GTL subsidy is based on the Alaska oil price and economics associated with TAPS. (See Appendix F.17 for details and equations.) (**RFGTLCAP**) Track cumulative GTL capacity in Alaska. **Purpose:** RFGTLCAP initializes and tracks the cumulative GTL capacity built by the model in Alaska. Called by subroutine CHG AKTRN. **Equations:** None. **(CHGXTLCOEF)** Update the cost credit for selling electricity from CTL, BTL, and CBTL to the grid. Also calls the subroutine CTL_COAL which sets up the coal supply curve used for CTL and CBTL. **Purpose:** CHGXTLCOEF calls the subroutine CTL_COAL to update the coal supply curve used as feedstock to the CTL and CBTL processing units. CHP credits for selling electricity from CTL, BTL, and CBTL to the grid are updated. Transportation costs for moving liquids to the refinery are defined. **Equations:** CHP credits come from the wholesale market price for electricity (EWSPRCN). Transportation costs are input data (P_CTLTRN, P_BTLTRN, P_CBTLTRN) **(CTL_COAL)** Sets up coal supply curves and transshipment network for coal available to CTL and CBTL units. **Purpose:** CTL_COAL sets up the coal supply curves used to generate liquids and CHP generation from CTL and CBTL processing units. The curves are identical to the ones defined in the EMM and CMM models, and include a representation of intermediate coal demands by the EMM in an effort to speed convergence in NEMS. **Equations:** None. (CHGNGCRV) Update the natural gas supply curve for refinery fuel use. **Purpose:** Updates the bounds on the first point of the eight-step natural gas supply curve using the CBNDLP subroutine. **Equations:** The lower bound on step one of the supply curves is set to 10 percent of the sum of the upper bounds on the first four steps of the supply curve. The upper bound on step one of the supply curve is set at 90 percent of the sum of the upper bounds on the first four steps of the supply curve during any first iteration of a NEMS year or the capacity planning iteration. During any other NEMS iteration the upper bound on the first step of the supply curve is set at the difference between the sum of the upper bounds of the last four steps on the supply curve and the difference between the sum of the upper bounds on the first four steps of the supply curve and the sum of activity levels on all steps of the supply curve from the previous NEMS iteration solution. If the upper bound on the first step of the supply curve just described falls below the lower bound on the first step of the curve, then the upper bound is set at a value 1 percent above the lower bound on the first step of the curve. This methodology effectively re-centers the natural gas supply step function during each NEMS iteration. (CHGCESW) Update Capacity Expansion Investment Limit. **Purpose:** CHGCESW changes the LP constraint (A(r)INVST) that allows investment in processing unit capacities to compete with imported products by using the CRHSLP subroutine. **Equations:** None. (ADDCAP) Update Capacity. **Purpose:** ADDCAP changes the capacity expansion investment and build bounds using the CBNDLP subroutine with values (PUINV) obtained from the XCEPMM subroutine. Also, the following subroutines are called to set the market penetration limits for various processes, including CTL, BTL, CBTL, pyrolysis oil, and renewable diesel hydrotreaters. #### **Subroutines Called:** CHGCTL_BLDLIM ! CTL market penetration CHGCBTL_BLDLIM ! CBTL market penetration CHGBTL BLDLIM ! BTL market penetration CHGBPU_BLDLIM ! Pyrolysis Oil market penetration CHGGDT_BLDLIM! Renewable Diesel market penetration **Equations:** None. (**CHGPUBLD**) Update the bounds on the processing unit investment columns. **Purpose:** If the STEO benchmarking switch is off, this subroutine sets the upper and lower bounds for the processing units' investment columns to zero during initial model startup. During the first year that the PMM model is run, the CHGPUBLD subroutine insures that the model will not build any additional capacity. Capacity additions are handled by the capacity expansion portion of the PMM. **Equations:** None. (**RFUPD8 INV**) Update investment coefficients for capacity build and investment variables. **Purpose:** This subroutine uses new capital recovery, fixed operating cost, and investment information (using subroutine RFINVST) to update the capacity build and investment coefficients in the LP objective function row and other constraint rows (using subroutine CVALLP). It also defines parameters to allow the ACU and marginal refining units to idle if economics support it. **Equations:** The capital recovery and fixed operating costs are added and multiplied by a cost factor (typically 1) and an environmental factor. In order to maintain an accounting of previous investment levels, this value is averaged using the function ADJBLD_COEF. For GTL, the cost coefficient is also multiplied by an investment location factor to better account for higher costs in Alaska. An additional special transmission cost for sending electricity to the grid is added to CTL, CBTL, and BTL. Also, a cost factor is added to represent combined revamp/new units (HD1,HD2,HS2) producing ultra-low-sulfur diesel streams. The objective function row coefficients are updated using these results. However, if the model is being set up for capacity expansion, then the original value, not the averaged value, is used to update the
investment coefficient only. The original fixed cost and investment information are also used to update other row constraint coefficients that intersect the investment variable. (**RFINVST**) Calculate capital recovery, fixed operating cost for each refinery process unit. **Purpose:** This subroutine generates new capital recovery and fixed operating cost for each refinery process unit to be used by subroutine RFUPD8_INV to update the LP. **Equations:** The subroutine RFINVST uses "Refinery Investment Recovery Thresholds" methodology defined in Appendix F.1 to generate the capital recovery, fixed operating cost, and total investment information. Cost parameters, such as build years, life, contingency, etc. are the same for all processing units, except CTL, BTL, CBTL, and BPU (data reside in input file rfinvest.txt). (CHGCTL_BLDLIM) Set minimum (planned builds) and maximum total capacity builds allowed nationally for Coal-to-Liquids (CTL). **Purpose:** Provides an accounting of the total CTL units built through the previous year, calls the PMM_MB_BLDLIM subroutine to determine the total allowed builds through the current year, converts this to processing volume, and updates the corresponding LP vector (upper bound on E@CTXINV in row E@CTXMBX). **Equations:** None. (CHGCBTL_BLDLIM) Set minimum (planned builds) and maximum total capacity builds allowed nationally for Coal/Biomass-to-Liquids (CBTL). **Purpose:** Provides an accounting of the total CBTL units built through the previous year, calls the PMM_MB_BLDLIM subroutine to determine the total allowed builds through the current year, converts this to processing volume, and updates the corresponding LP vector (upper bound on E@CBLINV in row E@CBLMBX). **Equations:** None. **(CHGGDT_BLDLIM)** Set minimum (planned builds) and maximum total capacity builds allowed nationally for renewable diesel units (GDT). **Purpose:** Provides an accounting of the total GDT units built through the previous year, calls the PMM_MB_BLDLIM subroutine to determine the total allowed builds through the current year, converts this to processing volume, and updates the corresponding LP vector (upper bound on E@GDTINV in row E@GDTMBX). **Equations:** None. **(PMM_MB_BLDLIM)** Set maximum total unit builds allowed nationally for various new technologies based on the Mansfield-Blackman (M-B) penetration algorithm, including Coal-to-Liquids (CTL), Biomass-to-Liquids (BTL), Coal/Biomass-to-Liquids (CBTL), Biomass Pyrolysis (BPU), renewable diesel (GDT), Cellulosic Ethanol production (CLE), and Advanced Ethanol Imports (AEI). **Purpose:** Use the M-B penetration algorithm to set the maximum total unit builds allowed for CTL, BTL, CBTL, GDT, BPU, CLE, and AEI (independently) in each model forecast year. # **Equations:** ``` KFAC = -ALOG( MAX(0.01,((MB_BLDX/MB_NBLT) -1.0))) PHI = -.3165 + (0.23221*MB_IINDX) + (0.533*MB_PINDX) - (0.027*MB_SINVST) SHRBLD = 1./ (1.+ EXP(-KFAC-(EYR*PHI))) MB_RHSNUM = MB_BLDX * SHRBLD ``` #### Where: MB_RHSNUM= maximum number of units allowed to be built to date (process unit-specific, CTLBNDNUM, BTLRHSNUM, CBTLRHSNUM, GDTRHSNUM, BPURHSNUM, CLLRHSNUM, ICLLMAX) BTLRHSNUM = maximum number of BTL units allowed to be built to date CTLBNDNUM = maximum number of CTL units allowed to be built to date CBTLRHSNUM = maximum number of CBTL units allowed to be built to date EMPURHSNUM = maximum number of GTD units allowed to be built to date EMPURHSNUM = maximum number of BPU units allowed to be built to date EMPURHSNUM = maximum number of CLL units allowed to be built to date MB_BLDX = total maximum number of units ever allowed to be built (process unit-specific, CTL BLDX, BTL BLDX, CBTL BLDX, GDT BLDX, CLE BLDX, BPU BLDX, AEI BLDX) MB NBLT = total number of units built through previous year SHRBLD = current year's fraction of MB_BLDX KFAC, PHI = M-B parameters calculated in current year The following M-B parameters are defined in input files rfinvest.txt and rfrenew.txt: MB_IINDX = innovation index MB_PINDX = relative profitability of the investment MB_SINVST = size index, with respect to normal investment of industry Note: Appendix I also presents the equations related to the Mansfield-Blackman penetration models for cellulosic ethanol builds used by the PMM. (CHGBTL_BLDLIM) Set minimum (planned builds) and maximum total capacity builds allowed nationally for Biomass-to-Liquids (BTL). **Purpose:** Provides an accounting of the total BTL units built through the previous year, calls the PMM_MB_BLDLIM subroutine to determine the total allowed builds through the current year, converts this to processing volume, and updates the corresponding LP vector (upper limit on E@BTLINV in row E@BTLMBX). **Equations:** None. (CHGBPU_BLDLIM) Set minimum (planned builds) and maximum total capacity builds allowed nationally for Biomass Pyrolysis (BPU). **Purpose:** Provides an accounting of the total BPU units built through the previous year, calls the PMM_MB_BLDLIM subroutine to determine the total allowed builds through the current year, converts this to processing volume, and updates the corresponding LP vector (upper limit on E@BPUINV in row E@BPUMBX). **Equations:** None. (IADDCAPUL) Update capacity limits for main and downstream units at the International refineries. **Purpose:** Update capacity limits for aggregate main and downstream units as part of the International refinery representation. **Equations:** None. (CHGDNGP) Update natural gas liquids production and natural gas prices. **Purpose:** Natural gas liquids production comes from the Oil and Gas Supply Module (OGSM), and natural gas prices come from the Natural Gas Transmission and Distribution Module (NGTDM). These are inputs to the gas plant portion of the model. Component NGL production is calculated from OGSM NG field production data and converted into yield parameters for the NG plant. This subroutine updates these LP inputs using the CBNDLP and CVALLP subroutines. During the capacity expansion iteration the CHGDNGP subroutine uses the expected natural gas production and prices as inputs into the LP model. **Equations:** Natural gas liquids production is calculated (by liquid type) from the total dry gas produced in an OGSM district (OGDNGPRD) using an econometric relationship provided by OGSM (DGP2NGL). These volumes are aggregated into PADD regions, converted into natural gas plant liquid yields, and used to update the LP representation of the natural gas plant. The industrial interruptible price of natural gas (PGIIN) is used for the price of gas to refineries in each PADD, translated into the five refinery regions. These prices are converted to dollars per thousand cubic feet (1987\$/MCF). During the capacity expansion iteration the expected industrial interruptible price of natural gas is used as input into the LP matrix. (CHGLCFSCA) Update the Low Carbon Fuel Standards (LCFS) for mogas and diesel (independently) issued for California. **Purpose:** Account for the carbon intensity of motor gasoline and diesel, and their replacement fuels consumed in California, such that the total carbon intensity from the combined product mix (for mogas and diesel independently) does not exceed the California LCFS ruling each forecast year. Input data are used to define the carbon intensities (1000 tonnes C per trillion Btu) for motor gasoline, diesel fuel, and all replacement fuels, including ethanol, biodiesel, liquids from coal, biomass, and natural gas, as well as CNG, electric, and LPG fueled vehicles. The carbon capture and sequestration option is also taken into account when determining carbon intensity for liquids from coal and biomass. A safety vector is included for each LCFS (mogas and diesel). **Equations:** The LP constraints that represent the LCFS for motor gasoline and diesel are CALCFSMG and CALCFSDS, respectively. The corresponding safety is represented by vectors LCSAFEMG and LCSAFEDS, respectively. (CHGELPR) Update electricity costs. **Purpose:** CHGELPR updates the purchase cost of electricity in each of the refinery regions using industrial price of electricity using the CVALLP subroutine. During the capacity planning iteration the CHGELPR subroutine uses the expected cost of electricity in each of the refinery regions. **Equations:** Industry price of electricity (PELIN, XRFELP) is mapped from Census division to refining region, and units are converted to dollar per kilowatt-hour (1987\$/KWh). **(CHGDMDS)** Update product demands for the LP, sets RFS requirements. **Purpose:** CHGDMDS sets the upper and lower bounds for product demands. For most products, the upper and lower bounds are equal. The bounds are set at the level of demand for each product in each Census Division. During the capacity expansion iteration, the CHGDMDS updates bounds using the expected demands variables. LPG demand is split into LPG feedstock and other LPG demand. Bounds for E85 and gasoline are not fixed; however the sum of E85 and gasoline blends (in MMBtu) is set to the required amount. An RFS (Renewable Fuels Standard) may be specified as either a minimum volume of renewable fuels (RFHR6FLAG=2) or a fraction of the total pool. If an RFS is in place, either the total renewables or the coefficients representing the fraction of renewables are updated each year to meet the minimum renewable fuels requirement. **Equations:** None. (CHGRFS_NOSUNSET) Reset the RFS limit assuming no sunset provision. **Purpose:** Make sure the RFS constraints continue to operate if a "no sunset" provision is being modeled in NEMS (models the no-sunset option). Two options are available: If the NOSUNSET flag is set to 1, have the RFS continue to grow after 2022 such that the ratio of the RFS to total transportation and distillate fuel continues to match the rate that occurred in 2022. If the NOSUNSET flag is set to 2 ,have the model continue to try to meet the original RFS levels, even after 2022, until the levels are achieved. For the years after that,
have the RFS continue to grow such that the ratio of the RFS to total transportation and distillate fuel continues to match the rate that occurred in the year the original RFS was met. **Equations:** None. (X_TRAN_TO_CR8) Update bounds on local transfer vectors in the LP. **Purpose:** X_TRAN_TO_CR8 Estimates total product demand in Census Division 8 and allows PADD III and PADD V to supply percentage of products. Sets UL on for the following transport vectors for local (X) transport: VTPPGX8, VTPPWX8, VTPPCX6, VTPPCX7 ### **Equations:** PERCENT_G_to_8 = 0.11PERCENT_W_to_8 = 0.35PERCENT_C_to_6 = 0.30PERCENT_C_to_7 = 0.06 (**CHGDCRD**) Update domestic crude production. **Purpose:** CHGDCRD updates the LP domestic crude production variables using the CBNDLP subroutines. During the capacity planning iteration, the CHGDCRD subroutine updates the domestic crude production bounds using the expected crude production variables. **Equations:** U.S. crude production and units are converted to Mbbl/cd. Crude exports (QEXCRDIN) are defined as a function of total lower-48 crude production (RFQTDCRD). **(CHGGSPC)** Updates the motor gasoline specifications, and assigns wholesale markups for motor gasoline, distillate, and residual production. **Purpose:** CHGGSPC updates distillate and motor gasoline specifications using the CVALLP subroutine. This routine calls one of two other routines to set the blend specifications for motor gasoline: CHGGSPC15 if E15 blend is allowed in the model run; else, CHGGSPC10. **Equations:** In subroutines CHGGSPC10 and CHGGSPC15, sub-specification blends of reformulated and high-oxygenated-conventional gasoline are calculated for ethanol blends for these fuels using the percent ethanol blended. Wholesale markups for both distillate and mogas products are a function of the WOP and historical markups. (CHGSPRE) Change Strategic Petroleum Reserve (SPR) quantities in the LP. **Purpose:** Sets the upper and lower bounds for SPR additions. The upper and lower bounds are equal and are set using the CBNDLP subroutine. The bounds on SPR additions are set as exogenous inputs to the program (RFSPRFR). **Equations:** None. (**CHGMETD**) Change methanol demand for the LP. **Purpose:** Sets the upper and lower bounds for methanol demand (PRDDMDME). The upper and lower bounds are equal. During the capacity expansion iteration, the expected methanol demand (XPRDDMDME) is used to update the bounds. **Equations:** None. **(CHGCGCOF)** Updates the CHP sales to grid price credit coefficients and "own use" accounting for the combined heat and power processing unit. **Purpose:** Updates the CHP sales to grid price credit coefficients and "own use" accounting using the CVALLP subroutine for the combined heat and power processing unit. The electricity wholesale price is used. **Equation:** Price coefficient for CHP unit associated with coke gasification, as well as for cogeneration produced at the refinery and merchant plant: ``` COEF_{pd,yr} = CGPCGRDPD_{pd} * RFEWSPRCN_{pd,yr} / 1000. (15) ``` Where: ``` COEF = sales to grid price coefficient (1987$/KWh) ``` CGPCGRDPD = Percent sales to grid for each refinery region pd based on historical data (see Appendix F.14). ``` RFEWSPRCN = Wholesale price of electricity to all sectors (1987$/MWh) = a function of EWSPRCN (from EMM, by electricity regions) pd = refinery regions 1,2,3,4,5 (PADDs I, II,, III, IV, V) yr = year index ``` (CHGPRDVL) Update the objective row of the product demands column. **Purpose:** This subroutine updates the objective row value for the product demand columns. **Equations:** The coefficients for the product demand columns in the objective row are updated as a function of corresponding end-use prices resulting from the previous NEMS iteration (net of taxes). For coke, the update is a function of two times the world oil price. If an RFS is in place, whether the credit is part of the objective function depends on how the RFS is specified. If the RFS is volumetric and expressed as a fraction of demand, the credit price adder must be subtracted from the objective function coefficient. If the constraint includes only the renewable volumes, the objective row price includes the credit price adder. (CHGETHSUB) Update LP coefficient that handles the ethanol tax incentive, and put limit on splash blending levels. **Purpose:** This subroutine updates the LP coefficient for the ethanol tax incentive (from corn or cellulose) blended into motor gasoline. Only the ethanol portion of E85 receives the ethanol tax incentive. Maximum blending levels are also set. Also, the RFS credit purchase price is defined for the representative LP vectors CUSCREDT, CUSXCRT, CUSXCRT1. **Equations:** The ethanol incentive is set at \$21.42/Bbl (51 cents/gal) for 2005 through 2008, 45 cents/gal for 2009 through 2011, and 0 for 2012 and beyond (nominal dollars). The cellulosic ethanol incentive is set to a maximum of \$1.01 from 2009 through 2012. All these prices are converted to 1987 dollars (using the macroeconomic GDP deflator) before being put into the matrix; therefore, the model sees the ethanol incentive declining in real terms over the entire forecast. The maximum blend levels are allowed to grow at a rate of 15% per year. Also, the equations defining the EPA-established RFS credit purchase price the maximum of 6.18 1987\$/bbl (\$ /gal) versus the difference between 75 1987\$/bbl (3 2009\$ /gal) and the average motor gasoline price in that year. (**EFFCHG**) Update the efficiencies for steam, electricity, and natural gas. **Purpose:** This subroutine updates the efficiency coefficients for steam, electricity, and natural gas in the NEMS hi-tech scenario only (using subroutine CVALLP). **Equations:** Sets percentage efficiency improvement based on estimated total carbon emissions. (CHGCGCAP) Update the refinery combined heat and power (CHP) capacities (not used). **Purpose:** This subroutine updates the base refinery CHP capacities with the planned additions. **Equations:** None. (CHGPLNCAP) Add planned capacity for selected processing units. **Purpose:** Planned capacities for processing units are added to the upper limit on the K(r)(uns)CAP variable in the LP. This is also done for marginal refinery capacity. **Equations:** None. (CHGALKEXP) Update the LP Alaskan export crude supply curve. **Purpose:** The LP Alaskan export crude supply curve is updated. **Equations:** The price steps on the supply curve are set as a function of world oil prices such that the price is 8.32 percent of the world oil price. Total Alaskan exports are set as a function of Alaska crude production, with each step of the supply curve (six steps total) representing one-sixth of this volume. These prices and volumes were set based on analyst judgment. (CHGAKNGL) Update Alaskan natural gas liquids production. **Purpose:** This subroutine updates the LP Alaskan natural gas liquid bounds using the OGSM variable OGNGLAK. Equations: None (CHGD50FCC) Update the minimum flow constraint on the D50 (winter) mode in the FCC. **Purpose:** This subroutine updates the minimum percentage flow constraint on the D50 mode in the fluid catalytic cracker. **Equations:** Set the constraint at a minimum of 7.5 percent of throughput. This value was made based on analyst judgment to meet the minimum winter mode of operation for the FCC unit. **(CHGETHN)** Update biomass and corn supply curves, set the market penetration limits for cellulosic ethanol, and define cellulosic and advanced ethanol import curves in the LP. **Purpose:** CHGETHN updates the biomass supply curve representation with values obtained from the Renewable Fuels Model by calling the subroutine PM\$BIO. This subroutine also calls the PMM_MB_BLDLIM subroutine which uses the Mansfield-Blackman algorithm to determine the total allowed builds for cellulosic ethanol units through the current year, converts this to processing volume, and updates the RHS of the LP row A@ETCPRD. Subroutines ETC_IMPCRV and ETA_IMPCRV are also called to set ethanol import curves. Corn supply curves are set using supply curve parameters (explained in more detail in Appendix I, Ethanol Supply Model). Finally, subroutine CHGGRNSUP is called to define the grain feedstock supply curves for advanced ethanol production. **Equations:** In order to account for transportation costs, the corn price was modified by an amount related to the diesel price. The adjustment amount is based on the difference between market and farm prices for corn (2000-2009) regressed against the historical diesel price. ``` DIESCOST = PDSTR(11,L)*(5.825/42.0)*0.2664 - 0.3242 PRICLP = -1.0 * CRNSPRICE(I,H) - DIESCOST ``` Where, PDSTR = Transportation diesel price (1987\$/MMBtu) DIESCOST = Corn transit cost (1987\$/bushel) CRNPRICE = Farm-gate corn price on step H of corn supply curve (1987\$/bushel) PRICLP = Delivered corn price on step H of corn supply curve (1987\$/bushel) **(GETLNEQ)** Defines slope and intercept for the ethanol supply curves in CD's 3,4. (called by CHGETHN) **Purpose:** This routine uses two points in the 4-step ethanol supply curve in CD's 3 and 4 to define a linear representation (slope and intercept) to be used to expand the curve to 9 steps. **Equations:** None. (**ICHGUNFO**) Update costs on unfinished oil import curves. **Purpose:** ICHGUNFO updates the cost of unfinished oil imports using the CVALLP subroutine. **Equations:** None. (CHGIMTOT) Update total product imported constraint. **Purpose:** CHGIMTOT updates the LP constraint for total maximum imported product using the CRHSLP subroutine. **Equations:** Set to 9,900 Mbbl/cd. This value is based on analyst judgment and is currently set high enough that the constraint is not expected to be reached. **CHGCKSU**) Update petroleum coke and sulfur costs. **Purpose:** CHGCKSU updates the cost of petroleum coke, export and distress export petroleum coke costs, and the cost of sulfur using the CVALLP subroutine. **Equations:** Petroleum coke
prices are based on a 1991 price of \$20/ton for low-sulfur coke and \$15/ton for high-sulfur coke. These prices are converted to \$/bbl and scaled by the 1991 world oil price (WOP). The results are values of 0.203 and 0.152, which are multiplied by the current year WOP to set the price of coke. The price of exported coke is set at 4.75 times the high-sulfur coke prices (3.5 times for HWOP), with an 80% adjustment factor to better match historical prices, and an annual 10% expected decline in price. Distress export price of petroleum coke is set to a large cost (negative). The average price of saleable sulfur is set to \$24.47 /ton (in 1987\$), which was based on the average of USGS average U.S. annual prices for elemental sulfur from 1993 through 1999. (CHGZ9CST) Update the distress product imports supply vectors input cost. **Purpose:** Updates the distress product imports supply vectors input cost using the CVALLP subroutine. **Equations:** The distress product imports input cost a set at five times the WOP. (CHGZ9EXP) Update the distress product exports supply vectors input cost. **Purpose:** Updates the distress product exports supply vectors input cost using the CVALLP subroutine. **Equations:** The distress product exports input cost is set to a large negative value (-10 times the WOP). (ICHGICRD) Updates the world crude supply curve for total crude and by crude type in the LP (if IPMM=1). **Purpose:** This subroutine uses the expanded world crude supply curve [CRUDEPOINTS(yr,s,P/Q)] provided by the International Module in NEMS to define a PMM-specific world crude supply curve for the LP. It then defines a world crude supply curve by crude type (LL, HL, MH, HH, HV: low-sulfur light, high-sulfur light, medium-sulfur heavy, high-sulfur heavy, and very heavy), and sets a limit for Canadian crude imports into PADDs II and IV. **Equations:** The International Module provides nine world crude supply P/Q pairs [CRUDEPOINTS(yr,s,P/Q)] which are translated into the LP vectors [PWRLDQ(s)] representing nine world crude supply steps in the LP. The prices map one-to-one, and the quantities are defined by points halfway between two adjacent pair of Q's, with the final step set to a large quantity. The crude supply curves defined for each crude type are set using historical splits, expected growth rates, and the midpoint on the world crude supply curve provided by the International Model. This quantity is then split across the steps on the supply curves. Canadian crude import limits into PADDs II and IV are set based on an annual growth rate (CANGRW) applied to 2005 import levels (1212 Mbbl/cd for PADD II, 266 Mbbl/cd for PADD IV). The growth rate (based on analyst judgment) is set to 0.8% annually (1.1% for high price case). **(ADJIRFG)** Update imported crude supply curves in the LP (if RFAEOADJ = 'ON '). **Purpose:** ADJIRFG makes sure RFG cannot be imported **Equations:** None **(IPMM_CHG_PRD)** Updates imported product supply curves and the international product demand curves in the LP (if IPMM=1). **Purpose:** This subroutine updates the imported product supply curves [I(r)(prd)(w)(s)] and sets up the international refinery product demand curves [D(w)(iprd)(s)]. The import supply curves are linked between the U.S. refinery region (r) and the international refinery region (w). The international refinery products are represented at an aggregate level, as defined by the following groups: naphthas, distillates, resid, LPG, and other. These demand curves are linked to the international refinery regions (w). This subroutine also establishes new shares for crude type being processed by the refineries in each international region. **Equations:** The quantities on the import supply curves [I(r)(prd)(w)(s)] are updated as a function of the growth in total U.S. product demand (base year = 2008): RFQPRDT(11,M_YR) / RFQPRDT(11,19). International refinery product demand curves are defined using product-specific input parameters. These parameters are estimated from the historical relationship between crude oil prices and the product prices in each international region. Thus, P0 represents the expected product price given a price for the marker crude oil price. The expected product demand, Q0, is based on the projected liquids demand from the International Energy Outlook (IEO). For each step on the demand curve [LP variable D(w)(prd)(step)], the price (PS) and quantity (QS) are defined as follows: ``` PS = Po * STP_PRCNT_IPMM(s) QS = Qo * [Po * (elas - 1) - PS * (elas + 1) ] / [PS * (elas - 1) - Po * (elas + 1) ] Po = DPARM_IPMM(j,w) + DPARM_IPMM(j+1,w) * CRUDEPOINTS(yr,5,1) Qo = INTCALFAC(yr) * ADJTQ_IPMM(yr) * TQPRD_IPMM(reg,yr) * QSHR_IPMM(prd,reg,yr) / HEAT_CONTENT_IPMM(I_PRD) / 365.0 * 1000.0 ``` #### Where: P0 = The expected product price given a specific world oil price Q0 = The expected product demand based on total liquids demands from the IEO PS = The product price on step S of the product demand curve QS = The product demand on step S of the product demand curve STP_PRCNT_IPMM = Percent difference from P0 that defines PS DPARM_IPMM = Coefficients that define the relationship between crude oil price and product price CRUDEPOINTS = Crude oil prices QSHR IPMM = Share of individual product demands to total liquids demand INTCALFAC = International calibration factor ADJTQ_IPMM = Adjustment to total liquids demand based on changes in the crude oil price TOPRD IPMM = Total liquids demands HEAD_CONTENT_IPMM = Heat content of selected product elas = Demand elasticity reg = International demand region j = demand curve step number yr = model year w = mapping of demand product to appropriate demand parameters (CHGEXPPRC) Update exported petroleum product prices and demand limits. **Purpose:** This subroutine updates the objective row and upper and lower bounds for each exported petroleum product (except coke). **Equations:** Set prices for exported products (excluding coke) to 90% (110% for OTH in west, and 100% for TRG, JTA, and DSU,) of the imported product prices defined on the third step of the import supply curve. Also, set the upper and lower bounds on exported products (excluding coke) as a function of regional product demand (SUBROUTINE PMMPRDEXP and REAL FUNCTION PMMEXPEQ), as follows: $$LOWBND = 0.65 * EXPRDDMDxpr,pd * EXPRAT * EXPMINxpr,pd / 100.$$ (19) UPBND = 0.65 * EXPRDDMDxpr,pd * EXPRAT * EXPMAXxpr,pd / 100. (20) For years $\leq$ 1996, EXPRAT = 1 For years > 1996, EXPRAT = DUMTOT1 / DUMTOT2 Using regression analyses: ``` DUMTOT1 =[7.942 -(0.4073 *(RFPQIPRDT6,yr,2 /RFQPRDT11,yr )) *RFQPRDT11,yr *106(21) ``` DUMTOT2 =[7.942 -(0.4073 *(RFPQIPRDT6,yr-1,2 /RFQPRDT11,yr-1 ) )*RFQPRDT11,yr-1 *106 (22) Where: UPBND = upper bound on export product demands LOWBND = lower bound on export product demands EXPRDDMD = product demand accumulated into PADDs (I - V) EXPMIN = factor to establish minimum product export range EXPMAX = factor to establish maximum product export range EXPRAT = ratio of estimated exports for year yr and yr-1 DUMTOT1 = estimated exports in year yr DUMTOT2 = estimated exports in year yr-1 RFPQIPRDT = total imports for each product RFQPRDT = total supply for each product yr = year index xpr = exported product index pd = PADD containing Census Division export region (I=>2, II=>3, III=>7, IV=>8, V=>9) **(CHGMETIMP)** Update the methanol imports supply function. **Purpose:** This subroutine updates the methanol import supply curve costs and volumes. **Equations:** The import supply curve prices are currently set to 18-22 1987\$/bbl (analyst judgment). Quantity adjustments (on the fifth step only) were made based on analyst judgment. (**CHGDFLLBASIS**) Set cost coefficient on domestic light sweet crude processed by marginal refinery. **Purpose:** This routine maintains a similar cost for domestic and foreign light sweet crude processed by the marginal refinery. **Equations:** None. (CHGFLLIMP) Set and phase out the national level import of light, sweet crude. **Purpose:** This routine sets the lower limit on the national import of light, sweet crude (FLL) based on 2005 levels, and phases it out over the forecast. **Equations:** FLLRHS = FLLBASE *( (1.-FLLREDC)**(L-FLLYR) ) Where: FLLBASE = base level imports (nationally) of FLL (2500 Mbbl/cd) FLLREDC = rate at which the lower limit on FLL imports declines (2% /yr) FLLYR = base year (2005) **(RFROS)** Update the renewable oxygenates constraint. **Purpose:** RFROS updates the renewable oxygenates specification (ROS) constraints for motor gasoline using the CVALLP subroutine. **Equations:** The motor gasoline minimum renewable oxygenates constraints is set at 30 percent if the ROS switch is on. If the ROS switch is off the constraint is set to zero. For *AEO2007* and beyond, the ROS was off. (CHGCATCOK) Update catalytic coke coefficient. (Not used.) **Purpose:** This subroutine updates the catalytic coke LP coefficient. **Equations:** The coefficient is updated once at the beginning of the NEMS forecast and then remains constant throughout the NEMS forecast. The updated coefficient is set at 90 percent of the current value in the PMM database. This value is calibrated to reflect catalytic coke use as reported by the *Petroleum Supply Annual 2005*. **(EMISCOST)** Update the refinery emission cost vector. **Purpose:** If the emission cost switch (EMISCSSW) is ON, then this routine updates the input cost of the vector of petroleum products burned in the refinery using the CVALLP subroutine. (Currently, EMISCSSW='OFF'.) **Equations:** Emission input costs are set at values determined by the Emission Policy Module (JNGIN, JPCIN, JOTIN, JRLIN, JRHEL, JSGIN, JLGIN). (ADJACUINV) Update the crude unit's investment costs and national single-year build limit. **Purpose:** This subroutine updates the atmospheric distillation unit investment costs and national single-year build limit. **Equations:** The investment coefficient is updated once at the beginning of the NEMS
forecast and then remains constant throughout the NEMS forecast. The national single-year build limit is set to 800 Mbbl/cd after 2012, and a range from 70 to 750 Mbbl/cd in prior years. **(RFGLOB_TCHCHNG)** Model technology changes as reflected by other variable cost (OVC) adjustment in all process units. **Purpose:** This subroutine approximates technology changes in the refining industry by adjusting the OVC coefficient (by a user-specified amount) in the OVC constraint row for all process units (in the refinery, merchant, and gas plant). **Equations:** If the global technology switch is on (currently, GLOBTECH is off) and the model year lies between the beginning and end phase-in year, then the original OVC price coefficients for all processing units (except those also flagged for unit-specific technology improvement updates) included in the OVC constraint row are updated gradually during the phase-in years. **(RFUNIT_TCHCHNG)** Model technology changes as reflected by other variable cost (OVC) adjustment only in specified process units. **Purpose:** This subroutine approximates technology changes for specific processing units in the refining industry by adjusting the corresponding OVC coefficient in the OVC constraint row by a user-specified amount. **Equations:** If the unit-specific technology switch is on (currently, UNITTECH is off) and the model year lies between the beginning and end phase-in year, then the original OVC price coefficients for the specified unit(s) included in the OVC constraint row are updated gradually during the phase-in years. **(RFYLD_TCHCHNG)** Model technology changes as reflected by process stream adjustment in a process unit. **Purpose:** This subroutine approximates technology changes in the refining industry by adjusting the process stream yields coefficient (by a user-specified amount) of a user-defined process unit. Currently not activated. **Equations:** None. (RFSPC_TCHCHNG) Model technology changes as reflected by process stream quality adjustment. **Purpose:** This subroutine approximates technology changes in the refining industry by adjusting the process stream qualities (by a user-specified amount). Currently not activated. **Equations:** None. **(ETHERBAN)** Update motor gasoline blending constraints to eliminate ether blending in PADD V refineries. **Purpose:** This subroutine updates PADD V gasoline blending constraints to eliminate ether blending into gasoline. This constraint takes effect in 2004 for California gasolines. It also models the oxygen waiver in RFG and RFH gasoline. Remove ETBE from RFG and TRG blend components. **Equations:** None. **(CHGRENEW)** Update the minimum biomass diesel production level, and the biodiesel feedstock supply curves. **Purpose:** This subroutine sets the biodiesel feedstock supply curves, and the minimum biomass diesel production level. **Equations:** The minimum biomass diesel production is currently set using input (BIMSUP) from the file rfrenew.txt. This minimum is split between virgin (98%) and non-virgin (2%) feedstock. The biodiesel feedstock supply curves are defined in subroutine ETHANOL using historical input data from the rfrenew.txt file. (ADJMTBE) Implement MTBE phase-out **Purpose:** Limit and phase out the total MTBE consumption through the constraint that A@MTBPRD must be less than an upper limit (MTBEPRD). ### **Equations:** IF(I.EQ.18)MTBEPRD = 27.5 IF(I.EQ.19)MTBEPRD = 3.7 IF(I.GT.19)MTBEPRD = 0.0 Where: I=NEMS forecast year. (PMM CONSTPRDI) Set product imports to a constant level. **Purpose:** This subroutine sets product imports to a constant level to allow for sensitivity runs without the impact of changing imports. Control switch: PRDIMPSW read from input file rfprdimp.txt. **Equations:** None. (PMM_WRPRDIMP) Write product import results to an output file. **Purpose:** This subroutine writes product import results to an output file to be used as input for a run requiring constant product imports. Control switch: PRDIMPWR read from input file rfprdimp.txt. ## **Output file:** PMMDBG.txt **(PMM_NOETHRF)** Prevent ethanol blending at the refinery. **Purpose:** This subroutine prevents ethanol transfers to the refinery since ethanol is usually splash-blended into gasoline when loaded into trucks for delivery to the end-use location. **Equations:** None. (CAPGSOLN) Set capacity expansion based on projected builds and current usage. **Purpose:** For each of the three years following a capacity expansion decision, this subroutine determines how much of the new capacity (PUINV) was not used and makes that capacity available as new capacity in the next year. However, if some new capacity is still not used after the third year, then that excess capacity is released (no longer available). It also keeps an accounting of total cumulative capacity added since the first forecast year (PUCUM), and total investment (CUMINSTRF) for each processing unit built in each year. **Equations:** None. (**FFV ETHSHR**) Set up demand curve for E85. **Purpose:** This subroutine establishes the demand curve for E85. The demand curve is represented as a series of nine steps. Since the primary competing fuel is motor gasoline, step prices are established as a fraction of the motor gasoline price. In order to aid in convergence, the actual steps are adjusted based on the solution quantity of the previous iteration. Demand is then calculated from the function PMM_FFVSHR, which mirrors the logit function in the Transportation module. **(PMM_FFVSHR)** Calculates demand for E85 as a share of total MMBtu needed for Flexible Fuel Vehicles (FFVs), based on E85 price, motor gasoline price, E85 availability, and consumer choice parameters. **Purpose:** This subroutine mirrors the logit function used in the transportation module. It calculates the E85 share based on the parameters listed above. #### **Equations:** GASPRR = EXP( DBLE(MOGASPRICE * FCLOGIT1)) ALTPRR = EXP( DBLE((ETHPRICE*FCLOGIT1) - (FCLOGIT2 * EXP (AVAIL*FCLOGIT3))) PMM FFVSHR = ALTPRR/(ALTPRR + GASPRR) #### Where: MOGASPRICE = Motor gasoline price ETHPRICE = E85 price AVAIL = E85 availability FCLOGIT_i = Logit parameters (i = 1 - 3) GASPRR, ALTPRR = Intermediate results PMM_FFVSHR = Share of FFV demand (in MMBtu) met by E85 # 4.3 Matrix Post-Processing Subroutines Section 4.3 describes the function of the subroutines in Figure 4.3, post-processing of the optimized PMM matrix. **(E85TXC2)** Calculate ethanol consumption and E85 tax incentive adjustment. (Not used since *AEO2006*.) **Purpose:** This subroutine retrieves the quantity and cost of ethanol from corn and cellulose using the SCOLLP subroutine; and calculates ethanol consumption and the E85 tax incentive adjustment for carbon mitigation. **Equations:** Daily ethanol consumption from cellulose is converted into MMgal/yr. The E85 tax incentive adjustment in dollars per barrel (\$/bbl) is calculated as the difference between the cost of ethanol from cellulose and the cost of ethanol from corn. (It is not allowed to go negative.) **(PMM_COKGSF)** Defines Coke gasification activity. **Purpose:** This subroutine retrieves information from the solution LP (related to coke gasification) to define coke gasification levels, hydrogen and synthetic gas production, steam and electricity production, and natural gas consumption, and puts the information into variables for reporting. **Equations:** Yields and consumption coefficients, conversion factors, and processing levels are used to calculate synthetic gas and hydrogen production, electricity and steam CHP production, and coke and natural gas consumption by the coke gasification and CHP units at the refinery. Variables include QCOKPRD, QASTPRD, QSGSPRD, QHH2PRD, QKWHPRD, QSTMPRD, and QNGSPRD. (PMMOUT2) Update Common Block Variables **Purpose:** Updates the PMM and NEMS system common block values of refinery production volumes by NEMS refinery product and by PADD. Also updates the total U.S. production volumes by product. This is done for each iteration, for every projection year. **Equations:** Row activity solution values of the PMM LP, representing total refinery production by PADD by refined product are sequentially retrieved, and corresponding common block variables are set to the matrix solution values or to sums of several values as appropriate. For instance, the common block variable to be updated may be LPG production for PADD I. Then the solution activity for the LP row that controls LPG production volume in PADD I is accessed from the LP solution area and the corresponding common block variable is set equal to that value. ## (**PRMUPMM**) Add refinery fixed costs. **Purpose:** Retrieves the marginal petroleum product prices from the LP using the SROWLP subroutine and adds on the refinery fixed costs to determine the wholesale petroleum product costs. Demands are summed, and weighted average prices for each product by Census Division and total United States are calculated. The wholesale costs of residual fuel are determined using an econometric equation. Wholesale kerosene prices are set using the wholesale distillate prices. **Equations:** Marginal prices for each gasoline are retrieved from the LP solution and refinery fixed costs are added to the marginal prices of each product. (For products RFG, TRG, RFH, TRH, and E85, the VALUE term is replaced with a term (RFS(prd)PR) that is calculated in subroutines ADJRFGPR, ADJTRGPR, ADJTRHPR, ADJTRHPR, and ADJE85PR, respectively, presented later below.) $$P_{pr,cd,yr} = VALUE_{pr,cd} + RFPRDFX_{cd,yr,pr} * FXPCT$$ $$RFDL(pr)_{cd,yr} = VALUE_{pr,cd}$$ (25) Where: RFDL(pr) = refinery marginal prices for each petroleum product pr (w/o markup) P = refinery gate price of petroleum product pr [PMG(pr) and P(pr)] (w/ markup) VALUE = the marginal value of petroleum product pr RFPRDFX = the refinery fixed costs, including refinery operating costs, return on investment, and environmental control costs (see Appendix F). FXPCT =
percentage allocated of the fixed cost. Fixed costs are allocated only at 80, 80, 90, and 100 percent during the years 2003 to 2006 respectively. This lag in applying total fixed costs takes into account the expected time frame in refinery investment for environmental control costs. pr = product cd = Census Division yr = NEMS index years If the flag N6XEQSW='ON', then the wholesale prices of residual fuel are determined as a function of WOP and residual demand fraction, such that: $$\begin{split} P_{pr,cd,yr} = & \ 42*(INTCP + SLP*(WOP_{yr}/42) + (CNSNT*((QRL_{cd,yr} + QRH_{cd,yr})/QPRD_{cd,yr}))) \end{split} \tag{27}$$ Where: P = refinery gate price of low and high sulfur residual fuel [PRLEQ, PRHEQ, PRLUTEQ, PRHUTEQ] INTCP = -0.057507 or -.117698 for low- and high-sulfur residual respectively SLP = 0.979872 OR 1.001313 for low- and high-sulfur residual respectively WOP = World oil price CNSNT = 0.297792 or 0.42297 for low- and high-sulfur residual respectively QRL = Demand for low-sulfur residual fuel QRH = Demand for high-sulfur residual fuel QPRD = Total petroleum product demand pr = product (N6I, N6B, N67, N68) cd = Census Division 42 = gallons per barrel yr = NEMS index years If the flag NRG2007=1 (activated), then the wholesale prices for E85 include carbon taxes and ethanol tax credits based on the ethanol content (as defined below). Similarly, motor gasoline (RFDL(pr) and P(pr), pr=TRG, RFG, TRH, RFH) prices also include ethanol tax credits. $RFDLE85_{cd,yr} = VALUE_{E85,cd} + (1.0 - GASCOEFF) * ETHCREDIT(CURIYR) +$ ETHNE85 * (EMETAX(1,CURIYR) * 1000. * 42. / 617.8) $PE85_{cd,yr} = VALUE_{E85,cd} + (1.0 - GASCOEFF) * ETHCREDIT(CURIYR) + RFPRDFX_{cd,yr,E85} * FXPCT + ETHNE85 * (EMETAX(1,CURIYR) * 1000. * 42. / 617.8)$ Where: RFDLE85 = refinery marginal price for E85 (w/o markup) PE85 = refinery gate price of E85 (w/ markup) VALUE = E85DUAL, the sum of the marginal values of LP rows D(d)E85CRV and D(d)PRDEQU GASCOEFF = ETHNE85 = ethanol content in E85 RFPRDFX = the refinery fixed costs, including refinery operating costs, return on investment, and environmental control costs (see Appendix F). FXPCT = percentage allocated of the fixed cost. Fixed costs are allocated only at 80, 80, 90, and 100 percent during the years 2003 to 2006 respectively. This lag in applying total fixed costs takes into account the expected time frame in refinery investment for environmental control costs. EMETAX = carbon tax, in 1987\$/kg ETHCREDIT = credit price (dual of RFS constraint row) cd = Census Division yr = NEMS index years Demands for all four types of gasoline are summed by Census Division, and a national gasoline total is estimated by summing across Census Divisions: $$MGDMDT_{cd} = \Sigma PRDDMD_{cd,yr,t}$$ (28) t=2,3,4,5 $$MGDMDGT = \Sigma MGDMDT_{cd}$$ (29) cd = 1.9 Where: cd = Census Division 1 through 9 t = motor gasoline index type 2,3,4,5 yr = NEMS year index National demand for each type of gasoline is estimated by: $$MGDMD(t) = \Sigma PRDDMDcd,yr,t$$ (30) $cd=1,9$ Where: cd = Census Division 1 through 9 t = motor gasoline index type 2,3,4,5 yr = NEMS year index A weighted average gasoline price (with and without markups) is calculated for each Census Division based on prices of the various types of gasoline. $$PALMG_{cd,yr} = \Sigma ((PMG(pr)_{yr,cd} * PRDDMD_{pr,yr,cd}) / MGDMDT_{pr})$$ (31) pr=2,3,4,5 $$RFDLMG_{cd,yr} = \Sigma ((RFDL(pr)_{yr,cd} * PRDDMD_{pr,yr,cd}) / MGDMDT_{pr})$$ (32) pr=2,3,4,5 Where: PALMG = weighted average gasoline price, with markups RFDLMG = weighted average gasoline price, without markups PMG(pr) = refinery gate price of motor gasoline product pr PRDDMD = product demand (motor gasoline only) by Census Division MGDMDT = total motor gasoline demand by Census Division RFDL(pr) = refinery marginal prices for motor gasoline (pr) product only pr = motor gasoline index 2,3,4,5 cd = Census Division 1 through 9 yr = NEMS year index National average prices for each product including individual types of gasoline are estimated by: $$\begin{split} P_{pr,t,yr} &= \Sigma \; (P_{pr,cd,yr} * PRDDMD_{pr,yr,cd}) / PRDDMD_{pr,yr,t} \\ cd &= 1,9 \end{split}$$ $$RFDL(pr)_{t,yr} &= \Sigma \; (RFDL(pr)_{cd,yr} * PRDDMD_{pr,yr,cd}) / PRDDMD_{pr,yr,t} \\ cd &= 1,9 \end{split}$$ $$(34)$$ Where: P = refinery gate price of petroleum product pr [PMG(pr) and P(pr)] (w/ markup) RFDL(pr) = refinery marginal prices for each petroleum product pr (w/o markup) PRDDMD = product demand by Census Division MGDMDT = total motor gasoline demand by Census Division pr = petroleum product index 1 through 20 cd = Census Division 1 through 9 t = total (across CD) product demand index, 11, for product pr A composite national average gasoline price is estimated by: $$PALMG_{t,yr} = \Sigma \left(PMG(pr)_{t,yr} * MGDMD(prx) / MGDMDGT\right)$$ (35) $$prx=2,3,4,5$$ $$RFDLMG_{t,yr} = \Sigma \left(\left(RFDL(pr)_{t,yr} * MGDMD(prx) / MGDMDGT\right) \right)$$ (36) $$prx=2,3,4,5$$ Where: PALMG = national weighted average gasoline price, with markups RFDLMG = national weighted average gasoline price, without markups PMG(pr) = refinery gate price of motor gasoline product pr MGDMD(t) = national demand for each gasoline type (t) MGDMDGT = total national motor gasoline demand RFDL(pr) = refinery marginal prices for motor gasoline (pr) product only pr = motor gasoline ID prx = motor gasoline index, 2,3,4,5 yr = NEMS year index t = total (across CD) product demand index, 11, for product pr (**ADJRFGPR**) Adjusts the RFG motor gasoline prices based on the dual associated with the Renewable Fuels Standard constraint. (Called by PRMUPMM only when NRG2007=0) **Purpose:** When an RFS is binding, the compliance cost (the dual on the RFS constraint row) is not reflected in the individual product prices. This routine adjusts the RFG motor gasoline by adding the product of the credit price and the fraction of renewable fuels in the transportation fuel pool. Thus, summing the RFS adder over the entire pool recovers the cost of the program. ### **Equations:** RFSRFGPR =Dual + ETHCREDIT(yr)* ETHVOL(yr) Where: RFSRFGPR = refinery gate price of RFS (w/o markup) Dual = refinery marginal price ETHCREDIT = credit price (dual of RFS constraint row) ETHVOL = fraction of transportation pool met by renewable fuel yr = NEMS index year **(ADJTRGPR)** Adjusts the TRG motor gasoline prices based on the dual associated with the Renewable Fuels Standard constraint. (Called by PRMUPMM only when NRG2007=0) **Purpose:** When an RFS is binding, the compliance cost (the dual on the RFS constraint row) is not reflected in the individual product prices. This routine adjusts the TRG motor gasoline by adding the product of the credit price and the fraction of renewable fuels in the transportation fuel pool. Thus, summing the RFS adder over the entire pool recovers the cost of the program. #### **Equations:** RFSTRGPR =Dual + ETHCREDIT(yr)* ETHVOL(yr) Where: RFSTRGPR = refinery gate price of TRG (w/o markup) Dual = refinery marginal price ETHCREDIT = credit price (dual of RFS constraint row) ETHVOL = fraction of transportation pool met by renewable fuel yr = NEMS index year (ADJRFHPR) Adjusts the RFH motor gasoline prices based on the dual associated with the Renewable Fuels Standard constraint. (Called by PRMUPMM only when NRG2007=0) **Purpose:** When an RFS is binding, the compliance cost (the dual on the RFS constraint row) is not reflected in the individual product prices. This routine adjusts the RFH motor gasoline by adding the product of the credit price and the fraction of renewable fuels in the transportation fuel pool. Thus, summing the RFS adder over the entire pool recovers the cost of the program. ### **Equations:** RFSRFHPR =Dual + ETHCREDIT(yr)* ETHVOL(yr) Where: RFSRFHPR = refinery gate price of RFH (w/o markup) Dual = refinery marginal price ETHCREDIT = credit price (dual of RFS constraint row) ETHVOL = fraction of transportation pool met by renewable fuel yr = NEMS index year **(ADJTRHPR)** Adjusts the TRH motor gasoline prices based on the dual associated with the Renewable Fuels Standard constraint. (Called by PRMUPMM only when NRG2007=0.) **Purpose:** When an RFS is binding, the compliance cost (the dual on the RFS constraint row) is not reflected in the individual product prices. This routine adjusts the TRH motor gasoline by adding the product of the credit price and the fraction of renewable fuels in the transportation fuel pool. Thus, summing the RFS adder over the entire pool recovers the cost of the program. #### **Equations:** RFSTRHPR =Dual + ETHCREDIT(yr)* ETHVOL(yr) Where: RFSTRHPR = refinery gate price of TRH (w/o markup) Dual = refinery marginal price ETHCREDIT = credit price (dual of RFS constraint row) ETHVOL = fraction of transportation pool met by renewable fuel yr = NEMS index year **(ADJE85PR)** Adjusts the E85 prices based on the dual associated with the Renewable Fuels Standard constraint. (Called by PRMUPMM only when NRG2007=0.) **Purpose:** When an RFS is binding, the compliance cost (the dual on the RFS constraint row) is not reflected in the individual product prices. This routine adjusts the E85 price to reflect credit price adjustment. Normally, this is done by adding the product of the credit price and the fraction of renewable fuels in the transportation fuel pool. In the case of E85, errors resulting from the fact that the curve is not continuous due to the E85 step size are significant enough to cause convergence problems. Instead, the E85 demand function is numerically inverted and the price corresponding to the E85 solution quantity is found. This price is adjusted by the change in price of motor gasoline from the previous iteration. #### **Equations:** ``` RFSE85PR = PMGTR(r,yr) + ADJPR(r,yr) ``` Where: RFSE85PR = refinery gate price of E85 (w/o markup) ADJPR(r,yr) = E85 price adjusted from previous iteration motor gasoline price R = region yr = NEMS index year **(PMMPD_MGPR)** Set motor gasoline price by PADD using average
CD markups. (Called by PRMUPMM.) **Purpose:** Set motor gasoline prices by PADD based on average CD prices and markups. **Equations:** Marginal prices [row D(d)(prd)] and demand levels [col D(d)(prd)S1] for each gasoline are retrieved from the LP solution by CD and averaged into PADD level prices. **(DSTCPMM)** Estimate atmospheric distillation capacity and refinery utilization. **Purpose:** Extracts capacity expansion information from LP. Estimates annual distillation capacity, utilization, and annual and cumulative capacity expansion. Totals refinery region (PADDs I through V) estimates to produce national estimates. **Equations:** Refinery distillation capacity is defined as a percentage of total capacity to account for over-optimization in the LP. Units are converted to MMBCD and the U.S. total is determined. (**RF_RFSCALIB**) Adjusts the lower limit of the Energy Bill 2007 RFS constraints according to instructions laid out in the provisions (Called by PRMUPMM only when RFHR6FLG=2) **Purpose:** This subroutine checks to see if the RFS requirements for cellulosic, advanced, and total renewable fuel types can be met during a model year, and adjusts the lower limit downward if the given requirements cannot be met. According to the provisions, the adjustment can be made for the current year, or (as of 2016, as specified by the provision) it can be applied to all future years. If the "no sunset" option is activated using the flag F_NOSUNSET, this subroutine also calls subroutine CHGRFS_NOSUNSET which increases the RFS requirements after the original sunset year (2022). ### **Equations:** ``` TBTXTC='CUSCREDT' !Mbbl/cd ! Cellulosic Safety Valve CALL SCOLLP(TBTXTC,COLSOL,STAT,VALUE,IRET) QSAFETY = SNGL(VALUE(1)) RHS_CLLTOT_CALIB(CURIYR) = RHS_CLLTOT(CURIYR) - QSAFETY RHS_CLLBIO_CALIB(CURIYR) = RHS_CLLBIO(CURIYR) - QSAFETY RHS_ETHBIO_CALIB(CURIYR) = RHS_ETHBIO(CURIYR) - QSAFETY ``` #### Where: ``` 'CUSCREDT' = LP vector representing under-compliance for an RFS type (M bbl/cd) QSAFETY = under-compliance quantity (M bbl/cd) RHS_CLLTOT_CALIB = adjusted RHS for cellulosic RFS constraint (M bbl/cd) RHS_CLLBIO_CALIB = adjusted RHS for advanced RFS constraint (M bbl/cd) RHS_CLLTOT_CALIB = adjusted RHS for total RFS constraint (M bbl/cd) ``` (RF_RFSCALIB_B) Adjusts the lower limit of the Energy Bill 2007 RFS constraints according to instructions laid out in the provisions (called by PRMUPMM only when RFHR6FLG=2 and L_CUSCREDB is .true.). **Purpose:** This subroutine checks to see if the RFS requirements for cellulosic, advanced, and total renewable fuel types can be met during a model year, and adjusts the lower limit downward if the given requirements cannot be met. This subroutine differs from subroutine RF_RFSCALIB in that it assesses and adjusts the RFS requirement for cellulosic separate from the other two groups. According to the provisions, the adjustment can be made for the current year, or (as of 2016, as specified by the provision) it can be applied to all future years. If the "no sunset" option is activated using the flag F_NOSUNSET, this subroutine also calls subroutine CHGRFS_NOSUNSET which increases the RFS requirements after the original sunset year (2022). ### **Equations:** ``` TBTXTC='CUSCREDB' !Mbbl/cd ! Safety Valve for Cellulosic CALL SCOLLP(TBTXTC,COLSOL,STAT,VALUE,IRET) QSAFETY = SNGL(VALUE(1)) RHS_CLLTOT_CALIB(CURIYR) = RHS_CLLTOT(CURIYR) - QSAFETY TBTXTC='CUSCREDT' !Mbbl/cd ! Safety Valve for Adv/Total CALL SCOLLP(TBTXTC,COLSOL,STAT,VALUE,IRET) QSAFETYB = SNGL(VALUE(1)) RHS_CLLBIO_CALIB(CURIYR) = RHS_CLLBIO(CURIYR) - QSAFETYB RHS_ETHBIO_CALIB(CURIYR) = RHS_ETHBIO(CURIYR) - QSAFETYB ``` #### Where: ``` 'CUSCREDB' = LP vector representing under-compliance for cellulosic RFS (M bbl/cd) QSAFETY = under-compliance quantity (M bbl/cd) 'CUSCREDT' = LP vector representing under-compliance for advanced/total RFS (M bbl/cd) QSAFETYB = under-compliance quantity (M bbl/cd) RHS_CLLTOT_CALIB = adjusted RHS for cellulosic RFS constraint (M bbl/cd) RHS_CLLBIO_CALIB = adjusted RHS for advanced RFS constraint (M bbl/cd) RHS_CLLTOT_CALIB = adjusted RHS for total RFS constraint (M bbl/cd) ``` (COGNPMM) Estimate refinery combined heat and power (CHP) generation. **Purpose:** Retrieves refinery capacity, investments, and generation from the LP solution using the SCOLLP subroutine. **Equations:** Results are shared out to Census Divisions, fuel categories, and self or grid categories. U.S. and PADD totals are calculated. Estimates are converted to trillion Btu. PADD level estimates for CHP, CHP capacity, refinery fuel consumption, generation for self and for the grid are then allocated to the various Census Divisions. The estimates for fuel consumption, capacity, and generation are desegregated by fuel type and by generation to grid versus to self. Includes CHP associated with CTL production, coke gasification, and cellulosic ethanol production. Census Division estimates are summed to U.S. totals. Note: 1) since synthetic gas (feed to the CHP) is derived from coke, which is derived from oil, the synthetic gas used for cogeneration by the CHP is reported in the "oil" category; and 2) coal used for CTL conversion and cogeneration production is reported in the "other" category. **(COGNCHP)** Estimate refinery CHP from synthetic gas produced by coke gasification units. (Called by COGNPMM.) **Purpose:** Retrieves capacity and generation from the CHP unit that uses synthetic gas produced by the coke gasification units. **Equations:** PADD and U.S. total electricity generated from CHP is obtained from the solution; fuel consumed for CHP is calculated for synthetic gas and natural gas; and corresponding generating capacity additions are determined in terms of MW. (**COGNCGB**) –**Not Active**– Estimate CHP from biomass-fed cogeneration unit. (Called by COGNPMM.) **Purpose:** Retrieves capacity and generation from the biomass-fed CHP units. **Equations:** PADD and U.S. total electricity generated from CHP are obtained from the solution; fuel consumed for CHP is calculated for biomass accounting; and corresponding generating capacity additions are determined in terms of MW. Fills variable CGB_BTFUELPD (tril BTU/yr), CGB_CGGENPD (1000 KWh/cd), CGB_CGCAPPD (1000 KWh/cd) (**ELPMMRD**) Calculate electricity consumption data. **Purpose:** ELPMMRD retrieves the electricity consumption activity from the LP using the SCOLLP subroutine. **Equations:** Converts units to KWh and disaggregates refinery region (PADDs) data to the Census Divisions. (PMMRFFU) Estimate refinery fuel use. **Purpose:** Estimates refinery consumption of distillate, residual fuel, coal, LPG, natural gas, still gas, petroleum coke (cat coke and gasified coke), and other petroleum products by refinery regions. **Equations:** Retrieve fuel use values from the LP using the SCOLLP subroutine and converts units to MMBtu. Sums refinery region data to U.S. totals and determines total U.S refinery petroleum fuel use (minus natural gas fuel use). **(RPTAKGTL)** Retrieve Alaska GTL production and natural gas consumption for GTL production from model results (for reporting). **Purpose:** This subroutine retrieves the GTL-related information from the LP solution and processes it into variables for reporting. **Equations:** Retrieves the natural gas consumption results from the LP solution, totals across steps, converts to BCF/yr, and stores results in the report variable AKGTL_NGCNS. Retrieves GTL production levels from the LP solution, totals across types, and stores in the report variable Q_GTLPRD. Also sets the Alaska GTL production variable AKGTLPRD and the export variable AKGTLEXP (=0). **(RPTRFCTL)** Retrieve CTL and BTL production, coal consumption, and biomass consumption from model results (for reporting). **Purpose:** This subroutine defines the CTL and BTL production level and the corresponding coal and biomass consumption levels used in reports. Also, a debug report is written to the pmmdbg.txt output file (search on 'CTL_CL_RPT1'). **Equations:** CTL and BTL processing level results are retrieved from the LP solution to define the CTL and BTL production levels. It also retrieves the coal consumption level from the CTL coal supply curve results and defines the corresponding coal consumption level (QCLRFPD) and the liquids produced from coal (RFCTLPRD and CTLFRAC). Coal prices (CLMINEP) are obtained from the dual on the coal balance constraint, reduced by the coal transfer costs, as well as carbon, mercury, and SO₂ emissions allowance costs. Biomass consumption (QBMRFBTL) to produce BTL is also retrieved, along with the quantity of liquids produced from biomass (RFBTLPRD and BTLFRAC). Also, corresponding CHP production is recorded. (**RFDMDFU**) Convert refinery fuel use to Census Division demands. **Purpose:** Converts refinery region (PADD) level estimates for refinery fuel consumption to Census Division demands. **Equations:** Calculates refinery fuel consumption in each Census Division based on refinery region estimates, and converts from physical units per day to energy units per year. **(IPMM_GET_PRD)** Define the price and quantity of liquids fuels demand in the non-U.S. world regions. **Purpose:** Retrieves the non-U.S. results for world liquid fuels price and demand from the PMM LP solution, and stores the results by world product type, world region, and year. This subroutine is run each NEMS iteration, and called by PMMOUTP. **Equations:** Various price and quantity values are sequentially pulled out of the LP solution, and stored in the variables PPRD_IPMM(product, region, year) and QPRD_IPMM(product, region, year) for tracking purposes. The row matrix solution values accessed are activity, slack, lower bound, upper bound, and pi. The pi value is used to define price. The column values are for activity, cost, lower bound, upper bound, and DJ. The activity is used to define quantity. (**IPMM_GET_CRD**) Define the total quantity of crude oil demand for the
world. **Purpose:** Retrieves the total international crude demand by year. This subroutine is run each NEMS iteration, and called by PMMOUTP. **Equations:** Various quantity values are sequentially pulled out of the LP solution, added, and stored in the variable GLBCRDDMD(year) for tracking purposes. The column matrix solution values accessed are activity, cost, lower bound, upper bound, and DJ. The activity is used to define quantity. (PMM_OSPRC) Set Oil Shale price. **Purpose:** Set oil shale price as a delta off of low sulfur light crude using costs associated with the FDS hydrotreatr unit as a proxy for the hydrotreating cost difference. This subroutine is run each NEMS iteration, and called by PMMOUTP. **Equations:** Various fuel characteristics, quantities, and costs, along with capital and operating costs, are sequentially pulled out of the LP solution, processed to represent a proxy for hydrotreating costs, and subtracted from the low-sulfur light crude price. This is stored in the variable OS_WOP(year). The column matrix solution values accessed are activity, cost, lower bound, upper bound, and DJ. The activity is used to define quantity. Also, the coefficients defining the fuel, utility, and cost ratios were retrieved from the LP to help define the cost term. **(PMM_GETBIODCNS)** Get biodiesel consumption for diesel blend, by type, by Census Division. **Purpose:** Retrieve PMM LP model solution to set the quantity of biodiesel blended into diesel fuel (20%, B20), by feedstock type (virgin, non-virgin) and Census Division. This subroutine is run each NEMS iteration, and called by PMMOUTP. **Equations:** The column matrix solution value accessed is activity. The report variable filled BIODCONCD. **(PMMOUTP)** Update the Common Block Variables and renewable fuels demanded by refineries. **Purpose:** Updates a number of NEMS common block price and volume variables whose values are determined by output of the PMM LP, including product prices, crude prices, import prices, fuel use, gain, corn cost, ethanol price, biodiesel results, etc. This subroutine translates the renewable fuels quantity data from the renewable model into a biomass supply curve for the LP (QBMET, PBMET). Also, accounts for renewable fuels demanded for blending into gasoline and diesel fuel. This subroutine is run each NEMS iteration. **Equations:** Various values are sequentially pulled out of the LP solution area, and corresponding common block variables are set to various functions of the solution values. The row matrix solution values accessed are activity, slack, lower bound, upper bound, and pi. The column values are for activity, cost, lower bound, upper bound, and DJ. For instance, the common block variable to be updated may be total product imports. For this result, the activity for the LP row that controls product imports is obtained from the solution and the corresponding common block variable is set equal to that value adjusted for any difference in units of measure. ## (PMMOUT3) Update Common Block Variables **Purpose:** Updates the PMM and NEMS system common block values related to refinery production volumes (by NEMS refinery product and by PADD). Also updates the total U.S. production volumes (by product). This is done every iteration and projection year. This routine also determines crude and product quantities, LPG, and other product movements along transfer links for the PMMRPTS report file. **Equations:** Row activity solution values of the PMM LP, representing total refinery production by refining region and by refined product, are sequentially read; and, corresponding common block variables are set to the matrix solution values, or to sums of several values, as appropriate. Similarly, crude and product quantities are extracted from the PMM LP solution and put into report variables. LPG and product movements are totaled for each transport link and transport mode (subroutines PMM_LPGMOVE and PMM_PRODMOVE). **(RPTS2PMM)** Duplicate pmmrpts.txt reports for PMM, for years AFTER rptly (ie, 2035-2050) **Purpose:** Extend the current PMM report tables (pmmrpts.txt) beyond the limited number of years currently set by RPTFY and RPTLY, without causing readability issues. New user-defined variables have been created (RPTFY2, RPTLY2), and a new PMM report file has been created to report these extended years (pmmrptx.txt). **Equations:** None. (**DCRDPRC**) Retrieves domestic crude marginal prices from the LP solution. **Purpose:** DCRDPRC retrieves the marginal values of domestic crude (by OGSM region and crude type) by using the SROWLP subroutine. **Equations:** None. **(WCNVFCT)** Calculates the heat rates for petroleum product imports and exports and motor gasoline. **Purpose:** WCNFCT calculates the quantity-weighted average heat rates for petroleum product imports and exports, natural gas liquids, and motor gasoline. **Equations:** The average heat rate for imported petroleum product is calculated using the weighted average of each product's heat rate. This methodology is also used to calculate the exported petroleum product's average heat rate and the natural gas liquids' average heat rate. This routine calls subroutine CALC_CNVFCT to determine the average gasoline heat rate. For example, given a list of product imports (LPG, conventional and reformulated gasoline, jet fuel, distillate, residual fuel (high- and low-sulfur), petrochemical feed, ULSD, and other petroleum products), the weighted average equation is: $$CF = \left[ \sum_{p} \left( qty_{p} * CF_{p} \right) \right] / \sum_{p} \left( qty_{p} \right)$$ (37) Where: p = type of product imported $qty_p = quantity of product p$ $CF_p$ = heat rate of product p CF = average heat rate of total imported product (CALC CNVFCT) Calculates the heat rates for motor gasoline. **Purpose:** This routine calculates the quantity-weighted average heat rates for motor gasoline demanded in the U.S., including the impact of the alcohol blend components. Also calls subroutine PMM_GETMGQ which determines the motor gasoline quantity without ethanol blend. **Equations:** The heat rate for each motor gasoline (e.g., RFG, RFH, TRG, TRH) and for the ethanol blend component is used to calculate the quantity-weighted average aggregate gasoline heat rate (CFTGQ, CFRGQ, and CFMGQ). For example, the weighted average equation for conventional gasoline is: $$CF = \left[ \sum_{mg} \sum_{cd} \left( qty_{mg,cd} * CF_{mg,cd} \right) + \sum_{e} \sum_{cd} \left( qty_{e,cd} * CF_{e,cd} \right) \right] /$$ $$\left[ \sum_{mg} \sum_{cd} \left( qty_{mg,cd} \right) + \sum_{e} \sum_{cd} \left( qty_{e,cd} \right) \right]$$ (37) Where: e = ethanol mg = conventional gasoline cd = Census Division $qty_e = quantity of ethanol$ $qty_{mg} = quantity of conventional gasoline$ $CF_{e,cd}$ = heat content of ethanol $CF_{mg,cd}$ = heat content of conventional gasoline (**DOMU**) Calculate end-use prices by sector. **Purpose:** DOMU breaks wholesale petroleum product prices into sectoral end-use product prices. **Equations:** Sectoral end-use prices are calculated by adding three sectoral markups, one for Federal taxes (RLMUFTAX), one for state taxes (MU2) and the third for transportation costs (MU1), to the wholesale prices for each petroleum product. Units are converted to \$/MMBtu. The motor gasoline price is calculated as the quantity-weighted average price of the four motor gasoline types. When the flag NRG2007=1, the E85 price must be lowered to encourage demand needed to meet the RFS mandates. This subroutine calls on the FFV_ETHSHR and PMM_FFVSHR subroutines (see descriptions elsewhere in this chapter) to establish an E85 demand curve used to determine the ideal E85 price that will achieve the desired demand. **(FCCMODOP)** .Retrieves the fluid catalytic crackers' modes of operations activity level from the LP solution. **Purpose:** This subroutine retrieves the activity level and the reduced cost information from the FCC modes of operations columns in the LP solution. **Equations:** None. (ALKMODE) Retrieves the operating level for the sulfuric acid alkylation units. **Purpose:** This subroutine retrieves the operating level of the sulfuric acid alkylation unit (for each operating mode) from the LP solution. **Equations:** None. (**GETPMMO**) Retrieve objective function values from the LP solution. **Purpose:** This subroutine retrieves the objective function value from the LP solutions for reporting in the detailed PMM reports. **Equations:** None. (MGSPCDL) Retrieves motor gasoline specification information. **Purpose:** This subroutine retrieves the motor gasoline specifications LP row status and dual value for reporting. **Equations:** None. (PMM_HH2RPT) Defines hydrogen produced and consumed at the refinery, for reporting. **Purpose:** This subroutine calls the routines (PMM_HH2MAP, PMM_HH2CP) that define hydrogen production and consumption at the refinery and puts the information into variables for reporting. There are three qualities of hydrogen present at the refinery: HYL (low), HYM (medium), and HYH (high). **Equations:** None. **(PMM_HH2MAP)** Identifies which processing units produce and consume hydrogen. (called by PMM_HH2RPT) **Purpose:** Fills variables used to map which processing units produce and consume hydrogen. Variables include: HH2_RUNITP, HH2_UNITP, HH2_RUNITC, HH2_UNITC, HH2_HUNITP, HH2_HUNITC (the latter 2 pertain to merchant plant units) **Equations:** none. **(PMM_HH2CP)** Aggregates hydrogen production and consumption by processing unit, PADD, year. (called by PMM_HH2RPT) **Purpose:** This routine extracts operating results (related to processing units that produce and consume hydrogen) from the LP solution and puts the totals into report variable (HH2_CONS, HH2_PROD), organized by processing unit, PADD, and year. **Equations:** Yield and consumption coefficients, processing levels, and other factors are used to calculate hydrogen production and consumption at the refinery. Units
producing and consuming hydrogen had to be identified. **(IPMM_RPT_CAP)** Report international crude processing capacity (marginal and inframarginal) **Purpose:** This routine extracts maximum capacity and operating levels of the international refineries from the LP solution and calculates the current year utilization levels. These results are reported for marginal (GLBMARCAP and GLBMARUTZ) and infra-marginal (GLBIMCCAP and GLBIMCUTZ) processing units, organized by international region and year. **Equations:** Processing levels, capacities, and maximum utilizations are used to set the report information. # 4.4 Capacity Expansion Subroutine Section 4.4 describes the function of the subroutines in figure 4.4, preprocessing the PMM matrix for capacity expansion expectation. Since most of the subroutines used for capacity expansion are also used in section 4.2, the subroutines presented below represent routines ONLY used for capacity expansion. Therefore, refer to section 4.2 for the remainder of the subroutines listed in Figure 4.4. **(XPMMLP)** Set up and solve expected PMM LP for capacity expansion loop. **Purpose:** XPMMLP calls numerous subroutines to set up the LP for the capacity expansion look-ahead year, solves the LP, and writes the basis for that solution. **Equations:** None. **(CHGPUINV)** Update bounds on processing unit investment capacities. **Purpose:** CHGPUINV updates the processing unit investment and cumulative build limits (bounds) in the LP during the capacity expansion iteration. **Equations:** Processing unit investments are generically upper-bounded at 1000 Mbbl/cd [except: cogeneration (CGX) at 2400 MWh/cd, steam plant (STG) at 20 MM lb/cd, units producing ULSD streams (PSZ, HD1, HD2, HS2) at 850 M bbl/cd, fluid coker at 20 Mbbl/cd per year, and CTL units in PADD 3 at 6 base units (6*CTL_BASSIZ)]. Cumulative builds are fixed bounded based on the processing unit builds to date. (M=1000) **Calls:** CHGCTL_BLDLIM to set maximum CTL penetration limits, if CTL builds are allowed. CHGBTL_BLDLIM to set maximum BTL penetration limits, if BTL builds are allowed. CHGCBTL_BLDLIM to set maximum CBTL penetration limits, if CBTL builds are allowed. CHGBPU_BLDLIM to set maximum BPU penetration limits, if BPU builds are allowed. CHGGDT_BLDLIM to set maximum renewable diesel penetration limits, if renewable diesel unit builds are allowed. (CHGGTL_BLDLIM) Set upper limit on GTL builds each year in Alaska. **Purpose:** Set the maximum capacity build limit for GTL each year based on analyst judgment. **Equations:** None. (CHGBLDLIM) Set initial capacity build limit **Purpose:** CHGBLDLIM sets the initial capacity build limit to correspond to the flags set in the rfctrl.txt input file. If flag says no build allowed, then UL set to 0; if build allowed, then UL is initially set to 800 M bbl/cd. **Equations:** None. (CHGCCSN) Dynamically sets the supply curve that represents CO₂ transport and sequestration costs, accounting for annual depletion. **Purpose:** CHGCCSN sets up a 9-step CO₂ transport/storage demand curve based on an overall price/quantity curve defined by 3 linear segments established by EIA for each of the five PADDs. The subroutine also maintains and accounting of remaining sequestration/storage capacity and corresponding prices. Also, any carbon tax (EMETAX) that had been applied to the price of coal is converted to credit for each ton of CO₂ sent for sequestration and applied to the corresponding accounting variable in the LP. **Equations:** None. **(PMMISOCAP)** Sets Isooctane production capacity limits as a function of MTBE capacity reduction. **Purpose:** If MTBE is banned, then maximum build levels for Isooctane units are set as a function of MTBE production units decommissioned. (Called only during capacity expansion decision, before optimization occurs.) **Equations:** Allow Isooctane build as a fraction of MTBE production capacity, with a growth rate of 1.7% annually (over the 3-year expansion horizon) to reflect the average annual growth rate in petroleum consumption through the forecast period. $$CAPIOT(I) = MTBE_{cap} * ISOCVRTX * (1.017**3)$$ (39) Where: MTBEcap is the decommissioned MTBE production capacity ISOCVRTX is the capacity conversion rate (70% maximum) ## 4.5 OML Specific Subroutines Additional subroutines used to perform Optimization Modeling Library (OML) specific LP matrix operations during the matrix pre- and post-processing are presented below. (CBNDLP) Update LP column bounds. **Purpose:** The LP column bounds are updated with using the OML function WFCBND. **Equations:** None. Data Passed: COLNAME, column name, LWBD, lower bound, UPBD, upper bound **(CNAMELP)** Retrieve LP column name. **Purpose:** Retrieves LP column name using the OML function WFCNAME. **Equations:** None. Data Passed: I, column index, NAME, column name (**CRNGLP**) Update a LP RHS range with the specified value. Purpose: Updates the range of an LP matrix RHS using the OML function WFCRNG **Equations:** None. Data Passed: ROWNAME, row name, RNGVAL, range value (**CRHSLP**) Update a LP RHS with the specified value. **Purpose:** Updates an LP matrix RHS using the OML function WFCRHS **Equations:** None. Data Passed: ROWNAME, row name, RHSVAL, right hand value **(RRHSLP)** Retrieve RHS value in the LP matrix. **Purpose:** Retrieves RHS value in the LP matrix using the OML function WFCRHS **Equations:** None. Data Passed: ROWNAME, row name, RHSVAL, right hand value **(CMASKLP)** Obtain a set of column variable names from the LP. **Purpose:** Obtain a set of column variable names from the LP to loop over for variable updates. **Equations:** None. Data Passed: NAMIN, partial column name (mask), NAMOUT, full column name **(RMASKLP)** Obtain a set of row names from the LP. **Purpose:** Obtain a set of row names from the LP to loop over for variable updates. **Equations:** None. Data Passed: NAMIN, partial column name (mask), NAMOUT, full column name **(CVALLP)** Update coefficient value in the LP matrix. **Purpose:** Updates coefficient value in the LP matrix using the OML function WFCVAL. **Equations:** None. Data Passed: COLNAME, column name, ROWNAME, row name, VAL, coefficient value **(RVALLP)** Retrieve coefficient value in the LP matrix. **Purpose:** Retrieves coefficient value in the LP matrix using the OML function WFRVAL. **Equations:** None. Data Passed: COLNAME, column name, ROWNAME, row name, VAL, coefficient value (MPSINLP) Load the PMM LP matrix file into an OML matrix file. **Purpose:** This subroutine calls an OML function which reformats an MPS formatted file into an OML LP matrix format. **Equations:** None. **(MPSOUTLP)** Output the PMM LP matrix from the actfile to an output file (in MPS format). **Purpose:** This subroutine calls an OML function which copies the current version of the LP matrix into an MPS formatted output file. **Equations:** None. **(PUNCHLP)** Save the current basis to a file. **Purpose:** Saves the current basis to a file using the OML function WFPUNCH. **Equations:** None. **(RBNDLP)** Retrieve bound values from a column. **Purpose:** Retrieves bound values from a column using the OML WFRBND function. **Equations:** None. Data Passed: COLNAME, column name, LWBD, lower bound, UPBD, upper bound **(RNAMELP)** Retrieve row names from the matrix LP. **Purpose:** Retrieves row names from the matrix LP using the OML function WFRNAME. **Equations:** None. **Data Passed:** I, row index, NAME, row name **(SCOLLP)** Retrieve solution column values from the LP solution. **Purpose:** Retrieves solution column values from the LP solution using the OML function WFSCOL. **Equations:** None. **Data Passed:** COLNAME, column name, SLCT selected range, STATC, status value, VALUE, values (**SROWLP**) Retrieve the current solution row from memory. **Purpose:** Retrieves the current solution row from memory using the OML function WFSROW, which retrieves the specified solution (activity, slack, lower limit, upper limit, PI value) and status (basic, upper limited, lower limited, equal, free) into a predefined array. **Equations:** None. # **APPENDIX A. PMM Data and Outputs** This appendix is divided in three parts: Section A.1 lists the variables and definitions used in the PMM, Section A.2 lists the data sources, and Section A.3 lists the data tables (and their structures) used by the MRM (Multi-Refining Model) to create the initial PMM matrix that is loaded into the NEMS environment. These data tables constitute the major portion of the PMM data as they represent the refining process unit technology and capacities, quality characteristics, and specifications used in each of the five refining regions (1= PADD I, 2= PADD II, 3= PADD III, 4= PADD IV, 5= PADD V). (Note: Only 3 regions were modeled between *AEO1998* and *AEO2003*, 1= PADD I, 2= PADDs II, III, IV, 3= PADD V). ### A.1 PMM Variables and Definitions This section presents the PMM variable names and definitions associated with the linear programming (LP) matrix, PMM outputs, PMM inputs, and internally used variables. #### PMM LP and NEMS Variable Names Cross-References A cross-reference listing between the PMM LP matrix names and NEMS variable names is shown in Table A1. The dimensional units are based on the PMM LP variables. The NEMS variable units may vary to conform to NEMS standards. Abbreviations are defined in the Legend at the end of the table. Table A1. PMM/NEMS Cross References | PMM LP Variable | LP Units | NEMS Variable | |---------------------|----------------------------|----------------------------------| | A (pd) CHPCGN | MWh/cd | CHP_CGGENPD | | A (cd) G08TRH | Mbbl/cd | SBG08TRH, RFETHMGS(MMbbl/cd) | | A (cd) G08TRG | Mbbl/cd | SBG08TRG, RFETHMGS(MMbbl/cd) | | A (cd) G08RFH | Mbbl/cd | SBG08RFH, RFETHMGS(MMbbl/cd) | | A (cd) G08RFG | Mbbl/cd | SBG08RFG, RFETHMGS(MMbbl/cd) | | A (pd) (prd) | Mbbl/cd | RFDPRD(prd),QPRDRF | | A (pd) SST | Mbbl/cd | RFDPRDTRG, QPRDRF | | A (pd) SSR | Mbbl/cd | RFDPRDRFG, QPRDRF | |
A (pd) SSE | Mbbl/cd | RFDPRDTRG, QPRDRF | | A (pd) FLG | Mbbl/cd | RFDPRDLPG, QPRDRF | | A (pd) STM | M lb /cd | STMDMD | | A (pd) ETHRFN (incl | Mbbl/cd | RFETHETB(net merchant)(MMbbl/cd) | | merchant) | | | | A (pd) (gbc)RFG | Mbbl/cd | RFGBCRFG | | A (pd) (gbc)TRG | Mbbl/cd | RFGBCTRG | | A(r)BPUBIO | 1000 MMBtu/cd, Tril Btu/yr | QBMRFBPUPD | | A(pd)BTLBIO | 1000 MMBtu/cd, tril Btu/yr | QBMRFBTLPD | | A (cd) CETCOA | 1000 MMBtu/cd | QCLETH (tril Btu/yr) | | A (cd) CETKWH | 1000 KWh/cd | QELETH (tril Btu/yr) | | A (cd) CETNGS | 1000 bfoe/cd | QNGETH (tril Btu/yr) | | A(pd)CBLBIO | 1000 MMBtu/cd, tril Btu/yr | QBMRFCBTLPD | | A(pd)CBLBIT | 1000 MMBtu/cd, tril Btu/yr | QCLRFCBTLPD | | A(pd)CTLBIT | 1000 MMBtu/cd, tril Btu/yr | QCLRFCTLPD | | A(pd)BTLWH | M bbl/cd | RFBTLWH | | PMM LP Variable | LP Units | NEMS Variable | |----------------------------------------|-----------------|---------------------------------------| | A(pd)CTLWH | M bbl/cd | RFCTLWH | | A(pd)CBLWH | M bbl/cd | RFCBTLWH | | A (cd) CRNCNS | 1000 bushels/cd | CRNCD (MM bushels/yr) | | A (cd) GRNCNS | 1000 bushels/cd | GRNCD (MM bushels/yr) | | A (pd) DSLCTI | CETANE | DSLCTI | | A (pd) DSUCTI | CETANE | DSUCTI | | A (pd) RFGM00 | OCTANE | OCTRFGM00 | | A (pd) RFGR00 | OCTANE | OCTRFGR00 | | A (pd) TRGM00 | OCTANE | OCTTRGM00 | | A (pd) TRGR00 | OCTANE | OCTTRGR00 | | A(cd)SBOCNS, A@SBOCNS | M bbl/cd | SBO_FUEL | | A(cd)WGRCNS, A@WGRCNS | M bbl/cd | WGR_FUEL | | A(cd)YGRCNS, A@YGRCNS | M bbl/cd | YGR_FUEL | | A@CRDDCR | Mbbl/cd | RFCRDDCR | | A@CRDEXP | Mbbl/cd | RFQEXCRD, RFIMCR(MMbbl/cd) | | A@CRDL48 | Mbbl/cd | RFCRDL48 | | A@CRDAKA | Mbbl/cd | RFCRDAKA | | A@CRDTOT | Mbbl/cd | RFCRDTOT (MMbbl/cd) | | A@CRDFCR | Mbbl/cd | RFQICRD (MMbbl/cd), RFIMCR(MMbbl/cd) | | A@CRNCNS | 1000 bushels/cd | CRNCD (MM bushels/yr) | | A@ETHPRD | Mbbl/cd | RFETHD (MMbbl/cd) | | A@FUEL | Mbbl/cd | QCDUPD (MMbbl/cd) | | A@GAIN, A@PETCOK,<br>A@SULSAL, P(r)COK | Mbbl/cd | RFQPRCGo (MMbbl/cd) | | A@INVST | M\$87/cd | RFCAPEXP | | A@MTBIMP | Mbbl/cd | RFMTBI (MMbbl/cd) | | A@METIMP | Mbbl/cd | RFMETI (MMbbl/cd) | | A@METDEM | Mbbl/cd | RFMETCHM (MMbbl/cd) | | A@METM85 | Mbbl/cd | RFMETM85 (MMbbl/cd) | | A@NGFTOT | Mbfoe/cd | RFNGFTOT | | A@NGLPRD | Mbbl/cd | RFPQNGL (MMbbl/cd) | | A@NGLRFN | Mbbl/cd | RFQNGLRF (MMbbl/cd), NGLRF (MMbbl/cd) | | A@NGSH2P | Mbfoe/cd | RFHCXH2IN (MMbfoe/cd) | | A@PRDEXP | Mbbl/cd | RFQEXPRDT (MMbbl/cd) | | A@PRDIMP | Mbbl/cd | RFPQIPRDT (MMbbl/cd) | | A@PETCOK | Mbbl/cd | RFQPRCGo (MMbbl/cd) | | A@UNFIMP | Mbbl/cd | RFPQUFC (MMbbl/cd) | | A(cd)METBDT,<br>A(cd)METM85 | Mbbl/cd | QMERF (Tril BTU/yr) | | B (pd) TRGETH, B(r)RFGETH | Mbbl/cd | BLDETHRF | | B (pd) ETB | \$87/bbl (dual) | PETB | | B (pd) TAE | \$87/bbl (dual) | PTAE | | B (pd) THE | \$87/bbl (dual) | PTHE | | B (pd) MTB | \$87/bbl (dual) | PMTB25 | | B (pd) THM | \$87/bbl (dual) | PTHM | | B (pd) TAM | \$87/bbl (dual) | PTAM | | B (pd) SRI | \$87/bbl (dual) | PSRI | | B (pd) FC8 | \$87/bbl (dual) | PFC8 | | B (pd) R10 | \$87/bbl (dual) | PR10 | | B (pd) ALB | \$87/bbl (dual) | PALB | | B (pd) KHL | \$87/bbl (dual) | PKHL | | B (pd) 2HL | \$87/bbl (dual) | P2HL | | B (pd) RSI | \$87/bbl (dual) | PVAF | | B (pd) (oxy) | \$87/bbl (dual) | P(oxy)RFBL | | PMM LP Variable | LP Units | NEMS Variable | |--------------------------|-------------------------|-------------------------------------------------------------------------| | B (pd) IC4 | \$87/bbl (dual) | PGPLTRF | | B (pd) NC4 | \$87/bbl (dual) | PGPLTRF | | C@ETHBIO | \$87/bbl (dual) | PETHRFS, ETHBIODUAL | | CAA (crd) | \$97/bbl (dual) | PCRDRF, RFDCRDP, | | CAA (Cld) | \$87/bbl (dual) | CRDTYPEP,WLLHDPR | | C (pd) D (crdtype) | \$87/bbl (dual) | PCRDRF,RFDCRDP,CRDTYPEP,WLLHDPR | | C (cd) ETHR (q(k)) | Mbbl/cd,[\$87/bbl] | ETHIMP, [ETHICSTCD], WQETOH, | | C (cd) ETTIK (q(k)) | Wibbl/cd,[\$677bbl] | SQETOH, [CRNCSTCD] | | C (cd) ETCR (q(k)) | Mbbl/cd,[\$87/bbl] | CLLETHCD, QBMET (tril Btu/yr), WQETOH, SQETOH, CLLCAPCD, [CLLCSTCD] | | C (cd) BIMR (q(k)) | Mbbl/cd,[\$87/bbl] | WQBDSL, BIMQTYCD, RFBIOD (MMbbl/cd), [WPBDSL, BIMCSTCD] | | C (cd) BINR (q(k)) | Mbbl/cd,[\$87/bbl] | WQBDSL, BIMQTYCD, RFBIOD (MMbbl/cd), [WPBDSL, BIMCSTCD] | | C(pd)CTLTOT | Mbbl/cd | Q_CTLPRD, RFCTLPRD, calc:<br>CTL_CGGTOT(MWh/cd), CTL_CO2EM(M<br>lbs/cd) | | C(pd)CBLTOT | Mbbl/cd | Q_CBTLPRD | | C(pd)BTL(bmq) | M bbl/cd | BTLFRAC, RFBTLLIQ, RFBTLPRD | | C(pd)CBL(cbq) | M bbl/cd | CBTLFRAC, RFCBTLLIQ, RFCBTLPRD | | C(pd)CTL(clq) | M bbl/cd | CTLFRAC, RFCTLLIQ, RFCTLPRD | | C(pd)GTL(glq) | M bbl/cd | GTLFRAC | | C (pd) F (crdtype) | \$87/bbl (dual) | PCRDRF | | CL(cld)CTL | \$87/MMBtu (dual) | P_CL_CDR | | CT(clc)(cld)(clr)(cls) | 1000 MMBtu/cd | Q_CL_SR | | D (cd) ETH | \$87/bbl (dual) | PETHANOL,RENADJPR, RENETHPR | | D (cd)(prd) S1 | Mbbl/cd | PRDDMD | | D (cd)(mg) S1 | Mbbl/cd | RFDPRD, RFGT(mg), where mg=TRG, TRH, RFG, RFH | | D (cd) (prd) SX | Mbbl/cd | QPRDEX | | D (cd) COKSX | \$87/bbl, [Mbbl coe/cd] | RFWOP, PCOKH, [RFQEXPRDT, COKEXUL (Mbbl coe/cd)] | | D (cd) (prd) Z9 | Mbbl/cd, [87\$/bbl] | QPRDEXD, [RFWOP,WOPZ9EXP] | | D (cd) (prd) | \$87/bbl (dual) | RFDL(prd), PMGRFG, PMGTRG, PMGRFH, PMGTRH, P(???) where (???) = prd | | D (cd) BIM | \$87/bbl (dual) | BIMMCSTCD | | D (cd) (mogas) | \$87/bbl (dual) | RFGT(mogas), RFGTMG | | D@METS1 | Mbbl/cd | PRDDMDME | | E (pd) ACUINV | Mbbl/cd | RFDSTCAP, RFDSCUM (MMbbl/cd),<br>RFDSTUTL | | E (pd) CGNINV | MWh/cd | EINVPD | | E (pd) CGXINV | MWh/cd | EXINVPD | | E (pd) CHPINV | Mbbl FOE/cd feed | CHP_UNPLNCPD (MW) | | E(pd)CTXINV, E(pd)CTZINV | Mbbl/cd | calc: CTL_CGCTOT (MW) | | E (pd) (prcunit)INV | Mbbl/cd | PUBASEUT, PUBASE, PUINV, PUCUM | | E (pd) (emissn) (emisst) | M lb/cd | RFEMISST (MMton/yr) | | G (pd) CC3LPG | Mbbl/cd | QGPLTRF | | G (pd) IC4LPG | Mbbl/cd | QGPLTRF | | G (pd) NC4LPG | Mbbl/cd | QGPLTRF | | G (pd) NATOTH | Mbbl/cd | QGPLTRF | | G (pd) NATPCF | Mbbl/cd | QGPLTRF | | G (pd) GPL01 | Bcf/cd | QGPLTRF | | G (pd) IC4RFN | Mbbl/cd | QGPLTRF | | G (pd) MOH01 | Mbbl/cd | RFMETD (MMbbl/cd), RFMETETH (MMbbl/cd) | | PMM LP Variable | LP Units | NEMS Variable | |-----------------------------------|---------------------------------|------------------------------------------------------------------------------------------------| | G (pd) NC4RFN | Mbbl/cd | QGPLTRF | | G (pd) NATRFN | Mbbl/cd | QGPLTRF | | G (pd) PGSLPG | Mbbl/cd | QGPLTRF | | G (pd) PGSFLG | Mbbl/cd | QGPLTRF | | G (pd) SC2CC1 | Mbfoe/cd | QGPLTRF | | G (pd) METRFN | Mbbl/cd | QMETRFN | | H (pd) RFMPEH | Mbbl/cd | RFETHMCT (MMbbl/cd) | | H (pd) RFMPMT | Mbbl/cd | RFMETMCT (MMbbl/cd), RFMETETH (MMbbl/cd), QRFMPMT | | H (pd) CTX(mod),<br>H(pd)CTZ(mod) | Mbbl/cd | RFCTLLIQ | | H(pd)(coal) | \$87/MMBtu (dual) | P_CL_PADD, P_CTLCOAL (\$87/s-ton), CLMINEP (\$87/s-ton) | | H (cd) ETHTOT<br>H(cd)CETEXP | Mbbl/cd | CRNETHCD (Mbbl/cd) | | H (pd) ETXETB | Mbbl/cd | RFETBMCT (MMbbl/cd), ETH4ETHR | | H (pd) ETXMTB | Mbbl/cd | RFMTBMCT (MMbbl/cd) | | H (pd) GPMPI4 | Mbbl/cd | QGPLTRF | | H (pd) GPMPN4 | Mbbl/cd | QGPLTRF | | H (pd) SMD(mod),<br>H(pd)SOD(mod) | Mbbl/cd | Q_GTLPRD | | H(cd)SBO | \$87/ bbl | SBO_PRICE | | H(cd)WGR | \$87/ bbl | WGR_PRICE | | H(cd)YGR | \$87/ bbl | YGR_PRICE | | H(cd)DDG | \$87/ s-Ton | DDGSPRICE | | I (pd) (prd) Z9 | Mbbl/cd | QPRDIMD | | I (pd) (iprd) R (q(k)) | Mbbl/cd | QPRDIMP | | I (pd) (iprd) R (q(k)) | \$87/bbl,Mbbl/cd | RFIPQ??, ITIM??SC, where ?? = LG,<br>MG(GS), RG, DL(LD), DS, DU, RL, RH, JF,<br>OT, PF, ME, MT | | I (pd) SSRR (q(k)) | Mbbl/cd,[\$87/bbl] | QSSR, [PSSR], RFIPQMG, IMPRBOB (MMbbl/cd) | | I (pd) MTBR (q(k)) | Mbbl/cd | RETHRIMP | | K (pd) (prcunit) CAP | Mbbl/cd | PUBASEUT, PUBASE | | K (pd) ACUCAP | Mbbl/cd | DSTCAP(Mbbl/cd), RFBDSTCAP<br>(MMbbl/cd), DSTUTL | | K (pd) CGNCAP | MWh/cd | RFCGCAPPD (MW, later) | | K (pd) CGXCAP | MWh/cd | RFCXCAPPD, RFCGCAPPD (MW, later) | | K (pd) CHPCAP | Mbbl FOE/cd feed | calc: CHP_CGCAPPD (MW) | | K (pd) FGSCAP | Mbbl/cd | FGS_UL, FGS_SOL | | L (pd) (prcunit)BLD | Mbbl/cd | PUBASEUT, PUBASE, PUCUM, PUINV | | L (pd) ACUBLD | Mbbl/cd | RFDSTCAP, RFDSCUM (MMbbl/cd), RFDSTUTL | | L (pd) CGNBLD | MWh/cd | LBLDPD | | L (pd) CGXBLD | MWh/cd | LXBLDPD | | L (pd) CHPBLD | Mbbl FOE/cd feed | CHP_UNPLNCPD (MW) | | L (pd) CTXBLD, L(pd)CTZBLD | Mbbl/cd | CTLBLT, calc: CTL_CGCTOT(MW) | | M (pd) (prd) | \$87/bbl (dual) | RFGT (prd) | | N (pd) (coal) N1 | 1000 MMBtu/cd | Q_CL_PADD, Q_CL_CDR, Q_CTLCOAL (1000 ton/cd), QCLRFPD (tril Btu/yr) | | N (pd) (coal) N2-N5 | | deactivated (LL=UL=0) | | N(pd)CO2N(s) | \$87/ tonne CO2<br>MM tonne CO2 | CO2PRICE<br>CO2PDCRV | | N (pd) NGKN (q(k)) | Mbbl foe/cd | AKGTL_NGCNS(BCF/yr), AKNG_SUPCRV(BCF/yr), Q_GTLGAS | | PMM LP Variable | LP Units | NEMS Variable | |-----------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------| | | | (BCF/cd) | | N (pd) NGRFP (q(k)) | MMcf/cd | NGRFUPIT, NGRFUTOT | | N (pd) NGRFN (q(k)) | MMcf/cd | NGRFUPIT, NGRFUTOT | | N (pd) DGP | Bcf/day | PRNG_PADD, QNGPD | | NZAMHP(q(k)), | Mbbl/cd | ALKEXPTOT | | NZAMHN(q(k)) | MDDI/Cd | ALKEAFIOI | | OBJ | M \$87/cd | PMMOBJ | | O@CRDSPR | Mbbl/cd | RFSPRFR | | O@CRDEXP | Mbbl/cd | QEXCRDIN | | P (pd) COK | Mbbl foe/cd | QCDUPD(MMbbl foe/cd), RFQPRCGo<br>(MMbbl foe/cd), QCOKFU | | PANGLQ1 | Mbbl/cd | QGPLTRF, OGNGLAK | | P (og) DCRQ1 | Mbbl/cd, (\$87/bbl) | RFQTDCRD, RFDCRDP (\$87/bbl),<br>CRDTYPEP(\$87/bbl) | | P (pd)F(crdtype)Q(q(k) | Mbbl/cd, (\$87/bbl) | RFIPQC (crdtype), QICRD, PICRD, Q_ITIMCRSC, ITIMCRGN | | P (pd) PFU | MFOED | PRPFU(5) | | P (pd) PFF | MFOED | PRPFF(5) | | Q (pd) RFG (spec) | \$87/bbl (dual) | RFGSPCDL | | Q (pd) TRG (spec) | \$87/bbl (dual) | TRGSPCDL | | Q(pd)(prd)(spec)(minmax) | Many | MGSPCS | | K(pd)CBLCAP, E(pd)CBLINV,<br>L(pd)CBLBLD | Mbbl/cd | Q_CBTLCAP | | K(pd)CTXCAP,K(pd)CTZCAP,<br>E(pd)CTXINV, E(pd)CTZINV,<br>L(pd)CTXBLD, L(pd)CTZBLD | Mbbl/cd | Q_CTLCAP | | R (pd) SFA (mode) | Mbbl/cd |
ALKACT | | R (pd) ACUF (crdtype) | Mbbl/cd | QCRDRF | | R (pd) ACUD (crdtype) | Mbbl/cd | QCRDRF | | R (pd) ACUA (crdtype) | Mbbl/cd | QCRDRF | | R (pd) CHP(mode) | Mbbl FOE/cd | CHP_NGFUELPD, CHP_SGFUELPD,<br>QNGSPRD, KWHCHP(mode), QKWHPRD<br>(MWh/cd), QSTMPRD (M lb /cd) | | R (pd) CGNCGN | MWh/cd | RFCGGENPD | | R (pd) CGXCGN | MWh/cd | RFCXGENPD | | R (pd) ETHMTB | Mbbl/cd | RFMTBD (MMbbl/cd) | | R (pd) ETHETB | Mbbl/cd | RFETBD (MMbbl/cd), ETH4ETHR | | R (pd) ETMTAE | Mbbl/cd | RFTAED (MMbbl/cd), ETH4ETHR | | R (pd) ETMTAM | Mbbl/cd | RFTAMD (MMbbl/cd) | | R (pd) ETMTHE | Mbbl/cd | RFTHED (MMbbl/cd) , ETH4ETHR | | R (pd) ETMTHM | Mbbl/cd | RFTHMD (MMbbl/cd) | | R (pd) FCC(mod) | Mbbl/cd, (\$87/bbl) | FCC (mod), FCCACT, (FCCDUAL) | | R (pd) FUMN2H | Mbbl/cd | QDISFU | | R (pd) FUMN6I | Mbbl/cd | QRESFU | | R (pd) FUMN6A | Mbbl/cd | QRESFU | | R (pd) FUMN6B | Mbbl/cd | QRESFU | | R (pd) FUMCC3 | Mbfoe/cd | QLPGFU | | R (pd) FUMUC3 | Mbfoe/cd | QLPGFU | | R (pd) FUMIC4 | Mbfoe/cd | QLPGFU | | R (pd) FUMUC4 | Mbfoe/cd | QLPGFU | | R (pd) FUMNC4 | Mbfoe/cd | QLPGFU | | R (pd) FUMC2E | Mbfoe/cd | QSTGFU | | R (pd) FUMPGS | Mbfoe/cd | QSTGFU | | R (pd) FUMCC1 | Mbfoe/cd | QSTGFU | | R (pd) FUMCC2 | Mbfoe/cd | QSTGFU | | PMM LP Variable | LP Units | NEMS Variable | |----------------------|-----------------------------------------|--------------------------------------| | R (pd) FUMPGU | Mbfoe/cd | QSTGFU | | R (pd) FUMPGX | Mbfoe/cd | QSTGFU | | R (pd) FUMNGS | Mbfoe/cd | QNTGFU | | R (pd) FUMRC1 | Mbfoe/cd | QSTGFU | | R (pd) FUMRC2 | Mbfoe/cd | QSTGFU | | R (pd) FUMRC3 | Mbfoe/cd | QSTGFU | | R (pd) FUMRN4 | Mbfoe/cd | QSTGFU | | R (pd) FUMRI4 | Mbfoe/cd | QSTGFU | | R (pd) FUMRHL | Mbfoe/cd | QSTGFU | | R (pd) FUMHYL | Mbfoe/cd | QSTGFU | | R (pd) FUM (rfothfu) | Mbfoe/cd | QOTHFU | | R (pd) FUM (pnfut) | Mbfoe/cd | RFFMT | | R (pd) GSF (mode) | M s-ton/cd | QCOKPRD, QSGSPRD (M bbl foe/cd) | | R (pd) GSH (mode) | M s-ton/cd | QCOKPRD, QHH2PRD (M bbl FOE/cd) | | TAGTLTOT | Mbbl/cd | AKGTLPRD, MINGTLNS | | T(r)OVCOBJ | 1000 \$87/cd | RFOPEXP | | T (pd) UNFNPP | \$87/bbl | RFWOP, NPPCOEF | | T (pd) UNFHGM | \$87/bbl | RFWOP, HGMCOEF | | T (pd) UNFARB | \$87/bbl | RFWOP, ARBCOEF | | | N/N/In /o el | RFELPURPD (MM KWh/cd), QELRF (Tril | | U (pd) KWH (column) | MWh/cd | Btu/yr) | | U (pd) KWH (row) | \$87/ KWh (dual) | PRFELPURPD (\$87/ KWh) | | U (pd) NGF (row) | \$87/MMcf (dual) | PRFNGFU, PGININ, OGWPRNG | | VTPC (crd) | Mbbl/cd | FLOWCRD, CAPCRD (utz) | | VTPP (crd) | Mbbl/cd | FLOWPRD, CAPPRD (utz) | | VTPL (crd) | Mbbl/cd | FLOWLPG, CAPLPG | | W (pd) (prd) J (cd) | Mbbl/cd | FLOWPD_CT | | W (pd) (prd) 4 (cd) | Mbbl/cd | FLOWPD_DT | | W (pd) (prd) B (cd) | Mbbl/cd | FLOWPD_CB, FLOWPD_ECB | | W (pd) (prd) V (cd) | Mbbl/cd | FLOWPD_EMT, FLOWPD_DB | | W (cd) ETH M (pd) | Mbbl/cd | FLOWPD_EMT | | W (pd) (prd) O (cd) | Mbbl/cd | FLOWPD_LT | | W3ETH(m)(pd), | Mbbl/cd | QETHRFN | | W4ETH(m),(pd) | IVIDDI/Cd | | | X (pd) AST0 | M bbl FOE/cd | QASTPRD | | X (pd) CKLCOK | \$87/bbl | RFWOP, PCOKL | | X (pd) CKHCOK | \$87/bbl | RFWOP, PCOLH, [QCOKPRD (M s-ton/cd)] | | X (pd) SULSAL | 1000 sTon/cd | QSULSAL | | X (cd) ETHE85 | Mbbl/cd | RFETHE85 (MMbbl/cd), ETHE85CD | | X (cd) ETHRFG | Mbbl/cd | SBRFGRFG | | X (cd) ETHRFH | Mbbl/cd | SBRFGRFH | | X (cd) ETHTRG | Mbbl/cd | SBTRGTRG | | X (cd) ETHTRH | Mbbl/cd | SBTRGTRH | | ZZAMHTOT | Mbbl/cd | Function of WOP | | Z(pd)CCKSUM | 1000 tonnes CO2/bbl FOE<br>M bbl FOE/cd | EPCIN<br>QCCOKFU | | Z(pd)CO2CPR | 1000 tonnes CO2/cd | CO2PD | | Z(pd)CECCPR | | | | Z(pd)CEBCPR | 1000 tonnes CO2/cd, | CCS_PMM | | Z(pd)CEXCPR | MM tonnes C /cd | | | Z (cd) ETHTAX | Mbbl/cd, \$87/bbl | CORNETH, CORNSUB | | Z (cd) ETCTAX | Mbbl/cd, \$87/bbl | CELLETH, CELLSUB | | Z@IRACX | \$87/bbl | RFWOP | | Z@IRACN | \$87/bbl | RFWOP | | | + - , · | _ · · | | PMM LP Variable | LP Units | NEMS Variable | |-----------------|----------|---------------------| | Z@TOTCRD | \$87/bbl | RFWOP, IRACN, IRACX | | Legend for Codes | | | | | |------------------|----------------------------|--------------------|------------|--| | Code | Name | Values | No. in Set | | | (bmq) | Liquid from Biomass | BNL, BNP, BKE, BDK | 4 | | | (cbq) | Liquid from Coal/Biomass | 2NL, 2NP, 2KE, 2DK | 4 | | | (cd) | Census Divisions | 1-9 | 9 | | | (clc) | Coal Supply curve (source) | 01 – 40 | 40 | | | (cld) | Coal Demand region | 01 – 14 | 14 | | | (clq) | Liquid from Coal | CNL, CNP, CKE, CDK | 4 | | | (clr) | Coal Rank | B, S, L, P | 4 | | | (cls) | Coal Sulfur Level | C, M, H, | 3 | | | (coal) | Average Coal Types | regional (CL1-CL5) | 5 | | | (crdtype) | Crude Types | LL-HV | 5 | | | (emissn) | Emissions | VOC-CAR | 6 | | | (emisst) | Combustion/Noncombustion | C,N | | | | (gbc) | Gasoline Blend Component | 00-12 | 13 | | | (iprd) | Imported Products | LPG-DSL | 12 | | | (minmax) | Minimum or Maximum | N,X | | | | (mod) | Operating mode | many | Many | | | (oxy) | Oxygenate | ETH, MET, MTB | 3 | | | (og) | Oil and Gas Divisions | 1-6,A | 7 | | | (pd) | Refinery Regions | E, C, G, M, W | 5 | | | (pnfut) | Refinery Fuels | NGS-PGU | 34 | | | (prcunit) | Process Units | ACU-PFA | 37 | | | (prd) | Products | LPG-M85 | 20 | | | (q(k)) | Quantities | 1-9 | 9 | | | (rfothfu) | Refinery Fuel for Other | JIH-NPN | 19 | | | (slq) | Liquid from Natural Gas | SNL, SNP, SKE, SDK | 4 | | | (spec) | Product Specifications | RV-BZ | 6 | | | Legend for Codes | | | | |------------------|------------------|-----------------------------|--| | Code | Name | Values | | | DS | Imported product | Distillate | | | MG, GS | Imported product | Conventional motor gasoline | | | JF | Imported product | Jet Fuel | | | DL, LD | Imported product | Low sulfur diesel | | | DU | Imported product | Ultra-low-sulfur diesel | | | LG | Imported product | LPG | | | OT | Imported product | Other | | | PF | Imported product | Petrochemical Feeds | | | RG | Imported product | Reformulated motor gasoline | | | RH | Imported product | High sulfur residual | | | RL | Imported product | Low sulfur residual | | | ME | Imported product | Methanol | | | MT | Imported product | MTBE | | ## **PMM Output Variables** | REFINERY MODULE OUTPUT VARIABLES (pmmftab) | | | | |----------------------------------------------------------------------------|--|--|--| | NAME UNITS DEFINITION | | | | | ADVCAPCD(MNUMCR,MNUMYR) Mbbl/cd Advanced Ethanol Plant Capacity | | | | | AEODFOC7 (MNUMYR) \$nominal/gal PMM expectation price: distillate fuel oil | | | | | REFINERY MODULE OUTPUT VARIABLES (pmmftab) | | | | |--------------------------------------------|--------------------|--------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | | | in CD 7 | | | AEOULSD C7 (MNUMYR) | \$nominal/gal | PMM expectation price: ULSD in CD 7 | | | AEOMMG C7 (MNUMYR) | \$nominal/gal | PMM expectation price: midgrade mogas in CD 7 | | | AEOHRC7 (MNUMYR) | \$nominal/gal | PMM expectation price: high-sulfur residual fuel oil in CD 7 | | | AEOLRC7 (MNUMYR) | \$nominal/gal | PMM expectation price:low-sulfur residual fuel oil in CD 7 | | | AEOJFC7 (MNUMYR) | \$nominal/gal | PMM expectation price: jet fuel in CD 7 | | | AEOLLSC7 (MNUMYR) | \$nominal/gal | PMM expectation price: Louisian low-<br>sulfur crude in CD 7 | | | AEOMAYAC7 (MNUMYR) | \$nominal/gal | PMM expectation price: Maya sour crude in CD 7 | | | AEOWTIC7(MNUMYR) | \$nominal/gal | WTI crude price in CD 7 | | | AEODFOC1(MNUMYR) | \$nominal/gal | PMM expectation price: distillate fuel oil in CD 1 | | | AEOHRC1(MNUMYR) | \$nominal/gal | PMM expectation price: high-sulfur residual fuel oil in CD 1 | | | AEOJFC1(MNUMYR) | \$nominal/gal | PMM expectation price: jet fuel in CD 1 | | | AEOLRC1(MNUMYR) | \$nominal/gal | PMM expectation price:low-sulfur residual fuel oil in CD 1 | | | AEOMGC1(MNUMYR) | \$nominal/gal | PMM expectation price: regular mogas in CD 1 | | | AEOULSDC1(MNUMYR) | \$nominal/gal | PMM expectation price: ULSD in CD 1 | | | AEODFOC9(MNUMYR) | \$nominal/gal | PMM expectation price: distillate fuel oil in CD 9 | | | AEOHRC9(MNUMYR) | \$nominal/gal | PMM expectation price: high-sulfur residual fuel oil in CD 9 | | | AEOJFC9(MNUMYR) | \$nominal/gal | PMM expectation price: jet fuel in CD 9 | | | AEOMELSC9(MNUMYR) | \$nominal/gal | PMM expectation price: Middle East light sour crude in CD 9 | | | AEOMGC9(MNUMYR) | \$nominal/gal | PMM expectation price: regular mogas in CD 9 | | | AEOULSDC9(MNUMYR) | \$nominal/gal | PMM expectation price: ULSD in CD 9 | | | BANKUSED(MNUMYR) | billion credits | Number of banked credits used | | | BANKCRED(MNUMYR) | billion credits | Number of credits in the bank | | | BLDPRD(MNUMPR,MNUMYR) | MMbbl/cd | Product blending components input to refinery | | | BLDREFINC(MNUMPR,MNUMYR) | MMbbl/cd | Conventional gasoline blending components | | | BLDREFINR(MNUMPR,MNUMYR) | MMbbl/cd | Reformulated gasoline blending components | | | BTUTOTAL(MNUMYR) | Mt C per trill Btu | Total BTUs in all transportation fuels | | | CARBOFFSET(MNUMYR) | Mt C per year | Amount of C from petroleum that must be offset by biofuels | | | CARBTOTAL(MNUMYR) | Mt C per year | Total C in all transportation fuels | | | CBIODUAL(MNUMYR) | \$87/tonne | Price from biofuels offset row (CTRNBIO) | | | CPERBTU(MNUMYR) | Mt C per trill Btu | C per unit energy for transportation fuels | | | CELLCD(MNUMCR,MNUMYR) | Trill Btu/yr | Cellulose used for ethanol and BTL | | | CELLIMPFRAC(MNUMCR,MNUMYR) | fraction | fraction of ethanol imports that is cellulosic | | | CLLCAPCD(MNUMCR,MNUMYR) | Mbbl/cd | Cellulosic Ethanol Plant Capacity | | | CONEFF(MNUMYR) | gal/ton | Gallon Ethanol per short ton Cellulose | | | CRNCAPCD(MNUMCR,MNUMYR) | Mbbl/cd | Corn Ethanol Plant Capacity DDGS sold as feed | | | DDGSFEED(MNUMCR,MNUMYR) | tons | אווא פטחח פאחח פאחח פאחח | | | REFINERY MODULE OUTPUT VARIABLES (pmmftab) | | | | |--------------------------------------------|-----------------------|----------------------------------------------------|--
 | NAME | UNITS | DEFINITION | | | DDGSFUEL(MNUMCR,MNUMYR) | tons | DDGS sold/used as fuel | | | , | | DDGS (Dried distilled grain with solubles) | | | DDGSPRICE(MNUMCR,MNUMYR) | \$87/s-ton | price | | | DSCSHR(MNUMCR,MNUMYR) | | CARB diesel share of total DSU | | | DSMURS(MNUMCR,MNUMYR,2) | \$87/bbl | Residential Distillate Markups | | | DSMUTR(MNUMCR,MNUMYR,2) | \$87/bbl | Tran Distillate Markups | | | E85ICCREDIT(MNUMYR) | \$87/bbl | E85 infrastructure cost | | | ETHCREDIT(MNUMYR) | \$87/bbl | Ethanol credit price | | | ETHCREDITZ(MNUMYR) | Mbbl/day | Distress ethanol credits | | | ETHVOL(MNUMYR) | Fraction | RFS constraint of total pool (fraction) | | | FUEL_CARB(34,MNUMYR) | | Holds all "_CARB" variables by year | | | GAINPCT(MNUMPR,MNUMYR) | Fraction | Gain as percent | | | GRD2DSQTYCD(MNUMCR,MNUMYR) | Mbbl/cd | Quantity of green diesel to distillate | | | GRNCAPCD | Mbbl/ce | Non-corn, non-adv ethanol plant capacity | | | GRNCD(MNUMCR,MNUMYR) | MM bushels/yr | Grain consumption by CD | | | GRN2MGQTYCD(MNUMCR,MNUMYR) | Mbbl/cd | Quantity of green naphtha to motor | | | , | фо <del>л</del> /ьы | gasoline | | | JFMUTR(MNUMCR,MNUYR,2) | \$87/bbl | Transportation Jet Fuel Markups | | | LCFSSAFE(MNUMYR) | Mt carbon<br>\$87/bbl | Safety valve for biofuels carbon constraint | | | MGMUTR(MNUMCR,MNUMYR,2) | \$87/001 | Transportation Gasoline Markups | | | MINREN(MNUMYR) | Mbbl/cd | Minimum renewable in gasoline and diesel | | | MX_IPMM_D_REG | 4 | Maximum number of int'l demand regions | | | MX_IPMM_D_STP | 20 | Maximum number of int'l demand steps | | | MX_IPMM_D_PRD | 18 | Maximum number of int'l demand products | | | MX_IPMM_D_AGR | 5 | | | | MX_IPMM_D_PRM | 10 | Maximum number of int'l demand forecast parameters | | | MX_IPMM_C_REG | 1 | Maximum number of int'l crude supply regions | | | MX_IPMM_C_STP | 9 | Maximum number of int'l crude supply steps | | | MX_IPMM_C_TYP | 5 | Maximum number of int'l crude types | | | MX IPMM R REG | 4 | Maximum number of int'l refinery regions | | | MX_IPMM_R_TYP | 2 | Maximum number of int'l refinery types | | | MX IPMM R PRD | 18 | Maximum number of int'l refinery products | | | MV IDMM D ODD | E | Maximum number of int'l refinery | | | MX_IPMM_R_OPR | 5 | operating modes | | | MX_IPMM_T_MOD | 10 | Maximum number of int'l transportation modes | | | NGLRF(MNUMPR,MNUMYR,6,2) | MM bbl/cd | Natural gas liquids to refinery | | | OTHOXY(MNUMPR,MNUMYR) | MM bbl/cd | Oxygenates, hydrogen, and other hydrocarbons | | | PALBOB(MNUMCR,MNUMYR) | \$87/bbl | wholesale gasoline price | | | PALMG(MNUMCR, MNUMYR) | \$87/bbl | Motor gasoline all combined | | | PDS(MNUMCR, MNUMYR) | \$87/bbl | Distillate fuel oil | | | PDSCRB(MNUMCR,MNUMYR) | \$87/bbl | CARB diesel price | | | PDSL(MNUMCR, MNUMYR) | \$87/bbl | Low sulfur diesel | | | PDSU(MNUMCR,MNUMYR) | \$87/bbl | Ultra Low Sulfur Diesel | | | PDSC(MNUMCR,MNUMYR) | 87\$/MMBtu | AVG PR for DS for COM | | | PDSI(MNUMCR,MNUMYR) | 87\$/MMBtu | AVG PR for DS for IND | | | PDST(MNUMCR,MNUMYR) | 87\$/MMBtu | AVG PR for DS for TRN | | | PDSUTR(MNUMCR,MNUMYR) | 87\$/MMBtu | ULTRA LOW SUL DIESEL, TRN PRICE | | | REFINERY MODULE OUTPUT VARIABLES (pmmftab) | | | | |--------------------------------------------|-----------------|--------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | PDSLTR(MNUMCR,MNUMYR) | 87\$/MMBtu | LOW SUL DIESEL, TRN PRICE | | | PJF(MNUMCR, MNUMYR) | \$87/bbl | Jet fuel | | | PLMQTYCD(MNUMCR,MNUMYR) | Mbbl/cd | Palm Oil Imports | | | PN2HTR(MNUMCR,MNUMYR) | 87\$/MMBtu | 2370ppm DIESEL, TRN PRICE | | | PRIORCREDIT(MNUMYR) | billion credits | Prior year credits | | | PSA_TAB(35,MNUMPR,MNUMYR) | M bbl/cd | Refinery unit capacity from PSA report | | | QDSUTR(MNUMCR,MNUMYR) | trilBTU/yr | ULTRA LOW SUL DIESEL, TRN QTY | | | QDSLTR(MNUMCR,MNUMYR) | trilBTU/yr | LOW SUL DIESEL, TRN QTY, | | | QN2HTR(MNUMCR,MNUMYR) | trilBTU/yr | 2370ppm DIESEL, TRN QTY, | | | QDSUIN(MNUMCR,MNUMYR) | trilBTU/yr | ULTRA LOW SUL DIESEL, IND QTY | | | QDSLIN(MNUMCR,MNUMYR) | trilBTU/yr | LOW SUL DIESEL, IND QTY | | | QN2HIN(MNUMCR,MNUMYR) | trilBTU/yr | 2370ppm DIESEL, IND QTY | | | QDSUCM(MNUMCR,MNUMYR) | trilBTU/yr | ULTRA LOW SUL DIESEL, COM QTY | | | QDSLCM(MNUMCR,MNUMYR) | trilBTU/yr | LOW SUL DIESEL, COM QTY | | | QN2HCM(MNUMCR,MNUMYR) | trilBTU/yr | 2370ppm DIESEL, COM QTY | | | RFBTLWH(MNUMYR) | Mbbl/cd | BTL liquid directly to product pool | | | RFCBTLWH(MNUMYR) | Mbbl/cd | CBTL liquid directly to product pool | | | RFCTLWH(MNUMYR) | Mbbl/cd | CTL liquid directly to product pool | | | RFDSTSHD(MNUMPR,MNUMYR) | MMbbl/cd | Refinery idle capacity | | | RFENVFX(MNUMCR, MNUMYR,20) | \$87/bbl | Refinery Environmental Fixed Costs | | | RFHCXH2IN(MNUMPR,MNUMYR) | MMbbl/cd | H ₂ from natural gas to refinery | | | RFIMPEXPEND(MNUMYR) | billion \$87/yr | Import Expenditures | | | RFOXYIN(MNUMPR,MNUMYR) | billion worry | Oxygenates input to refinery | | | RFQEL(MNUMYR) | MMbbl/cd | Utility product demand | | | , | | Consumption of natural gas feedstocks to | | | RFQNGPF(MNUMCR,MNUMYR) | trilBTU/yr | H ₂ | | | RFQSGPF(MNUMCR,MNUMYR) | trilBTU/yr | Consumption of still gas feedstocks to H ₂ | | | RFQIN(MNUMYR) | MMbbl/cd | Industrial product demand | | | RFQRC(MNUMYR) | MMbbl/cd | Residential/Commercial product demand | | | RFQSECT(MNUMYR) | MMbbl/cd | Total sectoral demand | | | RFQTR(MNUMYR) | MMbbl/cd | Transportation product demand | | | RFSCREDIT(MNUMYR) | \$87/bbl | RFS constraint shadow price | | | RFSG2H2IN(MNUMPR,MNUMYR) | Mbfoe/cd | Still gas input to refinery for hydrogen | | | SBO_FUEL(MNUMCR,MNUMYR) | Mbbl/cd | Soybean oil consumption for fuel | | | SBO_PRICE(MNUMCR,MNUMYR) | \$87/bbl | Soybean oil price | | | SBO2GDTPD(MNUMPR,MNUMYR) | Mbbl/cd | SBO to green diesel | | | SBOQTYCD(MNUMCR,MNUMYR) | Mbbl/cd | SBO oil quantity | | | TOTCRDIN((MNUMPR,MNUMYR) | MMbbl/cd | Crude oil input to refinery | | | TOTUFOIN(MNUMPR,MNUMYR) | MMbbl/cd | Unfinished oil input to refinery | | | UBAVOLDS(MNUMPR,MNUMYR) | Mbbl/cd | pyrolysis liquid blended into diesel | | | UBAVOLMG(MNUMPR,MNUMYR) | Mbbl/cd | pyrolysis liquid blended into mogas | | | USPLTRIF(300,MNUMYR) | \$87/bbl | U.S. pipeline tariff (300 of them) | | | WGR FUEL(MNUMCR,MNUMYR) | Mbbl/cd | Other feedstock (eg, white grease) | | | VVOIX_I OLL(IVIIVOIVICIX,IVIIVOIVITIX) | IVIDDI/CU | consumption for biodiesel | | | WGR_PRICE(MNUMCR,MNUMYR) | \$87/bbl | Price for other feedstock (eg, white grease) biodiesel | | | WGR2GDTPD(MNUMPR,MNUMYR) | Mbbl/cd | WGR to green diesel | | | WS_RBOB(MNUMCR,MNUMYR) | \$87/bbl | Wholesale price of mogas | | | YGR2GDTPD(MNUMPR,MNUMYR) | Mbbl/cd | YGR to green diesel | | | YGR_FUEL(MNUMCR,MNUMYR) | Mbbl/cd | Yellow grease consumption for fuel | | | | | | | | YGR_PRICE(MNUMCR,MNUMYR) | \$87/bbl | Yellow grease price | | ## REFINERY MODULE OUTPUT VARIABLES (pmmout) | NAME | UNITS | DEFINITION | |-----------------------------|------------------|--------------------------------------------------------------------------------| | AKGTLEXP(MNUMYR) | Mbbl/cd | GTL exported from Alaska | | AKGTLPRD(MNUMYR) | Mbbl/cd | GTL produced in Alaska | | AKGTL_NGCNS(MNUMYR) | BCF | Natural gas consumed in GTL process | | BTLFRAC(4, MNUMPR,MNUMYR) | MMbbl/cd | Quantity of BTL liquid produced by type | | CTLFRAC(4, MNUMPR,MNUMYR) | MMbbl/cd | Quantity of CTL liquid produced by type | | CBTLFRAC(2,4,MNUMPR,MNUMYR) | MMbbl/cd | Liquids produced from coal/biomass combo plant (1 if by coal, 2 if by biomass) | | CRNPRICE(MNUMCR,MNUMYR) | \$87/bushel | Price of corn | | DCRDWHP(MNUMOR,MNUMYR) | \$87/bbl | Domestic crude wellhead price | | ETHNE85 | Fraction | Percent ethanol in E85 | | ETHCREDITZ(MNUMYR) | Mbbl/cd | Distress ethanol credits | | GLBCRDDMD(MNUMYR) | Mbbl/cd | World crude oil demand (PMM results) | | GTLFRAC(4, MNUMPR,MNUMYR) | MMbbl/cd | Quantity of GTL liquid produced by type | | QBMRFBTL(MNUMCR,MNUMYR) | TrilBTU/yr | Quantity of biomass for BTL | | QCLRFPD(MNUMPR,MNUMYR) | Tril BTU/yr | Quantity of coal for CTL | | QCRDRF(MNUMPYR,MNUMYR,6,4) | Mbbl/cd | Quantity of crude input to refinery | | QMERF(MNUMCR,MNUMYR) | Tril BTU/yr | Quantity of methanol purchased by refineries | | RFBTLPRD(MNUMYR) | Mbbl/Day | Quantity of liquids from biomass | | RFCTLPRD(MNUMYR) | Mbbl/Day | Quantity of liquids from coal | | RFCBTLPRD(MNUMYR) | Mbbl/Day | Quantity of liquids from coal/biomass combo | | RFDCRDP(MNUMOR,MNUMYR,5) | \$87/bbl | Domestic crude price by crude type | | RFQDCRD(MNUMOR+2,MNUMYR) | MMbbl/yr | Domestic conventional crude | | RFQDINPOT(MNUMPR,MNUMYR) | MMbbl/cd | Quantity other input to refinery | | RFPQNGL(MNUMPR,MNUMYR,6,2) | \$87/bbl,Mbbl/cd | Prc/quan of NGL by PAD district | | RFQNGPFCD(MNUMCR,MNUMYR) | Tril BTU/yr | Natural gas to H ₂ sent to NGTDM module | | TRGNE85 | Fraction | Percent TRG in E85 | | RFQPRCG(MNUMPR,MNUMYR) | MMbbl/cd | Quantity of processing gains | | RFQPRDT(MNUMCR, MNUMYR) | MMbbl/cd | Total product supplied | | RFQTDCRD(MNUMOR+2,MNUMYR) | MMbbl/yr | Total domestic crude | | RFSPRFR(MNUMYR) | MMbbl/cd | Rf spr fill rate | | RFSPRIM(MNUMYR) | MMbbl/cd | Spr imports | | XDCRDWHP(MNUMOR,MNUMYR) | \$87/bbl | Expected domestic crude wellhead price | | XRFQDCRD(MNUMOR,MNUMYR) | MMbbl/yr | Expected domestic crude production | | REFINERY REPORT OUTPUT VARIABLES (pmmrpt) | | | | |-------------------------------------------|----------|-----------------------------------------------|--| | NAME UNITS DEFINITION | | | | | ADVETHCD(MNUMCR,MNUMYR) | Mbbl/cd | Advanced ethanol | | | BIMQTYCD(4,MNUMCR,MNUMYR) | MMbbl/cd | Quantity Biodiesel Produced by Type | | | BIODCONCD(2,MNUMCR,MNUMYR) | MMbbl/cd | QuantityBiodiesel consumed, virgin/non-virgin | | | BIODIMP(MNUMCR,MNUMYR) | MMbbl/cd | Biodiesel Exports | | | BIODIMP(MNUMCR,MNUMYR) | MMbbl/cd | Biodiesel Imports | | | REFINERY REPORT OUTPUT VARIABLES (pmmrpt) | | | | | |-------------------------------------------|------------------|--------------------------------------------------|--
--| | NAME | UNITS | DEFINITION | | | | BIODPRICE(MNUMCR,MNUMYR) | \$87/bbl | Biodiesel Price | | | | BLDIMP(MNUMPR, MNUMYR) | MMbbl/cd | Blending Component Imports | | | | CLLETHCD(MNUMCR, MNUMYR) | Mbbl/cd | Ethanol Produced from Cellulose | | | | CORNACRE(MNUMCR,MNUMYR) | Million Acres | Total Acreage Devoted to Growing Corn | | | | CORNCROP(MNUMCR,MNUMYR) | MMbushels | Total Corn Crop | | | | CORNEXP(MNUMCR,MNUMYR) | MMbushels | Net Corn Exports | | | | CRNCD(MNUMCR,MNUMYR) | MM bushels/yr | Corn consumption by CD | | | | CRNETHCD(MNUMCR, MNUMYR) | Mbbl/cd | Ethanol produced from corn | | | | DSSTTX(MNUMCR) | \$87/bbl | Diesel State Tax | | | | ETHEXP(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol Exports | | | | ETHE85CD(MNUMCR, MNUMYR) | Mbbl/cd | Total ethanol used for E85 production | | | | ETHGASCD(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol blended into motor gasoline (not used) | | | | ETHIMP(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol Imports | | | | ETHTOTCD(MNUMCR, MNUMYR) | Mbbl/cd | Total ethanol used | | | | , | | Non-corn, non-advanced, ethanol produced from | | | | GRNETHCD(MNUMCR,MNUMYR) | Mbbl/cd | grain | | | | GRSMRGN(MNUMPR, MNUMYR) | \$87/yr | Gross margin | | | | JFSTTX(MNUMCR) | \$87/bbl | Jet Fuel State Tax | | | | MGSTTX(MNUMCR) | \$87/bbl | Gasoline State Tax | | | | MUFTAX(MNUMYR,15) | \$87/MMBtu | Federal motor gasoline tax | | | | OTHETHCD(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol produced from other feedstock | | | | PETHANOL(MNUMCR,MNUMYR) | \$87/bbl | Price of corn ethanol in CD | | | | PETHM(MNUMCR,MNUMYR) | \$87/bbl | Marginal price for ethanol | | | | QPRDRF(MNUMPR, MNUMYR,30) | Mbbl/cd | Refinery production volumes | | | | | | | | | | QPRDEX(MNUMCR,30, MNUMYR) | Mbbl/cd | Refinery production exported | | | | RFBDSTCAP(MNUMPR, MNUMYR) | MMbbl/cd | Refinery base distillation capacity | | | | RFCRDOTH(MNUMPR, MNUMYR) | MMbbl/cd | Other crude imports by PAD District | | | | RFDPRDAST(MNUMPR, MNUMYR) | Mbbl/cd | Refinery production; asphalt & road oil | | | | RFDPRDCOK(MNUMPR, MNUMYR) | Mbbl/cd | Refinery production; petroleum coke | | | | RFDPRDDSL(MNUMPR, MNUMYR) | Mbbl/cd | Refinery production; low sulfur diesel | | | | RFDPRDDSU(MNUMPR, MNUMYR) | Mbbl/cd | Refinery production; ultra low sulfur diesel | | | | RFDPRDJTA(MNUMPR, MNUMYR) | Mbbl/cd | Refinery production; jet fuel | | | | RFDPRDKER(MNUMPR, MNUMYR) | Mbbl/cd | Refinery production; kerosene | | | | RFDPRDLPG(MNUMPR, MNUMYR) | Mbbl/cd | Refinery production; LPG | | | | RFDPRDN2H(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; no. 2 distillate | | | | RFDPRDN6B(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; high sulfur oil | | | | RFDPRDN6I(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; low sulfur residual oil | | | | RFDPRDOTH(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; other petroleum | | | | RFDPRDPCF(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; petrochemical feeds | | | | RFDPRDRFG(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; reformulated motor gasoline | | | | RFDPRDRFH(MNUMPR,MNUMYR) | Mbbl/cd | Refinery prd; reform. hi oxygen motor gasoline | | | | RFDPRDSTG(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; still gas | | | | RFDPRDTRG(MNUMPR,MNUMYR) | Mbbl/cd | Refinery production; motor gasoline | | | | RFDPRDTRH(MNUMPR,MNUMYR) | Mbbl/cd | Refinery prd; high oxygenated motor gasoline | | | | RFDPRDTRL(MNUMPR,MNUMYR) | Mbbl/cd | Domestic production of low sulfur gasoline | | | | RFDSCUM(MNUMPR,MNUMYR) | MMbbl/cd | Processing unit cumulative cap. Expansion | | | | RFDSTCAP(MNUMPR,MNUMYR) | Mbbl/cd | Refinery distillation capacity | | | | RFDSTUTL(MNUMPR,MNUMYR) | Percent | Capacity utilization rate | | | | RFETHD(MNUMYR) | MMbbl/cd | Domestic ethanol | | | | RFETHE85(MNUMPR,MNUMYR) | MMbbl/cd | Ethanol for E85 production | | | | RFIMCR(MNUMPR,MNUMYR) | MMbbl/YR | Crude net imports | | | | RFIMTP(MNUMPR,MNUMYR) | MMbbl/YR | Total prod net imports | | | | RFIPQCBOB(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports CBOB (P,Q) | | | | , , , , , , , , , , , , , , , , , , , , | , | | | | | REFINERY REPORT OUTPUT VARIABLES (pmmrpt) | | | | | |-------------------------------------------|-------------------|-----------------------------------------------------------|--|--| | NAME | UNITS | DEFINITION | | | | RFIPQCHH(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Import crude-high sulfur heavy | | | | RFIPQCHL(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Import crude-high sulfur light | | | | RFIPQCHV(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Import crude-high sulfur very heavy | | | | RFIPQCLL(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Import crude-low sulfur light (P,Q) | | | | RFIPQCMH(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Import crude-medium sulfur heavy | | | | RFIPQDL(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imported low sulfur distillate (P,Q) | | | | RFIPQDS(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports distillate (P,Q) | | | | RFIPQDU(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports ultra low sulfur distillate (P,Q) | | | | RFIPQJF(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports jet fuel (P,Q) | | | | RFIPQLFC(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports liquids from coal (P,Q) | | | | RFIPQLFG(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports liquids from natural gas (P,Q) | | | | RFIPQLG(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports Ipg (P,Q) | | | | RFIPQME(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports methanol (P,Q) | | | | RFIPQMG(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports motor gasoline (P,Q) | | | | RFIPQMT(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports mtbe (P,Q) | | | | RFIPQOT(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imported other (P,Q) | | | | RFIPQPF(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imported outer (1, 32) Imported petrochemical feeds (P,Q) | | | | , , , | | Imports reformulated gasoline before oxygenate | | | | RFIPQRBOB(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | blending (P,Q) | | | | RFIPQRG(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imported reformulated motor gasoline (P,Q) | | | | RFIPQRH(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports high sulfur resid (P,Q) | | | | RFIPQRL(MNUMPR,MNUMYR,2) | \$87/bbl,Mbbl/cd | Imports low sulfur resid (P,Q) | | | | RFMETCHM(MNUMPR,MNUMYR) | MMbbl/cd | Chemical methanol demand | | | | RFMETD(MNUMYR) | MMbbl/cd | Domestic methanol | | | | RFMETI(MNUMPR,MNUMYR) | MMbbl/cd | Imported methanol | | | | RFMETM85(MNUMPR,MNUMYR) | MMbbl/cd | Methanol for M85 production | | | | RFMTBD(MNUMPR,MNUMYR) | MMbbl/cd | Domestic MTBE production. | | | | RFMTBI(MNUMPR,MNUMYR) | MMbbl/cd | Imported MTBE | | | | RFPQIPRDT(MNUMPR,MNUMYR,2) | \$87/bbl,MMbbl/cd | Total imported product | | | | RFPQUFARB(MNUMPR,MNUMYR,2) | MMbbl/cd | Imports unfinished oils – residuum | | | | RFPQUFC(MNUMPR,MNUMYR,2) | MMbbl/cd | Total imports of unfinished crude | | | | RFPQUFHGM(MNUMPR,MNUMYR,2) | MMbbl/cd | Imports unfinished oils – heavy gas oils | | | | RFPQUFNPP(MNUMPR,MNUMYR,2) | MMbbl/cd | Imports unfinished oils – naphtha and lighter | | | | RFQARO(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of asphalt and road oil | | | | RFQDS(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of distillate fuel oil | | | | RFQEXCRD(MNUMPR,MNUMYR) | MMbbl/cd | Crude exported | | | | RFQEXPRDT(MNUMPR,MNUMYR) | MMbbl/cd | Total product exported | | | | RFQICRD(MNUMPR,MNUMYR) | MMbbl/cd | Imported total crude | | | | RFQJF(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of jet fuel | | | | RFQKS(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of kerosene | | | | FQLG(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of lpg | | | | RFQMG(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of motor gasoline | | | | RFQOTH(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of other | | | | RFQPCK(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of petroleum coke | | | | RFQPF(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of petrochemical feedstocks | | | | RFQRH(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of resid high sulfur | | | | RFQRL(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of resid low sulfur | | | | RFQSTG(MNUMCR,MNUMYR) | MMbbl/cd | Quantity of still gas | | | | SBOQGDCD(MNUMCR,MNUMYR) | Mbbl/cd | Quantity of green naphtha/diesel from SBO | | | | TDIESEL(MNUMCR,MNUMYR) | Mbbl/cd | Total diesel in all sectors | | | | TOTPRD(MNUMPR,MNUMYR) | MMbbl/cd | Total refinery product sold | | | | WGRQGDCD(MNUMCR,MNUMYR) | Mbbl/cc | Quantity of green naphtha/diesel from WGR | | | | YGRQGDCD(MNUMCR,MNUMYR) | Mbbl/cd | Quantity of green naphtha/diesel from YGR | | | | | | additing of groot haphina/aloool from Tork | | | | PRICE VARIABLES (mpblk, ampblk, (in apq)) | | | | | |-------------------------------------------|------------|--------------------------------------------|--|--| | NAME | UNITS | DEFINITION | | | | PASIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Asphalt, Road Oil, Industrial | | | | PDSAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Distillate, All Sectors | | | | PDSCM(MNUMCR,MJUMPYR) | \$87/MMBtu | Distillate, Commercial | | | | PDSEL(MNUMCR,MJUMPYR) | \$87/MMBtu | Distillate, Electricity (+petroleum coke) | | | | PDSIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Distillate, Industrial | | | | PDSRS(MNUMCR,MJUMPYR) | \$87/MMBtu | Distillate, Residential | | | | PDSTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Distillate, Transportation | | | | PETTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Ethanol, Transportation | | | | PJFTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Jet Fuel, Transportation | | | | PKSAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Kerosene, All Sectors | | | | PKSCM(MNUMCR,MJUMPYR) | \$87/MMBtu | Kerosene, Commercial | | | | PKSIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Kerosene, Industrial | | | | PKSRS(MNUMCR,MJUMPYR) | \$87/MMBtu | Kerosene, Residential | | | | PLGAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Liquid Petroleum Gases, All Sectors | | | | PLGCM(MNUMCR,MJUMPYR) | \$87/MMBtu | Liquid Petroleum Gases, Commercial | | | | PLGIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Liquid Petroleum Gases, Industrial | | | | PLGINPF(MNUMCR,MNUMYR) | \$87/MMBtu | Industrial LPG feedstock | | | | PLGRS(MNUMCR,MJUMPYR) | \$87/MMBtu | Liquid Petroleum Gases, Residential | | | | PLGTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Liquid Petroleum Gases, Transportation | | | | PMETR(MNUMCR,MJUMPYR)
| \$87/MMBtu | Methanol, Transportation | | | | PMGAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Motor Gasoline, All Sectors | | | | PMGCM(MNUMCR,MJUMPYR) | \$87/MMBtu | Motor Gasoline, Commercial | | | | PMGIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Motor Gasoline, Industrial | | | | PMGTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Motor Gasoline, Transportation | | | | POTAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Other Petroleum, Industrial | | | | POTIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Other Petroleum, Industrial | | | | POTTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Other Petroleum, Transportation | | | | PPFIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Petrochemical Feedstocks, Industrial | | | | PRHAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Residual Fuel, High Sulfur, All Sectors | | | | PRHEL(MNUMCR,MJUMPYR) | \$87/MMBtu | Residual Fuel, High Sulfur, Electricity | | | | PRHTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Residual Fuel, High Sulfur, Transportation | | | | PRLAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Residual Fuel, Low Sulfur, All Sectors | | | | PRLCM(MNUMCR,MJUMPYR) | \$87/MMBtu | Residual Fuel, Low Sulfur, Commercial | | | | PRLEL(MNUMCR,MJUMPYR) | \$87/MMBtu | Residual Fuel, Low Sulfur, Electricity | | | | PRLIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Residual Fuel, Low Sulfur, Industrial | | | | PRLTR(MNUMCR,MJUMPYR) | \$87/MMBtu | Resid. Fuel, Low Sulfur, Transportation | | | | QUANTITY VARIABLES (qblk) | | | | |---------------------------|-------------|-------------------------------------|--| | NAME UNITS | | DEFINITION | | | QELRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Purchased Electricity, Refinery | | | QNGRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Natural Gas, Refinery | | | QDSRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Distillate, Refinery | | | QLGRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Liquid Petroleum Gases, Refinery | | | QRLRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Low Sulfur, Refinery | | | QRSRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Refinery | | | QSGRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Still Gas, Refinery | | | QPCRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Petroleum Coke, Refinery | | | QOTRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Other Petroleum, Refinery | | | OIL AND GAS SUPPLY MODEL VARIABLES (ogsmout) | | | |----------------------------------------------|-------|------------| | NAME | UNITS | DEFINITION | | | AKNG_SUPCRV(3,2,MJUMPYR | ) \$87/mcf, Bcf | NG supply curve for GTL production in Alaska | |--|-------------------------|-----------------|----------------------------------------------| |--|-------------------------|-----------------|----------------------------------------------| | CHP VARIABLES (cogen) | | | | |-------------------------------|---------|---------------------------|--| | NAME | UNITS | DEFINITION | | | CGRECAP(MNUMCR,MJUMPYR,5,2,2) | MW | Refinery CHP Capacity | | | CGREGEN(MNUMCR,MJUMPYR,5,2) | GWh | Refinery CHP Generation | | | CGREQ(MNUMCR,MJUMPYR,5,2) | TrilBtu | Refinery Fuel Consumption | | | RENEWABLE VARIABLES (wrenew) | | | | | |-------------------------------------------------------------|-----------------|-----------------------------------|--|--| | NAME | UNITS | DEFINITION | | | | PBMET(MNUMCR,MNUMYR,NUMETHQ) | 87\$/MMBtu | Ethanol Price | | | | PMMBMDUAL(MNUMCR,MNUMYR) | \$87/MMBtu | Dual on Biomass Row in PMM | | | | QCLETH(MJUMPYR,MNUMCR) | TrilBtu/yr | Coal total, Ethanol plants | | | | QELETH(MJUMPYR,MNUMCR) | TrilBtu/yr | Purchased Electricity total, | | | | , | Triibtai yi | Ethanol plants | | | | QNGETH(MJUMPYR,MNUMCR) | TrilBtu/yr | Natural gas total, Ethanol plants | | | | QBMET(MNUMCR,MNUMYR,NUMETHQ),4 | Mbbl/cd | Biomass Ethanol quantity | | | | WDPMMCURVP(MNUMCR,MNUMYR,NWDSUPP) | 1000 MMBtu/cd | Wood supply curve prices for | | | | WDI MIMOORVI (MINOMOR,MINOMITA,INWDSOIT) | 1000 MINIDIA/CA | PMM | | | | WDPMMCURVQ(MNUMCR,MNUMYR+5,NWDSUPQ) | Mbbl/cd | Wood supply curve quantities | | | | VVDI IVIIVIOOITV Q(IVIITOIVIOIT,IVIITOIVITIT+3,ITVV DOOT Q) | IVIDDI/ GG | for PMM | | | | HIGHWAY DIESEL VARIABLES (ponroad,qonroad) | | | | |--------------------------------------------|-------------|-----------------------------------------------------|--| | NAME UNITS DEFINITION | | | | | PDSTRHWY(MNUMCR,MJUMPYR) | \$87/MMBtu | On-road distillate price, transportation sector | | | QDSTRHWY(MNUMCR,MJUMPYR) | tril Btu/yr | On-road distillate quantity, transportation sector | | | CFDSTRHWY(MJUMPYR) | MMBtu/bbl | On-road distillate conversion factor, trans. sector | | | ACCESS DATABASE VARIABLES (pdbdef) | | | | |-------------------------------------|-------|----------------------|--| | NAME | UNITS | DEFINITION | | | ORCLPMM | None | DB transfer variable | | | PCHCOLVALS(PMAXCOLS,PMAXRECS) | None | DB transfer variable | | | PCHCOLV(PMAXTABS,PMAXCOLS,PMAXRECS) | None | DB transfer variable | | | PCOLVALS(PMAXCOLS,PMAXRECS) | None | DB transfer variable | | | PCOLV(PMAXTABS,PMAXCOLS,PMAXRECS) | None | DB transfer variable | | | PDYNSTM(PMAXTABS) | None | DB transfer variable | | | PFNRUN | None | DB transfer variable | | | PLOOPING(PMAXTABS) | None | DB transfer variable | | | PMAXRECS=100 | None | DB transfer variable | | | PNUMCOLS(PMAXTABS) | None | DB transfer variable | | | PTNUM | None | DB transfer variable | | ## **PMM Input Variables** | QUANTITY VARIABLES (qblk, pq, indout) | | | | |---------------------------------------|-------------|--------------------------------|--| | NAME | UNITS | DEFINITION | | | QCLRF(MNUMCR,MJUMPYR) | Tril Btu/Yr | Coal, Refinery | | | QMGCM(MNUMCR,MJUMPYR) | Tril Btu/Yr | Motor Gasoline, Commercial | | | QMGTR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Motor Gasoline, Transportation | | | QMGIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Motor Gasoline, Industrial | | | QMGAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Motor Gasoline, All Sectors | | | QJFTR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Jet Fuel, Transportation | | | QDSRS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Distillate, Residential | | | QUANTITY VARIABLES (qblk, pq, indout) | | | | |---------------------------------------|-------------|------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | QDSCM(MNUMCR,MJUMPYR) | Tril Btu/Yr | Distillate, Commercial | | | QDSTR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Distillate, Transportation | | | QDSIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Distillate, Industrial | | | QDSEL(MNUMCR,MJUMPYR) | Tril Btu/Yr | Distillate, Electricity (+petroleum coke) | | | QDSAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Distillate, All Sectors | | | QKSRS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Kerosene, Residential | | | QKSCM(MNUMCR,MJUMPYR) | Tril Btu/Yr | Kerosene, Commercial | | | QKSIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Kerosene, Industrial | | | QKSAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Kerosene, All Sectors | | | QLGRS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Liquid Petroleum Gases, Residential | | | QLGCM(MNUMCR,MJUMPYR) | Tril Btu/Yr | Liquid Petroleum Gases, Commercial | | | QLGTR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Liquid Petroleum Gases, Transportation | | | QLGIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Liquid Petroleum Gases, Industrial | | | QLGAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Liquid Petroleum Gases, All Sectors | | | QRLEL(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Low Sulfur, Electricity | | | QRLAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Low Sulfur, All Sectors | | | QRHEL(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, High Sulfur, Electricity | | | QRHAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, High Sulfur, All Sectors | | | QRSCM(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Commercial | | | QRSTR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Transportation | | | QRSIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Industrial | | | QRSEL(MNUMCR,MJUMPYR) | Tril Btu/Yr | Residual Fuel, Electricity | | | QPFIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Petrochemical Feedstocks, Industrial | | | QSGIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Still Gas, Industrial | | | QPCIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Petroleum Coke, Industrial | | | QPCEL(MNUMCR,MJUMPYR) | Tril Btu/Yr | Petroleum Coke, Electricity | | | QPCAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Petroleum Coke, All Sectors | | | QASIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Asphalt and Road Oil, Industrial | | | QOTTR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Other Petroleum Transp., (lubes, aviation gas) | | | QOTIN(MNUMCR,MJUMPYR) | Tril Btu/Yr | Other Petroleum, Industrial | | | QOTAS(MNUMCR,MJUMPYR) | Tril Btu/Yr | Other Petroleum, All Sectors | | | QMETR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Methanol Transportation | | | QETTR(MNUMCR,MJUMPYR) | Tril Btu/Yr | Ethanol Transportation | | | INQLGPF(MNUMCR,MNUMYR) | Tril Btu/Yr | Consumption of LPG feedstocks | | | PRICE VARIABLES (mpblk, efpout, pq) | | | | |-------------------------------------|------------|----------------------------------------------------|--| | NAME UNITS DEFINITION | | DEFINITION | | | EWSPRCN(MNUMNR,MNUMYR) | \$87/MMBtu | Average wholesale price (time wtd energy + reliab) | | | PELIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Purchased electricity, industrial | | | PNGIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Natural gas, industrial | | | PGIIN(MNUMCR,MJUMPYR) | \$87/MMBtu | Noncore industrial sector prices | | | PELAS(MNUMCR,MJUMPYR) | \$87/MMBtu | Average electricity prices for all sectors I | | | PCLIN(MNUMCR,MJUMPYR) | \$87/ton | Coal, industrial prices | | | EMISSIONS VARIABLES (emablk) | | | | |------------------------------|------------|------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | JNGIN(MJUMPYR) | \$87/MMBtu | NG Prices w/ emissions penalty, industrial | | | JCLIN(MJUMPYR) | \$87/MMBtu | Coal Prices w/ emissions penalty, industrial | | | JLGIN(MJUMPYR) | \$87/MMBtu | Liquid Petroleum Gases w/ emiss pen, Industrial | | | JRLIN(MJUMPYR) | \$87/MMBtu | Resid Fuel, low sulf, w/ emiss penalty, Industrial | | | JRHEL(MJUMPYR) | \$87/MMBtu | Resid Fuel, High Sulf, w/ emiss penalty, electricity | | | JOTIN(MJUMPYR) | \$87/MMBtu | Other petroleum, w/ emissions penalty, industrial | | | EMISSIONS VARIABLES (emablk) | | | | |------------------------------|------------
--------------------------------------------------|--| | NAME UNITS DEFINITION | | | | | JPCIN(MJUMPYR) | \$87/MMBtu | Petroleum Coke, w/ emissions penalty, industrial | | | JSGIN(MJUMPYR) | \$87/MMBtu | Still Gas, w/ emissions penalty, industrial | | | INTERNATIONAL MARKET MODEL VARIABLES (intout) | | | | |-----------------------------------------------|----------|----------------------------------|--| | NAME UNITS DEFINITION | | | | | IT_WOP(MJUMPYR,2) | \$87/bbl | World oil price (2units) | | | Q_ITIMCRSC(MJUMPYR,5,5,3) | Mbbl/cd | Crude import supply curve quant. | | | P_ITIMCRSC(MJUMPYR,5,5,3) | \$87/bbl | Crude import supply curve prices | | | IMPORTED PRODUCT SUPP.Y CURVES (intout, mxqblk, mxpblk (x), xpq) | | | | |------------------------------------------------------------------|------------------|----------------------------------|--| | NAME | UNITS | DEFINITION | | | ITIMRGSC(MJUMPYR,5,PRDSTEP,2) | \$87/bbl,Mbbl/cd | Reformulated motor gasoline | | | ITIMGSSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Tradition motor gasoline | | | ITIMDSSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Distillate | | | ITIMLDSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Low sulfur distillate | | | ITIMLRSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Low sulfur residual fuel | | | ITIMHRSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | High sulfur residual fuel | | | ITIMJFSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Jet fuel | | | ITIMLPSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | LPG | | | ITIMPFSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Petrochemical feed stocks | | | ITIMOTSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Other | | | ITIMMTSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | MTBE | | | ITIMXGSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | RBOB | | | ITIMXDSC(MJUMPYR,5, PRDSTEP,2) | \$87/bbl,Mbbl/cd | Ultra-low-sulfur diesel | | | ITIMUOSC(MNUMYR,5,PRDSTEPS,2,3) | 87\$/bbl,Mbbl/cd | Unfinished oil imports (3 types) | | | OIL AND GAS SUPPLY MODEL VARIABLES (ogsmout) | | | | |----------------------------------------------|---------|-------------------------------|--| | NAME UNITS DEFINITION | | | | | OGNGLAK(MJUMPYR) | Mbbl/cd | NGL from Alaska | | | OGQNGREP(MNOGCAT,MJUMPYR) | Bcf/Yr | NG production by gas category | | | NATURAL GAS TRANSMISSION AND DISTRIBUTION MODEL VARIABLES (ngtdmout) | | | |----------------------------------------------------------------------|--------|----------------------------------| | NAME UNITS DEFINITION | | | | PRNG_PADD(MNUMPR,MJUMPYR) | Bcf/Yr | Total dry gas production (W/L&P) | | NATURAL GAS TRANSMISSION AND DISTRIBUTION MODEL VARIABLES (ngtdmrep) | | | |----------------------------------------------------------------------|--------|-------------------------------------| | NAME UNITS DEFINITION | | | | OGPRDNG(MNUMOR,MJUMPYR) | Bcf/Yr | Domestic dry gas production (W/L&P) | | RENEWABLE VARIABLES (wrenew) | | | | |------------------------------|------------|-------------------------------------------|--| | NAME | UNITS | DEFINITION | | | WPETOH(MNCROP,MNUMCR,MJU | \$87/bbl | Ethanol price/step, from refeth.f | | | MPYR,MNETOH) | | | | | WQETOH(MNCROP,MNUMCR,MJU | Mbbl/cd | Ethanol quan/step, from refeth.f | | | MPYR,MNETOH) | | | | | PBMET(MNUMCR,MJUMPYR) | \$87/MMBtu | Ethanol price | | | WQTOT(MNUMCR,MNETOH) | Mbbl/cd | Incremental ethanol quantity, fr refeth.f | | | ETHCL(MJUMPYR,MNETOH) | MMBtu/gal | Coal by step | | | ETHEL(MJUMPYR,MNETOH) | MMBtu/gal | Electricity by step | | | ETHNG(MJUMPYR,MNETOH) | MMBtu/gal | NG by step | | | ECONOMIC VARIABLES (macout) | | | | |-----------------------------|---------|-------------------------------------------------------------------|--| | NAME UNITS DEFINITION | | | | | MC_PJGDP(-2:MJUMPYR) | Index | chained price index- gross domestic product; 1987=1.0 | | | MC_RMCORPBAA(MJUMPYR) | Percent | Industrial Baa Bond rate | | | MC_RMTCM10Y(MJUMPYR) | Percent | 10 year treasury note yield; percent per year, ave of daily rates | | | COAL VARIABLES (coalout) | | | | |------------------------------------|--------------------|------------------------------------------|--| | NAME | UNITS | DEFINITION | | | LCVELAS(MNUMPR,MJUMPYR) | Percent | Elasticity for CTL coal supply curve | | | LCVTONQ(MNUMPR,MJUMPYR) | MMton/yr | CTL coal supply curve production | | | LCVTONP(MNUMPR,MJUMPYR) | \$87/ton | CTL coal supply curve delivered price | | | LCVBTU(MNUMPR,MJUMPYR) | MMbtu/ton | CTL coal supply curve heat content | | | LTRNTON(MNUMPR,MJUMPYR) | \$87/ton | Coal transportation rate to CTL facility | | | PCLRFPD(MNUMPR,MJUMPYR) | \$87/MMBtu | Price of coal for CTL | | | L_SO2P(MNUMPR,MNUMYR) | \$87/MMBtu coal | Incremental cost of coal due to SO2 | | | <u> </u> | φοτηνιίνιΒία σσαί | allowance price | | | L_HGP(MNUMPR,MNUMYR) | \$87/MMBtu coal | Incremental cost of coal due to Hg | | | L_1101 (W11401W11 1X,1W11401W111X) | φοτ/iviivibtα coai | allowance price | | | COAL/EMM VARIABLES (coalemm) | | | | |---------------------------------|---------|----------------------------------------|--| | NAME UNITS DEFINITION | | | | | | | Mercury Emission Factor by Plant Type, | | | EMM_MEF(NSTEP,NRANK,NCLUT1) | factor | Coal Rank and Activated Carbon | | | | | Step(1=>No ACI) | | | DI NIT EME(ECDECAD NIDANIZ) | factor | Emission Modification Factor by Plant | | | PLNT_EMF(ECP\$CAP,NRANK) | factor | Type and Coal Rank | | | DOLOLNDANDOCO MANUMAYO NOLLITA) | | Combined Percent Removal by ECP | | | RCLCLNR(NDRGG,MNUMYR,NCLUT1) | percent | Plant Type | | | CTL COAL VARIABLES (uso2grp) | | | | | |-----------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|--|--| | NAME UNITS DEFINITION | | | | | | CTL_OTHER(MX_NCOALS,MNUMYR) | TrilBTU/yr | Expected non-CTL coal demand | | | | CTL_CDSL1(NDREG,MNUMPR) | fraction | Maps coal demand regions to refinery PADDs as fraction of total into PADD | | | | CTL_CLDR(NDREG) | flag: 0,1 | Does the coal demand region have CTL demand? ('0' means 'no'; '1' means 'yes') | | | | EFD_RANK(MX_NCOALS+MX_ISCV) | flag | EFD Coal Rank Indicator (0 - 4) | | | | CTL_TRATE(MX_NCOALS,NDREG) | 87\$/MMBtu | Coal transportation rates for Coal to Liquids | | | | CTL_TYPE(MX_NCOALS) | None | CTL coal type by supply curve | | | | XCL_1TESC(MX_NCOALS,0:ECP\$FPH, MNUMYR,NDREG) | fraction | Coal transportation rate multipliers | | | | XCL_BTU(MX_NCOALS + MX_ISCV) | MMBtu/ton | Average heat content by supply curve | | | | XCL_CAR(MX_NCOALS + MX_ISCV) | lbs CO ₂ /MMBtu | Average CO ₂ emissions fac of coal by supply curve | | | | XCL_HG(MX_NCOALS + MX_ISCV) | lbs Hg/trilBtu | Average mercury content of coal by supply curve | | | | XCL_PCAP(MX_NCOALS,MNUMYR) | trilBTU/yr | Current year coal mine capacity by supply curve | | | | XCL_MX_PCAP(MX_NCOALS) | fraction | Maximum allowable increase in coal mine productive capacity by supply curve for current year | | | | CTL COAL VARIABLES (uso2grp) | | | | |-----------------------------------|------------------------------|---------------------------------------------------|--| | NAME UNITS DEFINITION | | | | | XCL_QECP(MX_NCOALS,0:ECP\$FPH, | trilBTU | Coal supply quantities by supply curve | | | MNUMYR) | UIID I U | step | | | XCL_PECP(MX_NCOALS,11,0:ECP\$FP | 87\$/MMBtu | Coal supply prices by step - lower to | | | H,MNUMYR) | | upper | | | XCL_STEPS(11) | None | Number of steps on each coal supply | | | ACL_STEFS(TT) | NOTIC | curve | | | XCL_SO2(MX_NCOALS + MX_ISCV) | lbs SO ₂ /MMBtu | Average SO ₂ content of coal by supply | | | ACL_302(IVIA_INCOAL3 + IVIA_I3CV) | IDS 3O ₂ /WIVIDIU | curve | | | EMM VARIABLES (uecpout) | | | | |-------------------------|----------|------------------------------------------------------|--| | NAME UNITS DEFINITION | | | | | TRCTLFCF(MNUMNR) | fraction | Transmission FCF, stored for CTL decision in PMM | | | TRCTLOVR(MNUMNR) | 87\$/kW | Transmission overnight cost, stored for CTL decision | | | EMISSIONS VARIABLES (emission) | | | | | |---------------------------------|-----------------------|------------------------------------------|--|--| | NAME | NAME UNITS DEFINITION | | | | | EMCMC(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | Emissions by Region, commercial | | | | EMELC(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | Emissions by Region, electric utility | | | | EMETAX(15,MJUMPYR) | \$87/ton | Excise (Consumption) Tax by Fuel | | | | EMINCN(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | Non-comb emissions by region, industrial | | | | EMNT(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | NGTDM Emissions by Region | | | | EMPMCC(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | PMM Emissions by Region- Combined | | | | EMPMCN(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | PMM Emissions by Region-Noncombined | | | | EMRSC(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | Residential Emissions by Region | | | | EMTRC(MNUMCR,MNPOLLUT,MJUMPYR) | M tons/yr | Trans Emissions by Region | | | | NUM_SO2_GRP | number | Number of SO2 Compliance Groups | | | ## **Other PMM Variables** | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|--------------------|--------------------------------------|--| | NAME | UNITS | DEFINITION | | | P | MM PARAMETERS | | | | E85STP | = 9 | Number of steps in E85 Demand Curve | | | PMMPRDCRV | = 0.05 | Parameter for Adjusting Prices | | | PUNITSN | = 97 | Number of refinery processing units | | | XPRDSTEPS | = 9 | expanded steps on prd imp curv in LP | | | REFINE | RY PRODUCTS PRICES | | | | PAS(MNUMCR,MNUMYR) | \$87/bbl | Asphalt and road oil | | | PE85(MNUMCR,MNUMYR) | \$87/bbl | E85 | | | PKS(MNUMCR,MNUMYR) | \$87/bbl | Kerosene | | | PLG(MNUMCR,MNUMYR) | \$87/bbl | LPG | | | PM85(MNUMCR,MNUMYR) | \$87/bbl | M85 | | | PMG2TR(MNUMCR,MNUMYR) | \$87/bbl | TRG motor gasoline with markup | | | PMG3TR(MNUMCR,MNUMYR) | \$87/bbl | RFG motor gasoline with markup | | | PMG4TR(MNUMCR,MNUMYR) | \$87/bbl | TRH motor gasoline with markup | | | PMG5TR(MNUMCR,MNUMYR) | \$87/bbl |
RFH motor gasoline with markup | | | PMGRFG(MNUMCR,MNUMYR) | \$87/bbl | RFG motor gasoline | | | PMGRFH(MNUMCR,MNUMYR) | \$87/bbl | RFH motor gasoline | | | PMGTRG(MNUMCR,MNUMYR) | \$87/bbl | Conventional motor gasoline | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------|--| | NAME UNITS DEFINITION | | | | | PMGTRH(MNUMCR,MNUMYR) | \$87/bbl | TRH motor gasoline | | | POTH(MNUMCR,MNUMYR) | \$87/bbl | Other | | | PPC(MNUMCR,MNUMYR) | \$87/bbl | Petroleum coke | | | PPF(MNUMCR,MNUMYR) | \$87/bbl | Petrochemical feed stocks | | | PRH(MNUMCR,MNUMYR) | \$87/bbl | High sulfur residual fuel | | | PRHUT(MNUMCR,MNUMYR) | \$87/bbl | High sulfur utiltiy residual fuel | | | PRL(MNUMCR,MNUMYR) | \$87/bbl | Residual fuel oil low sulfur | | | PRLUT(MNUMCR,MNUMYR) | \$87/bbl | Low sulfur utility residual fuel | | | | FINERY FUEL USE | | | | QCCOKFU(MNUMPR,MNUMYR) | Mbfoe/cd | Cat COKE | | | QCDUPD(MNUMYR) | MMbbl/cd | Fuel burned (including petroleum coke) | | | QCOKFU(MNUMPR,MNUMYR) | Mbfoe/cd | Petroleum coke gasified and used as fuel | | | QCOLFU(MNUMPR,MNUMYR) | M s-ton/cd | Coal | | | QDISFU(MNUMPR,MNUMYR) | Mbbl/cd | Distillate | | | QLPGFU(MNUMPR,MNUMYR) | Mbbl/cd | LPG | | | QNTGFU(MNUMPR,MNUMYR) | Mbfoe/cd | Natural gas | | | QOTHFU(MNUMPR,MNUMYR) | Mbfoe/cd | Other | | | QRESFU(MNUMPR,MNUMYR) | Mbbl/cd | Residual fuel | | | QSTGFU(MNUMPR,MNUMYR) | Mbfoe/cd | Still gas | | | | MARKUPS BY SECTOR | 1 | | | ASMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | Asphalt and road oil, industrial | | | DSMUAS(MNUMCR,MNUMYR,2) | \$87/MMBtu | Distillate, all sectors | | | DSMUCM(MNUMCR,MNUMYR,2) | \$87/MMBtu | Distillate, commercial sector | | | DSMUEL(MNUMCR,MNUMYR,2) | \$87/MMBtu | Distillate, electricity generation | | | DSMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | Distillate, industrial sector | | | ETMUTR(MNUMCR,MNUMYR,2) | \$87/MMBtu | E85, transportation sector | | | ETSTTX(MNUMCR) | \$87/MMBtu | Same as ETMUTR above | | | KSMUAS(MNUMCR,MNUMYR,2) | \$87/MMBtu | Kerosene, all sectors | | | KSMUCM(MNUMCR,MNUMYR,2) | \$87/MMBtu | Kerosene, commercial sector | | | KSMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | Kerosene, industrial sector | | | KSMURS(MNUMCR,MNUMYR,2) | \$87/MMBtu | Kerosene, residential sector | | | LGMUAS(MNUMCR,MNUMYR,2) | \$87/MMBtu<br>\$87/MMBtu | LPG, all sectors LPG, commercial sector | | | LGMUCM(MNUMCR,MNUMYR,2) | | | | | LGMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | LPG, industrial sector | | | LGMURS(MNUMCR,MNUMYR,2) | \$87/MMBtu | LPG, residential sector | | | LGMUTR(MNUMCR,MNUMYR,2) | \$87/MMBtu | LPG, transporation sector Same as LGMUTR above | | | LGSTTX(MNUMCR) MEMUTR(MNUMCR,MNUMYR,2) | \$87/MMBtu<br>\$87/MMBtu | M85, transportation sector | | | MESTTX(MNUMCR) | \$87/MMBtu | Same as MEMUTR above | | | MGMUAS(MNUMCR,MNUMYR,2) | \$87/MMBtu | Motor gasoline, all sectors | | | MGMUCM(MNUMCR,MNUMYR,2) | \$87/MMBtu | Motor gasoline, all sectors Motor gasoline, commercial sector | | | MGMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | Motor gasoline, commercial sector | | | OTMUAS(MNUMCR,MNUMYR,2) | \$87/MMBtu | Other, all sectors | | | OTMUCM(MNUMCR,MNUMYR,2) | \$87/MMBtu | Other, commercial sector | | | OTMUEL(MNUMCR,MNUMYR,2) | \$87/MMBtu | Other, electricity generation | | | OTMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | Other, industrial sector | | | OTMURS(MNUMCR,MNUMYR,2) | \$87/MMBtu | Other, residential sector | | | OTMUTR(MNUMCR,MNUMYR,2) | \$87/MMBtu | Other markups transportation sector | | | PFMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | Petrochemical feed stocks | | | RFBMAST(MNUMCR) | \$87/bbl | AST benchmarking factor | | | RFBMCOK(MNUMCR) | \$87/bbl | COK benchmarking factor | | | THE DIVIDORY INTEREST OF THE PROPERTY P | ΨΟΙ/ΙΟΙ | T SON DONOMINATION IN TACKO | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|---------------------|-----------------------------------------|--| | NAME | UNITS | DEFINITION | | | RFBMDSL(MNUMCR) | \$87/bbl | DSL benchmarking factor | | | RFBMDSU(MNUMCR) | \$87/bbl | DSU benchmarking factor | | | RFBME85(MNUMCR) | \$87/bbl | E85 benchmarking factor | | | RFBMJTA(MNUMCR) | \$87/bbl | JTA benchmarking factor | | | RFBMKER(MNUMCR) | \$87/bbl | KER benchmarking factor | | | RFBMLPG(MNUMCR) | \$87/bbl | LPG benchmarking factor | | | RFBMM85(MNUMCR) | \$87/bbl | M85 benchmarking factor | | | RFBMN2H(MNUMCR) | \$87/bbl | N2H benchmarking factor | | | RFBMN67(MNUMCR) | \$87/bbl | N67 benchmarking factor | | | RFBMN68(MNUMCR) | \$87/bbl | N68 benchmarking factor | | | RFBMN6B(MNUMCR) | \$87/bbl | N6B benchmarking factor | | | RFBMN6I(MNUMCR) | \$87/bbl | N6I benchmarking factor | | | RFBMOTH(MNUMCR) | \$87/bbl | OTH benchmarking factor | | | RFBMPCF(MNUMCR) | \$87/bbl | PCF benchmarking factor | | | RFBMRFG(MNUMCR) | \$87/bbl | RFG benchmarking factor | | | RFBMRFH(MNUMCR) | \$87/bbl | RFH benchmarking factor | | | RFBMTRG(MNUMCR) | \$87/bbl | TRG benchmarking factor | | | RFBMTRH(MNUMCR) | \$87/bbl | TRH benchmarking factor | | | RHMUAS(MNUMCR,MNUMYR,2) | \$87/MMBtu | High-sulfur residual fuels, all sectors | | | , | <u> </u> | High-sulfur residual fuels, electricity | | | RHMUEL(MNUMCR,MNUMYR,2) | \$87/MMBtu | generation | | | | | High-sulfur residual fuels, | | | RHMUTR(MNUMCR,MNUMYR,2) | \$87/MMBtu | transportation sector | | | RHSTTX(MNUMCR) | \$87/MMBtu | Same as RHMUTR above | | | RLMUAS(MNUMCR,MNUMYR,2) | \$87/MMBtu | Low-sulfur resid., all sectors | | | RLMUCM(MNUMCR,MNUMYR,2) | \$87/MMBtu | Low-sulfur resid., commercial sector | | | , | • | Low-sulfur resid., electricity | | | RLMUEL(MNUMCR,MNUMYR,2) | \$87/MMBtu | generation | | | RLMUIN(MNUMCR,MNUMYR,2) | \$87/MMBtu | Low-sulfur resid., industrial sector | | | | | Low-sulfur resid., transportation | | | RLMUTR(MNUMCR,MNUMYR,2) | \$87/MMBtu | sector | | | RLSTTX(MNUMCR) | \$87/MMBtu | Same as RLMUTR above | | | | PETROLEUM PRODUCT F | | | | RFDLAST(MNUMCR,MNUMYR) | \$87/bbl | AST | | | RFDLCOK(MNUMCR,MNUMYR) | \$87/bbl | COK | | | RFDLDSL(MNUMCR,MNUMYR) | \$87/bbl | DSL | | | RFDLDSU(MNUMCR,MNUMYR) | \$87/bbl | DSU | | | RFDLE85(MNUMCR,MNUMYR) | \$87/bbl | E85 | | | RFDLJTA(MNUMCR,MNUMYR) | \$87/bbl | JTA | | | RFDLKER(MNUMCR,MNUMYR) | \$87/bbl | KER | | | RFDLLPG(MNUMCR,MNUMYR) | \$87/bbl | LPG | | | RFDLM85(MNUMCR,MNUMYR) | \$87/bbl | M85 | | | RFDLMG(MNUMCR,MNUMYR) | \$87/bbl | Motor gasoline | | | RFDLN2H(MNUMCR,MNUMYR) | \$87/bbl | N2H | | | RFDLN67(MNUMCR,MNUMYR) | \$87/bbl | N67 | | | RFDLN68(MNUMCR,MNUMYR) | \$87/bbl | N68 | | | RFDLN6B(MNUMCR,MNUMYR) | \$87/bbl | N6B | | | RFDLN6I(MNUMCR,MNUMYR) | \$87/bbl | N6I | | | RFDLOTH(MNUMCR,MNUMYR) | \$87/bbl | OTH | | | RFDLPCF(MNUMCR,MNUMYR) | \$87/bbl | PCF | | | RFDLRFG(MNUMCR,MNUMYR) | \$87/bbl | RFG | | | RFDLRFH(MNUMCR,MNUMYR) | \$87/bbl | RFH | | | RFDLTRG(MNUMCR,MNUMYR) | \$87/bbl | TRG | | | NI DET NO (IVINOIVICK, IVIINOIVITK) | φοτιυυι | ING | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | | |--------------------------------------------|------------------------------|-------------------------------------------------|--|--| | NAME | UNITS | DEFINITION | | | | RFDLTRH(MNUMCR,MNUMYR) | \$87/bbl | TRH | | | | | REFINERY GATE PRODUCT PRICES | | | | | RFGTAST(MNUMPR+1,MNUMYR) | \$87/bbl | AST | | | | RFGTCOK(MNUMPR+1,MNUMYR) | \$87/bbl | COK | | | | RFGTDSL(MNUMPR+1,MNUMYR) | \$87/bbl | DSL | | | | RFGTDSU(MNUMPR+1,MNUMYR) | \$87/bbl | DSU | | | | RFGTJTA(MNUMPR+1,MNUMYR) | \$87/bbl | JTA | | | | RFGTKER(MNUMPR+1,MNUMYR) | \$87/bbl | KER | | | | RFGTLPG(MNUMPR+1,MNUMYR) | \$87/bbl | LPG | | | | RFGTMG(MNUMPR+1,MNUMYR) | \$87/bbl | Motor gasoline | | | | RFGTN2H(MNUMPR+1,MNUMYR) | \$87/bbl | N2H | | | | RFGTN6B(MNUMPR+1,MNUMYR) | \$87/bbl | N6B | | | | RFGTN6I(MNUMPR+1,MNUMYR) | \$87/bbl | N6I | | | | RFGTOTH(MNUMPR+1,MNUMYR) | \$87/bbl | OTH | | | | RFGTPCF(MNUMPR+1,MNUMYR) | \$87/bbl | PCF | | | | RFGTRFG(MNUMPR+1,MNUMYR) | \$87/bbl | RFG | |
| | RFGTRFH(MNUMPR+1,MNUMYR) | \$87/bbl | RFH | | | | RFGTTRG(MNUMPR+1,MNUMYR) | \$87/bbl | TRG | | | | RFGTTRH(MNUMPR+1,MNUMYR) | \$87/bbl | TRH | | | | | UDE VARIABLES | | | | | CRDOTHTOT(MNUMPR,MNUMYR) | MMbbl/cd | Total other crude supplied | | | | CRDPRDSUP(MNUMPR,MNUMYR) | MMbbl/cd | Crude product withdrawals | | | | CRDSTWDR(MNUMPR,MNUMYR) | MMbbl/cd | Crude stock withdrawals | | | | CRDUNACC(MNUNPR,MNUMYR) | MMbbl/cd | Unaccounted crude | | | | FHLADD(MNUMPR) | Mbbl/cd | Additonal supply imports of HL crude | | | | OLEOYRS(MNUMOR,MNUMYR) | MMbbl | End of year reserves for oil | | | | OLEXTRT(MNUMOR,MNUMYR) | MMbbl/day/MMbbl | Production Ratio | | | | OLPELC(MNUMOR) | Dimensionless | Price elasticity beta | | | | OLWHP(MNUMOR) | \$87/bbl | Wellhead price for (year - 1) | | | | OLALP(MNUMOR) | Dimensionless | Wellhead price alpha | | | | OLBTA(MNUMOR) | Dimensionless | Wellhead price beta | | | | PCRDRF(MNUMPR,MNUMYR,5,3) | \$87/bbl | Price of crude, refinery gate | | | | PICRD(MNUMYR,MNUMPR,5,9) | \$87/bbl | Price of imported crude | | | | PQEXCRDIN(MNUMPR,MNUMYR) | Mbbl/cd | Exported crude except Alaskan | | | | PQUFC1(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 1 | | | | PQUFC2(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 2 | | | | PQUFC3(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 3 | | | | PQUFC4(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 4 | | | | PQUFC5(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 5 | | | | PQUFC6(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 6 | | | | PQUFC7(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 7 | | | | PQUFC8(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 8 | | | | PQUFC9(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 9 | | | | PQUFC10(MNUMPR,MNUMYR,2) | \$87/bbl, Mbbl/cd | Unfinished crude 10 | | | | PCTEXCRD(0:6) | percent | AK % of total U.S. crude exports (0=AK, 1-6=OG) | | | | QCRDRF(MNUMPR,MNUMYR,6,4) | Mbbl/cd | Quantity of crude, refinery gate | | | | QICRD(MNUMYR,MNUMPR,5,9) | Mbbl | Imported crude | | | | RFCRDDCR(MNUMYR) | Mbbl/cd | Domestic crude production | | | | RFCRDAKA(MNUMYR) | Mbbl/cd | Alaskan crude production | | | | RFCRDL48(MNUMYR) | Mbbl/cd | Lower 48 crude production | | | | RFCRDTOT(MNUMYR) | MMbbl/cd | Total crude production | | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|------------------|---------------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | TOTCRDIN(MNUMPR,MNUMYR) | MMbbl/cd | Total crude input to refinery | | | TOTUFOIN(MNUMPR,MNUMYR) | MMbbl/cd | Total crude input to refinery | | | WLLHDPR(MNUMOR,MNUMYR) | \$87/Bbl | Domestic crude well head price | | | XRFWOP(MNUMYR,2) | MMbbl/cd | Local expected WOP | | | | STMENT VARIABLES | | | | BLDYRS | Years | Construction period for process units | | | BM_ISBL(PUNITSN) | \$M | B&M ISBL (convert fr 93\$ to 87\$ in code) | | | BM_LABOR(PUNITSN) | \$/cd | B&M Labor (convert fr 93\$ to 87\$ in code) | | | BEQ_BLDAVG | Percent | Equity beta for build decision, average risk | | | BEQ_BLDHRSK | Percent | Equity beta for build decision, high risk | | | BEQ_OPRAVG | Percent | Equity beta for operating decision, average risk | | | BEQ_OPRHRSK | Percent | Equity beta for operating decision, high risk | | | CAPREC(PUNITSN) | \$87/bbl/cd | Capital recovery | | | CAPRECSW | Integer | Capital recovery switch for investment | | | CUMINSTRF(MNUMPR,PUNITSN+1,MNUMYR) | \$MM | Total refinery investment | | | EMRP_BLDAVG | Percent | Exp mkt risk prem for bld decision, avg risk | | | EMRP_BLDHRSK | Percent | Exp mkt risk prem for bld decision, high risk | | | EMRP_OPRAVG | Percent | Exp mkt risk prem for opr decision, avg risk | | | EMRP_OPRHRSK | Percent | Exp mkt risk prem for opr decision, high risk | | | ENV_FAC | Percent | Yearly environ, % of P&E | | | EQUITY | Percent | Average equity | | | EQUITY_BLDAVG | Percent | Equity for build decision, average risk | | | EQUITY_BLDHRSK | Percent | Equity for build decision, high risk | | | EQUITY_OPRAVG | Percent | Equity for operating decision, average risk | | | EQUITY OPRHRSK | Percent | Equity for operating decision, high risk | | | FTAXRAT(MNUMYR) | Fraction | Federal income tax rate | | | FXOC(PUNITSN) | \$87/bbl | Fixed operating costs | | | INFLRAT(MNUMYR) | Fraction | Inflation rate | | | INS FAC | Percentage | Yearly insurance, % of P&E | | | INV(MNUMPR,PUNITSN) | \$87/bbl/cd | Process unit investment | | | INVENV(PUNITSN) | Factor | Environment investment cost factor | | | INVLOC(PUNITSN) | Factor | Location investment penalty factor | | | INVST_MX1(MNUMPR) | M \$87/cd | Initial total maximum investment for capacity expansion | | | INVST_MX2(MNUMPR) | M \$87/cd | Final total maximum investment for capacity expansion | | | INVST_YR1(MNUMPR) | Year | Beginning year for limit on total capacity expansion investment | | | INVST_YR2(MNUMPR) | Year | End year for growth of limit on total capacity expansion investment | | | INVST0_FIN(MNUMPR, PUNITSN) | \$87/bbl/cd | Final investment | | | LABORLOC(MNUMPR) | Fraction | Location factor for labor | | | LADUKLUU(IVINUMPK) | rraction | Location factor for labor | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|--------------------|---------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | MAINT_FAC | Percentage | Yearly maintenance, % of P&E | | | OH_FAC | Percentage | Yearly overhead, % of P&E | | | OH_LCFAC | Percentage | OH op cost, as % of Labor+Staff | | | OSBLFAC | Fraction | Ratio of OSBL/ISBL | | | OTH_FAC | Fraction | Supplies, OH, Env as func of fixed | | | OTH_FAC | Fraction | cap invest | | | PCTCNTG | Percentage | Contingency | | | PCTENV | Percentage | ENV: % of core P&E | | | PCTLND | Percentage | LAND cost: % of core P&E | | | PCTOFS | Percentage | OFFSITES: % of core P&E | | | PCTLOC | Percentage | Location factor | | | PCTUTL | Percentage | UTIL cost: % of core P&E | | | PCTSPECL | Percentage | Special costs | | | PCTWC | Percentage | Working capital | | | PRJINFL | Fraction | Rate of inflation during construction | | | PRJLIFE | Years | Project life for process units | | | PRJSDECOM | MM 87\$ | Salvage value less depreciation | | | PUCAP(PUNITSN) | Mbbl/cd | Process unit capacity used for | | | , | | investment | | | RFCAPEXP(MNUMYR) | MM\$87/Day | Rf capital expenditures | | | RFCI(PUNITSN) | MM 87\$ | Fixed capital investment | | | RFDC((PUNITSN) | MM 87\$ | Total field direct costs (ISBL+OSBL) | | | RQBLDRAT(MNUMYR) | Fraction | Req. recovery rate for builds | | | ROTC(PUNITSN) | MM 87\$ | One-time costs | | | RQOPRRAT(MNUMYR) | Fraction | Req. recovery rate for operation | | | RQRECRAT | Fraction | Req. recovery rate | | | RTDI(PUNITSN) | MM 87\$ | Total depreciable investment | | | RTPI(PUNITSN) | MM 87\$ | Total project investment | | | SPRPTYR\$4 | Year | FTAB Year \$ for pmmrpts 1a,b,c,d | | | STAFF_LCFAC | Percentage | Staff Op cost, as % of Labor | | | STAXRAT(MNUMPR,MNUMYR) | Fraction | State income tax rate | | | SUP_FAC | Percentage | Yearly supplies, % of P&E | | | TAX_FAC | Percentage | Local tax rate, % of P&E | | | TECHNOLOGY | IMPROVEMENT VARIAB | | | | TYR1 | Year | First year of technology change phase-in—GLOBAL | | | TYR2 | Year | Last year of technology change | | | · · · · · · | | phase-in—GLOBAL | | | UYR1(50) | Year | First year of technology change phase-in PROCESS UNIT | | | UYR2(50) | Year | Last year of technology change phase-in-PROCESS UNIT | | | UTCHCNT | Text | Number of process units w/<br>technology change defined | | | PCT_CHNG(MNUMYR) | Fraction | Percent change off base coefficient | | | UPCT_CHNG(50,MNUMYR) | Fraction | due to technology—GLOBAL Percent change off base coefficient | | | | | due to technology—PROCUNIT | | | PUNIT | Integer | Number of process units with technology improvements | | | UNAMID(50) | Text | Process unit name | | | GLOBTECH | Logical | Flag to perform tech chng GLOBALLY | | | UNITTECH | Logical | Flag to perform technology change for | | | NAME NAME NAME PROCESS UNIT | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|-----------------------------------------------|--| | YLDUNIT(10) Text Process unit name for yield improvement improvement YLDYR(10) Integer Start year for yield improvement MNAMID(50) Text Process unit mode name PMODE(10) Integer Number of process unit mode for yield improvement YLDMODE(10,10) Text Process unit mode ID for yield improvement YLDMODE(10,10) Integer Number of stream for yield improvement YLDSTRM(10,10,11) Text Stream ID for yield improvement CHNCYLD(10,10,10) Real New yield coefficient for yield improvement FLGSIX(50) Integer Flag for gravity spec improvement FLGSIX(50) Integer Flag for suffur spec improvement SPCYR(50) Integer Flag for suffur spec improvement SPEC(60) Integer Flag for suffur spec improvement SSPEC(50) Integer # of stream specs for spec improvement SSPEC(50) Integer # of stream spec inprovement SSTRMID(50) Text Stream ID for spec improvement SSTRMID(50) Text Stream Spec ID for spec improvement CCSBTRMI(MNUMPR) </td <td></td> <td></td> <td>DEFINITION</td> | | | DEFINITION | | | MNAMID(50) Integer Start year for yield improvement | | | PROCESS UNIT | | | Integer Start year for yield improvement | YLDUNIT(10) | Text | | | | MNAMID(50) Text Process unit mode name | YLDYR(10) | Integer | | | | VLDMODE(10,10) Text Process unit mode ID for yield improvement | | | | | | Process unit mode ID for yield improvement | PMODE(10) | Integer | | | | Integer Improvement | YLDMODE(10,10) | Text | Process unit mode ID for yield improvement | | | CHNGYLD(10,10,10) Real New yield coefficient for yield improvement | PSTRM(10,10) | Integer | | | | Integer Flag for gravity spec improvement | YLDSTRM(10,10,11) | Text | Stream ID for yield improvement | | | FLGGRX(50) Integer FLag for gravity spec improvement FLGSLX(50) Integer Flag for sulfur spec improvement FLGSLX(50) Integer Flag for sulfur spec improvement SPCYR(50) Integer SPECID(50,10) Text Stream spec ID for spec improvement STRM Integer For the stream spec ID for spec improvement FLGSLX(50) Text Stream spec ID for spec improvement STRMID(50) Text Stream ID for spec improvement STRMID(50) Text Stream ID for spec improvement New yield coefficient for spec improvement CARBON CAPTURE AND STORAGE (CCS) PARAMETERS CCSBTRM1(MNUMPR) Parameter Intercept term 1 Intercept term 1 Intercept term 2 Intercept term 2 Intercept term 3 CCSMTRM2(MNUMPR) Parameter Intercept term 3 CCSMTRM1(MNUMPR) Parameter Slope term 3 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMPR) Parameter Slope term 3 Total CO₂ from XBL, compressed and ready for transport/sequestration CAPD(MNUMPR,A) CO2PDCRV(MNUMPR,A) COAL TO LIQUIDS (CTL) VARIBLES CTL_BASHIV MINDIAN MINDIAN CTL_BASCGS MW Base EVEI COIL unit CTL_BASCGS MW Base CHP for self consumption for CTL CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CTL BASCGF Fraction CTL GO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) MW Total CQP or graph the form CTL Iquid produced Total CHP capacity from CTL Iquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) MW Total CHP capacity from CTL Iquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGCTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL Iquid produced Total CHP capacity from CTL | CHNGYLD(10,10,10) | Real | | | | FLGSLX(50) Integer Flag for sulfur spec improvement SPCYR(50) Integer Year for spec improvement SPCYR(50) Integer # of stream specs for spec improvement # of stream specs for spec improvement SSPECID(50,10) Text Stream spec ID for spec improvement SSTRM Integer # of streams for spec improvement SSTRMID(50) Text Stream ID for spec improvement SSTRMID(50) Text Stream ID for spec improvement New yield coefficient for spec improvement New yield coefficient for spec improvement Intercept term 1 New yield coefficient for spec improvement Intercept term 1 Intercept term 1 Intercept term 1 Intercept term 2 Intercept term 2 Intercept term 3 4 Intercept term 4 Intercept term 5 te | FLGGRX(50) | Integer | | | | SPECyR(50) | | Integer | | | | SSPECIO) SSPECID(50,10) Text Stream spec ID for spec improvement SSTRM Integer | SPCYR(50) | | | | | SSPECID(50,10) Text Stream spec ID for spec improvement SSTRM Integer # of streams for spec improvement STRMID(50) Text Stream ID for spec improvement STRMID(50) Real New yield coefficient for spec improvement CARBON CAPTURE AND STORAGE (CCS) PARAMETERS CCSBTRM1(MNUMPR) Parameter Intercept term 1 CCSBTRM2(MNUMPR) Parameter Intercept term 2 CCSBTRM3(MNUMPR) Parameter Intercept term 3 CCSMTRM1(MNUMPR) Parameter Slope term 1 CCSMTRM2(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) CO2PD(MNUMPR,MNUMYR) CO2PD(MNUMPR,MNUMYR) COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton CTL_BASCOL Mt on/cd (coal) Base size for CTL unit CTL_BASCOL Mt on/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGF Fraction CTL OL GREACE CTL Units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) MW Frotal CHP capacity from CTL Ind CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) MW Total CHP capacity from CTL Ind f | SSPEC(50) | Integer | | | | Integer | ` ' | | | | | SSTRMID(50) CHNGSPC(50,10) Real Real Real New yield coefficient for spec improvement New yield coefficient for spec improvement improvement CARBON CAPTURE AND STORAGE (CCS) PARAMETERS CCSBTRM1(MNUMPR) Parameter CCSBTRM2(MNUMPR) Parameter Intercept term 1 CCSBTRM3(MNUMPR) Parameter CCSMTRM1(MNUMPR) Parameter Slope term 2 CCSMTRM1(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd GigaTonne CO2 GigaTonne CO2 GigaTonne CO2 CAID LIQUIDS (CTL) VARIABLES CTL_BASSIZ Mbbl/cd (liq out) Mton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGF Fraction CTL_BASCGF Fraction CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) MW Pooduced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) MW Pooduced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) MW Pooduced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGCSSing MW CTL_CGCSCOTI (MNUMPR,MNUMYR) Ratio CTL_CGCSSing MW CTL_CGCSSing MW CTL_CGCSSing CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGCSSing MW CTL_CGCSSing MW CTL_CGCSSing CTL_CGCSSing CTL_CGCSSing CTL_CGCSSing CTL_CGCSSing CTL_CCCSSSing CTL_CCC | | | | | | CARBON CAPTURE AND STORAGE (CCS) PARAMETERS CCSBTRM1(MNUMPR) Parameter Intercept term 1 CCSBTRM2(MNUMPR) Parameter Intercept term 2 CCSBTRM3(MNUMPR) Parameter Intercept term 3 CCSMTRM1(MNUMPR) Parameter Intercept term 3 CCSMTRM1(MNUMPR) Parameter Slope term 1 CCSMTRM2(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) Parameter Slope term 3 Total CO2 from XBL, compressed and ready for transport/sequestration Carbon supply curve corner points by PADD; 1=price, 2=quantity COALTO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton Coal HHV CTL_BASSIZ Mbbl/cd (liq out) Base size for CTL unit CTL_BASCGS MW Base CHP for self consumption for CTL CTL_BASCGG MW Base CHP for self consumption (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTL_BASCGF CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio | | | | | | CCSBTRM1(MNUMPR) Parameter Intercept term 1 CCSBTRM3(MNUMPR) Parameter Intercept term 2
CCSBTRM3(MNUMPR) Parameter Intercept term 3 CCSMTRM1(MNUMPR) Parameter Slope term 1 CCSMTRM2(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 3 CCSMTRM3(MNUMPR) Parameter Slope term 3 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) Parameter Slope term 3 Total CO2 from XBL, compressed and ready for transport/sequestration CO2PD(MNUMPR,MNUMYR) CO2PD(RV(MNUMPR,2) S/tonne CO2, Carbon supply curve corner points by PADD; 1=price, 2=quantity CO4PD(MNUMPR,2) MIDITARIAN MIDITARIAN CO4 (liq out) CTL_BASHHV MIDITARIAN MIDITARIAN Base slevel coal consumption for CTL CTL_BASCOL MIDITARIAN MIDITARIAN Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTL_BLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGTOT(MNUMPR,MNUMYR) Total CHP capacity from CTL processing | SSTRMID(50) | Text | | | | CCSBTRM1(MNUMPR) Parameter Intercept term 1 CCSBTRM2(MNUMPR) Parameter Intercept term 2 CCSBTRM3(MNUMPR) Parameter Intercept term 3 CCSMTRM1(MNUMPR) Parameter Slope term 1 CCSMTRM2(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd Total CO2 from XBL, compressed and ready for transport/sequestration CO2PDCRV(MNUMPR,2) S/tonne CO2; GigaTonne CO2 PADD; 1=price, 2=quantity COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton Coal HHV CTL_BASSIZ Mbb/rcd (liq out) Base size for CTL unit CTL_BASCOL M ton/cd (coal) Base level coal consumption for CTL CTL_BASCOS MW Base CHP for self consumption (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTL_BLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) CTL_CGFFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced KWh elec CHP to grid per bbl CTL liquid produced CTL_CGGFOCT(MNUMPR,MNUMYR) CTL_CGGTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL Total CTL processing | CHNGSPC(50,10) | Real | | | | CCSBTRM2(MNUMPR) Parameter Intercept term 2 CCSBTRM3(MNUMPR) Parameter Slope term 1 CCSMTRM1(MNUMPR) Parameter Slope term 2 CCSMTRM2(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd Total CO2 from XBL, compressed and ready for transport/sequestration CO2PDCRV(MNUMPR,2) S/tonne CO2; Carbon supply curve corner points by PADD; 1=price, 2=quantity CO4 TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton Coal HHV CTL_BASSIZ Mbbl/cd (liq out) Base size for CTL unit CTL_BASCOL M ton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTLBLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) CTL_CGFFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) CTL_CGGFAC(MNUMPR,MNUMYR) Ratio KWh elec CHP to grid per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) CTL_CGGFAC(MNUMPR,MNUMYR) MW Total CHP capacity from CTL Processing | CARBON CAI | PTURE AND STORAGE | (CCS) PARAMETERS | | | CCSBTRM3(MNUMPR) Parameter Intercept term 3 CCSMTRM1(MNUMPR) Parameter Slope term 1 CCSMTRM2(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd Total CO2 from XBL, compressed and ready for transport/sequestration CO2PDCRV(MNUMPR,2) \$/tonne CO2; Garbon supply curve corner points by PADD; 1=price, 2=quantity COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton Coal HHV CTL_BASSIZ Mbbl/cd (liq out) Base size for CTL unit CTL_BASCOL M ton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTLBLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio KWh elec CHP to grid per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Total CHP capacity from CTL processing | CCSBTRM1(MNUMPR) | Parameter | Intercept term 1 | | | CCSMTRM1(MNUMPR) Parameter Slope term 1 CCSMTRM2(MNUMPR) Parameter Slope term 2 CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd Total CO2 from XBL, compressed and ready for transport/sequestration CO2PDCRV(MNUMPR,2) S/tonne CO2; GigaTonne CO2 PADD; 1=price, 2=quantity COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton COal HHV CTL_BASSIZ Mbbl/cd (liq out) Base size for CTL unit CTL_BASCOL M ton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTLBLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) CTL_CGGFAC(MNUMPR,MNUMYR) MW Total CHP capacity from CTL processing | CCSBTRM2(MNUMPR) | Parameter | Intercept term 2 | | | CCSMTRM2(MNUMPR) CCSMTRM3(MNUMPR) Parameter Slope term 2 Slope term 3 CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd Carbon Supply curve corner points by PADD; 1=price, 2=quantity CO2PDCRV(MNUMPR,2) S/tonne CO2; GigaTonne CO2 PADD; 1=price, 2=quantity COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton CTL_BASSIZ Mbbl/cd (liq out) CTL_BASCOL Mt ton/cd (coal) Base size for CTL unit Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTLBLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced KWh elec CHP to grid per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) CTL_CGCTOT(MNUMPR,MNUMYR) Ratio Total CHP capacity from CTL Frocessing | , , | Parameter | · | | | CCSMTRM3(MNUMPR) Parameter Slope term 3 CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd Total CO2 from XBL, compressed and ready for transport/sequestration CO2PDCRV(MNUMPR,2) \$\fonne CO2; \\ \text{GigaTonne CO2} \\ \text{GigaTonne CO2} \\ \text{PADD; 1=price, 2=quantity} COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton Coal HHV CTL_BASSIZ Mbbl/cd (liq out) Base size for CTL unit CTL_BASCOL M ton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTL_CO2FAC(MNUMPR,MNUMYR) Ratio Lbs CO2 emiss per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio Total CHP capacity from CTL produced CTL_CGCTOT(MNUMPR,MNUMYR) | 1 / | | • | | | CO2PD(MNUMPR,MNUMYR) 1000 tonnes CO2/cd S/tonne CO2; GigaTonne CO2 GigaTonne CO2 Carbon supply curve corner points by PADD; 1=price, 2=quantity CO2PDCRV(MNUMPR,2) COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton CTL_BASSIZ MW CTL_BASCOL CTL_BASCOL M ton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGCTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL liquid produced KWh elec CHP per bbl CTL liquid produced KWh elec CHP to grid per bbl CTL liq produced CTL_CGGCTOT(MNUMPR,MNUMYR) Ratio Total CHP capacity from CTL processing | | | | | | CO2PDCRV(MNUMPR,2) \$\frac{1}{3}\text{fonne CO}_2\text{; GigaTonne CO}_2\text{ Carbon supply curve corner points by PADD; 1=price, 2=quantity} \text{Co2h Carbon supply curve corner points by PADD; 1=price, 2=quantity} \text{CTL_BASHHV} \text{MMbtuton} \text{Coal HHV} \text{CTL_BASSIZ} \text{Mbbl/cd (liq out)} \text{Base size for CTL unit} \text{Base color on sumption for CTL} \text{CTL_BASCOL} \text{M ton/cd (coal)} \text{Base level coal consumption for CTL} \text{CTL_BASCGS} \text{MW} \text{Base CHP for self consumption (from CTL)} \text{CTL_BASCGG} \text{MW} \text{Base CHP sold to grid (from CTL)} \text{CTL_BASCGF} \text{CTL_BASCGF} \text{Fraction} \text{CHP capacity factor (from CTL)} \text{CTLBLDX} \text{Number} \text{Max number of CTL units allowed} \text{CTL_CO2FAC(MNUMPR,MNUMYR)} \text{Ratio} \text{Ratio} \text{Batio} \text{CTL_CGFAC(MNUMPR,MNUMYR)} \text{Ratio} \text{CTL_CGGFAC(MNUMPR,MNUMYR)} \text{Ratio} \text{CTL_CGGFAC(MNUMPR,MNUMYR)} \text{Ratio} \text{CTL_CGGFAC(MNUMPR,MNUMYR)} \text{Ratio} \text{Total CHP to grid per bbl CTL liq produced} \text{CTL_CGCTOT(MNUMPR,MNUMYR)} \text{MW} \text{MW} \text{Potal CHP to grid per bbl CTL liq produced} \text{Total CHP capacity from CTL processing} | CCSMTRM3(MNUMPR) | Parameter | • | | | CO2PDCRV(MNUMPR,2) GigaTonne CO2 PADD; 1=price, 2=quantity COAL TO LIQUIDS (CTL) VARIABLES CTL_BASHHV MMbtu/ton Coal HHV CTL_BASSIZ Mbbl/cd (liq out) Base size for CTL unit CTL_BASCOL Mt ton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTLBLDX Number Max number of CTL units allowed Lbs CO2 emiss per bbl CTL liquid produced CTL_CGTFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio
CTL_CGGFAC(MNUMPR,MNUMYR) Ratio KWh elec CHP to grid per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) CTL_CGCTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL processing | CO2PD(MNUMPR,MNUMYR) | 1000 tonnes CO ₂ /cd | | | | CTL_BASHHV | CO2PDCRV(MNUMPR,2) | | | | | CTL_BASSIZ Mbbl/cd (liq out) Base size for CTL unit M ton/cd (coal) Base level coal consumption for CTL CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTLBLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGTFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGCTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL processing | COAL TO L | QUIDS (CTL) VARIABLES | | | | CTL_BASCOLM ton/cd (coal)Base level coal consumption for CTLCTL_BASCGSMWBase CHP for self consumption (from CTL)CTL_BASCGGMWBase CHP sold to grid (from CTL)CTL_BASCGFFractionCHP capacity factor (from CTL)CTLBLDXNumberMax number of CTL units allowedCTL_CO2FAC(MNUMPR,MNUMYR)RatioLbs CO2 emiss per bbl CTL liquid producedCTL_CGTFAC(MNUMPR,MNUMYR)RatioTotal KWh elec CHP per bbl CTL liquid producedCTL_CGGFAC(MNUMPR,MNUMYR)RatioKWh elec CHP to grid per bbl CTL liquid producedCTL_CGCTOT(MNUMPR,MNUMYR)MWTotal CHP capacity from CTL processing | | | | | | CTL_BASCGS MW Base CHP for self consumption (from CTL) CTL_BASCGG MW Base CHP sold to grid (from CTL) CTL_BASCGF Fraction CHP capacity factor (from CTL) CTLBLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio CTL_CGTFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio CTL_CGGFAC(MNUMPR,MNUMYR) Ratio Total CHP capacity from CTL processing | _ | | | | | CTL_BASCGG | CTL_BASCOL | M ton/cd (coal) | • | | | CTL_BASCGFFractionCHP capacity factor (from CTL)CTLBLDXNumberMax number of CTL units allowedCTL_CO2FAC(MNUMPR,MNUMYR)RatioLbs CO2 emiss per bbl CTL liquid producedCTL_CGTFAC(MNUMPR,MNUMYR)RatioTotal KWh elec CHP per bbl CTL liquid producedCTL_CGGFAC(MNUMPR,MNUMYR)RatioKWh elec CHP to grid per bbl CTL liq producedCTL_CGCTOT(MNUMPR,MNUMYR)MWTotal CHP capacity from CTL processing | CTL_BASCGS | MW | • ` ` | | | CTLBLDX Number Max number of CTL units allowed CTL_CO2FAC(MNUMPR,MNUMYR) Ratio Lbs CO2 emiss per bbl CTL liquid produced CTL_CGTFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio KWh elec CHP to grid per bbl CTL liq produced CTL_CGCTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL processing | _ | | | | | CTL_CO2FAC(MNUMPR,MNUMYR) Ratio Lbs CO2 emiss per bbl CTL liquid produced CTL_CGTFAC(MNUMPR,MNUMYR) Ratio Total KWh elec CHP per bbl CTL liquid produced CTL_CGGFAC(MNUMPR,MNUMYR) Ratio KWh elec CHP to grid per bbl CTL liq produced CTL_CGCTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL processing | _ | | | | | CTL_CGTFAC(MNUMPR,MNUMYR) Ratio produced Total KWh elec CHP per bbl CTL liquid produced KWh elec CHP to grid per bbl CTL liquid produced KWh elec CHP to grid per bbl CTL liquid produced Total CHP capacity from CTL processing | CTLBLDX | Number | | | | CTL_CGGFAC(MNUMPR,MNUMYR) Ratio liquid produced KWh elec CHP to grid per bbl CTL liq produced CTL_CGCTOT(MNUMPR,MNUMYR) MW Total CHP capacity from CTL processing | CTL_CO2FAC(MNUMPR,MNUMYR) | Ratio | | | | CTL_CGGFAC(MNUMPR,MNUMYR) Ratio KWh elec CHP to grid per bbl CTL liq produced Total CHP capacity from CTL processing | CTL_CGTFAC(MNUMPR,MNUMYR) | Ratio | | | | CTL_CGCTOT(MINUMPR,MINUMPR) MWV processing | CTL_CGGFAC(MNUMPR,MNUMYR) | Ratio | KWh elec CHP to grid per bbl CTL liq produced | | | | CTL_CGCTOT(MNUMPR,MNUMYR) | MW | | | | | CTL_CGCGD(MNUMPR,MNUMYR) | MW | | | | VARIABLES US | SED INTERNALLY IN PMM ( | pmmcom1) | |---------------------------|-------------------------|----------------------------------------------------| | NAME | UNITS | DEFINITION | | CTL_CGCSF(MNUMPR,MNUMYR) | MW | CHP capacity from CTL, to self | | CTL_CGGTOT(MNUMPR,MNUMYR) | MWh/cd | Total CHP elec generation from CTL processing | | CTL_CGGGD(MNUMPR,MNUMYR) | MWh/cd | CHP elec generation from CTL, to grid | | CTL_CGGSF(MNUMPR,MNUMYR) | MWh/cd | CHP elec generation from CTL, to self | | CTL_CO2EM(MNUMPR,MNUMYR) | M lbs/cd | CO ₂ emissions from CTL processing | | CTL_CSTFAC(MNUMPR) | Factor | Cap/op cost factor for CTL processing unit costs | | CTL_DCLCAPCST | Fraction | Annual decline rate for cap rec due to imprv tech | | CTL_DCLOPRCST | Fraction | Annual decline rate for opr cost due to imprv tech | | CTL_FXREC | Rate | Fixed cost recovery factor | | CTL_IMP(MNUMYR,5) | bil gal/yr | CTL Imports (not used) | | CTL_IMP_STYR | Year | CTL Imports Start Year (not used) | | CTL_INCBLD | M bbl/cd | Incremental build size for CTL processing units | | CTL_INVCST | \$87/bbl | CTL investment | | CTL_LIQNAM(CTL_NLIQ) | Char*3 | CTL liquid stream ID (1-3) | | CTL_LIQNCL | Integer | Number of CTL liquid stream types | | CTLMINP(MNUMPR,MNUMYR) | \$87/ton | Minemouth price of coal for CTL | | CTL_NAM(MNUMPR) | Char*4 | Coal ID + PADD (1-3,4) | | CTL_NCL | Integer | Number of coal types for CTL processing | | CTL_NLIQ | = 10 | Max number of liquid streams out of CTL | | CTL_PLNBLD(MNUMPR,MNUMYR) | M bbl/cd | Max CTL build capacity | | CTLTXCR(MNUMYR) | Nominal\$/bbl | CTL tax credit | | CUMCTLBLD(MNUMYR) | num units | M-B, cum CTL allowed to build | | CTLEPACT_FAC | fraction | % of actual CTL bld cost (reflects EPACT credit) | | CTLMAXEPACT | M bbl/cd | UL on CTL builds w/ EPACT credit | | CTL_BLDYRS | Year | Construction years for CTL build | | CTL_INVCST_CTZ | \$87/bbl | CTL inv cost, after EPACT credit | | CTL_INVLOC(MNUMPR) | multiplier | CTL location factor, padd 2 basis | | CTL_OH_LCFAC | Percent | % of Op Labor + Staffing | | CTL_OSBLFAC | Percent | Outside battery limit (already in ISBL for CTL) | | CTL_PCTCNTG | Percent | Contractor's + Owner's Contingency | | CTL_PCTENV | Percent | HomeOffice + Contractor's Fee | | CTL_PCTLND | Percent | Land | | CTL_PCTSPECL | Percent | Prepaid Royalties & License + Start_up costs | | CTL_PRJLIFE | number of years | Project life yrs for CTL | | CTL_PCTWC | Percent | Working Capital | | CTL_STAFF_LCFAC | Percent | Supervisory & other Staffing (% of Op Labor) | | EPACT_CRDT | MM\$2006 | CTL EPACT credit | | RFEWSPRCN(MNUMPR,MNUMYR) | \$87/MWh | Same as EWSPRCN, by padd | | IINDX | Index | Mansfield-Blackman innovation index | | PINDX | Index | Mansfield-Blackman relative profitability index | | NAME UNITS DEFINITION P CTLCOAL(MNUMPR,MNUMYR) \$87/nn Q CTLCOAL(MNUMPR,MNUMYR) \$7/nn Q CTLCOAL(MNUMPR,MNUMYR) M ton/cd Q cantify of coal used for CTL P CTLTRN(CTL NLIQ,MNUMPR,MNUMYR) M ton/cd Q cantify of coal used for CTL P CTLTRN(CTL NLIQ,MNUMPR,MNUMYR) M ton/cd Q cantify of coal used for CTL Cost to transfer CTL to refinery Investment cost for CTL Dillids/production Coal feed to CTL Q CTLCAP(MNUMPR,MNUMYR) TrilBtul/yr Q CTLCAP(MNUMPR,MNUMYR) Mbbl/cd Q CTL capacity in current year Q CTLPRD(MNUMPR,MNUMYR) M bbl/cd Q CTLPRD(MNUMPR,MNUMYR) M bbl/cd Q CTLCAP(CMNUMPR,MNUMYR) M bbl/cd Q CTLPRD(MNUMPR,MNUMYR) Fraction RECRATCTL(MNUMPR,MNUMYR) Fraction RECRATCTL(MNUMPR,MNUMYR) A bbl/cd RECRATCTL(MNUMPR,MNUMYR) Traction RECRATCTL(MNUMPR,MNUMYR) A bbl/cd RECRATCTLQ(CTL NLIQ) M bbl/cd RECTLOVR(MNUMPR) Traction RECRATCTLOVR(MNUMPR) A brain fraction RECRATCTLOVR(MNUMPR) A brain fraction RECRATCTLOVR(MNUMPR) A brain fraction RECRATCTLOVR(MNUMPR) Brain fraction RECRATCTLOVR(MNUMPR) Brain fraction RECRATCTLOVR(MNUMPR) A brain fraction RECRATCTLOVR(MNUMPR) A brain fraction RECRATCTLOVR(MNUMPR) A brain fraction RECRATCTLOVR(MNUMPR,MNUMYR) A brain fraction RECRATCH MNUMYR) Brain fraction RECRATCH MNUMYR) A brain fraction RECRATCH MNUMYR | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------
--------------------------------------------------|--| | Q. CTLCOAL(MNUMPR, MNUMYR) My S87/bbl Cost to transfer CTL to refinery P_CTLTRN(CTL_NLIQ,MNUMPR,MNUMYR) \$87/bbl Cost to transfer CTL to refinery P_CTLINY(MNUMPR,MNUMYR) MM \$87/yr Investment cost for CTL builds/production College do to CTL Cap(MNUMPR,MNUMYR) TrilBtul/yr Coal feed to CTL Cap(MNUMPR,MNUMYR) Mbbl/cd CTL capacity in current year Q. CTLCAP(MNUMPR,MNUMYR) Mbbl/cd CTL capacity in current year Q. CTLPRD(MNUMPR,MNUMYR) Fraction Req. recovery rate RECRATCTL(MNUMPR,MNUMYR) Fraction Req. recovery rate RECRATCTL(MNUMPR,MNUMYR) Fraction Avg fixed cost fac for CHP (fr EMM, TRCTLFCF) Trection Req. recovery rate RECRATCTL(MNUMPR,MNUMYR) Avg overnight cst for CHP (fr EMM, TRCTLFCF) Trection Red. recovery rate RECRATCTL(MNUMPR) B75/kW Avg overnight cst for CHP (fr EMM, TRCTLOVR) | | | | | | P_CTLIRN(CTL_NLIQ,MNUMPR,MNUMYR) P_CTLINV(MNUMPR,MNUMYR) MM \$87/yr MM \$87/yr Direstment cost for CTL builds/production CCLRFCTLPD(MNUMPR,MNUMYR) ACTICAP(MNUMPR,MNUMYR) Mbbl/cd CTL capacity in current year Q_CTLPRD(MNUMPR,MNUMYR) Mbbl/cd CTL capacity in current year Q_CTLPRD(MNUMPR,MNUMYR) Mbbl/cd CTL capacity in current year Q_CTLPRD(MNUMPR,MNUMYR) Fraction RECRATCTL(MNUMPR,MNUMYR) Fraction RECRATCTL(MNUMPR,MNUMYR) RFCTLIO(CTL NLIQ) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR, | | | | | | P_CTLINV(MNUMPR,MNUMYR) MM \$87/yr Investment cost for CTL builds/production QCLRFCTLPD(MNUMPR,MNUMYR) QCTLPD(MNUMPR,MNUMYR) QCTLPRD(MNUMPR,MNUMYR) M bbl/cd QCTL capacity in current year QCTLPRD(MNUMPR,MNUMYR) RECRATCTL(MNUMPR,MNUMYR) RECRATCTL(MNUMPR,MNUMYR) RECRATCTL(MNUMPR,MNUMYR) RFCTLLO(TL, NLIQ) RFCTLLO(CTL, NLIQ) M bbl/cd TRCTLCOR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR,MNUMYR) MW RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) Mbbl FOE/cd NG consumed at CHP (burned W/ syngas) from code gasifice at CHP per bb of feed for mode CC1 RFCCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) Mbbl FOE/cd RFCCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) Mbbl FOE/cd RFCCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) Mbbl FOE/cd RFCCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MMARSHOTE) RFCCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(M | | | | | | P_CTLINV(MNUMPR, MNUMYR) CCLRECTLED(MNUMPR, MNUMYR) CCLTCAP(MNUMPR, MNUMYR) Mbbl/cd CTL capacity in current year Q_CTLPRD(MNUMPR, MNUMYR) Mbbl/cd Quantity of liquids produced from coving CTL RECRATCTL(MNUMPR, MNUMYR) Fraction RECRATCTL(MNUMPR, MNUMYR) Fraction RECRATCTL(MNUMPR, MNUMYR) RFCTLOVR(MNUMPR, MNUMYR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR, MNUMYR) RFCTLOV | P_CTLTRN(CTL_NLIQ,MNUMPR,MNUMYR) | \$87/bbl | | | | GCLERCTLEPQ(MNUMPR,MNUMYR) Q CTLCAP(MNUMPR,MNUMYR) Mbbl/cd CTL capacity in current year Q CTLCAP(MNUMPR,MNUMYR) Mbbl/cd CTL capacity in current year Q CTLCAP(MNUMPR,MNUMYR) Praction RecRATCTL(MNUMPR,MNUMYR) Fraction Req. recovery rate Avg fixed cost fac for CHP (fr EMM, TRCTLECF) RFCTLLIQ(CTL NLIQ) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMPR,MNUMPR) RFCTLOVR(MNUMPR,MNUMPR,MNU | P_CTLINV(MNUMPR,MNUMYR) | MM \$87/yr | | | | Q_CTLCAP(MNUMPR,MNUMYR) Mbbl/cd Q_CTLCAPACIMINUMPR,MNUMYR) Mbbl/cd Q_CTLCAPACIMINUMPR,MNUMYR) RECRATCTL(MNUMPR,MNUMYR) Fraction Req_recovery rate RFCTLFCF(MNUMPR,MNUMYR) RFCTLOCTL_NLIQ) RFCTLQCTL_NLIQ) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR,MNUMYR) RFCTLOVR(MNUMPR,MNUMYR) RINDS REVERSEL Elasticity for CTL coal supply curve production RLCVTONQ(MNUMPR,MNUMYR) RMMon/yr RTC coal supply curve delivered pric RLCVSTONQ(MNUMPR,MNUMYR) RMMon/yr RTC coal supply curve delivered pric RLCVSTONQ(MNUMPR,MNUMYR) RMMon/yr RTC coal supply curve delivered pric RLCVSTONQ(MNUMPR,MNUMYR) RMMotl/Aon RCC coal supply curve delivered pric RLCVSTONQ(MNUMPR,MNUMYR) RMMotl/Aon RCC coal supply curve delivered pric RCCVSTONQ(MNUMPR,MNUMYR) RMMotl/Aon RCC coal supply curve delivered pric RCCVSTONQ(MNUMPR,MNUMYR) RMMotl/Aon RCCCOAL Coal supply curve delivered pric RCCVSTONQ(MNUMPR,MNUMYR) RMMotl/Aon RCCCOAL Coal supply curve delivered pric RCCVSTONQ(MNUMPR,MNUMYR) RMMotl/Aon RCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | OCLRECTI PD/MNI IMPR MNI IMVR) | TrilRtul/vr | | | | Q_CTLPRD(MNUMPR,MNUMYR) Quantity of liquids produced from covia CTL RECRATCTL(MNUMPR,MNUMYR) RECRATCTL(MNUMPR,MNUMYR) RFCTLFCF(MNUMPR) RFCTLFCF(MNUMPR) RFCTLLQ(CTL_NLIQ) RFCTLLQ(CTL_NLIQ) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR,MNUMYR) RINCTLOVR) SINVST Index Mansfield-Blackman relative investment size s | | | | | | RECRATCTL(MNUMPR,MNUMYR) RFCTLLFCF(MNUMPR) RFCTLLIQ(CTL_NLIQ) RFCTLLIQ(CTL_NLIQ) RFCTLOVR(MNUMPR) RFCTLLOYR(MNUMPR) RFCTLLOYR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR,MNUMYR) SINVST Index Index Mansfield-Blackman relative investment size LCVTCNQ(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLTRNTON(MNUMPR,MNUMYR) RETERMINE COKE TO GASIFICATION VARIABLES CHP_CGGENPD(MNUMPR,MNUMYR) CHP_CGCAPPD(MNUMPR,MNUMYR) CHP_UNPLNCPD(MNUMPR,MNUMYR) CHP_UNPLNCPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd CHP_CGCAPPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd COKEXUL(MNUMPR,MNUMPR,MNUMYR) COKEXUL(MNUMPR,MNUMPR) Mbbl FOE/cd RG consumed at CHP (burned W/ syngas) CHPCC1 KWh/bbl feed CHECTIC (Facil Corrected at CHP per bbl of feed for mode CC1 CHPCC1 KWh/bbl feed CHPCC1 CHPCO1 KWh/bbl feed CHPCC1 CHPCO1 RGCHPR,MNUMPR,MNUMYR) M bbl FOE/cd CHPCC1 CHPCO1 RGCHPR,MNUMPR,MNUMYR) M bbl FOE/cd CHPCC1 CHPCO1 RGCHPR,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production Total coke production Total syngas production from coke gasification CHPLPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification CHPLPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification CHPLPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification RENEWABLES IN FUEL VARIABLES | · | | Quantity of liquids produced from coal | | | RFCTLFCF(MNUMPR) RFCTLLIQ(CTL_NLIQ) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR) RFCTLOVR(MNUMPR, MNUMYR) RECTLOVR(MNUMPR, RECTLOVR(MMNUMPR, MNUMYR) RECTLOVR(MAMADE.COT. CTL CALL AND ACT OF AND ACCOUN | RECRATCTI (MNUMPR MNUMYR) | Fraction | | | | RFCTLLQ(CTL_NLIQ) M bbl/cd CTL_FCF) RFCTLLQ(CTL_NLIQ) M bbl/cd CTL production, by liq type RFCTLOVR(MNUMPR) 87\$/kW Avg overnight est for CHP (fr EMM, TRCTLOVR) SINVST Index Mansfield-Blackman relative investment size XLCVELAS(MNUMPR,MNUMYR) Percent Elasticity for CTL coal supply curve production XLCVTONQ(MNUMPR,MNUMYR) MMton/yr CTL coal supply curve production XLCVTONP(MNUMPR,MNUMYR) \$87/ton CTL coal supply curve delivered privative for the pri | | | | | | RFCTLOVR(MNUMPR) 87\$/kW Avg overnight cst for CHP (fr EMM, TRCTLOVR) SINVST Index Index Mansfield-Blackman relative investment size XLCVELAS(MNUMPR,MNUMYR) XLCVELAS(MNUMPR,MNUMYR) XLCVTONQ(MNUMPR,MNUMYR) XLCVTONP(MNUMPR,MNUMYR) XLCVTONP(MNUMPR,MNUMYR) XLCVTONP(MNUMPR,MNUMYR) XLCVBTU(MNUMPR,MNUMYR) XLCVBTU(MNUMPR,MNUMYR) XLTRNTON(MNUMPR,MNUMYR) XB87/ton CTL coal supply curve delivered private to CTL facil coal supply curve delivered private to CTL facil supply curve delivered private for CHP ocal supply curve delivered private for CHP wisyngas from coal supply curve delivered private for CHP wisyngas production from coke gasification Renewables in Fuel variables Add to CTL coal supply curve delivered private for CTL coal supply curve delivered private for CTL coal supply curve delivered private for | <u> </u> | | TRCTLFCF) | | | SINVST Index Mansfield-Blackman relative investment size LCVTELAS(MNUMPR,MNUMYR) Percent Elasticity for CTL coal supply curve very considered private the construction of constructio | RFCTLLIQ(CTL_NLIQ) | M bbl/cd | | | | XLCVELAS(MNUMPR,MNUMYR) Percent Elasticity for CTL coal supply curve XLCVTONQ(MNUMPR,MNUMYR) Percent Elasticity for CTL coal supply curve production XLCVTONQ(MNUMPR,MNUMYR) \$87/ton CTL coal supply curve production XLCVBTU(MNUMPR,MNUMYR) \$87/ton CTL coal supply curve delivered prix XLCVBTU(MNUMPR,MNUMYR) MMbtu/ton CTL coal supply curve heat content CVL facil COME TO GASIFICATION VARIABLES COKE TO GASIFICATION VARIABLES CHP_CGGENPD(MNUMPR,MNUMYR) MW Capacity of CHP w/ syngas from coagasifier SC HP CHP_UNPLNCPD(MNUMPR,MNUMYR) MW Capacity of CHP w/ syngas from coagasifier CHP_UNPLNCPD(MNUMPR,MNUMYR) Mbbl FOE/cd NG consumed at CHP (burned w/ syngas) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd Syngas consumed at CHP (burned w/ syngas) CHP_GGENPD(MNUMPR,MNUMYR) Mbbl FOE/cd Initial quantity of coke exported Electricity generated at CHP per bbl of feed for mode CC1 CHPCC1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 CHPCO1 KWh/bbl feed Fraction Frac | RFCTLOVR(MNUMPR) | 87\$/kW | TRČTLOVR) | | | XLCVTONQ(MNUMPR,MNUMYR) MMton/yr CTL coal supply curve production XLCVBTU(MNUMPR,MNUMYR) \$87/ton CTL coal supply curve delivered prick XLCVBTU(MNUMPR,MNUMYR) MMbtu/ton CTL coal supply curve heat content XLTRNTON(MNUMPR,MNUMYR) \$87/ton Coal transportation rate to CTL facil COKE TO GASIFICATION VARIABLES | SINVST | Index | | | | XLCVTONQ(MNUMPR,MNUMYR) MMton/yr CTL
coal supply curve production XLCVBTU(MNUMPR,MNUMYR) \$87/ton CTL coal supply curve delivered prick XLCVBTU(MNUMPR,MNUMYR) MMbtu/ton CTL coal supply curve heat content XLTRNTON(MNUMPR,MNUMYR) \$87/ton Coal transportation rate to CTL facil COKE TO GASIFICATION VARIABLES | XLCVELAS(MNUMPR,MNUMYR) | Percent | | | | XLCVBTU(MNUMPR,MNUMYR) MMbtu/ton CTL coal supply curve heat content XLTRNTON(MNUMPR,MNUMYR) \$87/ton Coal transportation rate to CTL facil CHP_CGGENPD(MNUMPR,MNUMYR) MWh/cd Electricity generation from coke gasifiers CHP CHP_CGCAPPD(MNUMPR,MNUMYR) MW Capacity of CHP w/ syngas from co gasifier CHP_UNPLNCPD(MNUMPR,MNUMYR) MW Capacity added for CHP w/ syngas from coke gasifier CHP_NGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd NG consumed at CHP (burned w/ syngas) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd Syngas consumed at CHP (burned w/ syngas) COKEXUL(MNUMCR) MMbbl FOE/cd Initial quantity of coke exported CHPCC1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 CHPCO1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 CHPCO1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 CHPCO1 KWh/bbl feed Fraction of NG (vs. syngas) in feed CHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production QCOKPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total hydrogen production from coke gasification Q | XLCVTONQ(MNUMPR,MNUMYR) | MMton/yr | | | | XLTRNTON(MNUMPR,MNUMYR) \$87/ton Coal transportation rate to CTL facil COKE TO GASIFICATION VARIABLES | XLCVTONP(MNUMPR,MNUMYR) | \$87/ton | CTL coal supply curve delivered price | | | COKE TO GASIFICATION VARIABLES CHP_CGGENPD(MNUMPR,MNUMYR) MWh/cd Electricity generation from coke gasifier's CHP CHP_CGCAPPD(MNUMPR,MNUMYR) MW Capacity of CHP w/ syngas from co gasifier CHP_UNPLNCPD(MNUMPR,MNUMYR) MW Capacity added for CHP w/ syngas from coke gasifier CHP_UNPLNCPD(MNUMPR,MNUMYR) Mbbl FOE/cd NG consumed at CHP (burned w/ syngas) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd CMEXUL(MNUMCR) CHPCC1 CHPCC1 KWh/bbl feed CHPCC1 KWh/bbl feed CHPCC1 KWh/bbl feed CHPCC1 KWh/bbl feed CHPCC1 CHPCC1 MBbl FOE/cd CHPCC1 KWh/bbl feed CHPCC1 C | XLCVBTU(MNUMPR,MNUMYR) | MMbtu/ton | CTL coal supply curve heat content | | | CHP_CGGENPD(MNUMPR,MNUMYR) CHP_CGCAPPD(MNUMPR,MNUMYR) MW Capacity of CHP w/ syngas from co gasifier's CHP CHP_UNPLNCPD(MNUMPR,MNUMYR) MW Capacity added for CHP w/ syngas from coke gasifier CHP_UNPLNCPD(MNUMPR,MNUMYR) Mbbl FOE/cd CHP_SGFUELPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd CHP_CC1 CHPCC1 CHPCC1 CHPCO1 KWh/bbl feed CHPCC1 KWh/bbl feed CHPCC1 CHPCO1 KWh/bbl feed CHPCC1 | XLTRNTON(MNUMPR,MNUMYR) | \$87/ton | Coal transportation rate to CTL facility | | | CHP_CGCAPPD(MNUMPR,MNUMYR) CHP_UNPLNCPD(MNUMPR,MNUMYR) MW Capacity of CHP w/ syngas from co gasifier CHP_UNPLNCPD(MNUMPR,MNUMYR) MW Capacity added for CHP w/ syngas from coke gasifier CHP_NGFUELPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd CMEXUL(MNUMCR) CHPCC1 CHPCC1 CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 CHPCO1 CHPCO1 MBbl FOE/cd CHPCO1 | COKE TO G | ASIFICATION VARIABLE | S | | | CHP_UNPLNCPD(MNUMPR,MNUMYR) CHP_NGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd CHP_SGFUELPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd COKEXUL(MNUMCR) CHPCC1 CHPCC1 CHPCO1 CHPCO1 MG consumed at CHP (burned w/ syngas) Syngas consumed at CHP (burned w/ NG) NG) CHPCC1 CHPCO1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 Electricity generated at CHP per bbl of feed for mode CO1 Fraction Fraction GHP GHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd CHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd CHP QASTPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd CHP QASGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd CHP Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd CHP Total syngas production from coke gasification Total syngas production from coke gasification CHP Using syngas/NG feed Total syngas production from coke gasification CHP Using syngas/NG feed CHP Total syngas production from coke gasification CHP Using syngas/NG feed Total syngas production from coke gasification CHP Using syngas/NG feed | CHP_CGGENPD(MNUMPR,MNUMYR) | MWh/cd | | | | CHP_UNPLNCPD(MNUMPR,MNUMYR) MW Capacity added for CHP w/ syngas from coke gasifier NG consumed at CHP (burned w/ syngas) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd Syngas consumed at CHP (burned w/ syngas) COKEXUL(MNUMCR) CHPCC1 CHPCC1 KWh/bbl feed CHPCC1 KWh/bbl feed CHPCO1 MBBL FOE/cd CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHP CHPCO1 MBBL FOE/cd CHP CHPCO1 MBBL FOE/cd CHP CHP CHP CHP CHP CHP CHP CH | CHP_CGCAPPD(MNUMPR,MNUMYR) | MW | Capacity of CHP w/ syngas from coke gasifier | | | CHP_NGFUELPD(MNUMPR,MNUMYR) CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd Syngas consumed at CHP (burned wyngas) Syngas consumed at CHP (burned NG) COKEXUL(MNUMCR) MMbbl COE/cd MMbbl COE/cd Initial quantity of coke exported Electricity generated at CHP per bbl of feed for mode CC1 CHPCO1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 KWh/bbl feed CHPCO1 KWh/bbl feed Fraction Fraction GASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production QCOKPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total hydrogen production from coke gasification QKWHPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification Total syngas production from coke gasification Steam production from CHP using syngas/NG feed QSTMPRD(MNUMPR,MNUMYR) M bbl FOE/cd Steam production from CHP using syngas/NG feed | CHP_UNPLNCPD(MNUMPR,MNUMYR) | MW | Capacity added for CHP w/ syngas | | | CHP_SGFUELPD(MNUMPR,MNUMYR) Mbbl FOE/cd Syngas consumed at CHP (burned NG) COKEXUL(MNUMCR) MMbbl COE/cd Initial quantity of coke exported Electricity generated at CHP per bbl of feed for mode CC1 CHPCO1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CO1 KWh/bbl feed Fraction Fraction of NG (vs. syngas) in feed CHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production QCOKPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd QKWHPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd QSTMPRD(MNUMPR,MNUMYR) M bbl FOE/cd Steam production from CHP using syngas/NG feed Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | CHP_NGFUELPD(MNUMPR,MNUMYR) | Mbbl FOE/cd | NG consumed at CHP (burned w/ | | | COKEXUL(MNUMCR) CHPCC1 KWh/bbl feed KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHPCO1 KWh/bbl feed CHP Fraction Fraction of NG (vs. syngas) in feed CHP CHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd CHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd CHP Total asphalt production Total coke production Total hydrogen production from coke gasification QKWHPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd CHP Total syngas production from coke gasification QKWHPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd CHP Total syngas production from coke gasification Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | CHP_SGFUELPD(MNUMPR,MNUMYR) | Mbbl FOE/cd | Syngas consumed at CHP (burned w/ | | | CHPCC1 KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 KWh/bbl feed KWh/bbl feed Electricity generated at CHP per bbl of feed for mode CC1 Electricity generated at CHP per bbl of feed for mode CO1 Fraction Fraction of NG (vs. syngas) in feed CHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd CHP QCOKPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production Total coke production Total hydrogen production from coke gasification QKWHPRD(2,MNUMPR,MNUMYR) MWh/cd Electricity generated at CHP per bbl of feed for mode CHP using syngas/ NG feed Total asphalt production Total coke production from coke gasification Electricity generated at CHP per bbl of feed for mode CHP using syngas/ NG feed or mode CHP using syngas/ NG feed Total asphalt production from coke gasification Total syngas production from coke gasification Total syngas production from coke gasification Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | COKEXIII (MNUMCR) | MMbbl COF/cd | , | | | CHPCO1 KWh/bbl feed of feed for mode CC1 Electricity generated at CHP per bbl of feed for mode CO1 NGSCHP Fraction Fraction of NG (vs. syngas) in feed CHP QASTPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production QCOKPRD(4,MNUMPR,MNUMYR) M s-ton/cd Total coke production QHH2PRD(MNUMPR,MNUMYR) M bbl FOE/cd Total hydrogen production from cok gasification QKWHPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Electric production from CHP using syngas/NG feed QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Steam production from CHP using syngas/NG feed QSTMPRD(MNUMPR,MNUMYR) Steam production from CHP using syngas/NG feed | , | | | | | NGSCHP Praction Fraction Fraction M bbl FOE/cd CHP QASTPRD(4,MNUMPR,MNUMYR) QCOKPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production Total coke production Total hydrogen production from cok gasification QKWHPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd CHP Total asphalt production Total hydrogen production from cok gasification Electric production from CHP using syngas/NG feed Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification Total syngas production from coke gasification Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | CHPCC1 |
KWh/bbl feed | of feed for mode CC1 | | | QASTPRD(4,MNUMPR,MNUMYR) QCOKPRD(4,MNUMPR,MNUMYR) M bbl FOE/cd Total asphalt production Total coke production Total hydrogen production from cok gasification QKWHPRD(2,MNUMPR,MNUMYR) QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from CHP using syngas/NG feed Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification Total syngas production from coke gasification QSTMPRD(MNUMPR,MNUMYR) M bbl FOE/cd Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | CHPCO1 | KWh/bbl feed | of feed for mode CO1 | | | QCOKPRD(4,MNUMPR,MNUMYR) M s-ton/cd Total coke production QHH2PRD(MNUMPR,MNUMYR) M bbl FOE/cd Total hydrogen production from cok gasification QKWHPRD(2,MNUMPR,MNUMYR) MWh/cd Electric production from CHP using syngas/NG feed QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QSTMPRD(MNUMPR,MNUMYR) M lb/cd Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | NGSCHP | Fraction | | | | QCOKPRD(4,MNUMPR,MNUMYR) M s-ton/cd Total coke production QHH2PRD(MNUMPR,MNUMYR) M bbl FOE/cd Total hydrogen production from cok gasification QKWHPRD(2,MNUMPR,MNUMYR) MWh/cd Electric production from CHP using syngas/NG feed QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QSTMPRD(MNUMPR,MNUMYR) M lb/cd Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | QASTPRD(4,MNUMPR,MNUMYR) | M bbl FOE/cd | | | | QRMH2PRD(WINDWIPR,WINDWYR) IM bbl FOE/cd gasification QKWHPRD(2,MNUMPR,MNUMYR) MWh/cd Electric production from CHP using syngas/NG feed QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QSTMPRD(MNUMPR,MNUMYR) M lb/cd Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | | M s-ton/cd | Total coke production | | | QKWHPRD(2,MNUMPR,MNUMYR) MWh/cd Electric production from CHP using syngas/NG feed QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QSTMPRD(MNUMPR,MNUMYR) M lb/cd Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | QHH2PRD(MNUMPR,MNUMYR) | M bbl FOE/cd | Total hydrogen production from coke gasification | | | QSGSPRD(MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification QSTMPRD(MNUMPR,MNUMYR) M lb/cd Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | QKWHPRD(2,MNUMPR,MNUMYR) | MWh/cd | | | | QNGSPRD(2,MNUMPR,MNUMYR) M bbl FOE/cd Total syngas production from coke gasification Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | QSGSPRD(MNUMPR,MNUMYR) | M bbl FOE/cd | Total syngas production from coke | | | QSTMPRD(MNUMPR,MNUMYR) M lb/cd Steam production from CHP using syngas/NG feed RENEWABLES IN FUEL VARIABLES | QNGSPRD(2,MNUMPR,MNUMYR) | M bbl FOE/cd | Total syngas production from coke | | | RENEWABLES IN FUEL VARIABLES | QSTMPRD(MNUMPR,MNUMYR) | M lb/cd | Steam production from CHP using | | | DDIMDDD (AAHIBAYD) | | | | | | BDWPRD(MNUMYR) Mbbl/cd White grease production | | | | | | BIMMCSTCD(MNUMCR,MNUMYR) \$87/bbl Marginal price of biomass for diesel | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|---------------------------------------|--| | BIMCSTCD(2,MNUMCR,MNUMYR) BIMSUP(MNUMCR,MNUMYR) BII gal/yr BII gal/yr DMDE85ADJP(MNUMCR,MNUMYR) DMDE85DUAL(MNUMCR,MNUMYR) DMDE85DUAL(MNUMCR,MNUMYR) DMDE85DUAL(MNUMCR,MNUMYR) DMDE85DUAL(MNUMCR,MNUMYR) DMDE85RSP(MNUMCR,MNUMYR) ETHBIODUAL(MNUMCR,MNUMYR) ETHBIODUAL(MNUMCR,MNUMYR) ETHROPH (MNUMPR,MNUMYR) ETHBIODUAL(MNUMCR,MNUMYR) ETHROPH (MNUMPR,MNUMYR) (MNUMPR) BII gal/yr MINREN(MNUMPR) ETHROPH (MNUMCR,MNUMPR) (MNUMCR,MNUMPR | NAME | UNITS | DEFINITION | | | BIMSUP(MNUMCR,MNUMYR) Bil gal/yr Quantity of Biomass diesel required as product pro | BIMMCSTCD(MNUMCR,MNUMYR) | \$87/bbl | ŭ i | | | DMDE85ADJP(MNUMCR,MNUMYR) S87/bbl Adjustment to DMDE85DUAL | BIMCSTCD(2,MNUMCR,MNUMYR) | \$87/bbl | 2=yellow grease) | | | DMDE85DUAL(MNUMCR,MNUMYR) \$87/bbl Dual of D(cd)E85 DMDE85RFSP(MNUMCR,MNUMYR) \$87/bbl DMDE85DUAL+adj ETHBIODUAL(MNUMCR,MNUMYR) \$87/bbl Dual of C@ETHBIO ETHRVP(MNUMPR,MNUMYR,2) Value Effective RVP for ethanol (1=SSR, 2=SST) FEDSUBV(MNUMYR) \$87/bbl Fed subsidy for virgin oil (soybean) FEDSUBNV(MNUMYR) \$87/bbl Fed subsidy for non-virgin oil (yellow grease) ISOCVRTN Fraction Minimum fraction for conversion of MTBE units to ISO-units MINREN(MNUMYR) Bil gal/yr Minimum renewables in total gasoline & diesel RENADJPR(MNUMCR,MNUMYR) \$87/bbl Price adj for RFG/RFH due to renew min reqt. RENETHPR(MNUMCR,MNUMYR) \$87/bbl Ethanol price before renew minimum requirement REN_RAT Fraction Minimum fraction of renewables in total gasoline & diesel SS_FRAC(4,MNUMCR) Fraction Fraction of renewables in total gasoline & diesel STMTBVAL(MNUMCR) Fraction of renewables in total gasoline & diesel WPBDSL (2,MNUMCR,MNUMYR) \$87/bbl Fraction of renewables in total gasoline & diesel WPBDSL (2,MNUMCR,MNUMYR) \$87/bbl Price Biomass sup curv (1=soybe | BIMSUP(MNUMCR,MNUMYR) | Bil gal/yr | as product | | | DMDE85RFSP(MNUMCR,MNUMYR) \$87/bbl DMDE85DUAL+adj ETHBIODUAL(MNUMCR,MNUMYR) \$87/bbl Dual of C@ETHBIO ETHRVP(MNUMPR,MNUMYR,2) Value Effective RVP for ethanol (1=SSR, 2=SST) FEDSUBV(MNUMYR) \$87/bbl Fed subsidy for virgin oil (soybean) FEDSUBNV(MNUMYR) \$87/bbl Fed subsidy for non-virgin oil (yellow grease) ISOCVRTN Fraction Minimum fraction for conversion of MTBE units to ISO-units ISOCVRTX Fraction Maximum fraction for conversion of MTBE units to ISO-units MINREN(MNUMYR) Bil gal/yr Minimum renewables in total gasoline & diesel RENADJPR(MNUMCR,MNUMYR) \$87/bbl Price adj for RFG/RFH due to renew min reqt. RENETHPR(MNUMCR,MNUMYR) \$87/bbl Ethanol price before renew minimum requirement REN_RAT Fraction Minimum fraction of renewables in total gasoline & diesel SS_FRAC(4,MNUMCR) Fraction Fraction of ethanol in RFG, RFH, TRG splash blend STMTBVAL(MNUMCR) Fraction Fraction of product demand for state MTBE ban deman | , | \$87/bbl | Adjustment to DMDE85DUAL | | | ETHBIODUAL (MNUMCR, MNUMYR) ETHRVP(MNUMPR, MNUMYR, 2) ETHRVP(MNUMPR, MNUMYR, 2) FEDSUBV (MNUMYR) \$87/bbl Fed subsidy for virgin oil (soybean) Fed subsidy for non-virgin oil (yellow grease) ISOCVRTN Fraction ISOCVRTX Fraction Minimum fraction for conversion of MTBE units to ISO-units MINREN(MNUMYR) Bil gal/yr RENADJPR(MNUMCR, MNUMYR) RENETHPR(MNUMCR, MNUMYR) RENETHPR(MNUMCR, MNUMYR) RENETHPR(MNUMCR, MNUMYR) RENAT Fraction RENAT Fraction RENAT Fraction RENAT Fraction Fraction Fraction Minimum requirement Minimum fraction for conversion of MTBE units to ISO-units MINREN(MNUMYR) Bil gal/yr RENETHPR(MNUMCR, MNUMYR) RENETHPR(MNUMCR) Fraction Fraction Fraction of renewables in total gasoline & diesel product demand for state MINTEE ban Price Biomass sup curv (1=soybean, 2=yellow grease) DSL/DSU VARIABLES CFDUQLOS Percent Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | | | | | | ETHRVP(MNUMPR,MNUMYR,2) FEDSUBV(MNUMYR) \$87/bbl Fed subsidy for virgin oil (soybean) Fed subsidy for non-virgin oil (yellow grease) ISOCVRTN Fraction ISOCVRTX Fraction MINITEMENT TREE Units to ISO-units MINREN(MNUMYR) \$87/bbl Fraction MINREN(MNUMYR) Bil gal/yr RENADJPR(MNUMCR,MNUMYR) \$87/bbl RENETHPR(MNUMCR,MNUMYR) REN_RAT Fraction REN_RAT Fraction SS_FRAC(4,MNUMCR)
Fraction Fraction Fraction REN_RAT Fraction STMTBVAL(MNUMCR) Fraction of ethanol (in FFG, RFH, TRG splash blend) Fraction of product demand for state MTBE ban WPBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) Mbbl/d DSL/DSU VARIABLES CFDUQLOS Percent Percent loss of BTU content (fr DSL to DSU) BTU content of N2H (heating oil) | | | , | | | FEDSUBV(MNUMYR) \$87/bbl FEDSUBNV(MNUMYR) \$87/bbl Fed subsidy for virgin oil (soybean) FEDSUBNV(MNUMYR) \$87/bbl Fed subsidy for non-virgin oil (yellow grease) ISOCVRTN Fraction Fraction Minimum fraction for conversion of MTBE units to ISO-units MINREN(MNUMYR) Bil gal/yr RENADJPR(MNUMCR,MNUMYR) RENETHPR(MNUMCR,MNUMYR) RENETHPR(MNUMCR,MNUMYR) REN_RAT Fraction Fraction Fraction REN_RAT Fraction Fraction Fraction Fraction Fraction Fraction of ethanol in RFG, RFH, TRG splash blend Fraction Fraction Fraction fraction of product demand for state MTBE ban WPBDSL (2,MNUMCR,MNUMYR) REN_CAN WPBDSL (2,MNUMCR,MNUMYR) Mbbl/d Price Biomass sup curv (1=soybean, 2=yellow grease) DSL/DSU VARIABLES CFDUQLOS Percent Percent loss of BTU content (fr DSL to DSU) DSU CEN2HQ MMbtu/bbl BTU content of N2H (heating oil) | ETHBIODUAL(MNUMCR,MNUMYR) | \$87/bbl | | | | FEDSUBNV(MNUMYR) ISOCVRTN Fraction Fraction Minimum fraction for conversion of MTBE units to ISO-units Maximum fraction for conversion of MTBE units to ISO-units Minren (MNUMYR) Bil gal/yr RENADJPR(MNUMCR,MNUMYR) RENETHPR(MNUMCR,MNUMYR) REN_RAT Fraction SS_FRAC(4,MNUMCR) Fraction STMTBVAL(MNUMCR) WPBDSL (2,MNUMCR,MNUMYR) Percent Maximum fraction for conversion of MTBE units to ISO-units Minimum renewables in total gasoline & diesel Ethanol price adj for RFG/RFH due to renew min reqt. Ethanol price before renew minimum requirement Minimum fraction of renewables in total gasoline & diesel Fraction Fraction Fraction of ethanol in RFG, RFH, TRG splash blend Fraction of product demand for state MTBE ban WPBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) Mbbl/d Quant,Biomass sup curv (1=soybean, 2=yellow grease) DSL/DSU VARIABLES CFDUQLOS Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | · | | 2=SST) | | | ISOCVRTN | FEDSUBV(MNUMYR) | \$87/bbl | | | | ISOCVRTX Fraction MTBE units to ISO-units Maximum fraction for conversion of MTBE units to ISO-units MINREN(MNUMYR) Bil gal/yr RENADJPR(MNUMCR,MNUMYR) RENETHPR(MNUMCR,MNUMYR) REN_RAT REN_RAT Fraction SS_FRAC(4,MNUMCR) STMTBVAL(MNUMCR) Fraction WPBDSL (2,MNUMCR,MNUMYR) REN_CAN WQBDSL (2,MNUMCR,MNUMYR) Fraction DSL/DSU VARIABLES CFDUQLOS Percent Maximum fraction for conversion of MTBE units to ISO-units Minimum fraction for RFG/RFH due to renew min reqt. Ethanol price before renew minimum requirement Minimum fraction of renewables in total gasoline & diesel Fraction Fraction of ethanol in RFG, RFH, TRG splash blend Fraction of product demand for state MTBE ban Price Biomass sup curv (1=soybean, 2=yellow grease) DSL/DSU VARIABLES CFDUQLOS Percent DSS of BTU content (fr DSL to DSU) BTU content of N2H (heating oil) | FEDSUBNV(MNUMYR) | \$87/bbl | grease) | | | ISOCVRTX | ISOCVRTN | Fraction | MTBE units to ISO-units | | | RENADJPR(MNUMCR,MNUMYR) RENETHPR(MNUMCR,MNUMYR) REN_RAT REN_C(4,MNUMCR) SS_FRAC(4,MNUMCR) REN_TBVAL(MNUMCR) REN_TBVAL(MNUMCR) REN_TBVAL(MNUMCR,MNUMYR) REN_TBVAL(MNUMCR) Ren_Taction Ren_Taction of renewables in total gasoline & diesel Fraction of ethanol in RFG, RFH, TRG splash blend REN_TBVAL(MNUMCR) Fraction REN_TBVAL(MNUMCR) Fraction REN_TBVAL(MNUMCR) R | ISOCVRTX | Fraction | MTBE units to ISO-units | | | RENETHPR(MNUMCR,MNUMYR) \$87/bbl min reqt. Ethanol price before renew minimum requirement Minimum fraction of renewables in total gasoline & diesel SS_FRAC(4,MNUMCR) Fraction Fraction Fraction of ethanol in RFG, RFH, TRG splash blend Fraction of product demand for state MTBE ban WPBDSL (2,MNUMCR,MNUMYR) \$87/bbl Price Biomass sup curv (1=soybean, 2=yellow grease) WQBDSL (2,MNUMCR,MNUMYR) Mbbl/d DSL/DSU VARIABLES CFDUQLOS Percent Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | MINREN(MNUMYR) | Bil gal/yr | & diesel | | | RENETHPR(WNOWCR,MNOWYR) REN_RAT Fraction Fraction Fraction Fraction of renewables in total gasoline & diesel Fraction of ethanol in RFG, RFH, TRG splash blend Fraction of product demand for state MTBE ban WPBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) Mbbl/d DSL/DSU VARIABLES CFDUQLOS Percent Prequirement Minimum fraction of renewables in total gasoline & diesel Fraction Fraction Fraction Fraction Fraction of product demand for state MTBE ban Price Biomass sup curv (1=soybean, 2=yellow grease) Quant,Biomass sup curv(1=soybean, 2=yellow rease) Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | RENADJPR(MNUMCR,MNUMYR) | \$87/bbl | min reqt. | | | Fraction SS_FRAC(4,MNUMCR) Fraction Fraction Fraction of ethanol in RFG, RFH, TRG splash blend Fraction of product demand for state MTBE ban | RENETHPR(MNUMCR,MNUMYR) | \$87/bbl | requirement | | | STMTBVAL(MNUMCR) Fraction Fraction Fraction Fraction of product demand for state MTBE ban WPBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) Mbbl/d DSL/DSU VARIABLES CFDUQLOS Percent Price Biomass sup curv (1=soybean, 2=yellow grease) Quant,Biomass sup curv(1=soybean, 2=yellow rease) Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | REN_RAT | Fraction | total gasoline & diesel | | | WPBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) MTBE ban Price Biomass sup curv (1=soybean, 2=yellow grease) Quant,Biomass sup curv(1=soybean, 2=yellow rease) DSL/DSU VARIABLES CFDUQLOS Percent Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | SS_FRAC(4,MNUMCR) | Fraction | TRG splash blend | | | WQBDSL (2,MNUMCR,MNUMYR) WQBDSL (2,MNUMCR,MNUMYR) Mbbl/d Quant,Biomass sup curv(1=soybean, 2=yellow rease) DSL/DSU VARIABLES CFDUQLOS Percent Percent Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | STMTBVAL(MNUMCR) | Fraction | MTBE ban | | | WQBDSL (2,MNUMCR,MNUMYR) Mbbl/d 2=yellow rease) | WPBDSL (2,MNUMCR,MNUMYR) | \$87/bbl | | | | CFDUQLOS Percent Percent loss of BTU content (fr DSL to DSU) CFN2HQ MMbtu/bbl BTU content of N2H (heating oil) | , | | | | | CFN2HQ MMbtu/bbl bt | DSL/DSU VARIABLES | | | | | | | | to DSU) | | | I DMDN2H(MNUMCR,MNUMYR) Mbbl/cd Dmd for distillate, by CD | | | 1 2 | | | | DMDN2H(MNUMCR,MNUMYR) | | | | | DSLCHAR(40) Character Distillate/spec variable ID | \ / | | | | | DSSPCS(40,MNUMYR) spec acct /bbl Spec requirement for distillates | DSSPCS(40,MNUMYR) | spec acct /bbl | | | | DSUPCT(MNUMYR) Percent Percent DSU of total diesel demand (not used) | DSUPCT(MNUMYR) | Percent | (not used) | | | PCT_DWNGRD(MNUMYR) Percent Percent of DSU downgraded at CD due to transp | | | due to transp | | | PEXPDS(MNUMCR,MNUMYR) Mbbl/cd DSL exports, by CD | · ' | | | | | CFN2HQ MMBtu/bbl BTU content of N2H (heating oil) | CFN2HQ | MMBtu/bbl | | | | DSU_CSTFAC Percent Cap cost fac for HD1,HD2,HS2 DSU process units | DSU_CSTFAC | Percent | process units | | | ODSPCT Percent Off-Road fraction of (Off-Road+N2H) DSL | | | DSL | | | | | | Non-Rd fraction of Off-Rd diesel, DSL | | | ON2HPCT(MNUMYR) Percent Fraction of nonroad diesel put in N2H | ON2HPCT(MNUMYR) | Percent | Fraction of nonroad diesel put in N2H | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|----------|------------------------------------------|--| | NAME | UNITS | DEFINITION | | | ODSUPCT(MNUMYR) | Percent | Fraction of nonroad diesel convt to DSU | | | N2HPCT_OLM(MNUMYR) | Percent | N2H fraction of off-LM diesel | | | N2HPCT_ONR(MNUMYR) | Percent | N2H fraction of off-NR diesel | | | N2HPCT_HWY(MNUMYR) | Percent | N2H fraction of highway diesel | | | DSLPCT_OLM(MNUMYR) | Percent | DSL fraction of off-LM diesel | | | DSLPCT_ONR(MNUMYR) | Percent | DSL fraction of off-NR diesel | | | DSLPCT_HWY(MNUMYR) | Percent | DSL fraction of highway diesel | | | DSUPCT_OLM(MNUMYR) | Percent | DSU fraction of off-LM diesel | | | DSUPCT_ONR(MNUMYR) | Percent | DSU fraction of off-NR diesel | | | DSUPCT_HWY(MNUMYR) | Percent | DSU fraction of highway diesel | | | HOFTRN | Percent | Fraction heating oil, TRN | | | OLMTRN | Percent | Fraction rail/marine diesel, TRN | | | ONRTRN | Percent | Fraction nonroad diesel, TRN | | | HWYTRN | Percent | Fraction highway diesel, TRN | | | HOFIND | Percent | Fraction heating oil, IND | | | OLMIND | Percent | Fraction rail/marine diesel, IND | | | ONRIND | Percent | Fraction non-road diesel, IND | | | HWYIND | Percent | Fraction highway diesel, IND | | | HOFCOM | Percent | Fraction heating oil, COM | | | OLMCOM | Percent | Fraction rail/marine diesel, COM | | | ONRCOM | Percent | Fraction non-road diesel, COM | | | HWYCOM | Percent | Fraction highway diesel, COM | | | TRHWYPCT_N2H(MNUMCR,MNUMYR) | Percent | N2H percentage of HWY TRN distillate dmd | | | TRHWYPCT_DSL(MNUMCR,MNUMYR) | Percent | DSL percentage of HWY TRN distillate dmd | | | TRHWYPCT_DSU(MNUMCR,MNUMYR) | Percent | DSU percentage of HWY TRN distillate dmd | | | TRPCT_N2H(MNUMCR,MNUMYR) | Percent | N2H percentage of TRN distillate dmd | | | TRPCT_DSL(MNUMCR,MNUMYR) | Percent | DSL percentage of TRN distillate dmd | | | TRPCT_DSU(MNUMCR,MNUMYR) | Percent | DSU percentage of TRN distillate dmd | | | INPCT_N2H(MNUMCR,MNUMYR) | Percent | N2H percentage of IND distillate dmd | | | INPCT_DSL(MNUMCR,MNUMYR) | Percent | DSL percantage of IND distillate dmd | | | INPCT_DSU(MNUMCR,MNUMYR) | Percent | DSU percantage of IND distillate dmd | | | CMPCT_N2H(MNUMCR,MNUMYR) | Percent | N2H percentage of COM distillate dmd | | | CMPCT_DSL(MNUMCR,MNUMYR) | Percent | DSL percentage of COM distillate dmd | | | CMPCT_DSU(MNUMCR,MNUMYR) | Percent | DSU percentage of COM distillate dmd | | |
OLMN2H(MNUMCR,MNUMYR) | M bbl/cd | 2370ppm for Locom/Rail dsl | | | OLMDSL(MNUMCR,MNUMYR) | M bbl/cd | 500ppm for Locom/Rail dsl | | | OLMDSU(MNUMCR,MNUMYR) | M bbl/cd | 15ppm for Locom/Rail dsl | | | ONRN2H(MNUMCR,MNUMYR) | M bbl/cd | 2370ppm for Non-Rd dsl | | | ONRDSL(MNUMCR,MNUMYR) | M bbl/cd | 500ppm for Non-Rd dsl | | | ONRDSU(MNUMCR,MNUMYR) | M bbl/cd | 15ppm for Non-Rd dsl | | | HWYN2H(MNUMCR,MNUMYR) | M bbl/cd | 2370ppm for highway diesel | | | HWYDSL(MNUMCR,MNUMYR) | M bbl/cd | 500ppm for highway diesel | | | HWYDSU(MNUMCR,MNUMYR) | M bbl/cd | 15ppm for highway diesel | | | HOFDSU(MNUMCR,MNUMYR) | M bbl/cd | 15ppm for RES ulsd heating oil | | | HOFN2H(MNUMCR,MNUMYR) | M bbl/cd | 2370ppm for #2 heat oil | | | BQN2H4EXP(MNUMCR,MNUMYR) | M bbl/cd | Base N2H used to define N2H exports | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |---------------------------------------------------|----------------------|-------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | RSPCT_N2H(MNUMCR,MNUMYR) | Percent | N2H percentage of RES distillate dmd | | | RSPCT_DSU(MNUMCR,MNUMYR) | Percent | DSU percentage of RES distillate dmd | | | STPCTRUL_N2H(MNUMCR,MNUMYR) | Percent | % of heating oil to N2H, state ruling | | | | . 0.00 | , so an insulating on to the influence takening | | | ETHANOL (ex. IMPORTS) a | and BIOMASS PRODUCTI | ON VARIABLES | | | BIMCSTCD(2,MNUMCR,MNUMYR) | 87\$/bbl | Average price of Biomass for diesel | | | BIMCSTCD(3,MNUMCR,MNUMYR) | 87\$/bbl | Average price of Biomass for diesel | | | BIOTOTDUAL(MNUMCR,MNUMYR) | 87\$/bbl | dual of row C@BIOTOT | | | BLDE85PRD(MNUMCR,MNUMYR) | MMbbl/cd | E85 + Ethanol blend | | | BLDETHRF(MNUMPR,MNUMYR) | Mbbl/cd | Ethanol blended at refinery | | | BLDRFGPRD(MNUMCR,MNUMYR) | MMbbl/cd | RFG, RFH + Ethanol blend | | | BLDTRGPRD(MNUMCR,MNUMYR) | MMbbl/cd | TRG, TRH + Ethanol blend | | | BIOCD(MNUMCR,MNUMYR) | 1000 MMBtu/cd | Biomass to Ethanol | | | | 1000 IVIIVIDIU/CU | Number of steps on biomass (to eth) | | | BIOMSSTEPS | Integer | supply curve | | | CAPCSTBDN | 87\$/gal | Capital cost BDN | | | CAPCSTBDV | 87\$/gal | Capital cost BDV | | | | - | Capital cost BBV Capital cost, denature ethanol from | | | CAPCSTCLL | 87\$/gal | biodiesel | | | CAPCSTCRN1 | 87\$/gal | Capital cost, denature ethanol from corn | | | CAPCSTCRN2 | 87\$/gal | Capital cost, denature ethanol from | | | | _ | corn | | | CBIMAX(MNUMYR) | M bbl/cd | CBI quantity limit | | | CBITRF(MNUMYR) | 87\$/bbl | CBI tariff | | | CDEWSPRCN(MNUMCR,MNUMYR) | \$87/MWh | wholesale electricty price for ETC cogeneration | | | CLE_CGCGD(MNUMCR,MNUMYR) | MW | cogen cap to grid fr biom eth | | | CLE_CGGGD(MNUMCR,MNUMYR) | MWh/cd | cogen gen to grid fr biom eth | | | CLE_FUEL(MNUMCR,MNUMYR) | 1000 MMBtu/cd | fuel for cogen fr biom eth | | | CLLBIODUAL(MNUMCR,MNUMYR) | 87\$/bbl | dual of row C@CLLBIO | | | CLLCAPCD(MNUMCR,MNUMYR) | Mbbl/d | Biomass capacity—cellulose | | | CLLCOEFF | coeff=2.5 | new CLL acct coef for RFS beginning yr CLLRFSYR | | | CLLRFSYR | integer | begin yr to chg 2.5 to 1.0 CLL acct coef for RFS | | | CLLCSTCD(MNUMCR,MNUMYR) | \$/bbl | Biomass cost—cellulose | | | CLLETHRCD(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol produced from cellulose | | | CLLETHTCD(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol produced from cellulose | | | CLLSIZE | Mbbl/cd | Cellulosic ethanol production unit size | | | CLLTOTDUAL(MNUMCR,MNUMYR) | 87\$/bbl | dual of C@CLLTOT | | | CLL_FSTYR | integer | first production yr for cellulose (20=>2009) | | | CLZSUBPCT | Percent | subsidy, cap cost as % of orig, for CLZ | | | CONEFF(MNUMYR) | Fraction | Biomass conversion efficiency | | | CORNSTEPS | Integer | Number of steps on corn (to eth) supply curve | | | CRNBASETRM(MNUMYR) | factor | term in eq to calc corn price step | | | CRNEXPTRM(MNUMYR) | factor | term in eq to calc corn price step | | | CRNMTRM(MNUMYR) | factor | term in eq to calc corn price step | | | CRNBTRM(MNUMYR) | factor | term in eq to calc corn price step | | | CRNCSTCD(MNUMCR,MNUMYR) | \$/bbl | Biomass cost—corn | | | CITITO I OD (IVII TO IVI CITI, IVII TO IVI I I I) | Ψίου | Diomago coot com | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|------------------|-------------------------------------------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | CRNETHRCD(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol produced from corn | | | CRNETHTCD(MNUMCR,MNUMYR) | Mbbl/cd | Ethanol produced from corn | | | CRNPARAM(3,3) | Real | Linear function coefficients for corn production = row 1, feed use = row 2, and exports = row 3 | | | CRNYIELD(MNUMYR) | bushels per acre | Corn yield | | | ETH4ETHR(MNUMPR,MNUMYR) | Mbbl/cd | Ethanol used to produce Ethers | | | ETHECAPCD(50,2) | Integer | (from,to loc ID) for planned ETH cap | | | ETHSLOPE(E85STP) | Real | Slope values for Ethanol Demand Curve | | | ETHPRIC(2,MNUMYR) | \$87/bbl | Cost coef for ETH, E85 | | | ETHSUB(MNUMYR) | \$/bbl | Ethanol subsidy | | | ETHTOTPR(MNUMCR,MNUMYR) | Mbbl/cd | Total ethanol production - corn + cellulose | | | EXSCLZCAP(MNUMCR) | M bbl/cd | existing biomass (CLZ) cap | | | HCETDME(MNUMCR,MNUMYR) | Mbbl/cd | existing/planned cap for DME | | | HCETWME(MNUMCR,MNUMYR) | Mbbl/cd | existing/planned cap for WME | | | MARKET((MNUMCR,MNUMYR) | Real | Factor in ethanol equation | | | MINCLLNUM | integer | Min num of cellulosic production units (EPACT) | | | MINCLLSIZE | Mbbl/cd | Min cell prod req'd by MINCLLYR (EPACT) | | | MINCLLYR | integer | First yr min cellulose req (23=> 2012) | | | OVCCSTCLL | 87\$/gal | OVC cost, den eth fr bio | | | PETHANOL(MNUMCR,MNUMYR) | \$87/bbl | Marginal cost for ethanol | | | PETHRFBL(MNUMPR,MNUMYR) | \$87/bbl | Refinery ethanol blending cost | | | PLNCLZCAP(MNUMCR,MNUMYR) | M bbl/cd | planned biomass (CLZ) cap | | | PRIORCRT | Billion credits | Prior year credits | | | QETHRFN(MNUMPR,MNUMYR) | Mbbl/cd | Refinery ethanol blending volume | | | NETHICD | Integer | Num of CD's w/ eth imp | | | NETHECAP | Integer | Number of arcs with planned ETH cap | | | RECRATCLL(MNUMYR) | Fraction | Req. recovery rate | | | RECRATDM1(MNUMYR) | Fraction | Req. recovery rate | | | RECRATDM2(MNUMYR) | Fraction | Req. recovery rate | | | RFETHETB(MNUMPR,MNUMYR) | MMbbl/cd | Ethanol for ETBE | | | RFETHMCT(MNUMPR,MNUMYR) | MMbbl/cd | Merchant ethanol consumption | | | RFETHMGS(MNUMPR,MNUMYR) | MMbbl/cd | Ethanol for motor gasoline | | | SBETCFLG | Flag | Subsidy req for cellulosic ethanol production (1=yes) | | | SBO_FUELP(MNUMCR,MNUMYR) | 87\$/bbl | Price of soybean oil to BDSL | | | SQETOH(2,MNUMCR,MNUMYR) | Mbbl/cd | Ethanol soln from cap expansion | | | TLETCQ | Mbbl/cd | Quantity of cellulosic eth subsidized | | | WPBDSBO(MNUMCR,MNUMYR,5) | 87\$/bbl | Price, BIOmass supply curve | | | WPBDSL(2,MNUMCR,MNUMYR,5) | 87\$/bbl | Price, BIOmass supply curve | | | WPBDYGR(MNUMCR,MNUMYR,5) | 87\$/bbl | Price, BIOmass supply curve | | | WQBDSBO(MNUMCR,MNUMYR,5) | Mbbl/cd | Qty, BIOmass supply curve | | | WQBDSL(2,MNUMCR,MNUMYR,5) | Mbbl/cd | Qty, BIOmass supply curve | | | WQBDYGR(MNUMCR,MNUMYR,5) | Mbbl/cd | Qty, BIOmass supply curve | | | YR1ETHECAP(50) | Integer | Start year for planned ETH cap | | | YGR_FUELP(MNUMCR,MNUMYR) | 87\$/bbl | Price, yellow grease to BDSL | | | ETHANOL IMPORT VARIABLES | | | | | BRAZILFR(MNUMCR) | Fraction | Fraction of Brazil total into CD | | | BRZBASETRM(MNUMYR) | 87\$/bbl | Base term on Brazil import curve | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|----------------|------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | | | equation | | | BRZEXPTRM(MNUMYR) | Real | Slope term on Brazil import curve equation | | | BRZFYRETA | year | first import year for advanced ethanol from Brazil | | | BRZFYRETC | year | first import year for cellulosic ethanol from Brazil | | | BRZSUPP | 87\$/bbl | Ethanol Import Price (Brazil) | | | BRZSUPQ(MNUMYR) | Mbbl/cd | Ethanol Import Qty (Brazil) | | | ETACNICD(MNUMCR) | Mbbl/cd | ID of cd w/ advanced ethanol imports fr. Canada | | | ETAIMPCD(MNUMCR) | Mbbl/cd | ID of cd w/ advanced ethanol imports fr. Brazil | | | ETCCNICD(MNUMCR) | Mbbl/cd | ID of cd w/ cellulosic ethanol imports fr. Canada | | | ETCIMPCD(MNUMCR) | Mbbl/cd | ID of CD w/ cellulosic ethanol imports fr. Brazil | | | ETHI_PADJ(MNETOH) | 87\$/bbl | Imp Adj Pr, to encourage hist eth imp to CD | | | ETHI_QPCT(MNETOH) | Fraction | Imp Adj Qty,to encourage hist eth imp to CD | | | ETHICSTCD(MNUMCR,MNUMYR) | \$87/bbl | ethanol import cost | | | ETHIMPCD(MNUMCR) | Integer | list of CD's w/ eth imp | | | ETHIMPP(5,MNUMYR) | 87\$/bbl | PR on eth imp crv | | | ETHIMPQ(5,MNUMYR) | Mbbl/cd | QTY on eth imp crv | | | ETHITRNP(MNUMCR,MNUMYR) | 87\$/bbl | PR for eth imp trans to CD | | | ETHTRF(MNUMYR) | nominal \$/gal | Ethanol import tariff | | | ETCITRNP(MNUMCR,MNUMYR) | 87\$/gal | trans cost, cellulosic ethanol imports | | | ETAITRNP(MNUMCR,MNUMYR) | 87\$/gal | trans cost, advanced ethanol imorts | | | ETACNITRNP(MNUMCR,MNUMYR) | 87\$/gal | PR Can ethanol imports trans to CD | | | ETCCNITRNP(MNUMCR,MNUMYR) | 87\$/gal | PR Can ethanol imports trans to CD | | | ETCBRAZILQ(5) | Percent | Brazil fraction of cellulosic ethanol imports | | | ETABRAZILQ(5) | Percent | Brazil fraction of advanced ethanol imports | | | ETCCBIFR(MNUMCR) | Percent | CBI fraction ofcellulosic ethanol imports | | | ETACBIFR(MNUMCR) | Percent | CBI fraction of advanced ethanol imports | | | ETACNIP(MNUMCR,5) | 87\$/bbl | price on CN advanced ethanol import supply curve | | | ETACNIQ(MNUMCR,5) | Mbbl/cd | qty on CN advanced ethanol import supply curve | | | ETCCNIP(MNUMCR,5) | 87\$/bbl | price on CN cellulosic ethanol import supply curve | | | ETCCNIQ(MNUMCR,5) | Mbbl/cd | qty on CN cellulosic ethanol import supply curve | | | ETCBRAZILFR(MNUMCR) | Percent | Fraction of Brazil ETC by CD | | |
ETABRAZILFR(MNUMCR) | Percent | Fraction of Brazil ETA by CD | | | ETCBRZSUPQ(MNUMYR) | Mbbl/cd | ETC IMP QTY (Brazil) | | | ETCBRZSUPP | Mbbl/cd | ETC IMP PRC (Brazil) | | | ETABRZSUPQ(MNUMYR) | Mbbl/cd | ETC IMP QTY (Brazil) | | | ETABRZSUPP | Mbbl/cd | ETC IMP PRC (Brazil) | | | NAME UNITS DEFINITION | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|-------------------------------------------------|--| | BRZEASEETA(MNUMYR) Parameter BRZEXPETA(MNUMYR) Parameter BRZEXPETA(MNUMYR) Parameter BRZBASEETC(MNUMYR) Parameter BRZEXPETC(MNUMYR) BRZEXPETC(MNUMYR, Deparameter, cellulosic ethanol import from Called from Brazil # CDs w advanced ethanol imports from Brazil # CDs w deflulosic ethanol imports from Brazil # CDs w cellulosic Canada # CDs w cellulosic ethanol imports from Brazil # CDs w cellulosic ethanol imports from Brazil # CDs w cellulosic ethanol imports from Brazil # CDs w cellulosic ethanol imports from Canada # CDs w cellulosic ethanol imports from Canada # CDs w cellulosic ethanol imports from Brazil # CDs w cellulosic ethanol imports from Brazil # CDs w cellulosic ethanol imports from Canada # CDs w cellulosic ethanol imports fro | NAME | | DEFINITION | | | BRZEXPETA(MNUMYR) BRZEXPETA(MNUMYR) Parameter Brazil supply curve parameter, advanced ethanol BRZBASEETC(MNUMYR) Parameter Brazil supply curve parameter, cellulosic ethanol BRZEXPETC(MNUMYR) Parameter Brazil supply curve parameter, cellulosic ethanol Brazil supply curve parameter, cellulosic ethanol Brazil supply curve parameter, cellulosic ethanol import from (1_sergil, 2_can) ETCIMP(MNUMCR,MNUMYR,2) Integer Cellulosic ethanol import from (1_sergil, 2_can) METACNI NETACNI NETACNI NETACNI NETACD integer # CDs w advanced ethanol imports from Canada # CDs w advanced ethanol imports from Brazil NETCCDI integer # CDs w advanced ethanol imports from Brazil # CDs w cellulosic cellulos | CLLSUB(MNUMYR) | 87\$/gal | , , | | | BRZBASEETC(MNUMYR) Parameter Brazil supply curve parameter, cellulosic ethanol BRZEXPETC(MNUMYR) Parameter Brazil supply curve parameter, cellulosic ethanol Brazil supply curve parameter, cellulosic ethanol Brazil supply curve parameter, cellulosic ethanol import from (1=Brazil, 2=Can) CETAIMP(MNUMCR,MNUMYR,2) Integer ETAIMP(MNUMCR,MNUMYR,2) Integer Integer Advanced ethanol import from (1=Brazil, 2=Can) NETACNI NETACNI Integer Integ | BRZBASEETA(MNUMYR) | Parameter | advanced ethanol | | | BRZEXPETC(MNUMYR) Parameter Brazil supply curve parameter, cellulosic ethanol import from (1=Brazil, 2=Can) ETCIMP(MNUMCR,MNUMYR,2) Integer Integer Integer Advanced ethanol import from (1=Brazil, 2=Can) NETACNI NETACNI NETACNI NETACD Integer Integer # CDs w advanced ethanol imports from Brazil # CDs w davanced f | BRZEXPETA(MNUMYR) | Parameter | Brazil supply curve parameter, advanced ethanol | | | ETCIMP(MNUMCR,MNUMYR,2) ETAIMP(MNUMCR,MNUMYR,2) ETAIMP(MNUMCR,MNUMYR,2) Integer Integer Advanced ethanol import from (1=Brazil, 2=Can) NETACNI NETACNI Integer Integer # CDs w advanced ethanol imports from Brazil # CDs w advanced ethanol imports from Brazil NETCICD Integer # CDs w cellulosic ethanol imports from Brazil NETCICD Integer # CDs w cellulosic ethanol imports from Brazil NETCICD Integer # CDs w cellulosic ethanol imports from Brazil NETCCNI Integer # CDs w cellulosic ethanol imports from Brazil NETCONI Integer BIOMASS PYROLYSIS UNIT (BPU) VARIABLES BPU_BASHINV MMBtu/ton BPU_BASSIZ Mbbb/cd Dase CBTL size (1000bbl/cd liq out) Dase CBTL size (1000bbl/cd liq out) Dase CBTL cogeneration to self Dase CBTL cogeneration to self Dase CBTL cogeneration to self Dase CBTL cogeneration to grid t | BRZBASEETC(MNUMYR) | Parameter | | | | ETAIMP(MNUMCR,MNUMYR,2) integer (1=Brazil, 2=Can) NETACNI integer (1=Brazil, 2=Can) NETACNI integer (1=Brazil, 2=Can) NETACNI integer (1=Brazil, 2=Can) NETACNI integer (1=Brazil, 2=Can) NETAICD integer (1=Brazil, 2=Can) NETCICD (1=Brazil) | BRZEXPETC(MNUMYR) | Parameter | | | | NETACNI NETAICD Integer Int | ETCIMP(MNUMCR,MNUMYR,2) | Integer | | | | NETAICD integer int | ETAIMP(MNUMCR,MNUMYR,2) | integer | (1=Brazil, 2=Can) | | | NETCICD integer integer # CDs w/ cellulosic ethanol imports from Brazil # CDs w/ cellulosic ethanol imports from Brazil # CDs w/ cellulosic ethanol imports from Canada BIOMASS PYROLYSIS UNIT (BPU) VARIABLES BPU_BASHHV BPU_BASSIZ Mbbl/cd base CBTL size (1000bbl/cd liq out) BPU_BASCGS MW base CBTL cogeneration to self BPU_BASCGS MW base CBTL cogeneration to grid BPU_BLDYRS None Construction years for CBTL Factor to estimate electricity cogeneration total from CBTL (KWh/bbl liq) BPU_CGGFAC(MNUMPR,MNUMYR) Factor BPU_CGGFAC(MNUMPR,MNUMYR) Factor BPU_CGCTOT(MNUMPR,MNUMYR) Factor BPU_CGCGO(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGGO(MNUMPR,MNUMYR) BPU_CGGGO(MNUMPR,MNUMYR) BPU_CGGGO(MNUMPR,MNUMYR) BPU_CGGGO(MNUMPR,MNUMYR) BPU_CGGGO(MNUMPR,MNUMYR) BPU_CGGGO(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) Factor Factor best elec cogen to self BPU_CGSF(MNUMPR,MNUMYR) Factor Factor common CBTL—total BPU_CGGGO(MNUMPR,MNUMYR) Factor Factor best elec core to self BPU_CGGSF(MNUMPR,MNUMYR) Factor Factor best elec core to self BPU_CGGSF(MNUMPR,MNUMYR) Factor Factor best elec core to self BPU_CCSFFAC(MNUMPR,MNUMYR) Factor Factor best elec core to self BPU_CCSFFAC(MNUMPR,MNUMYR) Factor Factor best elec core to self BPU_COSFFAC(MNUMPR,MNUMYR) Factor Factor best electricity CGG gen from CBTL—to self BPU_COSFFAC(MNUMPR,MNUMYR) Factor best electricity CGG gen from CBTL—to self BPU_COSFFAC(M | NETACNI | integer | from Canada | | | NETCCNI integer integer # CDs w/ cellulosic ethanol imports from Canada BIOMASS PYROLYSIS UNIT (BPU) VARIABLES BPU_BASHIV MMBtu/ton coal HHV BPU_BASSIZ Mbbl/cd base CBTL cogeneration to self BPU_BASCGS MW base CBTL cogeneration to grid BPU_BLDYRS None Construction years for CBTL Factor to estimate electricity cogeneration total from CBTL (KW/h/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL (KW/h/bbl liq) BPU_CGGFAC(MNUMPR,MNUMYR) Factor Factor to estimate electricity cogeneration to total from CBTL (KW/h/bbl liq) BPU_CGGFAC(MNUMPR,MNUMYR) BPU_CGCTOT(MNUMPR,MNUMYR) Factor BPU_CGCTOT(MNUMPR,MNUMYR) DOD KWh/cd CG cap from CBTL—to grid BPU_CGCSF(MNUMPR,MNUMYR) DOD KWh/cd CG cap from CBTL—to self BPU_CGGGD(MNUMPR,MNUMYR) DOD KWh/cd CG gen from CBTL—to grid BPU_CGGGD(MNUMPR,MNUMYR) DOD KWh/cd CG gen from CBTL—to self BPU_CGGSF(MNUMPR,MNUMYR) DOD KWh/cd CG gen from CBTL—to grid BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) Factor Fac to est elec cogen to self BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to Self BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to Self BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to Self BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to Self BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to Self BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to Self BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to Self BPU_CO2EM(MNUMPR,MNUMYR) Factor Factor act eaplog cost for CBTL based on coal type BPU_CO2EM(MNUMPR,MNUMYR) Factor Factor act eaplog cost for CBTL based on coal type BPU_CO2EM(MNUMPR,MNUMYR) Factor Factor act eaplog cost for CBTL based on coal type CBTL investment cost, after E | NETAICD | integer | from Brazil | | | Integer from Canada | NETCICD | integer | from Brazil | | | BPU_BASSIZ BPU_BASSIZ Mbbl/cd BPU_BASCGS MW BPU_BASCGG MW BPU_BASCGG MW BPU_BASCGG MW BPU_BASCGG BPU_BASCGG BPU_BASCGG BPU_BLDYRS None Construction years for CBTL Factor to estimate electricity cogeneration to tal from CBTL (KWh/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL
(KWh/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) BPU_CGGTOT(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—total BPU_CGCGD(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—to self BPU_CGGTOT(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to self BPU_CGGGD(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to grid BPU_CGGSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to grid BPU_CGGSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to grid BPU_CGGSF(MNUMPR,MNUMYR) Factor Fac to est elec cogen to self BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) Factor Fac to est elec cogen to self BPU_CO2EAC(MNUMPR,MNUMYR) Factor Fac to adj cap/op cost for CBTL BPU_CCSFAC(MNUMPR) BPU_CCTFAC(MNUMPR) Factor Fac to adj cap/op cost for CBTL based on coal type BPU_CCTFAC(MNUMPR) BPU_CCTFAC(MNUMPR) BPU_CCTFAC(MNUMPR) Factor Factor Fac to adj cap/op cost for CBTL based on coal type BPU_CCOPENCST Rate decline rate on operating cost incremental CBTL unit builds CBTL investment cost, after EPACT credit Credit BPU_INVLOC(MNUMPR) Ratio Uses padd 2 as basis for ratio number of coal types for BPU | NETCCNI | integer | | | | BPU_BASSIZ BPU_BASCGS MW base CBTL cogeneration to self BPU_BASCGG BPU_BASCGG MW base CBTL cogeneration to self BPU_BASCGG BPU_BLDYRS None Construction years for CBTL Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) BPU_CGGFAC(MNUMPR,MNUMYR) Factor Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) BPU_CGGTOT(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—total BPU_CGCSF(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—to self BPU_CGGSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to self BPU_CGGGOD(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—total CBTL—to grid | BIOMA | SS PYROLYSIS UNIT (B | PU) VARIABLES | | | BPU_BASCGS BPU_BASCGG BPU_BLDYRS None Construction years for CBTL BPU_CGTFAC(MNUMPR,MNUMYR) BPU_CGGFAC(MNUMPR,MNUMYR) Factor BPU_CGGFAC(MNUMPR,MNUMYR) Factor BPU_CGGTOT(MNUMPR,MNUMYR) Factor BPU_CGCGD(MNUMPR,MNUMYR) Factor BPU_CGCGD(MNUMPR,MNUMYR) Factor BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGF(MNUMPR,MNUMYR) BPU_CGCGCD(MNUMPR,MNUMYR) BPU_CGCGCD(MNUMPR,MNUMYR) BPU_CGGTOT(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) Factor BPU_CGSFAC(MNUMPR,MNUMYR) Factor BPU_CO2EM(MNUMPR,MNUMYR) Factor BPU_CO2EAC(MNUMPR,MNUMYR) Factor BPU_CO2FAC(MNUMPR,MNUMYR) Factor BPU_CO2FAC(MNUMPR,MNUMYR) Factor BPU_CCFAC(MNUMPR,MNUMYR) BPU_CCFAC,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,M | BPU_BASHHV | MMBtu/ton | coal HHV | | | BPU_BASCGG BPU_BLDYRS None Construction years for CBTL Factor to estimate electricity cogeneration to grid to grid to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) BPU_CGGFAC(MNUMPR,MNUMYR) Factor BPU_CGGFAC(MNUMPR,MNUMYR) Factor Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) BPU_CGCTOT(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—total BPU_CGCSF(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—to self BPU_CGCSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—total BPU_CGGGTOT(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—total BPU_CGGGD(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—total BPU_CGGSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—total BPU_CGGSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to self BPU_CGGSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to self BPU_CGSFAC(MNUMPR,MNUMYR) CBTL— | | | | | | BPU_CGFAC(MNUMPR,MNUMYR) BPU_CGCTTAC(MNUMPR,MNUMYR) Factor BPU_CGCGD(MNUMPR,MNUMYR) DOO KWh/cd CG cap from CBTL—to grid BPU_CGCSF(MNUMPR,MNUMYR) DOO KWh/cd CG cap from CBTL—to self BPU_CGGGD(MNUMPR,MNUMYR) DOO KWh/cd CG gen from CBTL—to grid BPU_CGGGD(MNUMPR,MNUMYR) DOO KWh/cd CG gen from CBTL—to grid BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) Factor Factor Facto est elec cogen to self BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) Factor BPU_CO2FAC(MNUMPR,MNUMYR) Factor Factor Facto est elec cogen to self BPU_CO2FAC(MNUMPR,MNUMYR) Factor Factor Facto est elec cogen to self BPU_CO2FAC(MNUMPR,MNUMYR) Factor Factor Facto est elec cogen to self BPU_CO2FAC(MNUMPR,MNUMYR) Factor Fac | <u> </u> | | | | | Factor to estimate electricity cogeneration total from CBTL (KWh/bbl liq) | | MW | base CBTL cogeneration to grid | | | BPU_CGTFAC(MNUMPR,MNUMYR) Factor Factor Cogeneration total from CBTL (KWh/bbl liq) Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) BPU_CGCTOT(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) Factor Factor BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) Factor Factor Factor Factor adj cap/op cost for CBTL based on coal type BPU_DCLCAPCST Rate decline rate on operating cost BPU_INCBLD Mbbl/cd BPU_INCBLD Mbbl/cd BPU_INVCST \$87/bbl CB_CGGENERATION Total CGGGEN from CBTL CGG ap from CBTL—total CG cap | BPU_BLDYRS | None | | | | BPU_CGGFAC(MNUMPR,MNUMYR) Factor cogeneration to grid from CBTL (KWh/bbl liq) BPU_CGCTOT(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—total BPU_CGCSP(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—to grid BPU_CGCSF(MNUMPR,MNUMYR) 1000 KWh/cd CG cap from CBTL—to self BPU_CGGTOT(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—total BPU_CGGGD(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to grid BPU_CGGSF(MNUMPR,MNUMYR) 1000 KWh/cd CG gen from CBTL—to self BPU_CGSFAC(MNUMPR,MNUMYR) Factor Fac to est elec cogen to self BPU_CO2EM(MNUMPR,MNUMYR) M lb/cd CO2 emissions from CBTL BPU_CO2FAC(MNUMPR,MNUMYR) Lbs/bbl CO2 emissions per CBTL liq produced BPU_CSTFAC(MNUMPR,MNUMYR) Factor Fac to adj cap/op cost for CBTL based on coal type BPU_DCLCAPCST Rate decline rate on cap cost BPU_INCBLD Mbbl/cd incremental CBTL unit builds BPU_INVCST \$87/bbl CBTL investment cost, after EPACT credit BPU_INVLOC(MNUMPR) Ratio uses padd 2 as basis for ratio BPU_LIQNCL None number of coal types for BPU | BPU_CGTFAC(MNUMPR,MNUMYR) | Factor | cogeneration total from CBTL | | | BPU_CGCTOT(MNUMPR,MNUMYR) BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGTOT(MNUMPR,MNUMYR) BPU_CGGGTOT(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CO5FAC(MNUMPR,MNUMYR) BPU_CO5FAC(MNUMPR,MNUMYR) BPU_CO5FAC(MNUMPR,MNUMYR) BPU_CO5FAC(MNUMPR,MNUMYR) BPU_CO5FAC(MNUMPR,MNUMYR) BPU_CO5FAC(MNUMPR,MNUMYR) BPU_CSTFAC(MNUMPR) BPU_CSTFAC(MNUMPR) BPU_DCLCAPCST Rate decline rate on cap cost BPU_DCLOPRCST Rate decline rate on operating cost incremental CBTL unit builds CBTL investment cost, after EPACT credit BPU_INVLOC(MNUMPR) BPU_INVLOC(MNUMPR) Ratio uses padd 2 as basis for ratio number of coal types for BPU | BPU_CGGFAC(MNUMPR,MNUMYR) | Factor | cogeneration to grid from CBTL | | | BPU_CGCGD(MNUMPR,MNUMYR) BPU_CGCSF(MNUMPR,MNUMYR) BPU_CGGST(MNUMPR,MNUMYR) BPU_CGGTOT(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CSTFAC(MNUMPR) BPU_DCLCAPCST BPU_DCLCAPCST Rate decline rate on cap cost BPU_INCBLD Mbbl/cd BPU_INCST BPU_INCST \$87/bbl CG cap from CBTLto self CG gen from CBTLto grid CBTLtotal fr | BPU_CGCTOT(MNUMPR,MNUMYR) | 1000 KWh/cd | | | | BPU_CGGTOT(MNUMPR,MNUMYR) BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGSF(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CSTFAC(MNUMPR) BPU_DCLCAPCST BPU_DCLCAPCST BPU_INCBLD BPU_INCBLD BPU_INVCST \$87/bbl CG gen from CBTL—total CBTL CG gen from CBT gensister CG gensister CG gensister CG gensister CG gensister | BPU_CGCGD(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from CBTLto grid | | | BPU_CGGGD(MNUMPR,MNUMYR) BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CSTFAC(MNUMPR,MNUMYR) BPU_DCLCAPCST BPU_DCLCAPCST BPU_INCBLD BPU_INCBLD BPU_INVCST BPU_INVLOC(MNUMPR) Ratio CG gen from CBTLto grid Fac to est elec cogen to self Fac to est elec cogen to self Fac to est elec cogen to self CO2 emissions per CBTL liq produced Fac to adj cap/op cost for CBTL based on coal type decline rate on cap cost decline rate on operating cost incremental CBTL unit builds CBTL investment cost, after EPACT credit BPU_INVLOC(MNUMPR) Ratio BPU_LIQNCL None number of coal types for BPU | BPU_CGCSF(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from CBTLto self | | | BPU_CGGSF(MNUMPR,MNUMYR) BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CSTFAC(MNUMPR) BPU_DCLCAPCST BPU_DCLOPRCST Rate decline rate on cap cost BPU_INCBLD BPU_INCST BPU_INCST BPU_INVCST \$87/bbl CG gen from BTLto self Fac to est elec cogen to self CO2 emissions from
CBTL CO2 emissions per CBTL liq produced Fac to adj cap/op cost for CBTL based on coal type decline rate on cap cost decline rate on operating cost incremental CBTL unit builds CBTL investment cost, after EPACT credit BPU_INVLOC(MNUMPR) Ratio uses padd 2 as basis for ratio number of coal types for BPU | BPU_CGGTOT(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from CBTL—total | | | BPU_CGSFAC(MNUMPR,MNUMYR) BPU_CO2EM(MNUMPR,MNUMYR) BPU_CO2FAC(MNUMPR,MNUMYR) BPU_CSTFAC(MNUMPR) BPU_DCLCAPCST BPU_DCLOPRCST BPU_INCBLD BPU_INVCST BPU_INVCST BPU_INVLOC(MNUMPR) Factor | BPU_CGGGD(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from CBTLto grid | | | BPU_CO2EM(MNUMPR,MNUMYR)M lb/cdCO2 emissions from CBTLBPU_CO2FAC(MNUMPR,MNUMYR)Lbs/bblCO2 emissions per CBTL liq producedBPU_CSTFAC(MNUMPR)FactorFac to adj cap/op cost for CBTL<br>based on coal typeBPU_DCLCAPCSTRatedecline rate on cap costBPU_DCLOPRCSTRatedecline rate on operating costBPU_INCBLDMbbl/cdincremental CBTL unit buildsBPU_INVCST\$87/bblCBTL investment cost, after EPACT creditBPU_INVLOC(MNUMPR)Ratiouses padd 2 as basis for ratioBPU_LIQNCLNonenumber of coal types for BPU | BPU_CGGSF(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from BTLto self | | | BPU_CO2EM(MNUMPR,MNUMYR)M lb/cdCO2 emissions from CBTLBPU_CO2FAC(MNUMPR,MNUMYR)Lbs/bblCO2 emissions per CBTL liq producedBPU_CSTFAC(MNUMPR)FactorFac to adj cap/op cost for CBTL<br>based on coal typeBPU_DCLCAPCSTRatedecline rate on cap costBPU_DCLOPRCSTRatedecline rate on operating costBPU_INCBLDMbbl/cdincremental CBTL unit buildsBPU_INVCST\$87/bblCBTL investment cost, after EPACT creditBPU_INVLOC(MNUMPR)Ratiouses padd 2 as basis for ratioBPU_LIQNCLNonenumber of coal types for BPU | BPU_CGSFAC(MNUMPR,MNUMYR) | Factor | Fac to est elec cogen to self | | | BPU_CSTFAC(MNUMPR)FactorFac to adj cap/op cost for CBTL based on coal typeBPU_DCLCAPCSTRatedecline rate on cap costBPU_DCLOPRCSTRatedecline rate on operating costBPU_INCBLDMbbl/cdincremental CBTL unit buildsBPU_INVCST\$87/bblCBTL investment cost, after EPACT creditBPU_INVLOC(MNUMPR)Ratiouses padd 2 as basis for ratioBPU_LIQNCLNonenumber of coal types for BPU | BPU_CO2EM(MNUMPR,MNUMYR) | M lb/cd | | | | BPU_CSTFAC(MNUMPR)FactorFac to adj cap/op cost for CBTL based on coal typeBPU_DCLCAPCSTRatedecline rate on cap costBPU_DCLOPRCSTRatedecline rate on operating costBPU_INCBLDMbbl/cdincremental CBTL unit buildsBPU_INVCST\$87/bblCBTL investment cost, after EPACT creditBPU_INVLOC(MNUMPR)Ratiouses padd 2 as basis for ratioBPU_LIQNCLNonenumber of coal types for BPU | BPU_CO2FAC(MNUMPR,MNUMYR) | Lbs/bbl | CO ₂ emissions per CBTL liq produced | | | BPU_DCLOPRCST Rate decline rate on operating cost BPU_INCBLD Mbbl/cd incremental CBTL unit builds BPU_INVCST \$87/bbl CBTL investment cost, after EPACT credit BPU_INVLOC(MNUMPR) Ratio uses padd 2 as basis for ratio BPU_LIQNCL None number of coal types for BPU | BPU_CSTFAC(MNUMPR) | Factor | Fac to adj cap/op cost for CBTL | | | BPU_INCBLD Mbbl/cd incremental CBTL unit builds CBTL investment cost, after EPACT credit BPU_INVLOC(MNUMPR) Ratio BPU_LIQNCL None mumber of coal types for BPU | BPU_DCLCAPCST | Rate | decline rate on cap cost | | | BPU_INVCST \$87/bbl CBTL investment cost, after EPACT credit BPU_INVLOC(MNUMPR) Ratio uses padd 2 as basis for ratio BPU_LIQNCL None number of coal types for BPU | | Rate | decline rate on operating cost | | | BPU_INVLOC(MNUMPR) Ratio BPU_LIQNCL None s87/bbl credit uses padd 2 as basis for ratio number of coal types for BPU | BPU_INCBLD | Mbbl/cd | incremental CBTL unit builds | | | BPU_LIQNCL None number of coal types for BPU | BPU_INVCST | \$87/bbl | I ' | | | BPU_LIQNCL None number of coal types for BPU | BPU_INVLOC(MNUMPR) | Ratio | uses padd 2 as basis for ratio | | | | BPU_LIQNCL | None | | | | BPU_NAM(MNUMPR) None coal ID (1-3) and padd ID (4) | BPU_NAM(MNUMPR) | None | coal ID (1-3) and padd ID (4) | | | BPU_NCL None number of coal types for BTL | BPU_NCL | None | number of coal types for BTL | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|-------------------------|----------------------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | BPU_OH_LCFAC | Factor | Benefits & other OH (% of Op Labor + Staffing) | | | BPU_OSBLFAC | Factor | Outside battery limit (already in ISBL for BPU) | | | BPU_PCTENV | Factor | Home Office + Contractor's Fee | | | BPU_PCTCNTG | Factor | Contractor's + Owner's Contingency | | | BPU_PCTLND | Factor | Land | | | BPU_PCTSPECL | Factor | Prepaid Royalties & License + Start_up costs | | | BPU_PCTWC | Factor | Working Capital | | | BPU_PLNBLD(MNUMPR,MNUMYR) | Mbbl/cd | Planned BPU blds (# to 1000bbl/cd) | | | BPU_PRJLIFE | None | Project life years for BPU | | | BPU_STAFF_LCFAC | Factor | Supervisory & other Staffing (% of Op Labor) | | | P_BPUTRN(MNUMPR,MNUMYR) | \$87/bbl | Cost to trans BPU liq from fac to refinery | | | P_BPUINV(MNUMPR,MNUMYR) | \$87/bbl | Investment cost for BPU production | | | Q_BPUPRD(MNUMPR,MNUMYR) | Mbbl/cd | BPU produced | | | QBMRFBPUPD(MNUMPR,MNUMYR) | TrilBtu/y | biomass into BPU unit | | | RFBPULIQ | Mbbl/cd | BPU vol. | | | BPU_FSTYR | Year | 1 st year BPU allowed to build | | | BPU_BLDYRS | integer | Construction years for BPU | | | BPU N | IANSFIELD-BLACKMAN | N PARAMETERS | | | BPU_BLDX | None | Max builds (# to 1000 bbl/cd) | | | BPU_IINDX | None | Innovation index | | | BPUMB_SW | Switch | Switch to apply M-B model | | | BPU_PINDX | None | Relative profitability | | | BPURFIPQCLLS | None | WOP M-B influence | | | BPU_INVST | None | Relative investment size | | | CUMBPUBLD | Mbbl/cd | Cumulative capacity builds for BPU | | | | O-LIQUID (BTL) VARIABLI | | | | BTL_BASHHV | MMBtu/ton | coal HHV | | | BTL_BASSIZ | Mbbl/cd (liq out) | base BTL size | | | BTL_BASCGS | MW | base BTL cogeneration to self | | | BTL_BASCGG | MW | base BTL cogeneration to grid | | | BTL_BLDYRS | Year | Construction years for BTL | | | BTL_CGTFAC(MNUMPR,MNUMYR) | KWh/bbl | Factor to estimate electricity cogeneration total from BTL (KWh/bbl liq) | | | BTL_CGGFAC(MNUMPR,MNUMYR) | KWh/bbl | Factor to estimate electricity cogeneration to grid from BTL (KWh/bbl liq) | | | BTL_CGCTOT(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from BTL—total | | | BTL_CGCGD(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from BTLto grid | | | BTL_CGCSF(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from BTLto self | | | BTL_CGGTOT(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from BTL—total | | | BTL_CGGGD(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from BTLto grid | | | BTL_CGGSF(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from BTLto self | | | BTL_CO2EM(MNUMPR,MNUMYR) | 1000 KWh/cd | CO2 emissions from BTL | | | BTL_CO2FAC(MNUMPR,MNUMYR) | Lbs/bbl | CO2 emissions per BTL liq produced | | | BTL_CSTFAC(MNUMPR) | Factor | Fac to adj cap/op cost for BTL based on coal type | | | BTL_DCLCAPCST | Rate | decline rate on cap cost | | | <del>-</del> | • | | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|---------------------|---------------------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | BTL_DCLOPRCST | Rate | decline rate on operating cost | | | BTL_INCBLD | Mbbl/cd | incremental BTL unit builds | | | BTL_INVCST | 87\$/bbl | BTL investment cost, after EPACT credit | | | BTL_INVLOC(MNUMPR) | Factor | uses PADD 2 as basis for ratio | | | BTL_LIQNAM(BTL_NLIQ) | None | BTL liq stream ID (1-3) | | | BTL_LIQNCL | None | number of coal types for BTL | | | BTL_NAM(MNUMPR) | None | coal ID (1-3) and PADD ID (4) | | | BTL_NCL | None | number of coal types for BTL | | | BTL_NLIQ | None | Maximum number of liquid streams out of BTL | | | BTL_OH_LCFAC | Factor | Benefits & other OH (% of Op Labor + Staffing) | | | BTL_OSBLFAC | Factor | Outside battery limit (already in ISBL for BTL) | | | BTL_PCTENV | Factor | Home Office + Contractor's Fee | | | BTL_PCTCNTG | Factor | Contractor's + Owner's Contingency | | | BTL_PCTLND | Factor | Land | | | BTL_PCTSPECL | Factor | Prepaid Royalties &License + | | | | | Start_up costs | | | BTL_PCTWC | Factor | Working Capital | | | BTL_PLNBLD(MNUMPR,MNUMYR) | Mbbl/cd | Planned BTL blds (# to 1000bbl/cd) | | | BTL_PRJLIFE | Year | Project life years for BTL | | | BTL_STAFF_LCFAC | Factor | Supervisory & other Staffing (% of Op Labor) | | | BTLEPACT_FAC | Factor | % of actual BTL bld cost (reflects EPACT credit) | | | HBIOCAPX(MNUMPR,MNUMYR) | Mbbl/cd | max BTL capacity to date | | | P_BTLTRN(BTL_NLIQ,MNUMPR,MNUMYR) | \$/bbl | Cost to trans BTL liq from fac to refinery | | | P_BTLINV(MNUMPR,MNUMYR) | \$87/bbl | Investment cost for BTL production | | | Q_BTLPRD(MNUMPR,MNUMYR) | Mbbl/cd | BTL produced | | | QBMRFPD(MNUMPR,MNUMYR) | TrilBtu/y | biomass into BTL unit | | | RECRATBTL(MNUMPR,MNUMYR) | Fraction | Req. recovery rate | | | RFBTLLIQ(BTL_NLIQ) | Mbbl/cd | BTL vol by liq type | | | | D-BLACKMAN PARAMET | | | | BTLBLDX<br>DTLMD, CW | number of BTL units | maximum number of BTL builds | | | BTLMB_SW | Flag | switch to applyM-B model to BTLx | | | BTL_FSTYR | Year | first year allowed to build for BTL | | | BTL_INDX | None | innovation index for BTL | | | BTL_PINDX | None | relative profitability index for BTL | | | BTLRFIPQCLLS | None | BTL WOP M-B influence | | | BTL_SINVST | None | relative investment size for BTL | | | CUMBTLBLD(MNUMYR) | Mbbl/cd | cumulative BTL builds allowed | | | COAL & BIOMASS-TO-LIQUID (CBTL) VARIABLES | | | | | CBTL_BASHHV | MMBtu/ton | coal HHV | | | CBTL_BASSIZ | Mbbl/cd | base CBTL size (1000bbl/cd liq out) | | | CBTL_BASCGS | MW | base CBTL cogeneration to self | | | CBTL_BASCGG | MW | base CBTL cogeneration to grid | | | CBTL_BLDYRS | None | Construction years for CBTL | | | CBTL_CGTFAC(MNUMPR,MNUMYR) | Factor | Factor to estimate electricity cogeneration total from CBTL (KWh/bbl liq) | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | | 
-------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|--|--| | NAME | | | | | | CBTL_CGGFAC(MNUMPR,MNUMYR) | Factor | Factor to estimate electricity cogeneration to grid from CBTL (KWh/bbl liq) | | | | CBTL_CGCTOT(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from CBTL—total | | | | CBTL_CGCGD(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from CBTLto grid | | | | CBTL_CGCSF(MNUMPR,MNUMYR) | 1000 KWh/cd | CG cap from CBTLto self | | | | CBTL_CGGTOT(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from CBTL—total | | | | CBTL_CGGGD(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from CBTLto grid | | | | CBTL_CGGSF(MNUMPR,MNUMYR) | 1000 KWh/cd | CG gen from BTLto self | | | | CBTL_CO2EM(MNUMPR,MNUMYR) | 1000 KWh/cd | CO ₂ emissions from CBTL | | | | CBTL_CO2FAC(MNUMPR,MNUMYR) | Lbs/bbl | CO ₂ emissions per CBTL liq produced | | | | CBTL_CSTFAC(MNUMPR) | Factor | Fac to adj cap/op cost for CBTL based on coal type | | | | CBTL_DCLCAPCST | Rate | decline rate on cap cost | | | | CBTL_DCLOPRCST | Rate | decline rate on operating cost | | | | CBTL_INCBLD | Mbbl/cd | incremental CBTL unit builds | | | | CBTL_INVCST | 87\$/bbl | CBTL investment cost, after EPACT credit | | | | CBTL_INVLOC(MNUMPR) | Factor | uses padd 2 as basis for ratio | | | | CBTL_LIQNAM(BTL_NLIQ) | None | CBTL liq stream ID (1-3) | | | | CBTL_LIQNCL | None | number of coal types for CBTL | | | | CBTL_NAM(MNUMPR) | None | coal ID (1-3) and padd ID (4) | | | | CBTL_NCL | None | number of coal types for BTL | | | | CBTL_NLIQ | None | Maximum number of liquid streams out of CBTL | | | | CBTL_OH_LCFAC | Factor | Benefits & other OH (% of Op Labor + Staffing) | | | | CBTL_OSBLFAC | Factor | Outside battery limit (already in ISBL for CBTL) | | | | CBTL_PCTENV | Factor | Home Office + Contractor's Fee | | | | CBTL_PCTCNTG | Factor | Contractor's + Owner's Contingency | | | | CBTL_PCTLND | Factor | Land | | | | CBTL_PCTSPECL | Factor | Prepaid Royalties & License + Start_up costs | | | | CBTL_PCTWC | Factor | Working Capital | | | | CBTL_PLNBLD(MNUMPR,MNUMYR) | None | Planned CBTL blds (# to 1000bbl/cd) | | | | CBTL_PRJLIFE | Year | Project life years for CBTL | | | | CBTL_STAFF_LCFAC | None | Supervisory & other Staffing (% of Op Labor) | | | | P_CBTLTRN(CBTL_NLIQ,MNUMPR,MNUMYR) | \$87/bbl | Cost to trans CBTL liq from fac to refinery | | | | P_CBTLINV(MNUMPR,MNUMYR) | \$87/bbl | Investment cost for CBTL production | | | | Q_CBTLCAP(MNUMPR <mnumyr)< td=""><td>Mbbl/cd</td><td>Total active CBTL capacity</td></mnumyr)<> | Mbbl/cd | Total active CBTL capacity | | | | Q_CBTLPRD(MNUMPR,MNUMYR) | Mbbl/cd | CBTL produced | | | | QBMRFCBTLPD(MNUMPR,MNUMYR) | TrilBtu/y | Biomass into CBTL unit | | | | RECRATCBTL(MNUMPR,MNUMYR) | Fraction | Required recovery rate | | | | RFCBTLLIQ(CBTL_NLIQ) | Mbbl/cd | CBTL vol by liq type | | | | CLRFCBTLPD(MNUMPR,MNUMYR0 | TrilBtu/y | Coal feed to CBTL | | | | CLPCTCBTL | fraction | Fraction coal in CBTL feedstock by energy | | | | CBTL_FSTYR | Integer | 1 st year CBTL allowed to build | | | | CBTL_BLDYRS | integer | Construction years for CBTL | | | | CBTL N | IANSFIELD BLACKMA | N PARAMETERS | | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------| | NAME | UNITS | DEFINITION | | CBTLMB_SW | Integer | Switch to apply M-B model | | CBTL_IINDX | None | Innovation Index | | CBTL_PINDX | None | Relative profitability | | CBTL_SINVST | None | Relative Inv size | | CBTLBLDX | Number of CBTL | Max CBTL builds | | CBILBLUX | units | Max CBTL builds | | | | | | | | | | OLI MANOFIEL | D DI AGKMANI DADAMET | | | CLL MANSFIEL CLLIINDX | D BLACKMAN PARAMET None | Innovation Index | | CLLPINDX | None | | | CLLSINVST | None | Relative profitability Relative Inv size | | CLLSINVST | num of CLL base | Relative inv size | | CLLBLDX | units | Max number of plants | | | num of CLL base | | | NCLLBLT | units | Number built | | CLL MBFSTYR | year | First year for M-B | | ICLLIINDX | None | Innovation Index | | ICLLPINDX | None | Relative profitability | | ICLLSINVST | None | Relative Inv size | | ICLLBLDX | None | Max number of plants | | NICLLBLT | None | Number built | | ICLL MBFSTYR | Year | First year for M-B | | | 007) MANDATE VARIABLE | | | F_NOSUNSET | Flag | Flag for 'no sunset' scenario | | L_NOSUNSET | Logical | TRUE for 'no sunset' scenario | | SUNSETYR | integer | Last RFS year | | I DECCALID | floor | 0 = use RHS from sprflrt | | L_RFSCALIB | flag | 1 = use calibrated RHS | | RFSCALIB | flag | Flag to use calibrated RFS levels | | RFSPCT_NOSUNSET(4) | Fraction | RFS percentage of total fuel in sunset | | · , | | year | | RHS_ETHBIO(MNUMYR) | Mbbl/cd | Total RFS construction | | RHS_CLLBIO(MNUMYR) | Mbbl/cd | Total advanced RFS construction | | RHS_CLLTOT(MNUMYR) | Mbbl/cd | Total cellulosic ethanol construction | | RHS_BIOTOT(MNUMYR) | Mbbl/cd | Total biodiesel construction | | RHS_CLLBIO_RFS(MNUMYR) | Mbbl/cd | Real RFS reqt for advanced biofuels | | RHS_CLLTOT_RFS(MNUMYR) | Mbbl/cd | Real RFS reqt for cellulosic biofuels | | RHS_BIOTOT_RFS(MNUMYR) | Mbbl/cd | Real RFS reqt for biodiesel | | RHS_ETHBIO_CALIB(MNUMYR) | Mbbl/cd | Calibrated RFS reqt for total biofuels | | RHS_CLLBIO_ CALIB(MNUMYR) | Mbbl/cd | Calibrated RFS reqt for adv. biofuels | | RHS_CLLTOT_ CALIB(MNUMYR) | Mbbl/cd | Calibrated RFS reqt for cell. biofuels | | RHS_BIOTOT_CALIB(MNUMYR) | Mbbl/cd | Calibrated RFS reqt for biodiesel | | RFHR6FLAG | flag | pre-HR6=1, HR6=2 | | NPCAPYR | # of years | Number of years with planned | | IN ON TIX | # OI years | capacity | | PCAPYR(20) | year | Identifies NEMS years w/ planned | | 1 0/11 111(20) | your | capacity | | NMRCAPYR | # of years | Number of yrs w/ planned cap for | | THE STATE OF S | " or yours | marginal ref'y | | MRCAPYR(20) | year | Identifies NEMS yrs w/ planned cap | | | , | for marg ref'y | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | |------------------------------------------------------------|---------------------------------------|-------------------------------------------------| | NAME | UNITS | DEFINITION | | RFCAPADD(PUNITSN,MNUMPR,20) | Mbbl/cd | Planned refinery capacity | | MRCAPADD(PUNITSN,MNUMPR,20) | M bbl/cd | Planned marginal refinery capacity | | HBIOCAP(MNUMPR) | M bbl/cd | BTL utilized capacity | | LEARNING PARAMETERS FOR BPU, BTL | | | | (XXX)_PhaselCut | # of units | (XXX) = BPU, BTL | | (XXX)_PhaseIICut | # of units | (XXX) = BPU, BTL | | (XXX)_Phasela | parameter | (XXX) = BPU, BTL | | (XXX)_PhaseIb | parameter | (XXX) = BPU, BTL | | (XXX)_PhasellaFast | parameter | (XXX) = BPU, BTL | | (XXX)_PhaseIIbFast | parameter | (XXX) = BPU, BTL | | (XXX)_PhasellaSlow | parameter | (XXX) = BPU, BTL | | (XXX)_PhaseIIbSlow | parameter | (XXX) = BPU, BTL | | (XXX)_PhaseIllaFast | parameter | (XXX) = BPU, BTL | | (XXX)_PhaseIIIbFast<br>(XXX) PhaseIIIaSlow | parameter | (XXX) = BPU, BTL | | (XXX) PhaseIIIbSlow | parameter | (XXX) = BPU, BTL<br>(XXX) = BPU, BTL | | | parameter RAMETERS FOR CELLULO | | | | | (not used, replaced with | | FASTLRN | Logical | CELLFASTLRN) | | CLLLNRATE(MNETOH) | Rate | Technology learning rate | | | | Indicates learning rate impact on cost | | CELLFASTLRN | flag | of Cellulosic ethanol production: | | | | 0=autolearn, 1=accelerated learning | | | | (80%cost), 2=accelerated learning (60%cost) | | | | Resulting accelerated learning factor | | ETHPLNFACT | multiplier | keyed off of CELLFASTLRN | | PHASEICUT | # of units | Phase I learning for <= 5 units | | PHASEIICUT | # of units | Phase II learning for between 5 and 32 units, | | PHASEIA | parameter | Phase I learning, parameter A | | PHASEIB | parameter | Phase I learning, parameter B | | PHASEIIAFAST | parameter | Phase II learning, parameter A, fast | | PHASEIIAFAST | parameter | component | | PHASEIIBFAST | parameter | Phase II
learning, parameter B, fast | | TTINGERSTAGT | parameter | component | | PHASEIIASLOW | parameter | Phase II learning, parameter A, slow component | | PHASEIIBSLOW | parameter | Phase II learning, parameter B, slow | | TINGLIBGEOV | parameter | component | | PHASEIIIAFAST | parameter | Phase III learning, parameter A, fast component | | 10FWPF10F | Phase III learning, parameter B, fast | | | PHASEIIIBFAST | parameter | component | | PHASEIIIASLOW | parameter | Phase III learning, parameter A, slow | | | T | component | | PHASEIIIBSLOW | parameter | Phase III learning, parameter B, slow | | | | Component | | CLLLNRATE | multiplier | Resulting auto-learn factor from Phase learning | | SLOWLRN | Logical | (not used) | | | CURVE DATA STRUCTU | | | Q_E85_CD(MNUMCR,MNUMYR) Tril Btu/yr Quantity of E85 Demand | | | | a_zee_es_(temory,temory) | | | | VARIABLES USED | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | |---------------------------------------------|--------------------------------------------|----------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | INFRASTRUCTURE_COST(MNUMCR) | million \$87/ billion gallons | E85 Infrastructure Cost Factor | | | INFRASTRUCTURE_YEAR | year | Year Dollars (\$2007) of E85<br>Infrastructure Costs | | | COST_PER_STATION | (\$2007)/station | Cost per Station to add E85 Pumps | | | INT_IC | rate | Interest rate | | | NYR_IC | year | Loan term | | | STATION_COST_YEAR | year | Year Dollars of Cost per Station | | | TOTAL_STATIONS(MNUMCR) | Integer | Total Number of Stations | | | INT_SC | rate | Interest rate | | | NYR_SC | year | Loan term | | | N_E85STP, N_E85STP_UP, N_E85STP_DN | Integer | Actual Number of E85 Steps Read from input file | | | SZ_E85STP_UP(MX_E85STP_UP) | fraction | Fraction of E85 per Step from Target to Max E85 | | | SZ_E85STP_DN(MX_E85STP_UP) | fraction | Fraction of E85 per Step from Target to Zero E85 | | | Q_E85STP_BP(0:MX_E85STP,MNUMCR) | M bbl/cd | Cumulative Qty of E85 at each Break Point | | | Q_E85STP_MP(MX_E85STP,MNUMCR) | M bbl/cd | Cumulative Qty of E85 for MidPoint of Each Step | | | Q_E85STP(MX_E85STP,MNUMCR) | M bbl/cd | Quantity of E85 Available at Each Step | | | P_E85STP_IC(MX_E85STP,MNUMCR) | \$87/MMBtu | Incremental Infrastructure Cost at Each Step | | | P_E85STP_SC(MX_E85STP,MNUMCR) | \$87/MMBtu | Incremental New Station Cost at Each Step | | | P_E85STP(MX_E85STP,MNUMCR) | \$87/MMBtu | E85 Price Allowed at Each Step | | | A_E85STP(MX_E85STP,MNUMCR) | percent | Percent Station Availability at Each Step | | | | GREEN NAPTHA VARIAI | BLES | | | SBOQGDPD(MNUMPR,MNUMYR) | Mbbl/cd | green diesel from SBO | | | YGRQGDPD(MNUMPR,MNUMYR) | Mbbl/cd | green diesel from YGR | | | WGRQGDPD(MNUMPR,MNUMYR) | Mbbl/cd | green diesel from WGR | | | SBO2GDTCD(MNUMCR,MNUMYR) | Mbbl/cd | SBO to GDT unit,CD | | | YGR2GDTCD(MNUMCR,MNUMYR) | Mbbl/cd | YGR to GDT unit, CD | | | WGR2GDTCD(MNUMCR,MNUMYR) | Mbbl/cd | WGR to GDT unit, CD | | | GRD2DSQTYPD(MNUMPR,MNUMYR) | Mbbl/cd | green diesel to dist, PD | | | GRN2MGQTYPD(MNUMPR,MNUMYR) | Mbbl/cd | green naphtha to motor gasoline, PD | | | INTERNATION | NAL REFINERY VARIABL | | | | NM_IPMM_D_REG | None | Actual number of International Demand Regions | | | NM_IPMM_D_STP | None | Actual number of International Demand Steps | | | NM_IPMM_D_PRD | None | Actual number of International Demand Products | | | NM_IPMM_D_PRM | None | Actual number of International Demand Forecast Parameters | | | TQPRD_IPMM(MX_IPMM_D_REG,MNUMYR) | Mbbl/cd | Total IEO Liquid Demand Forecasts | | | ADJTQ_IPMM(MNUMYR) | None | Adjustment Factor Applied to Total IEO Liquid Demand Forecasts | | | ELAS_CRUDE_TO_TOTAL_IPMM(MX_IPMM_D<br>_REG) | None | Price Elasticities by Demand Region and Product | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | |--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | UNITS | DEFINITION | | | Fraction | Total IEO Liquid Demand Forecasts<br>Shares to Individual Products | | | None | Price Elasticities by Demand Region and Product | | | Ratio | GDP by Demand Region and Year | | | MMBtu/bbl | Heat Content of Each Product | | | Fraction | Demand Step Definition - Percent of Base Price | | | None | Forecast Parameters for each<br>Demand Region | | | Fraction | Crude Shares by Crude Type 0 => Total World | | | None | Product Codes | | | None | Demand Curve Step Codes | | | None | Demand Region Codes | | | None | Crude Codes IPMM Regions | | | None | cap growth rate, intl downstrm units | | | None | cap growth rate, intl marg units | | | None | cap growth rate, intl infra_mar units | | | Mbbl/cd | cap limit, intl downstrm units | | | Mbbl/cd | cap limit, intl marg crude units | | | Mbbl/cd | cap limit, intl infra-marg crude units | | | None | cap growth rate, intl downstrm units | | | None | cap growth rate, intl marg units | | | None | cap growth rate, intl infra_mar units | | | Mbbl/cd | cap limit, intl downstrm units | | | Mbbl/cd | cap limit, intl marg crude units | | | Mbbl/cd | cap limit, intl infra-marg crude units | | | Mbbl/cd | reg cap for Intl marg refinery | | | None | reg utz for Intl marg ref cap | | | Mbbl/cd | reg cap for Intl Infra-marg refinery | | | None | reg utz for existing Intl ref unit | | | None | reg utz for existing Intl IMC unit | | | Percent | reg utz for Intl Infra-marg ref cap | | | \$87/bbl | Price difference between domestic and foreign low sulfur light crude | | | None | NUM INTL REFINING REGIONS | | | None | num Intl downstrm units | | | None | 1-chr ID for Intl refinery regs | | | le « | Te a resident | | | | Fraction used for transportation | | | Fraction | Fraction used for transportation | | | <br>ATURAL GAS PLANT V | ARIABI ES | | | TOTAL SAUTEART V | These four parameters express total | | | Parameter | NGL volume as a function of total dry gas volume in each OGSM region | | | | Fraction None Ratio MMBtu/bbl Fraction None Fraction None None None None None None None None None Mbbl/cd None Mbbl/cd None None Percent \$87/bbl None None None None Fraction Fraction Fraction | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | MAXPGSCC1 | Percent | Maximum percentage of extractable ethane allowed to remain in the dry gas stream | | | MAXPGSLPG | Percent | Maximum percentage of extractable ethane allowed to be labeled as LPG | | | NGL2FRAC(OGSMRGNS,NUMNGLS) | Real | Component NGL fractions | | | NUMNGLS | = 5 | Number of NGLs (1=ethane,<br>2=propane, 3=normal butane,<br>4=isobutane, 5=natural gasoline) | | | OGSMRGNS | = 63 | Number of OGSM production regions | | | O2P(OGSMRGNS) | 1, 2, 3, 4, 5 | PADD of each OGSM region | | | MISCEL | LANEOUS VARIABLES | Inches and the second | | | ALFA | Fraction | Weight for industrial electricity purchase | | | ALKACT(MNUMPR,MNUMYR,9) | Mbbl/cd | Alkylation unit activity variable by mode | | | ALKMOD(9) | Text | Alkylation unit mode | | | ALTPETBAL | Logical | Alternate Petroleum Balance | | | ARG(MNUMCR,MNUMYR) | Real | Coeff in ethanol equation (tech dependent) | | | BCOEFF(MNUMYR) | Real | B coefficient for palm oil price | | | BIDXCSTCD4(MNUMYR) | 87\$/bbl | Biodiesel export cost | | | BIMI_PADJ(MNETOH) | 87\$/bbl | Imp Adj Pr, to encourage hist eth imp to CD | | | BIMIMPP(MNUMYR,5) | 87\$/bbl | PR on BIM imp crv | | | BIMIMPQ(MNUMYR,5) | 1000 bbl/cd | QTY on BIM imp crv | | | BIMITRNP(MNUMCR,MNUMYR) | 87\$/bbl | PR for BIM imp trans to CD | | | BIOCOEFF(MNUMYR) | Year | new biodiesel acct coef for RFS beginning yr BIORFSYR | | | BIODICSTCD(MNUMCR,MNUMYR) | 87\$/bbl | Marg price for biodiesel imports | | | BIORFSYR | Begin | begin yr to chg 1.5 to 1.0 biodiesel acct coef for RFS | | | BLDPRD(MNUMPR,MNUMYR) | MMbbl/cd | Product blending component | | | BLDREFIN(MNUMPR,MNUMYR) | MM bbl/cd | BLENDING COMP RF INPUT | | | BLDREFINC(MNUMPR,MNUMYR) | MM bbl/cd | Conventional BLENDING COMP RF INPUT | | | BLDREFINR(MNUMPR,MNUMYR) | MM bbl/cd | Reformulated BLENDING COMP RF INPUT | | | BLDSPLT(MNUMYR,PUNITSN,MNUMYR+3) | Percent | Build splits for specific units (data) | | | BIMIMPCD(MNUMCR) | Integer | list of CD's w/ BIM imp | | | BIMIMPST(5) | Integer | list of steps for Biod imports | | | CAPCRD(MNUMYR,35) | Percent | Crude pipeline utilization | | | CAPCSTBDW | 87\$/gal | Capital cost BDW | | | CAPCSTCL(MNUMYR) | \$87 | Capital costs for Biomass conversion | | | CAPCSTCLL_BASE | \$87/gal | Base levelized capital cost for cellulosic ethanol plant | | | CAPEXPFCT(5,60,MNUMYR) | Percent | Processing unit capacity expansions factor | | | CAPGTLNS(MNUMYR) | Mbbl/cd | Total GTL capacity | | | CAPLPG(MNUMYR,12) | Percent | LPG pipeline utilization | | | CAPPRD(MNUMYR,51) | Pecerent | Product pipeline utilization | | | CD2CD_CB(2,100) | Integer | CD To CD Via Clean Barge | | | CD2CD_CT(2,100) | Integer | CD To CD Via Clean Tanker | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|----------|-----------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | CD2CD_DB(2,100) | Integer | CD To CD Via Dirty Barge | | | CD2CD_DT(2,100) | Integer | CD To CD Via Dirty Tanker | | | CD2CD_ECB(2,100) | Integer | CD To CD Via Clean Barge (Eth) | | | CD2CD_EDB(2,100) | Integer | CD To CD Via Dirty Barge (Eth) | | | CD2CD_LT(2,100) | Integer | CD To CD Via Tanker (LPG) | | | | Frantian | Minimum capacity utiliz for ACU base 
 | | CF_ACUMIN(MNUMPR) | Fraction | capacity | | | CGPCGRDPD(MNUMPR) | Fraction | Percent split of CHP to grid, by PADD | | | CGPCGRDCD(MNUMPR) | Fraction | Percent split of CHP to grid, by CD | | | CHG_BLDSPLT(PUNITSN) | Integer | Flag to change build splits (0=no, 1=yes) | | | CLLCAP(MNETOH) | \$87/gal | Capital cost for cellulosic ethanol plant | | | CRNPRCD(MNUMCR) | Integer | list of CD's w/ Palm Oil, CRNPR | | | DEF_BLDSPLT(MNUMPR,3) | Percent | Build splits for specific units (data) | | | DSLCTI(MNUMPR,MNUMYR) | Cetane | Avg CETANE in DSL | | | DSUCTI(MNUMPR,MNUMYR) | Cetane | Avg CETANE in DSU | | | E85TXPCT | Fraction | E85 component of cellulose subsidy | | | ETAMGDELTAS | Ratio | ETA/mogas delta. M-B influence | | | ETHPLNTFACT | None | Ethanol plant cost factor | | | ETHR_02(7) | Fraction | Wt. Fraction O ₂ in ethers/ETH | | | ETHR_SG | Real | Specific gravity of ethers/ETH | | | EXPMAX(11,5) | Mbbl/cd | Maximum product export quantity | | | EXPMIN(11,5) | Mbbl/cd | Minimum product export quantity | | | EXPRAT | Fraction | Product export ratio used in regression | | | EXPRD(11) | Text | List of product exports | | | EXPRDDMD(11,5) | Mbbl/cd | Prod dmd grouped by exort reg for exp prod only | | | FCCACT(MNUMPR,MNUMYR,116) | Mbbl/cd | FCC unit activity variable by mode | | | FCCDUAL(MNUMPR,MNUMYR,116) | \$87/bbl | RFG specification row dual activity | | | FCCMOD(116) | Text | FCC unit modes | | | FLOWCD_CB(MNUMYR,100) | Mbblcd | Flow From CD To CD Via Clean Barge | | | FLOWCD_CT(MNUMYR,100) | Mbblcd | Flow From CD To CD Via Clean<br>Tanker | | | FLOWCD_DB(MNUMYR,100) | Mbblcd | Flow From CD To CD Via Dirty Barge | | | FLOWCD_DT(MNUMYR,100) | Mbblcd | Flow From CD To CD Via Dirty Tanker | | | FLOWCD_ECB(MNUMYR,100) | Mbblcd | Eth Flow From CD To CD Via Clean<br>Barge | | | FLOWCD_EMT(MNUMYR,100) | Mbblcd | Eth Flow From CD To CD Via Mixed Tansportation mode | | | FLOWCD_LT(MNUMYR,100) | Mbblcd | LPG Flow From CD To CD Via<br>Tanker | | | FLOWCRD(MNUMYR,35) | Mbbl/cd | Crude pipeline flow | | | FLOWLPG(MNUMYR,12) | Mbbl/cd | LPG pipeline flow | | | FLOWPD_CB(MNUMYR,100) | Mbblcd | Flow From PADD To CD Via Clean<br>Barge | | | FLOWPD_CT(MNUMYR,100) | Mbblcd | Flow From PADD To CD Via Clean<br>Tanker | | | FLOWPD_DB(MNUMYR,100) | Mbblcd | Flow From PADD To CD Via Dirty<br>Barge | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|------------------|----------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | FLOWPD_DT(MNUMYR,100) | Mbblcd | Flow From PADD To CD Via Dirty Tanker | | | FLOWPD_ECB(MNUMYR,100) | Mbblcd | Eth Flow From PADDo CD Via Clean Barge | | | FLOWPD_EDB(MNUMYR,100) | Mbblcd | Eth Flow From PADDo CD Via Dirty Barge | | | FLOWPD_LT(MNUMYR,100) | Mbblcd | Lpg Flow From PADD To CD Via Tanker | | | FLOWPRD(MNUMYR,51) | Mbbl/cd | Product pipeline flow | | | FSCSTCL(MNUMCR,MNUMYR) | \$87 | Costs | | | FSCSTV(MNUMCR,5) | \$87/bbl | domestic biodiesel Feed stock price | | | FSQTYV(MNUMCR,5) | Mbbl/cd | domestic biodiesel Feed stock qty | | | FXOCCLL | \$87/bbl | Fixed operating cost of cellulosic ethanol plant | | | GAINPCT(MNUMYR) | Percent | Gain as percent of total crd input | | | GPRDIMP(MNUMPR, NUMIMPPRD) | Fraction | Growth rate for product imports | | | GTL_INCBLD | Mbbl/cd | Incremental build level allowed for GTL units | | | HH2_CONS(MNUMPR,PUNITSN+1,MNUMYR) | Mbbl(foe)/cd | Hydrogen consumption, by reg, unit, yr | | | HH2_FUXC(MNUMPR,MNUMYR) | Mbbl(foe)/cd | Hydrogen consumed by fuel plant (FUX) | | | HH2_FUXP(MNUMPR,MNUMYR) | Mbbl(foe)/cd | Hydrogen produced by other units | | | HH2_FUXUC(MNUMPR) | Integer | Flag indicating H ₂ consumed by FUX in region | | | HH2_FUXUP(MNUMPR) | Integer | Flag indicating H ₂ produced by FUX in region | | | HH2_PROD(MNUMPR,PUNITSN+1,MNUMYR) | Mbbl(foe)/cd | Hydrogen produced, by reg, unit, yr | | | HH2_UNITC(MNUMPR,PUNITSN) | Integer | Flag indicating units consuming H ₂ in region | | | HH2_UNITP(MNUMPR,PUNITSN) | Integer | Flag indicating units producing H ₂ in region | | | HISTCRDIMP(MNUMPR,MNGRADCR) | M bbl/cd | Historical Crude import quantities | | | HISTPRDIMP(MNUMPR,NUMIMPPRD) | M bbl/cd | Historical Product import quantities | | | IETAMGDELTAS | ratio | Imported ETA/mogas delta. M-B influence | | | IMMAXQTY(MNUMYR) | Mbbl/day | Max qty for biodiesel imports | | | IMPRBOB(MNUMYR) | M bbl/cd | National total for Imported RBOB | | | IMPSPLIT(MNUMCR,MNUMYR) | Percent | QTY step split for biod imports | | | IMPTBOB(MNUMYR) | M bbl/cd | National total for Imported CBOB | | | IMPVT(MNUMYR,4) | Mbbl/cd | Total liquid fuels imports | | | L_AEO2010 | flag | Old flag used for testing (=.false.) | | | L_HICOALPR | flag | is PCLSN a high price? | | | L_HIRENCST | flag | is this a high renewable cost case? Overwrite with STEO | | | L_OVWBSYR<br>N6XPRC(9) | flag<br>Fraction | Price step adjustment for N6I/B | | | N6XPRC(9)<br>N6XQNT(9) | Fraction | Supply step adjustment for N6I/B | | | LLPRDEXP(11,5,MNUMYR) | Mbbl/cd | Lower bound on prod exports (for cap expan) | | | LOWBND | None | Variable for passing data to OML | | | MARXCAP(MNUMPR,PUNITSN) | Mbbl/cd | PU cap at Marg Refinery | | | MCOEFF(MNUMYR) | Real | M coefficient for palm oil price | | | MGSBCHAR(5,11) | Text | Gasoline blend category for SSR, | | | 111000011111(0,11) | 10/10 | Cacomic biolia catogory for cort, | | | MGSBLND(5,5,11,5) MGSBLND(5,5,11,5) MGSPCS(80,MNUMYR) MGSHRIMNUMYR,8,MNUMCR) MGSHRIMNUMYR,8,MNUMCR) MGSHRIMNUMYR,8,MNUMCR) Percent MGSHRIMNUMYR,8,MNUMCR) MGSA, SG Real MGGAS, SG MGGAS, SG MTBERFGX MULFraction MTBETRGX MITIMRGSC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl MITIMLASC(MNUMYR,5,9,3) MIDI/CH, \$87/bbl MITIMLASC, | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|---------------------------------------|--| | MGSBLND(5,5,11,5) spec per bbl mogas Gascline blend specs for SSR, SST, RPH, TRH, SSE (PADD,TYP, BLND,YR) MGSPCS(80,MNUMYR) Many Motor gasoline specifications MGSHR(MNUMYR,6,MNUMCR) Percent Motor gasoline specifications MGGSR OSA Real Mscellaneous inputs MOGAS SG Real Specific gravity of motor gasoline MTBETRGX Wt. Fraction Max oxygenate in TRG allowed to be MTBE MTBETRGX Wt. Fraction Max oxygenate in TRG allowed to be MTBE MITIMGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl GASOLINE, expanded imp supply curve MITIMGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl GASOLINE, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, DIS, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, DIS, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, DIS, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, ERS., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LFE, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl | | | DEFINITION | | | MGSBLND(6,5,11,5) spec per bbl mogas RFH, TRH, SSE (PADD,TYP, BLND,YR) MGSPCS(80,MNUMYR) MGSHR(MNUMYR,6,MNUMCR) MGSHR(MNUMYR,6,MNUMCR) MGSHR(MNUMYR,6,MNUMYR) MMSDL/cd MISCINIP(MNUMPR,MNUMYR) MMSDL/cd MISCINIP(MNUMPR,MNUMYR) MMSDL/cd MISCINIP(MNUMPR,MNUMYR) MMSDL/cd MISCINIP(MNUMPR,MNUMYR) MMSDL/cd MISCINIP(MNUMPR,MNUMYR) MMSDL/cd MISCINIP(MNUMPR,MNUMYR) MISCINIP(MNUMPR,MNUMYR) MISCINIP(MNUMPR,MNUMYR) MISCINIP(MNUMPR,MNUMYR) MREGAS Real Specific gravity of motor gasoline Max oxygenate in RFG allowed to be MTBE MTBE MTBE REF, GAS, expanded imp supply curve MITIMCSC(MNUMYR,5,9,3) MIDIMCA, \$87/bbl | | | SST, RFH, TRH, SSE (TYP,BLND) | | | MGSPCS(80,MNUMYR) MGSPCS(80,MNUMYR) MGSPCS(80,MNUMYR) MGSPCS(80,MNUMYR) MGSPCS(80,MNUMYR) MGSSCS(MNUMYR) MGSSCS(MNUMYR) MGGSS OS Real Specific gravity of motor gasoline market shares MGGSS OS MTBERGX MTERGX MTERGX MTERGX MTERGX MTIMGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl
MSCIN,SEC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MTIMGSC(MNUMYR,5,9,3) MBBC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MBC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MBC(MNUMYR,5,9,3) | | | | | | MGSPCS(80,MNUMYR) Many Motor gasoline specifications MGSHR(8M,MUMYR, 6, MNUMCR) Percent Motor gasoline market shares MISCINP(MNUMPR,MNUMYR) MMbbl/cd Miscellaneous inputs MOGAS, O2N Fraction Wt. Fraction Oy. in motor gasoline MOGAS, SG Real Specific gravity of motor gasoline MTBERFGX Wt. Fraction Max oxygenate in RFG allowed to be MTBE MTBETRGX Wt. Fraction Max oxygenate in TRG allowed to be MTBE MITIMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl REF. GAS., expanded imp supply curve MITIMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl CASOLINE, expanded imp supply curve MITIMLDSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, DIS., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, DIS., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, LDIS., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL, LBS., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LPG, expanded imp supply curve MITIMPFSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LPG, expanded i | MGSBLND(5,5,11,5) | spec per bbl mogas | | | | MGSRIN(NNUMYR, 6,MNUMCR) Percent Motor gasoline market shares MISCINP(MNUMPR,MNUMYR) MMbbl/cd Miscellaneous inputs MOGAS_OZN Fraction WL Fraction 02 in motor gasoline MOGAS_GG Real Specific gravity of motor gasoline MTBERFGX Wt. Fraction Max oxygenate in RFG allowed to be MTBE MTBETRGX Wt. Fraction Max oxygenate in TRG allowed to be MTBE MITIMGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl REF. GAS., expanded imp supply curve MITIMGSSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl DISTILLATE, expanded imp supply curve MITIMDSSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl DISTILLATE, expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. DIS., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. RES., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl JET FUEL, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl JET FUEL, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl PETROCHEMICAL FEEDSTOCK, expanded import supply curve MITIMMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/b | | | | | | MISCINP(MNUMPR,MNUMYR) MMbbl/cd Miscellaneous inputs MOGAS OZN Fraction Wt. Fraction O ₂ in motor gasoline MOGAS SG Real Specific gravity of motor gasoline MTBERFGX Wt. Fraction Max oxygenate in RFG allowed to be MTBE MTBETRGX Wt. Fraction Max oxygenate in RFG allowed to be MTBE MITIMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl REF. GAS., expanded imp supply curve MITIMGSSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl CASOLINE, expanded imp supply curve MITIMLDSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. DIS., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. DIS., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. DIS., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. RES., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LPG, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LPG, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LPG, expanded import supply curve MITIMPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl | , | Many | | | | MOGAS_OZN | | | | | | MOGAS_SG | , , , | | | | | MTBERFGX Wt. Fraction Max oxygenate in RFG allowed to be MTBE MTBETRGX Wt. Fraction Mix oxygenate in RFG allowed to be MTBE MITIMGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl REF. GAS., expanded imp supply curve GASOLINE, expanded imp supply curve MITIMDSSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl DISTILLATE, expanded imp supply curve MITIMLDSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. DIS., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. RES., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl DISTILLATE, expanded imp supply curve HIGH-SUL. RES., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl PETROCHEMICAL FEEDSTOCK, expanded import supply curve MITIMMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMASC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMASC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMCSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMCSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMCRSC(MNUMYR,5,9,3) MITIMCRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl MITIMCRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl MITIMCRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl MITIMLPSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl DISTILLATE, expanded import supply curve MITIMCRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl DISTILLATE, expanded import supply curve MITIMLPSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl DISTILLATE, expanded import supply curve MITIMLPSC(MNXY | | | | | | MTBERROX WIL Fraction MTBE Max oxygenate in TRG allowed to be MTBE MITIMESSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMESSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMESSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMESSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl MITIMESSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl Mitimessc(Mnumyr,5,9,3) Miti | MOGAS_SG | Real | | | | MITBE I REF. GAS., expanded imp supply curve GASOLINE, expanded imp supply curve MITIMCRSC(MNUMYR,5,9,3) MITIMCRSC(MNUMY | MTBERFGX | Wt. Fraction | MTBE | | | MITIMCSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl GASOLINE, expanded imp supply curve UNITIMCSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMLDSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMLDSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMLDSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl LOW-SUL. DIS., expanded imp supply curve LOW-SUL. DIS., expanded imp supply curve LOW-SUL. DIS., expanded imp supply curve LOW-SUL. RES., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMLSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMCSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMCSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl \$87/bb | MTBETRGX | Wt. Fraction | MTBE | | | MITIMDSSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl Curve DISTILLATE, expanded imp supply curve LOW-SUL. DIS., expanded imp supply supply curve LOW-SUL. DIS., expanded imp supply curve LOW-SUL. RES., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMLRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) Midbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) Midbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) Midbl/cd, \$87/bbl Midbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) Midbl/cd, \$87/bbl Midbl/cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) \$87/ | MITIMRGSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | curve | | | MITIMLDSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl LOW-SUL. DIS., expanded imp supply curve LOW-SUL. RES., expanded imp supply curve MITIMLRSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl LOW-SUL. RES., expanded imp supply curve HIGH-SUL. RES., expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl JET FUEL, expanded imp supply curve MITIMLPSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl LPG, expanded imp supply curve MITIMPSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl PETROCHEMICAL FEEDSTOCK, expanded import supply curve MITIMOTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl METHANOL, expanded import supply curve MITIMMTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMMTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMMTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MITIMOTSC, expanded import supply curve MITIMOTSC(MNUMYR,5,9,3) MIDDICC, \$87/bbl MIDICC, \$87/bbl MITIMOTSC, expanded import supply curve MO_ITIMOTSC, expanded import supply curve MO_ITIMOTSC, expanded import supply curve MITIMOTSC, | MITIMGSSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | curve | | | MITIMLPSC(MNUMYR,5,9,3) MIDDI/Cd, \$87/bbl MITIMLRSC(MNUMYR,5,9,3) MIDDI/Cd, \$87/bbl MITIMLPSC(MNUMYR,5,9,3) \$8 | MITIMDSSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | curve | | | MITIMLRSC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl MIDI/SC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl MIDI/SC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl MIDI/SC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl MIDI/SC(MNUMYR,5,9,3) MIDI/SC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl LPG, expanded imp supply curve MIDI/SC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl METROCHEMICAL FEEDSTOCK, expanded import supply curve MIDI/SC(MNUMYR,5,9,3) MIDI/SC(M | MITIMLDSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | supply curve | | | MITIMJFSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMJFSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMJFSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LPG, expanded imp supply curve PETROCHEMICAL FEEDSTOCK, expanded import supply curve MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMMTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMMTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMMTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MDBL/cd, \$87/b | MITIMLRSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | | | | MITIMLPSC(MNUMYR,5,9,3) MIDDICd, \$87/bbl LPG, expanded imp supply curve PETROCHEMICAL FEEDSTOCK, expanded import supply curve MITIMPFSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MITIMMESC(MNUMYR,5,9,3) MIDDICd, \$87/bbl MITIMCSC(MNUMYR,5,9,3) MIDDICd, \$87/bbl MITIMCSC(MNUMYR,5,9,3) MIDDICd, \$87/bbl MITIMCRSC(MNUMYR,5,9,3) MIDDICd, \$87/bbl MITIMCRSC(MNUMYR,5,9,3) MIDDICd, \$87/bbl MITIMCRSC(MNUMYR,5,9,3) MIDDICG, \$87/bbl MITIMCRSC(MNUMYR,5,9,3) MIDDICG, \$87/bbl MITIMCRSC(MNUMYR,5,9,3) MIDDICG, \$87/bbl MITIMCRSC(MNUMYR,5,9,3) MIDDICG, \$87/bbl MITIMCRSC(MNXYR,5,9,3) MITIMCRSC(MNX | MITIMHRSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | | | |
MITIMPFSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl PETROCHEMICAL FEEDSTOCK, expanded import supply curve OTHER, expanded import supply curve OTHER, expanded import supply curve MITIMMESC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl METHANOL, expanded import supply curve MITIMMTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MTBE, expanded import supply curve MITIMXGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl RBOB, expanded import supply curve MITIMCRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl Crude imports supply curve quantities MP_ITIMCRSC(MNUMYR,5,5,9) MSITIMGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl Crude imports supply curve prices REF. GAS., expanded import supply curve MXITIMGSSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl GASOLINE, expanded import supply curve MXITIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl DISTILLATE, expanded import supply curve MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. DIS., expanded import supply curve MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. RES., expanded import supply curve MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl JET FUEL, expanded import supply | MITIMJFSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | | | | MITIMPFSC(MNUMYR,5,9,3) MIDI/Cd, \$87/bbl METHANOL, expanded import supply curve MITIMMESC(MNUMYR,5,9,3) MIDI/MESC(MNUMYR,5,9,3) MIDI/MESC(MNUMYR,5,5,9) MIDI/MESC(MNUMYR,5,5,9) MIDI/MESC(MNUMYR,5,5,9) MIDI/MESC(MNUMYR,5,5,9) MIDI/MESC(MNUMYR,5,5,9) MIDI/MESC(MNUMYR,5,9,3) MIDI/MESC(MNU | MITIMLPSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | | | | MITIMOTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl OTHER, expanded import supply curve METHANOL, expanded import supply curve METHANOL, expanded import supply curve METHANOL, expanded import supply curve MITIMMTSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MTBE, expanded import supply curve MITIMXGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl REOB, expanded import supply curve MQ_ITIMCRSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl Crude imports supply curve quantities MP_ITIMCRSC(MNUMYR,5,5,9) MSITIMGSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Crude imports supply curve prices MXITIMGSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMDSSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLPSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) MXITIMLESC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) MBDl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) MBDl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) MBDl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) MBDl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) | MITIMPESC(MNI IMVP 5 Q 3) | Mbbl/cd \$87/bbl | PETROCHEMICAL FEEDSTOCK, | | | MITIMOTSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl METHANOL, expanded import supply curve MITIMMTSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MTBE, expanded import supply curve MITIMXGSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MTBE, expanded import supply curve REOB, expanded import supply curve ICOW-SULFUR DIESEL, expanded import supply curve MC_ITIMCRSC (MNUMYR,5,5,9) Mbbl/cd, \$87/bbl Crude imports supply curve quantities MP_ITIMCRSC (MNUMYR,5,5,9) MSTIMGSSC (MNUMYR,5,5,9) MSTIMGSSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMGSSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMDSSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLDSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLDSC (MNUMYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLPSC | WIT IIVIF 1 3C(IVII VOIVI 1 12,5,9,5) | Middi/Cd, \$67/ddi | | | | MITIMMTSC(MNUMYR,5,9,3) MITIMMTSC(MNUMYR,5,5,9) MITIMMTSC(MNUMYR,5,5,9) MITIMMTSC(MNUMYR,5,5,9) MITIMMTSC(MNUMYR,5,5,9,3) MITIMMTSC(MNUMYR,5,5,9) MITIMMTSC(MNUMYR,5,5,9) MITIMMTSC(MNUMYR,5,5,9,3) MITIMMTSC(MNUMYR,5,5,9,3) MITIMMTSC(MNUMYR,5,9,3) MITIMTSC(Mnumyr,5,9,3) MITIMMTSC(Mnumyr,5,9,3) MITIMMTSC(Mnumyr | MITIMOTSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | curve | | | MITIMXGSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl RBOB, expanded import supply curve LOW-SULFUR DIESEL, expanded import supply curve MQ_ITIMCRSC(MNUMYR,5,5,9) Mbbl/cd MSITIMCRSC(MNUMYR,5,5,9) Mbbl/cd, \$87/bbl Crude imports supply curve quantities Crude imports supply curve quantities Crude imports supply curve prices REF. GAS., expanded import supply curve MXITIMGSSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl GASOLINE, expanded import supply curve MXITIMLTIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLTIMLTSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl JET FUEL, expanded import supply | MITIMMESC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | | | | MITIMXDSC(MNUMYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SULFUR DIESEL, expanded import supply curve MQ_ITIMCRSC(MNUMYR,5,5,9) Mbbl/cd MP_ITIMCRSC(MNUMYR,5,5,9) MSITIMRGSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Crude imports supply curve quantities REF. GAS., expanded import supply curve MXITIMGSSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl GASOLINE, expanded import supply curve MXITIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl DISTILLATE, expanded import supply curve MXITIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl LOW-SUL. DIS., expanded import supply curve MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLESC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl JET FUEL, expanded import supply | | | | | | MITHMADSC(MINDMYR,5,9,3)MIDDI/Cd, \$87/bblimport supply curveMQ_ITIMCRSC(MNUMYR,5,5,9)Mbbl/cdCrude imports supply curve quantitiesMP_ITIMCRSC(MNUMYR,5,5,9)\$87/bblCrude imports supply curve pricesMXITIMRGSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblREF. GAS., expanded import supply curveMXITIMDSSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblGASOLINE, expanded import supply curveMXITIMLDSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblDISTILLATE, expanded import supply curveMXITIMLRSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblLOW-SUL. DIS., expanded import supply curveMXITIMLRSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblLOW-SUL. RES., expanded import supply curveMXITIMHRSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblHIGH-SUL. RES., expanded import supply curveMXITIMLESC(MNXYR,5,9,3)Mbbl/cd, \$87/bblJET FUEL, expanded import supply | MITIMXGSC(MNUMYR,5,9,3) | Mbbl/cd, \$87/bbl | | | | MP_ITIMCRSC(MNUMYR,5,5,9)\$87/bblCrude imports supply curve pricesMXITIMRGSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblREF. GAS., expanded import supply curveMXITIMGSSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblGASOLINE, expanded import supply curveMXITIMDSSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblDISTILLATE, expanded import supply curveMXITIMLDSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblLOW-SUL. DIS., expanded import supply curveMXITIMLRSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblLOW-SUL. RES., expanded import supply curveMXITIMHRSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblHIGH-SUL. RES., expanded import supply curveMXITIMJESC(MNXYR,5,9,3)Mbbl/cd, \$87/bblJET FUEL, expanded import supply | , , , , | Mbbl/cd, \$87/bbl | | | | MP_ITIMCRSC(MNUMYR,5,5,9)\$87/bblCrude imports supply curve pricesMXITIMRGSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblREF. GAS., expanded import supply curveMXITIMGSSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblGASOLINE, expanded import supply curveMXITIMDSSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblDISTILLATE, expanded import supply curveMXITIMLDSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblLOW-SUL. DIS., expanded import supply curveMXITIMLRSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblLOW-SUL. RES., expanded import supply curveMXITIMHRSC(MNXYR,5,9,3)Mbbl/cd, \$87/bblHIGH-SUL. RES., expanded import supply curveMXITIMJESC(MNXYR,5,9,3)Mbbl/cd, \$87/bblJET FUEL, expanded import supply | MQ_ITIMCRSC(MNUMYR,5,5,9) | I . | Crude imports supply curve quantities | | | MXITIMRGSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl REF. GAS., expanded import supply curve GASOLINE, expanded import supply curve Mbbl/cd, \$87/bbl MXITIMDSSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMHRSC(MNXYR,5,9,3) | | \$87/bbl | | | | MXITIMDSSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Curve Mbbl/cd, \$87/bbl MXITIMLDSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl MXITIMLRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMHRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl MXITIMHRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Mbbl/cd, \$87/bbl MXITIMHRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl | MXITIMRGSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | | | | MXITIMLDSC(MNXYR,5,9,3) MXITIMLDSC(MNXYR,5,9,3) MXITIMLRSC(MNXYR,5,9,3) MXITIMHRSC(MNXYR,5,9,3) | MXITIMGSSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | curve | | | MXITIMLRSC(MNXYR,5,9,3) MXITIMLRSC(MNXYR,5,9,3) MXITIMHRSC(MNXYR,5,9,3) | MXITIMDSSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | curve | | | MXITIMHRSC(MNXYR,5,9,3) MXITIMHRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl MXITIMHRSC(MNXYR,5,9,3) Mbbl/cd, \$87/bbl Supply curve HIGH-SUL. RES., expanded import supply curve JET FUEL, expanded import supply | MXITIMLDSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | supply curve | | | MXITIMHRSC(MIXYR,5,9,3) MIXITIMHRSC(MIXYR,5,9,3) MIXITIMHRSC(MIXYR,5,9,3) MIXITIMHRSC(MIXYR,5,9,3) Supply curve JET FUEL, expanded import supply | MXITIMLRSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | supply curve | | | LIVIXI LIIVIJE SCIUVIN X YR 5 9 3) LIVIDDI/CO \$87/DDI LI | MXITIMHRSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | supply curve | | | | MXITIMJFSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|-------------------|-------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | MXITIMLPSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | LPG, expanded import supply curve | | | MXITIMPFSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | PETCHEM. FEED, expanded import supply curve | | | MXITIMOTSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | OTHER, expanded import supply curve | | | MXITIMMESC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | METHANOL, expanded import supply curve | | | MXITIMMTSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | MTBE, expanded import supply curve | | | MXITIMXGSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | RBOB, expanded import supply curve | | | MXITIMXDSC(MNXYR,5,9,3) | Mbbl/cd, \$87/bbl | LOW-SULFUR DIESEL, expanded import supply
curve | | | MQ_ITIMCRSC(MNUMYR,5,5,9) | Mbbl/cd | Expanded crude import supply curve, qty | | | MP_ITIMCRSC(MNUMYR,5,5,9) | \$87/bbl | Expanded crude import supply curve, prc | | | NBIMICD | Integer | num of CD's w/ BIM import | | | NCRNCD | Integer | num of CD's w/ CRNPRICE | | | NETMRGN(MNUMPR,MNUMYR) | \$87/yr | Net margin | | | NFLOWCRD(MNUMYR,35) | Char*8 | Names used in pmmrpts.txt table (refrpt.f) | | | NFLOWLPG(MNUMYR,12) | Char*8 | Names used in pmmrpts.txt table (refrpt.f) | | | NFLOWPRD(MNUMYR,51) | Char*8 | Names used in pmmrpts.txt table (refrpt.f) | | | NGASCOEF | Fraction | Percent of CHP fuel as Natural GAS | | | NGLEXP(MNUMYR) | MM bbl/cd | NGL Exports (US Total LPG + pentanes plus | | | NGLIMP(MNUMYR) | MM bbl/cd | NGL Imports (US Total LPG + pentanes plus | | | NGLMK(MNUMPR,MNUMYR,6,2) | MMbbl/cd | NGL to market | | | NGLRF(MNUMPR,MNUMYR,6,2) | MMbbl/cd | NGL to refinery | | | NGRFUPIT(MNUMPR) | MMbbl/cd | Natural gas fuel use previous iteration | | | NPOCD | Integer | num of CD's w/ Palm Oil | | | NUMIMPPRD | Integer | Number of import products | | | OGASCOEF | Fraction | Percent of CHP fuel as OGAS | | | OILCOEF | Fraction | Percent of CHP fuel as OIL | | | OPCSTCL(MNUMYR) | \$87 | Operating costs for Biomass conversion | | | OTHCOEF | Fraction | Percent of CHP fuel as OTHer | | | OTHLIQIN(MNUMPR,MNUMYR) | MMbbl/cd | Total Other Liquids input into refinery | | | OTHOXY(MNUMPR,MNUMYR) | MMbbl/cd | Other oxygenates | | | OTHOXYFP(MNUMYR) | MM bbl/cd | OTHER OXYGENATES Field Production | | | OTHOXYIMP(MNUMPR,MNUMYR) | MM bbl/cd | OTHER OXYGENATES IMPORTED | | | OTHPRDSP(MNUMPR,MNUMYR) | MMbbl/cd | Total Other Liquids Product Supplied | | | P2HL(MNUMPR, MNUMYR) | \$87/bbl | Marg pr for stream 2HL | | | PADD2CD_CB(2,100) | Integer | PADD To CD Via Clean Barge | | | PADD2CD_CT(2,100) | Integer | PADD To CD Via Clean Tanker | | | PADD2CD_DB(2,100) | Integer | PADD To CD Via Dirty Barge | | | PADD2CD_DT(2,100) | Integer | PADD To CD Via Dirty Tanker | | | PADD2CD_ECB(2,100) | Integer | PADD To CD Via Clean Barge (Eth) | | | PADD2CD_EDB(2,100) | Integer | PADD To CD Via Dirty Barge (Eth) | | | PADD2CD_LT(2,100) | Integer | PADD To CD Via Tanker (Lpg) | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|----------------|--------------------------------------|--| | NAME | UNITS | DEFINITION | | | PALB(MNUMPR, MNUMYR) | \$87/bbl | Marg pr for stream ALB | | | PCOKH | None | Variable for passing data to OML | | | PCOKL | None | Variable for passing data to OML | | | PCTCARB | Fraction | Projected 2010 carbon emissions | | | PCTCARB | FIACION | relative to 1990 | | | PCTPLT_PADD(MNUMPR,MNUMYR) | BCF | Gas plant fuel cons./Total NG | | | , | ВОГ | production | | | PD2CD1COEF | Fraction | Percent split of PADD 1 to CD 1 | | | PD2CD2COEF | Fraction | Percent split of PADD 1 to CD 2 | | | PD2CD3COEF | Fraction | Percent split of PADD 2 to CD 3 | | | PD2CD4COEF | Fraction | Percent split of PADD 2 to CD 4 | | | PD2CD5COEF | Fraction | Percent split of PADD 1 to CD 5 | | | PD2CD6ACOEF | Fraction | Percent split of PADD 2 to CD 6 | | | PD2CD6BC0EF | Fraction | Percent split of PADD 3 to CD 6 | | | PD2CD7ACOEF | Fraction | Percent split of PADD 2 to CD 7 | | | PD2CD7BCOEF | Fraction | Percent split of PADD 3 to CD 7 | | | PD2CD8COEF | Fraction | Percent split of PADD 4 to CD 8 | | | PD2CD9COEF | Fraction | Percent split of PADD 5 to CD 9 | | | PETB(MNUMPR, MNUMYR) | \$87/bbl | Price of ETBE | | | PFC8(MNUMPR, MNUMYR) | \$87/bbl | Marg pr for stream FC8 | | | PGPLTRF(MNUMPR,MNUMYR,18) | \$87/bbl | Refinery production costs | | | PKHL(MNUMPR, MNUMYR) | \$87/bbl | Marg pr for stream KHL | | | PLMIMPP(MNUMYR,5) | 87\$/bbl | Price on Palm oil import curve | | | PLMIMPQ(MNUMYR,5) | Mbbl/cd | Quantity on Palm oil import curve | | | PLMSPLIT(MNUMCR,MNUMYR) | Percent | Quantity step split for dom plm oil | | | PMETRFBL(MNUMPR,MNUMYR) | \$87/bbl | Refinery methanol blending cost | | | PMMCAPI(MNUMPR,PUNITSN) | Mbbl/cd | Initial refinery unit capacity | | | PMMOBJ(MNUMYR) | M\$87/day | Objective function value by year | | | PMTB25(MNUMPR, MNUMYR) | \$87/bbl | Price of MTBE | | | PMMTRFBL(MNUMPR,MNUMYR) | \$87/bbl | Refinery MTBE blending cost | | | PMMWOP | Integer | Price scenario flag | | | POCD(MNUMCR) | Integer | list of CD's w/ Palm Oil | | | POMAXQTY(MNUMYR) | Mbbl/day | Max qty for domesic palm oil | | | PR10(MNUMPR, MNUMYR) | \$87/bbl | Marg pr for stream R10 | | | PRDDMD(MNUMCR,MNUMYR,30) | Mbbl/cd | Product demand | | | PRDDMDME(MNUMYR) | Mbbl/cd | Chemical methanol demand | | | PRDEXPTOT(MNUMYR) | MMbbl/cd | Total allowable product exports | | | PRDSTKWDR(MNUMPR,MNUMYR) | MMbbl/cd | Product stocks withdrawals | | | PRDTOT(MNUMYR) | Mbbl/cd | Total product demand for report 4 | | | PREZ | Logical | | | | PRFELPURPD(MNUMPR,MNUMYR) | \$87/KWh | Refinery electricity costs | | | PRFNGFU(MNUMPR,MNUMYR) | \$87/bbl (foe) | Refinery NG fuel cost | | | PRHEQ(MNUMCR,MNUMYR) | Cents/gal | High sulfur resid (eq price) | | | PRHUTEQ(MNUMCR,MNUMYR) | Cents/gal | High sulfur util. resid (eq price) | | | PRICLP | None | Variable for passing data to OML | | | PRLEQ(MNUMCR,MNUMYR) | Cents/gal | Low sulfur resid (eq price) | | | PRLUTEQ(MNUMCR,MNUMYR) | Cents/gal | Low sulfur util. resid (eq price) | | | PRPF(5) | MFOEbbl/day | RHS value for resid. by PAD District | | | PRPFU(5) | MFOEbbl/day | RHS value for resid. by PAD District | | | PSRI(MNUMPR, MNUMYR) | \$87/bbl | Marg pr for stream SRI | | | PSULSAL(MNUMPR) | \$87/s ton | Price of saleable sulfur | | | PTAE(MNUMPR, MNUMYR) | \$87/bbl | Price of TAEE | | | NAME PTAM(MNUMPR, MNUMYR) S87/bbl PTE(MNUMPR, MNUMYR) S87/bbl PTE(MNUMPR, MNUMYR) S87/bbl PTE(MNUMPR, MNUMYR) S87/bbl PTE of TAME PTE OF TAME PTHM(MNUMPR, MNUMYR) S87/bbl Price of THEE S87/bbl Price of THEE PSWARDE, MNUMYR) S87/bbl Price of THEE PSWARDE, MNUMYR) S87/bbl Price of THEE PSWARDE, MNUMYR) PUBASE(MNUMPR, 60, MNUMYR) PUBASE(MNUMPR, 60, MNUMYR) PUBASE(MNUMPR, 60, MNUMYR) PUBASE(MNUMPR, 60, MNUMYR) PUBASE, MNUMWPR, 60, MNUMYR) PUBASE, MNUMWPR, 60, MNUMYR4) Mbbl/cd Processing units base capacity Processing units base utilization expatility produced And Process unit investment builds Production distress export by product Qrantity of total distress export by product Qrantity of | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|-----------------------------------------|--| | PTHE(MNUMPR, MNUMYR) \$87/bbl Price of THEE | | | | | | PITHM(MNUMPR, MNUMYR) PUBASE(MNUMPR, 60,MNUMYR) PUBASE(MNUMPR, 60,MNUMYR) PUBASE(MNUMPR, 60,MNUMYR) PUBASE(MNUMPR, 60,MNUMYR) PUCUM(MNUMPR, 60,MNUMYR+4) Mbbl/cd Process unit cumulative builds PWCRDCL(MNUMYR) S87 Costs for Biomass conversion PWAF(MNUMPR, MNUMYR) S87 Costs for Biomass conversion PWAF(MNUMPR, MNUMYR) Q-GTLPRD(MNUMPR, MNUMYR) BCF/cd Q-GTLPRD(MNUMPR, MNUMYR) BCF/cd Q-GTLPRD(MNUMPR, MNUMYR) BCF/cd Q-GTLPRD(MNUMPR, MNUMYR) BCF/cd Q-GTLGAS(MNUMPR, MNUMYR) BCF/cd GPLTRF(MNUMPR, MNUMYR) BCF/cd, Mbbl/cd QRETRFN(MNUMPR, MNUMYR) Mbbl/cd QRETRFN(MNUMPR, MNUMYR) Mbbl/cd QREDEXD(MNUMPR, 30,MNUMYR) Mbbl/cd QRRDIMD(MNUMPR, MNUMYR) Mbbl/cd QRRDIMD(MNUMPR, MNUMYR) QRRDIMD(MNUMPR, MNUMYR) Mbbl/cd QRRDIMP(MNUMYR, MNUMPR) QRRDIMP(MNUMYR, MNUMPR) Mbbl/cd QRRDIMP(MNUMYR, MNUMPR) QRRDIMP(MNUMYR, MNUMPR) QRRDIMP(MNUMYR, MNUMPR) Mbbl/cd QRRDIMP(MNUMPR, MNUMYR) QRRDIMP(MNUMPR, MNUMYR) QRRDIMP(MNUMPR, MNUMYR) Mbbl/cd QRIB QRIB (MNUMPR, MNUMYR) QREMPMT(MNUMPR, MNUMYR) QRUB (MNUMPR, MNUMYR) QRUB (MNUMPR, MNUMYR) Mbbl/cd QRODE (MNUMPR, MNUMYR) QRUB (MNUMPR, MNUMYR) QRUB (MNUMPR, MNUMYR) Mbbl/cd QRODE (MNUMPR, MNUMYR) Mbbl/cd QRODE (MNUMPR, MNUMYR) Mbbl/cd QRODE (MNUMPR, MNUMYR) QRODE (MNUMPR, MNUMYR) QRODE (MNUMPR, MNUMYR) Mbbl/cd QRODE (MNUMPR, MNUMYR) | PTAM(MNUMPR, MNUMYR) | \$87/bbl | Price of TAME | | | PUBASE(MNUMPR,60,MNUMYR) PUBASEUTMNUMPR,60,MNUMYR+4) Mbb/cd Processing
units base capacity PUBASEUTMNUMPR,60,MNUMYR+4) Mbb/cd Process unit cumulative builds PUNY(MNUMPR,60,MNUMYR+4) Mbb/cd Process unit investment builds PVAF(MNUMPR,60,MNUMYR) S87 Costs for Biomass conversion Q-GTLGAS(MNUMPR,MNUMYR) Mbb/cd QTy of liquids produced from GTL processing Q-GTLPRD(MNUMPR,MNUMYR) Q-GTLGAS(MNUMPR,MNUMYR) Q-GTLGAS(MNUMPR,MNUMPR,MNUMPR) Q-GTLGAS(MNUMPR,MNUMPR,MNUMPR) Q-GTLGAS(MNUMPR,MNUMYR) Q-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ-GTLGASQ | PTHE(MNUMPR, MNUMYR) | \$87/bbl | Price of THEE | | | PUBASEUT(MNUMPR,60,MNUMYR) PUCUM(MNUMPR,60,MNUMYR+4) PUCUM(MNUMPR,60,MNUMYR+4) PUCUM(MNUMPR,60,MNUMYR+4) PUCUM(MNUMPR,60,MNUMYR) S87 Costs for Biomass conversion PVAF(MNUMPR, MNUMYR) S87 Costs for Biomass conversion PVAF(MNUMPR, MNUMYR) Q-GTLPRD(MNUMPR,MNUMYR) Mbbl/cd Q-GTLPRD(MNUMPR,MNUMYR) Q-GTLPRD(MNUMPR,MNUMYR) Q-GTLPRD(MNUMPR,MNUMYR) Q-GTLPRD(MNUMPR,MNUMYR) BCF/cd Q-GTLGAS(MNUMPR,MNUMYR) Q-GTLRF(MNUMPR,MNUMYR) Q-GTLRF(MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR,MNUMPR, | PTHM(MNUMPR, MNUMYR) | \$87/bbl | Price of THME | | | PUCUM(MNUMPR,60,MNUMYR+4) PUINV(MNUMPR,60,MNUMYR+4) Mbbl/cd Process unit investment builds PWCRDCL(MNUMYR) S87 Costs for Biomass conversion Warg pr for stream VAF Q_GTLPRD(MNUMPR, MNUMYR) Mbbl/cd QTy of liquids produced from GTL processing QGPLTRF(MNUMPR,MNUMYR) BCF/cd QTy of liquids produced from GTL processing QGPLTRF(MNUMPR,MNUMYR) BCF/cd QTy of NG consumed for GTL processing QGPLTRF(MNUMPR,MNUMYR) Mbbl/cd Refinery gas plant production volumes QMETRPN(MNUMPR,MNUMYR) Mbbl/cd QRIPRDIMD(MNUMPR,MNUMYR) Mbbl/cd QRIPRDIMD(MNUMPR,MNUMYR) QPRDIMD(MNUMPR,30,MNUMYR) QPRDIMD(MNUMPR,30,MNUMYR) QPRDIMD(MNUMPR,MNUMPR) Mbbl/cd QUantity of total distress product QPRDEXIONAL TOTAL refinery production volumes QPRDFM(MNUMPR,MNUMPR) QPRDFM(MNUMPR,MNUMPR) Mbbl/cd QUantity of total distress product QPRDFM(MNUMPR,MNUMPR) QPRDFM(MNUMPR,MNUMPR) Mbbl/cd QUANTITY of total refinery production volumes QRFMPMT(MNUMPR,MNUMYR) Mbbl/cd QUANTITY of total refinery from unchant MRETHAIN AND AND AND AND AND AND AND AND AND AN | PUBASE(MNUMPR,60,MNUMYR) | Mbbl/cd | Processing units base capacity | | | PUINV(MNUMPR, 60, MNUMYR) PWCRDCL(MNUMYR) S87 Costs for Biomass conversion VAF QCTLPRD(MNUMPR, MNUMYR) QGTLPRD(MNUMPR, MNUMYR) QGTLPRD(MNUMPR, MNUMYR) BCF/cd QGY of liquids produced from GTL processing QGPLTRF(MNUMPR, MNUMYR) BCF/cd QGY of NG consumed for GTL processing QGPLTRF(MNUMPR, MNUMYR, 18) BCF/cd, Mbbl/cd QGPLTRF(MNUMPR, MNUMYR, 18) BCF/cd, Mbbl/cd QGPLTRF(MNUMPR, MNUMYR, 18) BCF/cd, Mbbl/cd QGPLTRF(MNUMPR, MNUMYR) Mbbl/cd QGPLTRF(MNUMPR, MNUMYR) Mbbl/cd QGPLTRF(MNUMPR, MNUMYR) QGPLTRF, MNUMPR, MNUMYR) Mbbl/cd QGPLTRF, MNUMPR, MNUMYR) QGPLTRF, MNUMPR, MNUMPR, Mbbl/cd QGPRDIMP, MNUMPR, MNUMPR, Mbbl/cd QGPRDIMP, MNUMPR, MNUMPR, Mbbl/cd QGPRDIMP, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, MNUMPR, MNUMPR, Mbbl/cd QUANTITY of saleable sulfur produced QGUTTH, QGPC, MNUMPR, MNUMPR, Mbbl/cd QGPC, MNUMPR, MNUMPR, MNUMPR, Mbbl/cd QGPC, MNUMPR, MNUMPR, MNUMPR, MBBL/cd QGPC, MNUMPR, MNUMPR | PUBASEUT(MNUMPR,60,MNUMYR) | Percent | Processing units base utilization | | | PWCRCL(MNUMYR) \$87 PVAF(MNUMYR) MNUMYR) \$87/bbl Marg pr for stream VAF Q_GTLPRD(MNUMPR, MNUMYR) Mbb/cd Qty of liquids produced from GTL processing Q_GTLGAS(MNUMPR,MNUMYR) BCF/cd Qty of NG consumed for GTL processing Q_GTLGAS(MNUMPR,MNUMYR) BCF/cd Qty of NG consumed for GTL processing Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Refinery gas plant production volumes Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Refinery gas plant production volumes Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Production distress export by product imports Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Production distress export by product imports Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Product imports Q_GTLGAS(MNUMYR,MNUMYR) Mbb/cd Product imports Q_GTLGAS(MNUMYR,MNUMYR) Mbb/cd Product imports Q_GTLGAS(MNUMYR,MNUMYR) Mbb/cd Product imports Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery production volumes Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Subtotal refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Subtotal refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) Mbb/cd Total refinery fuel use w/o nat. gas Q_GTLGAS(MNUMPR,MNUMYR) | PUCUM(MNUMPR,60,MNUMYR+4) | Mbbl/cd | Process unit cumulative builds | | | PVAF(MNUMPR, MNUMYR) Q-GTLPRD(MNUMPR, MNUMYR) Q-GTLPRD(MNUMPR, MNUMYR) BCF/cd Qry of Inguids produced from GTL processing Q-GTLGAS(MNUMPR, MNUMYR) BCF/cd QRUTRF(MNUMPR, MNUMYR, 18) BCF/cd, Mbbl/cd QRETRFN(MNUMPR, MNUMYR) QPRDEXD(MNUMPR, 30, MNUMYR) QPRDEXD(MNUMPR, 30, MNUMYR) QPRDIMD(MNUMCR, 30, MNUMYR) QPRDIMD(MNUMCR, 30, MNUMYR) QPRDIMP(MNUMYR, QPRDIMP(MNUMPR, MNUMYR) QPRDIMP(MNUMPR, MNUMYR) QPRDIMP(MNUMPR, MNUMYR) QRFMPMT(MNUMPR, MNUMYR) QSULSAL(MNUMPR, MNUMYR) QSULSAL(MNUMPR, MNUMYR) QSULSAL(MNUMPR, MNUMYR) QSULSAL(MNUMPR, MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLIQIN(MNUMPR, MNUMYR) MMbbl/cd Total Gasoline produced at refinery REFPRDGAS(MNUMPR, MNUMYR) Mbbl/cd Total Gasoline produced at refinery RETHRIMP(MNUMPR, MNUMYR) RETHRIMP(MNUMPR, MNUMYR) RETHRIMP(MNUMPR, MNUMYR) RETHRIMP(MNUMPR, MNUMYR) RETHRIMP(MNUMPR, MNUMYR) RETGCGAPADDPD(MNUMPR, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPADPD(MNUMPR, MNUMYR) RFCGCAPADPD(MNUMPR, MNUMYR) RFCGCAPADPD(MNUMPR, MNUMYR) RFCGCAPD(MNUMPR, MNUMYR) RFCGCAPD(MNUMPR, MNUMYR) RFCGCAPD(MNUMPR, MNUMYR) RFCGCAPD(MNUMPR, MNUMYR) RFCGGAPD(MNUMPR, MNUMYR) RFCGGRIDCD(MNUMPR, MNUMYR) RFCGGRIDCD(MNUMPR, MNUMYR) RFCGGRIDCD(MNUMPR, MNUMYR) RFURCE REPROMENTATION REFIRENCY CHP Eapeatity by PAD District RFCGGRIDCD(MNUMPR, MNUMYR) RFCGGRIDCD(MNUMPR, MNUMYR) RFURCE REPROMENTATION REfinery CHP Generation RFCGGRIDCD(MNUMPR, MNUMYR) RFCGGRIDCD(MNUMPR, MNUMYR) RFIBU Refinery CHP Generation RFCGGRIDCO(MNUMPR, MNUMYR) RFCGGRIDCO(MNUMPR, MNUMYR) RFCGGRIDCO(MNUMPR, MNUMYR) RFCGGRIDCO(MNUMPR, MNUMYR) RFCGGRIDCO(MNUMPR, MNUMYR) RFCGGRIDCO(MNUMPR, MNUMYR) R | | Mbbl/cd | Process unit investment builds | | | Q_GTLPRD(MNUMPR,MNUMYR) M bbl/cd Qty of Iliquids produced from GTL processing Q_GTLGAS(MNUMPR,MNUMYR) BCF/cd Qty of NG consumed for GTL processing QGPLTRF(MNUMPR,MNUMYR,18) BCF/cd, Mbbl/cd Refinery gas plant production volumes QMETREN(MNUMPR,MNUMYR) Mbbbl/cd Refinery gas plant production volumes QMETREN(MNUMPR,30,MNUMYR) Mbbbl/cd Production distress export by product QPRDIMD(MNUMCR,30,MNUMYR) Mbbbl/cd Quantity of total distress product imports QPRDIMP(MNUMYR,MNUMPR, MUMMPR) Mbbbl/cd Product imports QPRDRFT(MNUMYR) Mbbbl/cd Total refinery production volumes MRFMPMT(MNUMYR,MNUMYR) Mbbbl/cd Total refinery production volumes QRFMPMT(MNUMPR,MNUMYR) Mbbbl/cd Subtotal refinery production volumes QSULSAL(MNUMPR,MNUMYR) MMbbbl/cd Subtotal refinery production volumes QSULSAL(MNUMPR,MNUMYR) MMbbbl/cd Subtotal refinery production volumes REFOTHLD(IN)(MNUMPR,MNUMYR) MMbbl/cd Total
refinery fuel use with natural gas REFOTHLD(IN)(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas RETHRIMP(MNUMPR,MNUMYR) Mbbl/cd< | PWCRDCL(MNUMYR) | \$87 | Costs for Biomass conversion | | | Q-GTLGAS(MNUMPR,MNUMYR) Q-GTLGAS(MNUMPR,MNUMYR) Q-GTLGAS(MNUMPR,MNUMYR) Q-GTLGAS(MNUMPR,MNUMYR) Q-GTLGAS(MNUMPR,MNUMYR) M-DEVICESSING METREN(MNUMPR,MNUMYR) M-DEVICESSING METREN(MNUMPR,MNUMYR) M-DEVICESSING METREN(MNUMPR,MNUMYR) M-DEVICESSING M-DEVICESSING Refinery gas plant production volumes Mobiled Refinery methanol blending volume Production distress export by product imports Q-RDIMD(MNUMCR,30,MNUMYR) M-DEVICESSING Q-RDIMD(MNUMPR,MNUMPR, NUMIMPR,MNUMYR) M-DEVICESSING Q-RDIMP(MNUMPR,MNUMPR, NUMIMPPR,MNUMYR) M-DEVICESSING Q-RDIMP(MNUMPR,MNUMYR) Q-RDIMP(MN | PVAF(MNUMPR, MNUMYR) | \$87/bbl | Marg pr for stream VAF | | | QSPLTRF((MNUMPR,MNUMYR) QSPLTRF((MNUMPR,MNUMYR) QRETRFN(MNUMPR,MNUMYR) Mbbl/cd Refinery gas plant production volumes refinery gas plant production wolumes QRETRFN(MNUMPR,MNUMYR) Mbbl/cd QREDIMD(MNUMPR,30,MNUMYR) Mbbl/cd Quantity of total distress export by product imports QREDIMP(MNUMYR,MNUMPR, NUMIMPRD,XPRDSTEPS) Mbbl/cd QREDIMP(MNUMYR,MNUMYR) Mbbl/cd Quantity of total distress product imports QREDIMP(MNUMYR,MNUMPR, NUMIMPRD,XPRDSTEPS) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) QREMPMT(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) QREMPMT(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) QREMPMT(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd QREDIMP(MNUMPR,MNUMYR) Mbbl/cd Total offinery fuel use with natural gas QREFOTHLIQIN(MNUMPR,MNUMYR) Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Mbbl/cd Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Mbbl/cd Mbbl/cd Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Mbbl/cd Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Mbbl/cd Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Total Gasoline produced at refinery QRETHRIMP(MNUMPR,MNUMPR) Mbbl/cd T | Q_GTLPRD(MNUMPR,MNUMYR) | M bbl/cd | processing | | | QMETRFN(MNUMPR,MNUMYR) QMETRFN(MNUMPR,MNUMYR) QMEDEXD(MNUMPR,30,MNUMYR) QMEDIMPOREXD(MNUMPR,30,MNUMYR) QMEDIMPOREXD(MNUMPR,30,MNUMYR) Mbbl/cd QMEDIMPOREXD(MNUMPR,30,MNUMYR) QPRDIMPORTOR (Quantity of total distress export by product imports QPRDIMP(MNUMYR,MNUMPR, Mbbl/cd QMEDIMPORTOR (Quantity of total distress product imports QPRDIMP(MNUMYR,MNUMPR, Mbbl/cd QPRDIMP(MNUMYR,MNUMPR) QPRDRFT(MNUMYR) Mbbl/cd QREMPT(MNUMPR,MNUMYR) Mbbl/cd QREMPT(MNUMPR,MNUMYR) Mbbl/cd QSUBFU(MNUMPR,MNUMYR) QSUBFU(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QSUBSAL(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QSUBSAL(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QSUBSAL(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QSUBSAL(MNUMPR,MNUMYR) QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QSUBSAL(MNUMPR,MNUMYR) MMbbl/cd QUantity of saleable sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced at refinery to a control of the sulfur produced to a control of the sulfur produced to a control of the sulfur produced to | Q_GTLGAS(MNUMPR,MNUMYR) | BCF/cd | processing | | | QPRDEXD(MNUMPR,30,MNUMYR) Mbbl/cd Production distress export by product Quantity of total distress product imports QPRDIMD(MNUMCR,30,MNUMYR) Mbbl/cd Quantity of total distress product imports QPRDRIMP(MNUMYR, MNUMPR, NUMIMPR, NUMIMPR, NUMIMPR, NUMIMPR, NUMIMPR, NUMIMPR) Mbbl/cd Total refinery production volumes QRFMPMT (MNUMPR, MNUMYR) Mbbl/cd Methanol qty transferred fr refinery to merchant QSUBFU (MNUMPR, MNUMYR) MMbbl/cd Subtotal refinery fuel use w/o nat. gas QSULSAL (MNUMPR, MNUMYR) MMbbl/cd Quantity of saleable sulfur produced QTOTTFU (MNUMPR, MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLIQIN (MNUMPR, MNUMYR) MMbbl/cd Total Other Liquids input into refinery REFPRDGAS (MNUMPR, MNUMYR) MMbbl/cd Total Gasoline produced at refinery RETHRIMP(MNUMPR, MNUMYR) Mbbl/cd Imported ethers RENROW(4) Character Row name for RFS type studies RFCAPREC (MNUMPR, PUNITSN, MNUMYR) KW CHP. capacity by PAD District RFCGCAPADDPD (MNUMPR, MNUMYR) KW CHP. capacity by PAD District RFCGCAPPD (MNUMPR, MNUMYR) MW CHP. capacity by PAD District | · · · · · · · · · · · · · · · · · · · | BCF/cd, Mbbl/cd | volumes | | | OPRDIMD(MNUMCR,30,MNUMYR) Mbbl/cd Quantity of total distress product imports OPRDIMP(MNUMYR,MNUMPR, NUMIMPR, NUMIMPRD, XPRDSTEPS) Mbbl/d Product imports OPRDRET(MNUMYR) Mbbl/cd Total refinery production volumes ORFMPMT(MNUMPR,MNUMYR) Mbbl/cd Methanol qty transferred fr refinery to merchant QSUBFU(MNUMPR,MNUMYR) MMbbl/cd Subtotal refinery fuel use w/o nat. gas QSULSAL(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas QSULSAL(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLIQIN(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFPOTHGINI(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFPOTHGINI(MNUMPR,MNUMYR) MMbbl/cd Total other Liquids input into refinery REFPOTHGINI(MNUMPR,MNUMYR) MMbbl/cd Total Gasoline produced at refinery REFPOTHGINI(MNUMPR,MNUMYR) Mbbl/cd Imported ethers REFNOW(4) Character Row name for RFS type studies RFCAPREC(MNUMPR,PUNITSN,MNUMYR) \$/bbl Refinery processing unit capital recovery factor RFCGCAPDD(MNUMPR,MNUMYR) MW< | | | | | | QPRDIMD(MNUMCR,30,MNUMYR) Mbb//d imports QPRDIMP(MNUMYR,MNUMPR, NUMIMPR,DXPRDSTEPS) Mbb//d Product imports QPRDRFT(MNUMYR) Mbb//cd Total refinery production volumes QRFMPMT(MNUMPR,MNUMYR) Mbb//cd Methanol qty transferred fr refinery to merchant QSUBFU(MNUMPR,MNUMYR) MMbb//cd Subtotal refinery fuel use w/o nat. gas QSULSAL(MNUMPR,MNUMYR) MMbb//cd Total refinery fuel use with natural gas REFOTHLIQIN(MNUMPR,MNUMYR) MMbb//cd Total other Liquids input into refinery REFPRDGAS(MNUMPR,MNUMYR) MMbb//cd Total Other Liquids input into refinery RETHRIMP(MNUMPR,MNUMYR) MMbb//cd Total Other Liquids input into refinery RETHRIMP(MNUMPR,MNUMYR) MMbb//cd Total Other Liquids input into refinery RETHRIMP(MNUMPR,MNUMYR) Mbb//cd Imported ethers RETHRIMP(MNUMPR,MNUMYR) Mbb//cd Imported ethers RECAPREC(MNUMPR,MNUMYR) Mbb//cd Refinery cry sessing unit capital recovery factor RECGCAPADDPD(MNUMPR,MNUMYR) KW CHP. capacity by PAD District RECGCAPDD(MNUMPR,MNUMYR) MW CHP. capacity by PAD District | QPRDEXD(MNUMPR,30,MNUMYR) | Mbbl/cd | | | | NUMIMPPRD,XPRDSTEPS) OPRDRFT(MNUMYR) Mbbl/cd Mbbl/cd Methanol qty transferred fr refinery to merchant QSUBFU(MNUMPR,MNUMYR) Mbbl/cd Subtotal refinery fuel use w/o nat. gas QSULSAL(MNUMPR) OSULSAL(MNUMPR) OSULSAL(MNUMPR) OTOTFU(MNUMPR,MNUMYR) MMbbl/cd OTOTFU(MNUMPR,MNUMYR) MMbbl/cd OTOTFU(MNUMPR,MNUMYR) MMbbl/cd OTOTFU(MNUMPR,MNUMYR) MMbbl/cd OTOTFU(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use w/o nat. gas REFOTHLIQIN(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLIQIN(MNUMPR,MNUMYR) MMbbl/cd Total other Liquids input into refinery REFPRDGAS(MNUMPR,MNUMYR) Mbbl/cd Imported ethers RENROW(4) RETHRIMP(MNUMPR,NNUMYR) RETHRIMP(MNUMPR,NNUMYR) REFOGCAPADDPD(MNUMPR,MNUMYR) REFOGCAPADDPD(MNUMPR,MNUMYR) REFOGCAPADDPD(MNUMPR,MNUMYR) RECGCAPADDPD(MNUMPR,MNUMYR) RECGCAPADDPD(MNUMPR,MNUMYR) MW CHP. capacity by PAD District RECGCONS(MNUMPR,MNUMYR) TBtu Refinery CHP PAD District RECGFUELCD(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel by Cenus Division RECGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel To grid by Cenus Division RECGGELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP to grid by PAD District RECGGELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP to grid by Cenus Division RECGGELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RECGSELFCD(MNUMCR,MNUMYR) RECCGENDD(MNUMPR,MNUMYR) CHP capacity CHP capacity | · · · · · · · · · · · · · · · · · · · | Mbbl/cd | , | | | QRFMPMT(MNUMPR,MNUMYR) Mbbl/cd Methanol qty transferred fr refinery to merchant QSUBFU(MNUMPR,MNUMYR) MMbbl/cd Subtotal refinery fuel use w/o nat. gas QSULSAL(MNUMPR) 1000 s ton/yr Quantity of saleable sulfur produced QTOTFU(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLIQIN(MNUMPR,MNUMYR) MMbbl/cd Total Other Liquids input into refinery REFPRDGAS(MNUMPR,MNUMYR) MMbbl/cd Total Gasoline produced at refinery RETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Imported ethers RENROW(4) Character Row name for RFS type studies RFCAPREC(MNUMPR,PUNITSN,MNUMYR) KW CHP. capacity by PAD District RFCGCAPADDPD(MNUMPR,MNUMYR) KW CHP. capacity by PAD District RFCGCAPCD(MNUMCR,MNUMYR) MW CHP. capacity by PAD District RFCGCONS(MNUMPR,MNUMYR) MW CHP. capacity by PAD District RFCGFUELD(MNUMPR,MNUMYR) TBtu Refinery
CHP Puel District RFCGGENCD(MNUMPR,MNUMYR) TBtu Refinery CHP Fuel RFCGGERDPD(MNUMPR,MNUMYR) TBtu Refinery CHP Degrid by Cenus Division RFCGGERDPD(MNUMPR,MNUMYR | | Mbbl/d | Product imports | | | QRFMPMT(MNUMPR,MNUMYR) Mbbl/cd Methanol qty transferred fr refinery to merchant QSUBFU(MNUMPR,MNUMYR) MMbbl/cd Subtotal refinery fuel use w/o nat. gas QSULSAL(MNUMPR) 1000 s ton/yr Quantity of saleable sulfur produced QTOTFU(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLICIN(MNUMPR,MNUMYR) MMbbl/cd Total Other Liquids input into refinery REFPRDGAS(MNUMPR,MNUMYR) MMbbl/cd Total Gasoline produced at refinery RETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Imported ethers RENROW(4) Character Row name for RFS type studies RFCAPREC(MNUMPR,PUNITSN,MNUMYR) KW CHP. capacity by PAD District RFCGCAPADDPD(MNUMPR,MNUMYR) KW CHP. capacity by PAD District RFCGCAPCD(MNUMCR,MNUMYR) MW CHP. capacity by PAD District RFCGCONS(MNUMPR,MNUMYR) TBtu Refinery CHP PAD District RFCGFUELDD(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel by Cenus Division RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel RFCGGEND(MNUMPR,MNUMYR) TBtu Refinery CHP Derior orid by Cenus Division RFCGGRIDPD(MN | QPRDRFT(MNUMYR) | Mbbl/cd | Total refinery production volumes | | | QSULSAL(MNUMPR, MNUMYR) QSULSAL(MNUMPR, MNUMYR) QSULSAL(MNUMPR, MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLIQIN(MNUMPR, MNUMYR) MMbbl/Co/ REFPRDGAS(MNUMPR, MNUMYR) REFPRDGAS(MNUMPR, MNUMYR) RETHRIMP(MNUMPR, MNUMYR) RETHRIMP(MNUMPR, MNUMYR) RETHRIMP(MNUMPR, MNUMYR) RECAPREC(MNUMPR, PUNITSN, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPADDPD(MNUMPR, MNUMYR) RFCGCAPAD(MNUMPR, MNUMYR) RFCGCAPD(MNUMPR, MNUMYR) RFCGCAPD(MNUMPR, MNUMYR) MW CHP. capacity by PAD District RFCGCAPD(MNUMPR, MNUMYR) RFCGCONS(MNUMPR, MNUMYR) TBtu Refinery CHP PAD District RFCGGULCD(MNUMCR, MNUMYR) RFCGGENDC(MNUMPR, MNUMYR) TBtu Refinery CHP Fuel by Cenus Division RFCGGENDC(MNUMPR, MNUMYR) TBtu Refinery CHP Generation RFCGGENDC(MNUMPR, MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMCR, MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMPR, MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMPR, MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMPR, MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMPR, MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMPR, MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGELFD(MNUMPR, MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFCD(MNUMPR, MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFCD(MNUMPR, MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFD(MNUMPR, MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFD(MNUMPR, MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFD(MNUMPR, MNUMYR) Refinery CHP Self Steam, PAD District percent adjustment CHP capacity CHP capacity CHP capacity CHP capacity | QRFMPMT(MNUMPR,MNUMYR) | Mbbl/cd | merchant | | | QTOTFU(MNUMPR,MNUMYR) MMbbl/cd Total refinery fuel use with natural gas REFOTHLIQIN(MNUMPR, MNUMYR) MMbblFOE/cd Total Other Liquids input into refinery REFPRDGAS(MNUMPR,MNUMYR) MMbbl/cd Total Gasoline produced at refinery RETHRIMP(MNUMPR,MNUMYR) Mbbl/cd Imported ethers RENROW(4) Character Row name for RFS type studies RFCAPREC(MNUMPR,PUNITSN,MNUMYR) KW CHP. capacity by PAD District RFCGCAPADDPD(MNUMPR,MNUMYR) MW CHP. capacity by PAD District RFCGCAPCD(MNUMCR,MNUMYR) MW CHP. capacity by PAD District RFCGCONS(MNUMPR,MNUMYR) TBtu Refinery CHP PAD District RFCGFUELCD(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel by Cenus Division RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP Generation RFCGGENDD(MNUMCR,MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDDD(MNUMCR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGGREC(MNUMPR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGSELFCD(MNUMPR,MNUMYR) <td< td=""><td>QSUBFU(MNUMPR,MNUMYR)</td><td>MMbbl/cd</td><td>-</td></td<> | QSUBFU(MNUMPR,MNUMYR) | MMbbl/cd | - | | | REFOTHLIQIN(MNUMPR,MNUMYR) REFPRDGAS(MNUMPR,MNUMYR) REFPRDGAS(MNUMPR,MNUMYR) REFPRDGAS(MNUMPR,MNUMYR) RETHRIMP(MNUMPR,MNUMYR) RENROW(4) RENROW(4) RECAPREC(MNUMPR,PUNITSN,MNUMYR) REGCAPADDPD(MNUMPR,NNUMYR) REGCAPADDPD(MNUMPR,MNUMYR) REGCAPADDPD(MNUMPR,MNUMYR) REGCAPADDPD(MNUMPR,MNUMYR) REGCAPADDPD(MNUMPR,MNUMYR) REGCAPADDPD(MNUMPR,MNUMYR) REGCAPADDPD(MNUMPR,MNUMYR) REGCAPADD(MNUMPR,MNUMYR) REGCAPADD MYMOMYR) MYMOMYR RETARCTOR MYMOMYR RETARCTOR MYMOMYR RETARCTOR MYMOMYR REGCAPADD MYMOMYR REGCAPADD MYMOMYR RETARCTOR MYMOMYR RETARCTOR M | QSULSAL(MNUMPR) | | Quantity of saleable sulfur produced | | | REFPRDGAS(MNUMPR,MNUMYR) RETHRIMP(MNUMPR,MNUMYR) RETHRIMP(MNUMPR,MNUMYR) RENROW(4) RENROW(4) RECAPREC(MNUMPR,PUNITSN,MNUMYR) RFCGAPEC(MNUMPR,PUNITSN,MNUMYR) RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFU RFCGGNCD(MNUMCR,MNUMYR) RFU RFCGGNCD(MNUMCR,MNUMYR) RFU RFCGGNCD(MNUMCR,MNUMYR) RFU RFCGGNCD(MNUMCR,MNUMYR) RFU RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGSELFCD(MNUMPR,MNUMYR) RFU RFCGSELFCD(MNUMPR,MNUMYR) RFU RFCGSELFCD(MNUMPR,MNUMYR) RFU RFCGSELFCD(MNUMPR,MNUMYR) RFU RFCGSELFCD(MNUMPR,MNUMYR) RFU RFCGSELFCD(MNUMPR,MNUMYR) RFU RFCGSELFCD(MNUMPR,MNUMYR) RFU RFCGGENDD(MNUMPR,MNUMYR) RFU RFCGGENDD(MNUMPR,MNUMYR) RFU RFCGGRIDCD(MNUMPR,MNUMYR) RFU RFCGGSELFCD(MNUMPR,MNUMYR) RFU RFCGGSELFCD(MNUMPR,MNUMYR) RFU RFCGGSELFCD(MNUMPR,MNUMYR) RFU RFCGGENDD(MNUMPR,MNUMYR) RFU RFCGGENDD(MNUMPR,MNUMYR) RFU RFCGGENDCO RFCGGENDD(MNUMPR,MNUMYR) RFU RFCGGSELFCD(MNUMPR,MNUMYR) RFU RFCGGSELFCD(MNUMPR,MNUMYR) RFU RFCGGSELFCD(MNUMPR,MNUMYR) RFU RFCGGENDD(MNUMPR,MNUMYR) RFCGARDO RFCGARDO RFGGARD RFGGAR | | | | | | RETHRIMP(MNUMPR,MNUMYR) RENROW(4) RENROW(4) RECAPREC(MNUMPR,PUNITSN,MNUMYR) RFCGAPADDPD(MNUMPR,MNUMYR) RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFU RFCGFUELPD(MNUMPR,MNUMYR) RFU RFCGGENCD(MNUMCR,MNUMYR) RFU RFCGGENCD(MNUMCR,MNUMYR) RFU RFCGGENCD(MNUMCR,MNUMYR) RFU RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel by Cenus Division RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP Generation RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGREC(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self Steam, PAD District percent adjustment RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | REFOTHLIQIN(MNUMPR,MNUMYR) | | Total Other Liquids input into refinery | | | RENROW(4) Character Row name for RFS type studies Refinery processing unit capital recovery factor RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGEND(MNUMCR,MNUMYR) TBtu Refinery CHP Fuel RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP Beneration RFCGGEND(MNUMCR,MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGGREC(MNUMPR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFD(MNUMCR,MNUMYR) RFCGSELFD(MNUMCR,MNUMYR) RFCGSELFD(MNUMCR,MNUMYR) RFCGSELFD(MNUMCR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCGENPD(MNUMCR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | REFPRDGAS(MNUMPR,MNUMYR) | | Total Gasoline produced at refinery | | | RFCAPREC(MNUMPR,PUNITSN,MNUMYR) RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMPR,MNUMYR) RFCGCAPCD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMPR,MNUMYR) TBtu Refinery CHP Fuel by Cenus Division RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP Generation RFCGGENCD(MNUMCR,MNUMYR) TBtu Refinery CHP by PAD District RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP to grid by Cenus Division RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGGREC(MNUMPR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGREC(MNUMPR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGREC(MNUMPR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFPD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFPD(MNUMPR,MNUMYR) TBtu Refinery CHP Self Steam, PAD District percent adjustment RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | | Mbbl/cd | | | | RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR)
RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGGELFCD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCGSTEAM(MNUMPR,MNUMYR) RFCCGSTEAM(MNUMPR,MNUMYR) RFCCCAPPD(MNUMPR,MNUMYR) RFCCCAPPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP Generation | RENROW(4) | Character | Row name for RFS type studies | | | RFCGCAPADDPD(MNUMPR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPCD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | RFCAPREC(MNUMPR,PUNITSN,MNUMYR) | \$/bbl | | | | RFCGCAPCD(MNUMCR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCAPPD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) TBtu Refinery CHP Fuel Refinery CHP Generation RFCGGENPD(MNUMPR,MNUMYR) TBtu Refinery CHP by PAD Ditrict RFCGGRIDCD(MNUMCR,MNUMYR) TBtu Refinery CHP To grid by Cenus Division RFCGGRIDPD(MNUMPR,MNUMYR) TBtu Refinery CHP to grid by PAD District RFCGREC(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self by Cenus Division RFCGSELFCD(MNUMCR,MNUMYR) TBtu Refinery CHP Self Steam, PAD District percent adjustment RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | RECGCAPADDPD(MNUMPR MNUMYR) | KW | | | | RFCGCAPPD(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) MWW/day CHP capacity CHP generation | | | | | | RFCGCONS(MNUMPR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCGSTEAM(MNUMPR,MNUMYR) RFCCCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) MW/day CHP capacity RFCXGENPD(MNUMPR,MNUMYR) MWh/day CHP generation | | | | | | RFCGFUELCD(MNUMCR,MNUMYR) RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) MW/day CHP capacity RFCXGENPD(MNUMPR,MNUMYR) MWh/day CHP generation | , | | · · · | | | RFCGFUELPD(MNUMPR,MNUMYR) RFCGGENCD(MNUMCR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCSCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | | | · | | | RFCGGENCD(MNUMCR,MNUMYR) RFCGGENPD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity RFCXGENPD(MNUMPR,MNUMYR) MWh/day CHP generation | | | · | | | RFCGGENPD(MNUMPR,MNUMYR) RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDCD(MNUMPR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFCD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | | | · | | | RFCGGRIDCD(MNUMCR,MNUMYR) RFCGGRIDPD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFPD(MNUMCR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | . , , | | | | | RFCGGRIDPD(MNUMPR,MNUMYR) RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCCSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity RFCXGENPD(MNUMPR,MNUMYR) MWh/day CHP generation | | | Refinery CHP To grid by Cenus | | | RFCGREC(MNUMPR,MNUMYR) RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | RFCGGRIDPD(MNUMPR,MNUMYR) | TBtu | | | | RFCGSELFCD(MNUMCR,MNUMYR) RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | | | | | | RFCGSELFPD(MNUMPR,MNUMYR) RFCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | 1 | | | | | RFCGSTEAM(MNUMPR,MNUMYR) RFCXCAPPD(MNUMPR,MNUMYR) RFCXGENPD(MNUMPR,MNUMYR) MW/day CHP capacity CHP generation | | | | | | RFCXCAPPD(MNUMPR,MNUMYR) MW/day CHP capacity RFCXGENPD(MNUMPR,MNUMYR) MWh/day CHP generation | | | Steam, PAD District percent | | | RFCXGENPD(MNUMPR,MNUMYR) MWh/day CHP generation | RFCXCAPPD(MNUMPR,MNUMYR) | MW/dav | | | | | | | | | | | , , , | | | | | REMISST(MNUMPR, MNUMYR, 12) RESTBOMNUMPR, MNUMYR) RESTBOMNUMPR, MNUMYR) RESTBOMNUMPR, MNUMYR) RESTBOMNUMPR, MNUMYR) RESTBOMNUMPR, MNUMYR) RESTBOMNUMPR, MNUMYR, 34) REFORM (MNUMPR, MNUMYR) REFORM (MNUMPR, MNUMYR, 34) REFORM (MNUMPR, MNUMYR) REGBCREG (MNUMPR, 13, MNUMYR) REGBCREG (MNUMPR, 13, MNUMYR) REGBCREG (MNUMPR, 13, MNUMYR) REGBCREG (MNUMPR, 13, MNUMYR) REGBCREG (MNUMPR, MNUMYR) REGBCC (MNUMPR, MNUMYR) REGSPC (MNUMPR, MNUMYR) REGSPC (MNUMPR, MNUMYR) RESTBOL MMADIFOE'Cd refinery REPOTL (MNUMPR, MNUMYR) MMDDIC (Sastine Sastine Sasti | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|--------------------------------------|--| | REFEIBO(MNUMPR, MNUMYR) REFEIBO(MNUMPR, MNUMYR) RFFPO(MNUMPR, MNUMYR) RFFPO(MNUMPR, MNUMYR) RFFPO(MNUMPR, MNUMYR) RFFPO(MNUMPR, MNUMYR) RFPO(MNUMYR) RFPO(MNUMYR) RFPO(MNUMYR) MMbb/cd Field production of other liquids RFPUELU(MNUMYR) Mbb/cd REGBCRFG(MNUMPR,13,MNUMYR) RFBOCRFG(MNUMPR,13,MNUMYR) RFGBCRFG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,MNUMYR) RFGBCRG(MNUMPR,MNUMYR) RFGBCO(MNUMPR,MNUMYR) RFGSPCDL(MNUMPR,MNUMYR) RFMARRPD(MNUMPR,MNUMYR) RFMARRPD(MNUMPR,MNUMYR) RFMARRPD(MNUMPR,MNUMYR) RFMARRPD(MNUMPR,MNUMYR) RFMARRPD(MNUMPR,MNUMYR) RFMSTCT(MNUMPR,MNUMYR) RFMSDCT RFMSTCT(MNUMPR,MNUMYR) RFMSDCT RFMSTCT R | | | | | | RFETBMCT(MNUMPR,MNUMYR,34) RFFMT(MNUMPR,MNUMYR,34) RFFMT(MNUMPR,MNUMYR,34) RFFPO(MNUMYR) RFFPO(MNUMYR) MM bbl/cd Field production of other liquids RFFUELU(MNUMYR) MMbbl/cd Total refinery fuel use who nat, gas RFGBCRFG(MNUMPR,13,MNUMYR) Mbbl/cd Gasoline blending composition (reformulated & high oxygenated) Gasoline blending composition (reformulated & high oxygenated) (conventional & high oxygenated) RFGBCTRG(MNUMPR,13,MNUMYR) RFGBCTRG(MNUMPR,13,MNUMYR) RFGROO(MNUMPR,MNUMYR) Octane Avg motor octane in RFG pool RFGROO(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) MMbbl/cd RFHCX+12IN(MNUMPR,MNUMYR,9) MMbbl/cd,S87/bbl RFG specification row status RFIPQADE (MNUMPR,MNUMYR,9) RFIPQADE (MNUMPR,MNUMYR,9) MMbbl/cd,S87/bbl RFG specifications Total imported broduct win Methanol RFIPQADE (MNUMPR,MNUMYR,2) MMbbl/cd,S87/bbl RFMETETH(MNUMPR,MNUMYR,8) MMbbl/cd Methanol for ether and biodiesel feedstock RFMETTETH(MNUMPR,MNUMYR) | RFEMISST(MNUMPR,MNUMYR,12) | Many | Total refinery emissions | | | REFENT(MNUMPR, MNUMYR, 34) REFPO(MNUMYR) RFFPO(MNUMYR) RFFD(MNUMYR) RFFD(MNUMPR, 13,MNUMYR) RFGBCRFG(MNUMPR, 13,MNUMYR) RFGBCRFG(MNUMPR, 13,MNUMYR) RFGBCRG(MNUMPR, MNUMYR) RFGBCRG(MNUMPR, MNUMYR) Octane Avg motor octane in RFG pool RFGSRO(MNUMPR, MNUMYR, 9) RFGSPCDL(MNUMPR, RFIPODU(MNUMPR, MNUMYR, 9) RFIPODU(MNUMPR, MNUMYR, 2) RFIPODU(MNUMPR, MNUMYR, 2) RFIPOSB(MNUMPR, RFIPOTL(MNUMPR, 3) RMbbl/cd RFMETETH(MNUMPR, MNUMYR) RFMETETH(MNUMPR, MNUMYR) RFMTBEIN(MNUMPR, MNUMYR) RFMTBEIN(MNUMPR, MNUMYR) MMbbl/cd Merchant methanol comsumption RFNTEOLIMP(MNUMPR, MNUMYR) RFMTBEIN(MNUMPR, MNUMYR) RFMTBEIN(MNUMPR, MNUMYR) RFNTBETOTI(MNUMPR, MNUMYR) RFNTBOTT(MNUMPR, MNUMYR) RFNGFTOTI(MNUMPR, MNUMYR) RFNGFTOTI(MNUMPR, MNUMYR) RFNGFTOTI(MNUMPR, MNUMYR) RFNGFOTI(MNUMPR, MNUMYR) RFNGFOTI(MNUMPR, MNUMYR) RFNGFOTI(MNUMPR, MNUMYR) RFNGFOEXP(MNUMPR, MNUMYR) RFNGFOEXP(MNUMPR, MNUMYR) RFOORXPI(MNUMPR, MNUMYR) RFOORXPI(MNUMPR, MNUMYR) RFSTEAM(MNUMPR, MNUMYR) RFSTEAM(MNUMPR, MNUMYR) RFSTEAM(MNUMPR, MNUMYR) RFSTEAM(MNUMPR, MNUMYR) RFSTEAD(MNUMPR, | RFETBD(MNUMPR,MNUMYR) | MMbbl/cd | ETBE oxygenate quantity | | | RFFPG(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFBUELU(MNUMYR) RFGBCRFG(MNUMPR,13,MNUMYR) RFGBCRFG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCO(MNUMPR,13,MNUMYR) RFGBCO(MNUMPR,MNUMYR) Octane Avg motor octane in RFG pool RFGRO(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPC(9) Text RFG specification row dual activity RFGSPEC(9) RFGRO(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQDU(MNUMPR,MNUMYR,0) RFIPQTL(MNUMPR,MNUMYR,0) RFIPQTL(MNUMPR,MNUMYR,0) RFIPQTL(MNUMPR,MNUMYR,0) RFIPQTL(MNUMPR,MNUMYR,0) RFIMARRPD(MNUMPR,MNUMYR,0) RFMETTHORMOUND,MNUMYR,0) RFMETTHORMOUND,MNUMYR,0 MMbbl/cd Total MTBE input into refinery RFMETGLOCK Lags are production RFNETGLIAM,MNUMYR,0 MMbbl/cd Total antural gas production RFNETGLIAM,MNUMPR,MNUMYR,0 RFGRETGRAM,MNUMPR,0 MMbbl/cd Total antural gas production RFMETGLOCK,MNUMPR,MNUMYR,0 | RFETBMCT(MNUMPR,MNUMYR) | MMbbl/cd | Merchant ETBE production | | | RFFUELU(MNUMYR) RFGBCRFG(MNUMPR,13,MNUMYR) RFGBCRFG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) RFGBCRG(MNUMPR,13,MNUMYR) Octane Avg motor octane in RFG pool RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) Text RFG specification row dual activity RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCL(MNUMPR,MNUMYR,9) RFIPQDU(MNUMPR,MNUMYR,9) RFIPQDU(MNUMPR,MNUMYR,2) MMbbl/Cd,\$87/bbl Imported DSU, P/Q Subtotal imported product w/o Methanol RFMARPRD(MNUMPR,MNUMYR,9) RFMETETH(MNUMPR,MNUMYR) MMbbl/Cd,\$87/bbl Total imported product with Methanol RFMETETH(MNUMPR,MNUMYR) MMbbl/Cd RFMETETH(MNUMPR,MNUMYR) MMbbl/Cd RFMETETH(MNUMPR,MNUMYR) MMbbl/Cd RFMETETH(MNUMPR,MNUMYR) MMbbl/Cd RFMETETH(MNUMPR,MNUMYR) MMbbl/Cd RFMTBMCT(MNUMPR,MNUMYR) MMbbl/Cd RFMTBMCT(MNUMPR,MNUMYR) MMbbl/Cd Total imported product with Methanol refered road product with Methanol refered road product with Methanol refered road product with Methanol RFMTBMCT(MNUMPR,MNUMYR) MMbbl/Cd RFMTBMCT(MNUMPR,MNUMYR) MMbbl/Cd RFMTBMCT(MNUMPR,MNUMYR) MMbbl/Cd Total imported product with Methanol refered road refe | RFFMT(MNUMPR,MNUMYR,34) | Percent | Refinery fuel mix | | | RFGBCRFG(MNUMPR,13,MNUMYR) RFGBCTRG(MNUMPR,13,MNUMYR) RFGBCTRG(MNUMPR,13,MNUMYR) RFGBCTRG(MNUMPR,13,MNUMYR) RFGBCTRG(MNUMPR,MNUMYR) Octane Avg motor octane in RFG pool RFGR00(MNUMPR,MNUMYR) Octane Avg motor octane in RFG pool RFGR00(MNUMPR,MNUMYR) S87/bbl RFG specification row dual activity RFGSPCLM(MNUMPR,MNUMYR,9) Text RFG specification row dual activity RFGSPCLM(MNUMPR,MNUMYR,9) Total RFG specification row status RFGSPCLM(MNUMPR,MNUMYR,2) MMbbl/cd,\$87/bbl Imported DSU, P/Q RFIPQSB(MNUMPR,MNUMYR,2) MMbbl/cd,\$87/bbl Imported DSU, P/Q RFIPQSB(MNUMPR,MNUMYR,2) MMbbl/cd,\$87/bbl Imported DSU, P/Q RFIPQSB(MNUMPR,MNUMYR,2) MMbbl/cd,\$87/bbl Total imported product w/o Methanol RFMARPRD(MNUMPR,MNUMYR) MMbbl/cd Total imported product with Methanol tot prod fr marg ref using FLL MRETMCT(MNUMPR,MNUMYR) MMbbl/cd Methanol for ether and biodiesel feedstock feedstock Merchant methanol comsumption RFMTBEIN(MNUMPR,MNUMYR) MMbbl/cd Total MTBE input into refinery RFMTBENCT(MNUMPR,MNUMYR) MMbbl/cd Total MTBE input into refinery RFMTBMCT(MNUMPR,MNUMYR) MMbbl/cd Total MTBE input into refinery RFMTBMCT(MNUMPR,MNUMYR) MMbbl/cd Total natural gas production RFNRGBILL Integer NRGBILL setting RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd Total actual gas production RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd Total actual gas production RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd Total interior oxygenates input RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd Total interior oxygenates input RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSG2H2IN(MNUMPR,MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSG2H2IN(MNUMPR,MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSG2H2IN(MNUMPR,MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen | RFFPO(MNUMYR) | MM bbl/cd | Field production of other liquids | | | RFGBCRFG(MNUMPR,13,MNUMYR) RFGBCTRG(MNUMPR,13,MNUMYR) RFGM00(MNUMPR,MNUMYR) RFGM00(MNUMPR,MNUMYR) Octane Avg motor octane in RFG pool RFGSPCDL(MNUMPR,MNUMYR) S87/bbl RFG specification row dual activity RFGSPCDL(MNUMPR,MNUMYR) Text RFG specification row dual activity RFGSPCDL(MNUMPR,MNUMYR) Text RFG specification row dual activity RFGSPECIGN(NNUMPR,MNUMYR) Text RFG specification row dual activity RFGSPECIGN(NNUMPR,MNUMYR) Text RFG specification row dual activity RFGSPECIGN RFHCXH2IN(MNUMPR,MNUMYR) MMbblFOE/cd RFIPQDU(MNUMPR,MNUMYR) RFIPQDU(MNUMPR,MNUMYR,2) RFIPQDU(MNUMPR,MNUMYR,2)
RFIPQDU(MNUMPR,MNUMYR,2) RFIPQDU(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFMBCTETH(MNUMPR,MNUMYR) MMbbl/cd RFMARPRD(MNUMPR,MNUMYR) MMbbl/cd RFMETETH(MNUMPR,MNUMYR) MMbbl/cd RFMETETH(MNUMPR,MNUMYR) MMbbl/cd RFMETMCT(MNUMPR,MNUMYR) MMbbl/cd Merchant methanol comsumption RFMTBBIN(MNUMPR,MNUMYR) MMbbl/cd Merchant MTBE input into refinery RFMTBMCT(MNUMPR,MNUMYR) MMbbl/cd Merchant MTBE production RFNGFTOT(MNUMPR,MNUMYR) MMbbl/cd RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd RFNGFTOT(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd Total 'Other' Oxygenates input into refinery RFSC2HZIN(MNUMPR,MNUMYR) MMbbl/cd Total 'Other' Oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE Oxygenate quantity Total 'Other Call of RFC SBG08RFH(MNUMCR, | RFFUELU(MNUMYR) | MMbbl/cd | Total refinery fuel use w/o nat. gas | | | RFGBCTRG(MNUMPR,13,MNUMYR) RFGBMO0(MNUMPR,MNUMYR) RFGM00(MNUMPR,MNUMYR) RFGM00(MNUMPR,MNUMYR) RFGR00(MNUMPR,MNUMYR) RFGR00(MNUMPR,MNUMYR) RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) RFGSPCDL(MNUMPR,MNUMYR,9) RFHCSPCL(MNUMPR,MNUMYR,9) RFMGTETH(MNUMPR,MNUMYR) RFMGTETH(MNUMPR,MNUMYR) RFMGTETH(MNUMPR,MNUMYR) RFMGTETH(MNUMPR,MNUMYR) RFMGTETH(MNUMPR,MNUMYR) RFMGTBCT(MNUMPR,MNUMYR) RFNGGTCT(MNUMPR,MNUMYR) MMbbl/cd RFNGGTCT(MNUMPR,MNUMYR) RFNGGTCT(MNUMPR,MNUMYR) RFNGGTCT(MNUMPR,MNUMYR) RFNGGTCT(MNUMPR,MNUMYR) RFNGGTCT(MNUMPR,MNUMYR) RFNGGTCT(MNUMPR,MNUMYR) RFOPEXF(MNUMPR,MNUMYR) RFOPEXF(MNUMPR,MNUMYR) RFOPEXF(MNUMPR,MNUMYR) RFOPEXF(MNUMPR,MNUMYR) RFOPEXF(MNUMPR,MNUMYR) RFOPEXF(MNUMPR,MNUMYR) RFORDCC(MNUMPR,MNUMYR) RFORDCC(MNUMPR,MNUMYR) RFORDCCC(MNUMPR,MNUMYR) RFORDCCC(MNUMPR,MNUMYR) RFORDCCC(MNUMPR,MNUMYR) RFORDCCC(MNUMPR,MNUMYR) RFORDCCCC(MNUMPR,MNUMYR) RFORDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | DECREDEC(MNI IMPD 12 MNI IMVD) | Mbbl/cd | Gasoline blending composition | | | RFGBC I RE(INNUMPR, MDUMYR) RFGR00(MNUMPR, MNUMYR) Octane Avg motor octane in RFG pool RFGSPCDL(MNUMPR, MNUMYR) Fest RFGSPCDL(MNUMPR, MNUMYR) RFIPQDU(MNUMPR, MNUMYR) RFIPQDU(MNUMPR, MNUMYR, 2) RFIPQDU(MNUMPR, MNUMYR, 2) RFIPQDU(MNUMPR, MNUMYR, 2) RFIPQSB(MNUMPR, MNUMYR, 2) RFIPQSB(MNUMPR, MNUMYR, 2) RFIPQTL(MNUMPR, MNUMYR, 2) RFIPQTL(MNUMPR, MNUMYR, 2) RFMGTETH(MNUMPR, MNUMYR) RFMGTT(MNUMPR, MNUMYR) RFMGTT(MNUMPR, MNUMYR) RFMGTTC(MNUMPR, MNUMYR) MMbbl/cd Methanol for ether and biodiesel feedstock RFMGTTG(MNUMPR, MNUMYR) RFMTBEIN/MNUMPR, MNUMYR) RFMTBEIN/MNUMPR, MNUMYR) RFMTBEIN/MNUMPR, MNUMYR) RFMTBEIN/MNUMPR, MNUMYR) MMbbl/cd Merchant Brein put into refinery RFMTBEN/TO(MNUMPR, MNUMYR) MMbbl/cd Merchant Brein put into refinery RFNGFTOTI/MNUMPR, MNUMYR) MMbbl/cd Merchant MTBE production RFNGFTOLIMP(MNUMYR) MMbbl/cd Total ATTBE input into refinery RFNGFTOTI/MNUMPR, MNUMYR) RFNGFTOTI/MNUMPR, MNUMYR) RFNGFTOTI/MNUMPR, MNUMYR) MMbbl/cd Total ratural gas production RFNGFTOLIMP(MNUMPR, MNUMYR) RFOPEX/P(MNUMPR, MNUMYR) MMbbl/cd Total ratural gas production RFNGFTOTI/MNUMPR, MNUMYR) MMbbl/cd Total ratural gas production RFNGFTOTI/MNUMPR, MNUMYR) MMbbl/cd Total ratural gas production RFNGFTOTI/MNUMPR, MNUMYR) RFOPEX/P(MNUMPR, MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFOPEX/P(MNUMPR, MNUMYR) RFOPEX/P(MNUMPR, MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery capital cost by product RFSAL(MNUMPR, MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSALMMUMPR, MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSALMMUMPR, MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSALMMUMPR, MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSALMMUMPR, MNUMYR) MMbbl/ | REGBOREG(WINDWIFK, 13, WINDWITK) | IVIDDI/CU | | | | REGMO0(MNUMPR,MNUMYR) Octane Avg motor octane in RFG pool REGRO0(MNUMPR,MNUMYR) Octane Avg motor octane in RFG pool REGRO0(MNUMPR,MNUMYR) S87/bbl RFG specification row dual activity REGSPEC(MNUMPR,MNUMYR,9) RFGSPEC(M) RFG specification row status RFGSPEC(9) Text RFG specification row status RFGSPEC(9) Text RFG specification row status RFGSPEC(9) RFHCXHZIN(MNUMPR,MNUMYR,9) RFIPQDU(MNUMPR,MNUMYR,2) MMbbl/Cd,S87/bbl Imported DSU, P/Q Subtotal imported to Hydrogen at refinery RFIPQDU(MNUMPR,MNUMYR,2) MMbbl/Cd,S87/bbl Imported DSU, P/Q Subtotal imported product w/o Methanol RFMARPRD(MNUMPR,MNUMYR,2) MMbbl/Cd,S87/bbl Interpret product with Methanol RFMARPRD(MNUMPR,MNUMYR) Mbbl/Cd,S87/bbl Interpret product with Methanol RFMARPRD(MNUMPR,MNUMYR) MMbbl/Cd Methanol for ether and biodiesel feedstock RFMETTH(MNUMPR,MNUMYR) MMbbl/Cd Methanol for ether and biodiesel feedstock RFMETTMCT(MNUMPR,MNUMYR) Total MTBE input into refinery RFMTBBCT(MNUMPR,MNUMYR) MMbbl/Cd Total natural gas production RFNREGBILL Integer NRGBILL setting RFOPEXP(MNUMPR,MNUMYR) Mbbl/Cd Total natural gas production RFNREGBILL Integer NRGBILL setting RFOPEXP(MNUMPR,MNUMYR) Mbbl/Cd Total natural gas production RFNREGBILL RFOPEXP(MNUMPR,MNUMYR) Mbbl/Cd Total Oxygenates input into refinery RFSAL(MNUMPR,MNUMYR) Mbbl/Cd T | DECRCTDC(MNI IMDD 13 MNI IMVD) | Mbbl/cd | | | | RFGRO(MNUMPR, MNUMYR) RFGSPCDL(MNUMPR, MNUMYR,9) RFGSPCDL(MNUMPR, MNUMYR,9) RFGSPCDL(MNUMPR, MNUMYR,9) RFGSPEC(9) Text RFG specification row status RFGSPEC(9) Text RFG specification row status RFGSPEC(9) RFHCXH2IN(MNUMPR, MNUMYR,9) RFIPQDU(MNUMPR, MNUMYR,2) RFIPQDU(MNUMPR, MNUMYR,2) MMbbl/cd, \$87/bbl Imported DSU, P/Q MMbbl/cd, \$87/bbl Subtotal imported product w/o Methanol RFIPQTL(MNUMPR, MNUMYR,2) RFIPQTL(MNUMPR, MNUMYR,2) MMbbl/cd, \$87/bbl RFIPQTL(MNUMPR, MNUMYR,2) RFIPQTL(MNUMPR, MNUMYR,2) MMbbl/cd, \$87/bbl RFMARPRD(MNUMPR, MNUMYR) RFMARPRD(MNUMPR, MNUMYR) MMbbl/cd RFMETETH(MNUMPR, MNUMYR) MMbbl/cd RFMTBEIN(MNUMPR, MNUMYR) MMbbl/cd Merchant methanol comsumption RFMTBEIN(MNUMPR, MNUMYR) MMbbl/cd Merchant MTBE input into refinery RFMTBMCT (MNUMPR, MNUMYR) MMbbl/cd Merchant MTBF production RFNETOLIMP(MNUMYR) MMbbl/cd Net Other Liquids Imports RFNGBILL Integer NRGBILL Integer NRGBILL Integer NRGBILL RFOHOXYIN(MNUMPR, MNUMYR) MMbbl/cd Total NGBILL setting RFOHOXYIN(MNUMPR, MNUMYR) MMbbl/cd Total Total oxygenates input RFOPEXP(MNUMPR, MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFROFXYIN(MNUMPR, MNUMYR) RFOREXP(MNUMPR, MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFROFXYIN(MNUMPR, MNUMYR) RFOSAL(MNUMPR, MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFSAL(MNUMPR, MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFSAL(MNUMPR, MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFSAL(MNUMPR, MNUMYR) MMbbl/cd Total Oxygenate quantity RFTAED(MNUMPR, MNUMYR) MMbbl/cd The oxygenate quantity RFTAED(MNUMPR, MNUMYR) MMbbl/cd The oxygenate quantity RFTHAD(MNUMPR, MNUMYR) MMbbl/cd The oxygenate quantity RFTHAD(MNUMPR, MNUMYR) MMbbl/cd The oxygenate quantity RFTHAD(MNUMPR, MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR, MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR, MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFG | KI GBC I KG(IVINOIVIF IX, 13, IVINOIVI IX) | IVIDDI/CU | | | | RFGSPCL(MNUMPR,MNUMYR,9) RFGSPCLM(MNUMPR,MNUMYR,9) RFGSPEC(9) Text RFG specification row dual activity RFGSPEC(9) Text RFG specification row dual activity RFGSPEC(9) Text RFG specification row status RFGSPEC(9) Text RFG specifications MMbbIFOE/cd RFGSPEC(9) RFHCXH2IN(MNUMPR,MNUMYR) MMbbIFOE/cd RFIPQDU(MNUMPR,MNUMYR,2) MMbbI/cd,\$87/bbl RFIPQDU(MNUMPR,MNUMYR,2) MMbbI/cd,\$87/bbl RFIPQSB(MNUMPR,MNUMYR,2) MMbbI/cd,\$87/bbl RFMRRPRD(MNUMPR,MNUMYR,2) MMbbI/cd,\$87/bbl RFMRRPRD(MNUMPR,MNUMYR,2) MMbbI/cd RFMRRPRD(MNUMPR,MNUMYR,3) MMbbI/cd RFMRRPRD(MNUMPR,MNUMYR,3) MMbbI/cd RFMTBETH(MNUMPR,MNUMYR,3) MMbbI/cd RFMTBETH(MNUMPR,MNUMYR,3) MMbbI/cd RFMTBETH(MNUMPR,MNUMYR,3) MMbbI/cd RFMTBETH(MNUMPR,MNUMYR,3) MMbbI/cd RFMTBETH(MNUMPR,MNUMYR,3) MMbbI/cd RFMTBETOLIMP(NNUMPR,MNUMYR,3) MMbbI/cd RFNGFTOT(MNUMYR,3) MMbbI/cd RFNGFTOT(MNUMYR,3) MMbbI/cd RFNGFTOT(MNUMYR,3) MMbbI/cd RFNGFTOT(MNUMYR,3) RFNGFTOT(MNUMYR,3) MMbbI/cd RFNGFTOT(MNUMYR,3) MMbbI/cd RFNGFTOT(MNUMYR,3) RFNGFTOT(MNUMYR,3) RFOPEXP(MNUMPR,MNUMYR) MMbbI/cd RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) MMbbI/cd RFORGILL setting RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) MMbbI/cd RFORGINUMPR,MNUMYR,3) RFOPEXP(MNUMPR,MNUMYR) MMbbI/cd RFORGINUMPR,MNUMYR,3) RFORGINUMPR,MNUMYR,3) MMbbI/cd RFORGINUMPR,MNUMYR,3) MMbbI/cd RFORGINUMPR,MNUMYR,3) RFORGINUMPR,MNUMYR,3) MMbbI/cd Total Still Gas converted to Hydrogen at refinery RFSEAM(MNUMPR,MNUMYR) MMbbI/cd Total Still Gas converted to Hydrogen at refinery RFSEAM(MNUMPR,MNUMYR) MMbbI/cd Total Still Gas converted to Hydrogen at refinery RFSTEAM(MNUMPR,MNUMYR) MMbbI/cd The oxygenate quantity RFTAED(MNUMPR,MNUMYR) MMbbI/cd Thill oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbI/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR | , , , | | | | | RFGSPCLM(MNUMPR,MNUMYR,9) RFGSPEC(9) Text RFG specification row status RFGSPEC(9) Text RFG specification row status RFGSPEC(9) Total RFG converted to Hydrogen at refinery RFIPQDU(MNUMPR,MNUMYR,2) MMbbl/cd,\$87/bbl Imported DSU, P/Q Subtotal imported product w/o Methanol RFIPQSM(MNUMPR,MNUMYR,2) MMbbl/cd,\$87/bbl Total imported product with Methanol RFMRPRD(MNUMPR,MNUMYR) Mbbl/cd RFMRPRD(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) MMbbl/cd RFMETETH(MNUMPR,MNUMYR) MMbbl/cd RFMETTCI(MNUMPR,MNUMYR) MMbbl/cd Merchant methanol comsumption RFMTBEIN(MNUMPR,MNUMYR) MMbbl/cd Merchant MTBE production MRFNGTOT(MNUMPR,MNUMYR) MMbbl/cd MRFNGTOT(MNUMPR,MNUMYR) MMbbl/cd MRFNGTOT(MNUMPR,MNUMYR) MMbbl/cd MRFOPEX/PMNUMPR,MNUMYR) MMbbl/cd MRFOPEX/PMNUMPR,MNUMYR) MMbbl/cd MRFORTOT(MNUMPR,MNUMYR) MRFO | | | | | | RFGSPEC(9) RFHCXH2IN(MNUMPR,MNUMYR) RFIPQDU(MNUMPR,MNUMYR,2) RFIPQDU(MNUMPR,MNUMYR,2) RFIPQSB(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFMATROTIGNED
TO TO THE AND | | 1 - | | | | RFHCXH2IN(MNUMPR,MNUMYR,2) RFIPQDU(MNUMPR,MNUMYR,2) RFIPQSB(MNUMPR,MNUMYR,2) RFIPQSB(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,3) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETTCT(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEINC(MNUMPR,MNUMYR) RFMTBEINC(MNUMPR,MNUMYR) RFMTBEINC(MNUMPR,MNUMYR) RFMTBETC(MNUMPR,MNUMYR) RFMTBETC(MNUMPR,MNUMYR) RFNGFTOLIMP(MNUMYR) RFNGFTOT(MNUMPR,MNUMYR) RFNGFTOT(MNUMPR,MNUMYR) RFNGBILL Integer RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPTHFU(20) RFOXTIN(MNUMPR,MNUMYR) RFOXTIN(MNUMPR,MNUMYR) RFOXTIN(MNUMPR,MNUMYR) RFOSOGR(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) RFOXTIN(MNUMPR,MNUMYR) RFOXTIN(MNUMPR,MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) MMbbl/cd TABL exygenate quantity RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) MMbbl/cd TABL exygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd Total ethanol used for motor gasoline | | I . | | | | RFIPQDU(MNUMPR,MNUMYR,2) RFIPQSB(MNUMPR,MNUMYR,2) RFIPQSB(MNUMPR,MNUMYR,2) RFIPQSB(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR) RFIPQTL(MNUMPR,MNUMYR) RFIPQTL(MNUMPR,MNUMYR) RFMARPRD(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFNGFTOT(MNUMYR) RFNGFTOT(MNUMYR) RFNGFTOT(MNUMYR) RFNGFTOT(MNUMYR) RFNGFROLL RFORGUL RFOR | RFGSPEC(9) | Text | | | | RFIPQSB(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR) RFMARPRD(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFNETOLIMP(MNUMYR) RFNETOLIMP(MNUMYR) RFNETOLIMP(MNUMYR) RFNGFTOT(MNUMYR) RFNGFTOT(MNUMYR) RFNGFTOT(MNUMYR) RFORGBILL Integer NRGBILL setting RFOHOAYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFORDHAYMOMAR,MNUMYR) RFORDHAYMOMAR,MNUMYR) RFORDHAYMOMAR,MNUMYR) RFORDHAYMOMAR,MNUMYR, RFORDHAYMOMAR,MNUMYR, RFORDHAYMOMAR,MNUMYR, RFORGERF(MNUMPR,MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) Mbbl/cd TAME oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THO oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd TOtal Still Gas converted to Hydrogen at refinery RFALL AZES ROXYTOT(MNUMPR,MNUMYR) MMbbl/cd TAME oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THO oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFH RBGORETOT(MNUMR) Mbbl/cd Splash bind Vol of ethanol for RFH Total ethanol used for motor gasoline | RFHCXH2IN(MNUMPR,MNUMYR) | MMbblFOE/cd | | | | RFIPQTL(MNUMPR,MNUMYR,2) RFIPQTL(MNUMPR,MNUMYR,2) RFMARPRD(MNUMPR,MNUMYR) RFMARPRD(MNUMPR,MNUMYR) RFMARPRD(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) MMbbl/cd Merchant methanol comsumption RFNTBEIN(MNUMPR,MNUMYR) MMbbl/cd Merchant MTBE production Methanol Total MTBE input into refinery Methanol Total MTBE input into refinery Methanol Methanol Total MTBE input into refinery Methanol Total MTBE input into refinery Methanol Methanol Total MTBE input into refinery Methanol Total MTBE input into refinery RFNTBEIN(MNUMPR,MNUMYR) MMbbl/cd Methanol Total MTBE input into refinery Methanol Total MTBE input into refinery Methanol Total MTBE input into refinery NRCBILL setting NRCBIL | RFIPQDU(MNUMPR,MNUMYR,2) | MMbbl/cd,\$87/bbl | Imported DSU, P/Q | | | RFIPQTL(MNUMPR,MNUMYR.) RFMARPRD(MNUMPR,MNUMYR) RFMARPRD(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) MMbbl/cd Total MTBE input into refinery RFMTBMCT(MNUMPR,MNUMYR) MMbbl/cd Refore ther and biodiesel feedstock Merchant methanol comsumption Total MTBE input into refinery RFMTBMCT(MNUMPR,MNUMYR) MMbbl/cd Total MTBE input into refinery RFNETOLIMP(MNUMPR,MNUMYR) MMbbl/cd Net Other Liquids Imports RFNGFTOT(MNUMYR) MBbbl/cd Total natural gas production RFNRGBILL Integer NRGBILL setting RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) MMbbbl/cd Total Objective for OTH category (3-charlD) RFOXYIN(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) MMbbbl/cd Total Oxygenates input into refinery RFSAL(MNUMYR,MNUMYR) MBbbl/cd Total Oxygenates input into refinery RFSAL(MNUMYR,MNUMYR) MBbbl/cd Total Oxygenates input into refinery RFSAL(MNUMPR,MNUMYR) MBbbl/cd Total Oxygenates input into refinery RFSAL(MNUMPR,MNUMYR) MBbbl/cd Total Still Gas converted to Hydrogen at refinery RFSEAL(MNUMPR,MNUMYR) MBbbl/cd TAE oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THM oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFG SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | DEIDOSR/MNI IMDD MNI IMVD 2) | MMbbl/cd \$87/bbl | Subtotal imported product w/o | | | RFMARPRD(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETETH(MNUMPR,MNUMYR) RFMETEMCT(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMETOLIMP(MNUMPR,MNUMYR) RFNETOLIMP(MNUMYR) RFNETOLIMP(MNUMYR) MMbbl/cd Merchant methanol comsumption Merchant methanol comsumption Merchant MTBE input into refinery Merchant MTBE production RFNETOLIMP(MNUMPR,MNUMYR) MMbbl/cd Net Other Liquids Imports RFNETOTI(MNUMPR,MNUMYR) MMbbl/cd Total natural gas production RFNRGBILL RFOHOXYIN(MNUMPR,MNUMYR) MMbbl/cd Total 'Other' Oxygenates input RFOPEXP(MNUMPR,MNUMYR) MMbbl/cd Refinery operating expenses RFQPRCGo(MNUMPR,MNUMYR) MMbbl/cd Refinery operating expenses RFOTHFU(20) Text Refinery fuel use for OTH category (3-charlD) RFOXYIN(MNUMPR,MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFPRDFX(MNUMPR,MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFSAL(MNUMPR,MNUMYR) MMbbl/cd Quantity of ngl inputs to refinery RFSAL(MNUMPR,MNUMYR) Mbfoe/cd Total Still Gas converted to Hydrogen at refinery RFSTEAM(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTAED(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTAED(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd Total oxygenated volumes RWOP(MNUMPR,MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFG SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | IN IF QOD(IMINOIMFIX,IMINOIMTIX,2) | , , | | | | RFMETETH(MNUMPR,MNUMYR) RFMETMCT(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBEIN(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFNETOLIMP(MNUMYR) RFNETOLIMP(MNUMYR) MMbbl/cd RFNETOLIMP(MNUMYR) MMbbl/cd RFNGFTOT(MNUMYR) RFNGBILL RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFORTMORE RFORTMORE RFORTMORE RFORTMORE RFORTMORE REGINERY fuel use for OTH category (3-charlD) RFOXIN(MNUMPR,MNUMYR) RFONGLRF(MNUMPR,MNUMYR) RFONGLRF(MNUMPR,MNUMYR) RFSAL(MNUMYR) RFSAL(MNUMPR,MNUMYR) RFSC2H2IN(MNUMPR,MNUMYR) RFSC2H2IN(MNUMPR,MNUMYR) RFSC2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) MMbbl/cd TOTAL Still Gas converted to Hydrogen at refinery RFSTEAM(MNUMPR,MNUMYR) RFTADD(MNUMPR,MNUMYR) MMbbl/cd TABE oxygenate quantity RFTADD(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) MMbbl/cd THOM oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THOM oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THOM oxygenate quantity FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFG SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | | | | | | RFMETEL H (MNUMPR, MNUMYR) RFMETMETMCT (MNUMPR, MNUMYR) RFMTBEIN (MNUMPR, MNUMYR) RFMTBEIN (MNUMPR, MNUMYR) RFMTBEIN (MNUMPR, MNUMYR) RFMTBMCT (MNUMPR, MNUMYR) RFMTBMCT (MNUMPR, MNUMYR) RFMTBMCT (MNUMPR, MNUMYR) RFNETOLIMP (MNUMYR) MMbbl/cd Merchant MTBE input into refinery Merchant MTBE production Merchant MTBE production Net Other Liquids Imports RFNETOLIMP (MNUMYR) Mbbl/cd Total natural gas production RFNRGBILL RFOHOXYIN (MNUMPR, MNUMYR) RFOHOXYIN (MNUMPR, MNUMYR) RFOPEXP (MNUMPR, MNUMYR) RFOYIN (MNUMPR, MNUMYR) RFOXYIN (MNUMPR, MNUMYR) RFSAL (MNUMPR, MNUMYR) RFTAMD (MNUMPR, MNUMYR) MMbbl/cd TABE oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED (MNUMPR, MNUMYR) RFTHED (MNUMPR, MNUMYR) MMbbl/cd TOtal oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd THE
oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd Total oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd TOTAL Oxygenate quantity THE oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd TOTAL Oxygenate quantity THE Oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd TOTAL Oxygenate quantity THE Oxygenate quantity RFTHED (MNUMPR, MNUMYR) MMbbl/cd TOTAL Oxygenate quantity THO OXYGENATE REMORATOR (MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFG (MNUMCR, MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RFMARPRD(MNUMPR,MNUMYR) | Mbbl/cd | | | | RFMTBEIN(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMSTOLIMP(MNUMYR) MMbbl/cd Merchant MTBE production RFNETOLIMP(MNUMYR) MMbbl/cd Net Other Liquids Imports Total natural gas production RFNRGBILL RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOQEXP(MNUMPR,MNUMYR) RFOHHOWARD RFOHHOUSE RFOTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFONYIN(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) MMbbl/cd Total "Other" Oxygenates input Refinery operating expenses RFOTHFU(20) Text Refinery fuel use for OTH category (3-charlD) RFOXYIN(MNUMPR,MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFPRDFX(MNUMCR,MNUMYR,24) RFONGLRF(MNUMPR,MNUMYR) MMbbl/cd REfinery capital cost by product RFOAL(MNUMYR) RFSAL(MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSEQH2IN(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTAMD(MNUMPR,MNUMYR) MMbbl/cd TAHE oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate quantity RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate quantity RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate dountity RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate dountity FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RFMETETH(MNUMPR,MNUMYR) | MMbbl/cd | | | | RFMTBEIN(MNUMPR,MNUMYR) RFMTBMCT(MNUMPR,MNUMYR) RFMSTOLIMP(MNUMYR) MMbbl/cd Merchant MTBE production RFNETOLIMP(MNUMYR) MMbbl/cd Net Other Liquids Imports Total natural gas production RFNRGBILL RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOQEXP(MNUMPR,MNUMYR) RFOHHOWARD RFOHHOUSE RFOTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFONYIN(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) RFORDEXP(MNUMPR,MNUMYR) MMbbl/cd Total "Other" Oxygenates input Refinery operating expenses RFOTHFU(20) Text Refinery fuel use for OTH category (3-charlD) RFOXYIN(MNUMPR,MNUMYR) MMbbl/cd Total Oxygenates input into refinery RFPRDFX(MNUMCR,MNUMYR,24) RFONGLRF(MNUMPR,MNUMYR) MMbbl/cd REfinery capital cost by product RFOAL(MNUMYR) RFSAL(MNUMYR) MMbbl/cd Total Still Gas converted to Hydrogen at refinery RFSEQH2IN(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTAMD(MNUMPR,MNUMYR) MMbbl/cd TAHE oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate quantity RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate quantity RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate dountity RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd Total oxygenate dountity FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RFMETMCT(MNUMPR,MNUMYR) | MMbbl/cd | Merchant methanol comsumption | | | RFNETOLIMP(MNUMYR) RFNGFTOT(MNUMYR) RFNGBILL RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOXYIN(MNUMPR,MNUMYR) MMbbl/cd TABE oxygenate quantity RFTHAD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHAD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHAD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd THOXYGENAL TAXES ROXYTOT(MNUMPR,MNUMYR) MMbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | | MMbbl/cd | | | | RFNGFTOT(MNUMYR) RFNRGBILL RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFORTX(MNUMPR,MNUMYR) RFORTX(MNUMPR,MNUMYR) RFORTX(MNUMPR,MNUMYR) RFORMALIAN RFORTY (Authority of ngl inputs to refinery operating expenses on the sources of | RFMTBMCT(MNUMPR,MNUMYR) | MMbbl/cd | Merchant MTBE production | | | RFNRGBILL RFOHOXYIN(MNUMPR,MNUMYR) RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPRCGo(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) MMbol/cd TOtal Still Gas converted to Hydrogen at refinery RFAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) MMbol/cd TAME oxygenate quantity RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd THM oxygenate quantity REDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) RFOXYTOT(MNUMPR,MNUMYR) MBbl/cd Splash bind Vol of ethanol for RFG SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG | RFNETOLIMP(MNUMYR) | MM bbl/cd | Net Other Liquids Imports | | | RFOHOXYIN(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFOPEXP(MNUMPR,MNUMYR) RFORTHFU(20) RFOTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFOXYIN(MNUMPR,MNUMYR) RFOXYIN(MNUMPR,MNUMYR) RFOXYIN(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFORTHFU(20) RFOXYIN(MNUMPR,MNUMYR) MMbbl/cd REfinery capital cost by product Quantity of ngl inputs to refinery Sulfur allowances Total Still Gas converted to Hydrogen at refinery RFSG2H2IN(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHED(MNUMPR,MNUMYR) RFTHD(MNUMPR,MNUMYR) RFTHD(MNUMPR,MNUMYR) RFTHD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFOERAL TAXES ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SPGORTOT(MNUMPR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBGORFOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RFNGFTOT(MNUMYR) | Mbbl/cd | Total natural gas production | | | RFOPEXP(MNUMPR,MNUMYR) RFQPRCGo(MNUMPR,MNUMYR) RFQPRCGo(MNUMPR,MNUMYR) RFOTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFPRDFX(MNUMCR,MNUMYR,24) RFQNGLRF(MNUMCR,MNUMYR,24) RFQNGLRF(MNUMPR,MNUMYR) RFSAL(MNUMYR) RFSAL(MNUMYR) RFSAL(MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) RMbbl/cd Splash bind Vol of ethanol for RFG SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG | RFNRGBILL | Integer | | | | RFQPRCGo(MNUMPR,MNUMYR) RFOTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFOXYIN(MNUMPR,MNUMYR) RFPRDFX(MNUMCR,MNUMYR,24) RFQNGLRF(MNUMPR,MNUMYR) RFSAL(MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RTOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | | | Total "Other" Oxygenates input | | | RFOTHFU(20) RFOXYIN(MNUMPR,MNUMYR) RFPRDFX(MNUMCR,MNUMYR,24) RFPRDFX(MNUMCR,MNUMYR,24) RFQNGLRF(MNUMPR,MNUMYR) RFSAL(MNUMPR,MNUMYR) RFSAL(MNUMPR,MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR)
RFTHD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) MMbbl/cd THM oxygenate quantity REMUFTAX(MNUMYR,15) ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFH SBG08TOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | | | | | | RFOXYIN(MNUMPR,MNUMYR) RFOXYIN(MNUMPR,MNUMYR) RFPRDFX(MNUMCR,MNUMYR,24) RFQNGLRF(MNUMPR,MNUMYR) RFSAL(MNUMPR,MNUMYR) RFSAL(MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHAD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RMbbl/cd Total oxygenate quantity REMUFTAX(MNUMYR,15) real \$87/MMBtu FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH Total ethanol used for motor gasoline | RFQPRCGo(MNUMPR,MNUMYR) | MMbbl/cd | | | | RFPRDFX(MNUMCR,MNUMYR,24) \$87/bbl Refinery capital cost by product RFQNGLRF(MNUMPR,MNUMYR) MMbbl/cd Quantity of ngl inputs to refinery RFSAL(MNUMYR) Tons/yr Sulfur allowances RFSG2H2IN(MNUMPR,MNUMYR) Mbfoe/cd Total Still Gas converted to Hydrogen at refinery RFSTEAM(MNUMPR,MNUMYR) MMlb/day Steam by PAD District RFTAED(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity RFTAMD(MNUMPR,MNUMYR) MMbbl/cd TAME oxygenate quantity RFTHED(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity RFTHMD(MNUMPR,MNUMYR) MMbbl/cd THM oxygenate quantity RFTHMD(MNUMPR,MNUMYR) MMbbl/cd THM oxygenate quantity REMUFTAX(MNUMYR,15) real \$87/MMBtu FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) MMbbl/cd Total oxygenated volumes RWOP(MNUMYR) \$87/bbl PMM local expected WOP SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08TOT(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH | RFOTHFU(20) | Text | | | | RFQNGLRF(MNUMPR,MNUMYR) RFSAL(MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHD(MNUMPR,MNUMYR) RFTHD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RMbbl/cd THE oxygenate quantity THM oxygenate quantity FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Mbbl/cd Total ethanol used for motor gasoline | RFOXYIN(MNUMPR,MNUMYR) | MMbbl/cd | Total Oxygenates input into refinery | | | RFSAL(MNUMYR) RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) REMUFTAX(MNUMYR,15) ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFH Total ethanol used for motor gasoline | RFPRDFX(MNUMCR,MNUMYR,24) | \$87/bbl | Refinery capital cost by product | | | RFSG2H2IN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RETHMD(MNUMPR,MNUMYR) RETHMD(MNUMPR,MNUMYR) RETHMD(MNUMPR,MNUMYR) RETHMD(MNUMPR,MNUMYR) RETHMD(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity THM oxygenate quantity FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH Total ethanol used for motor gasoline | RFQNGLRF(MNUMPR,MNUMYR) | MMbbl/cd | Quantity of ngl inputs to refinery | | | RFSG2HZIN(MNUMPR,MNUMYR) RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RESTEAMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RESTEAMD(MNUMPR,MNUMYR) MMbbl/cd THE oxygenate quantity THM oxygenate quantity FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) MMbbl/cd Total oxygenated volumes RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash bind Vol of ethanol for RFH Total ethanol used for motor gasoline | RFSAL(MNUMYR) | Tons/yr | Sulfur allowances | | | RFSTEAM(MNUMPR,MNUMYR) RFTAED(MNUMPR,MNUMYR) MMbbl/cd TAE oxygenate quantity TAME oxygenate quantity RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RLMUFTAX(MNUMYR,15) ROXYTOT(MNUMPR,MNUMYR) ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RFSG2H2IN(MNUMPR,MNUMYR) | Mbfoe/cd | | | | RFTAED(MNUMPR,MNUMYR) RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RETHMD(MNUMPR,MNUMYR) RLMUFTAX(MNUMYR,15) ROXYTOT(MNUMPR,MNUMYR) ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd TAE oxygenate quantity THM oxygenate quantity FEDERAL TAXES Total oxygenated volumes PMM local expected WOP SBG08RFG(MNUMCR,MNUMYR) SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFO(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RFSTEAM(MNUMPR,MNUMYR) | MMlb/dav | | | | RFTAMD(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) REMUFTAX(MNUMYR,15) ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) SBG08RFH(MNUMCR,MNUMYR) MMbbl/cd TAME oxygenate quantity THE oxygen | , | • | | | | RFTHED(MNUMPR,MNUMYR) RFTHMD(MNUMPR,MNUMYR) RETHMD(MNUMPR,MNUMYR) RLMUFTAX(MNUMYR,15) ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) SBG08RFH(MNUMCR,MNUMYR) SBG08TOT(MNUMCR,MNUMYR) MMbbl/cd THE oxygenate quantity THM oxygenate quantity FEDERAL TAXES Total oxygenated volumes PMM local expected WOP Splash blnd Vol of ethanol for RFG Splash blnd Vol of ethanol for RFG Splash blnd Vol of ethanol for RFH Total ethanol used for motor gasoline | , , | | | | | RFTHMD(MNUMPR,MNUMYR) RLMUFTAX(MNUMYR,15) ROXYTOT(MNUMPR,MNUMYR) RWOP(MNUMYR) SBG08RFG(MNUMCR,MNUMYR) SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Mbbl/cd Mbbl/cd Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08TOT(MNUMCR,MNUMYR) Mbbl/cd Mbbl/cd TdM oxygenate quantity FEDERAL TAXES Total oxygenated volumes PMM local expected WOP Splash blnd Vol of ethanol for RFG Splash blnd Vol of ethanol for RFG Splash blnd Vol of ethanol for RFH Total ethanol used for motor gasoline | , , , | | | | | RLMUFTAX(MNUMYR,15) real \$87/MMBtu FEDERAL TAXES ROXYTOT(MNUMPR,MNUMYR) MMbbl/cd Total oxygenated volumes RWOP(MNUMYR) \$87/bbl PMM local expected WOP SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08TOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | , , | | | | | RWOP(MNUMYR) \$87/bbl PMM local expected WOP SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08TOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RLMUFTAX(MNUMYR,15) | real \$87/MMBtu | | | | RWOP(MNUMYR) \$87/bbl PMM local expected WOP SBG08RFG(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFG SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08TOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | ROXYTOT(MNUMPR,MNUMYR) | MMbbl/cd | | | | SBG08RFH(MNUMCR,MNUMYR) Mbbl/cd Splash blnd Vol of ethanol for RFH SBG08TOT(MNUMCR,MNUMYR) Mbbl/cd Total ethanol used for motor gasoline | RWOP(MNUMYR) | \$87/bbl | | | | SBG08TOT(MNILIMCR MNILIMVR) Mbbl/cd Total ethanol used for motor gasoline | SBG08RFG(MNUMCR,MNUMYR) | Mbbl/cd | Splash blnd Vol of ethanol for RFG | | | | SBG08RFH(MNUMCR,MNUMYR) | Mbbl/cd | Splash blnd Vol of ethanol for RFH | | | | SBG08TOT(MNUMCR,MNUMYR) | Mbbl/cd | | | | VARIABLES USED | INTERNALLY IN PMM (pm | nmcom1) | |---------------------------|-----------------------|--------------------------------------------------| | NAME | UNITS | DEFINITION | | SBG08TRG(MNUMCR,MNUMYR) | Mbbl/cd | Splash blend volume of ethanol for TRG | | SBG08TRH(MNUMCR,MNUMYR) | Mbbl/cd | Splash blnd Vol of ethanol for TRH | | SBRFGRFG(MNUMCR,MNUMYR) | Mbbl/cd | Splash blnd Vol of RBOB for RFG | | SBRFGRFH(MNUMCR,MNUMYR) | Mbbl/cd | Splash blnd Vol of RBOB for RFH | | SBTRGTRG(MNUMCR,MNUMYR) | Mbbl/cd | Splash blnd Vol of SSE for TRG | | SBTRGTRH(MNUMCR,MNUMYR) | Mbbl/cd | Splash blnd Vol of TBOB for TRH | | SPLTTYP(PUNITSN,MNUMYR) | Integer, flag | Represents %(=1) vs capacity(=2) | | STMDMD(MNUMPR,MNUMYR) | lb/bbl | Steam consumption at ref | | TAP_FIXCST | 1000 \$87/cd | Fixed transportation cost on TAPS | | TAP MAXCAP | MMbbl/cd | Max capacity on TAPS | | TAP MINSTVOL | MMbbl/cd | Min incremental vol above MINTHRU | | TAP MINTHRU | MMbbl/cd | Min economic throughput on TAPS
| | TAP_OILADJ | Percent | Min upward adjustment on Lift Cost | | TAP_OILIFT | \$87/bbl | Assumed oil lifting cost in AK | | TAP_VARCHG | \$87/bbl | Variable trans cost on TAPS | | TOTPRD(MNUMPR,MNUMYR) | MMbbl/cd | Total refinery products sold | | TOTREFOUT(MNUMYR) | MMbbl/day | Refinery production only | | TRANSCL(MNUMYR) | \$87 | Transport costs for Biomass conversion | | TRGR00(MNUMPR,MNUMYR) | Octane | Avg research oct in TRG pool | | TRGM00(MNUMPR,MNUMYR) | Octane | Avg motor octane in TRG pool | | TRGSPCDL(MNUMPR,MNUMYR,7) | \$87/bbl | RFG specification row dual activity | | TRGSPCLM(MNUMPR,MNUMYR,7) | Text | TRG specification row status | | TRGSPEC(7) | Text | TRG specifications | | ULPRDEXP(11,5,MNUMYR) | Mbbl/cd | Upper bound on prod exports (for cap expan) | | UPBND | None | Variable for passing data to OML | | VESSTYPE(4) | Integer | EFA, data read from rfctrl.txt | | WOPMTPLY | Percent | Distress import price multiplier | | WOPZ9EXP | Percent | Distress export price multiplier | | WPBDWGR(MNUMCR,MNUMYR,5) | 87\$/bbl | Price, white grease supply curve | | WQBDWGR(MNUMCR,MNUMYR,5) | Mbbl/cd | Qty, white grease supply curve | | XRFELP(MNUMCR,MNUMYR) | MMbbl/cd | Local expected electricity price | | XRFNGP(MNUMCR,MNUMYR) | MMbbl/cd | Local expected natural gas price | | XSTMDMD(MNUMPR,MNUMYR) | lb/bbl | Forecast steam consumption at ref (not used) | | IDEN | TIFIER VARIABLES | | | BLDPD | Integer | Build period look-ahead (3 years) | | BNDS(2) | Text | Bounds character identifiers | | CAPYR1ST | Integer | First year cap expansion is run | | CRDLINKS | Integer | Crude transportation links | | CRDTYP(5) | Text | Crude type character identifiers | | DMDRGNS | Integer | PMM demand regions index | | ETHERS(7) | Text | List of ethers | | FO1PMM | None | Variable for file unit identifier | | FO2PMM | None | Variable for file unit identifier | | FO3PMM | None | Variable for file unit identifier | | IPRD(NUMIMPPRD) | Text | Imported product chrctr identifers | | LNEMSYR | Integer | Last forecast year (2040 in AEO2012) | | MG_NAM(4) | Text | Motor gas. types created from splash blend (SS*) | | MGSCHAR(80) | Text | Motor gasoline share character | | VARIABLES USED | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | |--------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | | | identifiers | | | NEMSYR1 | Integer | First NEMS year (1990) | | | NLV(9) | Text | Census division character identifers | | | NLV2(9) | Text | Domestic crude supply regn identifers | | | QNT(9) | Text | Quantity character identifiers | | | PADD(5) | Text | PAD District character identifiers | | | PMMDBG | Integer | PMM debug file unit ID | | | PMMRGNS | Integer | PMM refining regions index | | | PRCUNIT(60) | Text | Process unit character identifier | | | PRD(30) | Text | Product character identifiers | | | PRDIMP | Text | name for PRDIMP.txt input file | | | PRDLINKS | Integer | product transportation links | | | PRTYRS(5) | year | ID's 5 yrs to print data for MRM | | | RFOTHFU(20) | Text | Other fuel use character identifier | | | SPRPTYR\$ | Integer | Year \$ for special tables 1a,b,c,d in | | | SPRPITRO | Integer | pmmrpts.txt | | | SS_NAM(4) | Text | SS* names splash blended into 4 | | | 33_INAIVI(4) | | motor gas. Types | | | SUBNM | Text | Subroutine name index | | | SUBNMX | Text | Passing subroutine name index | | | Z9EXPRD(11) | Text | Distress export index list | | | | INFORMATION FOR PMI | | | | E_CHAR | Е | Denotes "=" constraint | | | G_CHAR | G | Denotes ">=" constraint | | | L_CHAR | L | Denotes "<=" constraint | | | N_CHAR | N | Denotes "free" constraint | | | OML_TYP | flag | 0 => Use Database 1 => Use In- | | | | | Memory Functions | | | PMM_ACTFILE | text | Name of PMM actfile | | | PMM_ACTPROB | text | Name of PMM actprob | | | PMM_BASISIN | text | Name of PMM basis input file | | | PMM_BND | text | Name of PMM Bound Row | | | PMM_DBFILE(28) | index | OML Index to Identify PMM ACT File -<br>Assigned in DFOPEN used by<br>DFPINIT and DFCLO | | | PMM_DBPROB(22) | index | OML Index to Identify PMM Problem Name | | | PMM_DECK | text | Name of MPS Deck | | | PMM_MINMAX | flag | Type of PMM optimization (MIN or MAX) | | | PMM_MPSFILE | text | Name of MPS Input File | | | PMM_OBJ | text | Name of PMM Objective Function Row | | | PMM_RANGE | text | Name of PMM Range Vector | | | PMM_RHS | text | Name of PMM RHS Vector | | | PMM_SOLNAME | text | Name of PMM Solution saved in the actfile | | | SV_PMM_ACT(MNUMYR) | flag | 1 => Save PMM Actfile for Current<br>Year 2 => Save PMM Capacity<br>Expansion Matrix for Current Year (if<br>any) 3=> Both Assigned in DFPINIT<br>used by DFCLOSE | | | 5 511E0 | | | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | | |--------------------------------------------|---------|--------------------------------------------------|--|--| | NAME | UNITS | DEFINITION | | | | ATRHSW | Integer | Switch for alternate calc of TRH price | | | | CTL_FSTYR | Year | First year CTL allowed to be built | | | | CTLMB_SW | Integer | Switch to apply Mansfield-Blackman | | | | | | model | | | | CTLTXSW | Integer | Switch to apply CTL tax credit | | | | CTLTXYR1 | Year | First year to apply CTL tax credit | | | | CTLTXYR2 | Year | Last year to apply CTL tax credit increment | | | | DSUYR1 | Integer | First DSU phase-in year | | | | DSUYR2 | Integer | Final DSU phase-in year | | | | ODSUYR1 | Integer | First year NRLM DSL required | | | | ODSUYR2 | Integer | First year nonroad (NR) DSU required | | | | | | First year loco./marine (LM) DSU | | | | ODSUYR3 | Integer | required | | | | EMISSCSSW | Integer | Switch for emissions cost adjustment | | | | ETHSWTX | Integer | Switch for ethanol subsidy for carbon | | | | | Integer | tax case | | | | ETHTECSW | Integer | Hi tech switch for ethanol, cellulose | | | | FRSTIT | Text | Write basis on first/last iteration switch | | | | GTL_FSTYR | Integer | First possible start year for GTL builds | | | | HISTLYR | Integer | PMM last history year | | | | HITSWTC | Text | HiTech switch | | | | IETHHT | Integer | Biomas switch for technology case | | | | IMPCALIB | Text | Switch for import curve calibrations | | | | IPMM | Integer | Switch for International updates (not active) | | | | ISOFLAG | Integer | Flag allowing MTBE unit conversion to ISO-octane | | | | ISOXGRNT | Integer | Flag for grant assisting merchant MTBE unit | | | | | | Conversion to ISO-octane | | | | LHCRUN | Integer | Model testing switch | | | | MGOUTLR | Integer | Switch for gasoline price outliner | | | | MPSSWTC | Text | MPS matrix load switch | | | | MTBEO2WV | Integer | Flag for mininum O2 waiver, if MTBE banned | | | | MTBEYR | Integer | First year of MTBE restriction in regions E,B | | | | NRMSWTC | Text | NRM on/off switch | | | | ONECESW | Integer | Switch for 1 cap expansion iteration | | | | OVWLYR | Integer | Last overwrite year (e.g., 2011=22) | | | | PMM_OR_MRM | Text | 5 region to 3 region PMM switch | | | | PMMBSYR | Integer | PMM base year, 1995 | | | | PMMINF | None | Infeasible solution switch | | | | PMMSTEOBM | Text | Switch to turn on STEO benchmarking | | | | PRCUNSWT(60) | None | Processing unit on/off switch for cap. expan. | | | | PRDIMPSW | Integer | Switch for product import calc | | | | PRDIMPWR | Integer | Switch for writing product import results | | | | REN_YR | Year | First year for req %min renewables in gas/diesel | | | | VARIABLES USED INTERNALLY IN PMM (pmmcom1) | | | | |--------------------------------------------|-----------|----------------------------------------------------|--| | NAME | UNITS | DEFINITION | | | RENADJYR | Year | First year for adj rfg price due to | | | KENADOTK | | renew in gas/diesel | | | RENITR | Iteration | First itr for adj rfg price due to renew | | | | | in gas/diesel | | | RFADVBAS | Text | Advance basis load switch | | | RFAEOADJ | Text | Switch to turn on AEO adjustments | | | RFCESWTC | Text | Capacity expansion switch | | | RFETSWTC | Text | Ethanol supply curve switch | | | RFHIST | Text | History switch | | | RFPCKYR | Integer | Pack file year | | | RFROSSWTC | Text | ROS switch, on or off | | | RPT1SWTC | Text | Report 1 switch | | | RPT7SWTC | Text | Report 7 switch | | | RPT1YR1 | Text | Report 1 switch | | | RPT1YR2 | Text | Report 1 switch | | | RPT1YR3 | Text | Report 1 switch | | | RPT1YR4 | Text | Report 1 switch | | | RPT1YR5 | Text | Report 1 switch | | | RPT1YR6 | Text | Report 1 switch | | | RPTFY | Integer | Reporting first year (pmmrpts.txt) | | | RPTLY | Integer | Reporting last year (pmmrpts.txt) | | | RPTFY | Integer | Reporting first year (pmmrpts2.txt) | | | RPTLY | Integer | Reporting last year (pmmrpts2.txt) | | | STEOBMSW | Integer | STEO benchmarking switch | | | STMTBSWT(MNUMCR) | Integer | Flag for state MTBE ban (0=no ban) | | | STMTBYR(MNUMCR) | Year | First year of state MTBE ban | | | WTRGSW | Integer | Switch for alternate calculation of west coast TRG | | | LEGEND FOR CODES | | | | |------------------|---------------------------------------------------------------------------------|--|--| | MNUMYR | = Maximum number of years in NEMS, 61 (through 2050) | | | | MJUMPYR | = NEMS year index, 1 through 61 | | | | AEOLSTYR | = NEMS year index, 1 through 46 | | | | MNUMCR | = Census region index, 1 through 11 | | | | MNUMPR | = PAD District index, 1 through 6 | | | | MNUMOR | = Oil and Gas Region Index, 1 through 13 | | | | MNCROP | = Ethanol supply crop index, 1 and 2 | | | | MNETOH | = Ethanol supply curve point index 1 through 5 | | | | MX_NCOALS | = Maximum Number U.S. Coal Supply Curves, 1 through 40 | | | | NDREG | = Coal demand regions, 1 through 14 | | | | MX_ISCV | = Maximum Number Coal Import Supply Curves for Thermal, 1 through 12 | | | | ECP\$FPH | = Length of full planning horizon in EMM, 1
through 20 | | | | NSTEP | = MX_ACI + 1 = Maximum Number of Active Carbon Injection Options, 1 through 7+1 | | | | NRANK | = coal rank (bituminous, sub-bituminous, lignite), 1 through 3 | | | | ECP\$CAP | = ECP total plants, all types DSP, INT, RNW, AND DGN | | | | NCLUT1 | = plant type, 1 through 35 | | | #### A.2 Data Sources The PMM data have been developed and updated by EIA and others since the first model database was provided by Turner, Mason Associates during 1975-76. The original data were used extensively during 1983-1986 in the EIA Refinery Yield Model (RYM). The RYM database underwent substantial review and update by oil industry experts when the National Petroleum Council (NPC) used the RYM during the development of their 1986 study on U.S. refining flexibility. To support a study for the U.S. Navy in 1985, EIA provided Oak Ridge National Laboratory (ORNL) and its consultant EnSys with the updated RYM/NPC data and OMNI matrix and report generator programs. And Most of the data used for this version of the PMM were provided by EnSys to EIA in June 2003 and are based on some EnSys in-house data sources. Other data were provided by DOE's National Energy Technology Laboratory (NETL) and its consultant John J. Marano (LLC). The various data sources include: - The original Refinery Yield Model (RYM) Data Base provided by EIA in about 1981 to ORNL. These data were then combined with the 1985 RYM/NPC updates and used by their consultant, EnSys. - Oil & Gas Journal, Hydrocarbon Processing, NPRA papers, API papers, ASTM specs and correlation methods, Chemical Engineering, Gary & Handwerk (mainly correlations), AIChE papers, Petroleum Review. - An extensive review of foreign journals obtained with the aid of ORNL for the high-density jet fuel study. - Contractor reports and data M.W. Kellogg, UOP, IFP, Snamprojetti and Foster and Wheeler. - Consultant reports and data as published Bonner & Moore, A.D. Little, Chem Systems, Purvin & Gertz, and National Energy Technology Laboratory. - Updated data tables for the alkylation units (HFA, SFA, and others), isooctane units (IOT, IOX), and petroleum coke gasifier (GSF, GSH, CHP), were all provided by DOE's National Energy Technology Laboratory and its consultant John J. Marano (LLC). - John J. Marano (LLC) also provided new hydrogen stream data (associated with relevant processing units) such that a single hydrogen stream (HH2) was disaggregated into three hydrogen streams (HYL, HYM, HYH) that were distinguished by quality (low, medium, and high). ## **Process Technology and Cost Data** Refining process technology and cost data need periodic review and update. This is because environmental legislation, lighter product slates, and heavier crude slates have spurred new process technology developments affecting existing processes, new processes, and costs. Sources for new A-Error! Main Document Only. Oak Ridge National Laboratory, EnSys Energy and Systems, Enhancement of EIA Refinery Evaluation Modeling System Refinery Yield Model Extension and Demonstration on Gasoline and Diesel Quality Issues, (August 1988). developments include research and other papers in industry journals, papers from industry conferences and surveys (such as AFPM), engineering and licensing contractor data, and published consultant studies. ### **Refinery Capacity Construction and Utilization Data** The base capacity for refinery process units are derived principally from EIA data and annual surveys published in the Oil & Gas Journal. The approach used is to review all announced projects, but to only include as active those that have reached the engineering, construction, or start-up stage. (Unit capacity is measured in volume per calendar day.) Historical process unit utilization is derived from the EIA Petroleum Supply Annual. ### **Crude Supply and Product Demand Data** The crude oil supply is provided by two of the NEMS models: OGSM, which provides the production function to estimate the domestic oil production, including Alaska; and the International Energy Model, which provides volumes and prices of international crude and petroleum product demands that are used by the PMM to determine crude and product imports to the United States. Individual crude oil streams for both domestic and imported crude oils are grouped in five categories differentiated by API gravity, sulfur content, and the yield of material boiling at a temperature higher than 1050 degrees Fahrenheit (shown below). While the domestic and foreign categories have the same gravity and sulfur definitions, the composite characteristics of each type may differ because different crude streams make up the composites. The five domestic crude groups are tagged with the codes DLL, DMH, DHL, DHH, and DHV. The imported crude oil codes are FLL, FMH, FHL, FHH, and FHV. In addition, Alaska North Slope and Alaska South are included as individual crude oil streams for a total of 12 crude groups. Table A2. Aggregate Crude Oil Categories for PMM/NEMS | Description | Code | API Gravity | Sulfur, Wt% | Bottoms Yield, 1050+<br>oF Vol % | |--------------------------|------|-------------|-------------|----------------------------------| | Low Sulfur - Light | LL | 25-60 | 0.5 MAX | < 15% | | Medium Sulfur - Heavy | МН | 26-40 | 0.35-1.1 | > 15% | | High Sulfur - Light | HL | > 32 | > 1.1 | < 15% | | High Sulfur - Heavy | HH | 24-33 | > 1.1 | > 15% | | High Sulfur - Very Heavy | HV | < 23 | > 0.9 | > 15% | Source: Derived from analysis of EIA-810, Monthly Refining Report. ## **Natural Gas Liquids (NGLs)** The NGLs are produced by the gas plant model matrix that is a part of PMM. See Appendix F (section F.2). ### Other Hydrocarbons and Alcohols Other hydrocarbons, such as propane and butanes, are supplied by the output of the gas plant model. Ethanol and biodiesel are supplied by the Biofuels Supply Submodule within the PMM (Appendix I). Three categories of ethanol are modeled: ethanol from corn in Census Divisions 3, 4, and 6-9, ethanol from cellulose in Census Divisions 1-9, and advanced ethanol from grains in Census Divisions 1-9. Ethanol from corn is represented by a processing unit, with corn (step function supply curve) and denaturant (from either gas plant NAT stream or CBOB/SSE) as input, and denatured ethanol and a co-product as output. Similarly, denatured ethanol from cellulose is produced by a processing unit, with cellulosic biomass (step function supply curve) and a denaturant (from either gas plant natural gasoline stream or sub-spec gasoline blends) as input. This unit also produces electricity that is both used by the facility and sold to the grid. The advanced ethanol (also denatured using NAT or CBOB/SSE) is processed from grain (e.g., barley), and produces a barley protein meal (BPM) coproduct. Three feedstocks used to produce biodiesel are also modeled: two virgin (first use) feedstocks (soybean oil and white grease) and a non-virgin (recycled) feedstock (yellow grease). These oils (mixed with methanol) are processed into biodiesel and glycerin. All biodiesel feedstocks are available from all Census Divisions, and are represented as step functions, with each increment of supply available at a higher price. Both virgin and non-virgin oil can be used to produce low-sulfur and ultra-low-sulfur diesel. Methanol is used to produce M85 and methyl tertiary butyl ether (MTBE), and as a supply for chemical methanol demand. It can either be imported or produced from natural gas by the methanol plant in each refining region. #### **Products** Product demands are available from the NEMS restart file (determined by NEMS demand and electricity models) for a given scenario by year. ## **Product Specification/Grade Split Data** For the United States, surveys by industry organizations such as AFPM, API, NPC, and NIPER, together with Government sources such as Department of Defense, provide relatively frequent and detailed insights into actual U.S. product qualities and grade splits. These data are important for establishing case studies. ## **Transportation Data** PMM transportation rates and capacity data for the United States were originally developed from the OSPR NACOD Model and updated for environmental costs (to reflect the Oil Pollution Control Act). The current transportation cost data were based on three sources; (1) The 1989 NPC study^{A-2} (updated in 1999 based on FERC data for the oil pipelines), (2) The North American Crude Oil Distribution (NACOD) model prepared by ICF for the Office of Strategic Petroleum Reserves (OSPR) during 1990-91, and (3) updates provided by ICF in July 2003. ### **Product Yield and Quality Blending Data** In addition to the general sources already mentioned, a number of further sources relating to specific properties are given below: Cetane Number:- API Refining Dept., Vol. 61, p.39 and appendix for the modified ASTM D976-80 Equation (George Unzelman). Net Heat of Combustion - ASTM D3338 (API range 37.5 - 64.5) (relaxing ASTM D2382). Wt. percent hydrogen - ASTM Method D3343 (replacing D1018) Smoke point vs. hydrogen content - empirical correlation developed by EnSys Smoke point to Luminometer Number conversion, ASTM D1322. Viscosity prediction - based on the work of PLI Associates (Dr. Paul S. Kydd) and from the Abbott, Kaufman and Domashe correlation of viscosities. (See PLI report- "Fuel and Engine Effect Correlations, Task 1.1, Computerize Fuel Property Correlations and Validate"). Viscosity interpolation included and based on computerized formulae for ASTM charts. Viscosity blending indices - computerization of Gary & Handwerk formulae - p.172 (left hand side). Static and Dynamic Surface Tensions - API Technical DataBook method. Flash point Blending Index Numbers - Gary & Handwerk, p.173. Pour Point blending Indices - ibid., p.175. RVP blending indices have been gathered from several public and in-house sources and have been verified against Gary & Handwerk, p.166. RON and MON blending deltas are
reflective of base gasoline sensitivity and have been drawn from many sources and averaged. #### **Units of Measurement** The general rule adopted in the model is that quantities of oil and refinery products are in thousands of barrels per calendar day, prices or costs are in 1987 dollars per barrel, and quantities of money are, therefore, in thousands of 1987 dollars per calendar day. Exceptions to the above rule are: Gases lighter than propane are measured in thousands of barrels fuel oil equivalent (FOE) per day. These are based on the following conversion factors: A-Error! Main Document Only. National Petroleum Council, Petroleum Storage and Distribution, Volume 5, Petroleum Liquids Transportation, (April 1989). | Gas stream | Code | bblFOE/lb | cf/bbIFOE | |---------------------|-------------|-----------|-----------| | Hydrogen | HYL,HYM,HYH | .009620 | 19,646 | | Hydrogen sulfide | H2S | .001040 | 10,145 | | Methane/natural gas | NGS,CC1 | .003414 | 6,917 | | Gas stream | Code | bblFOE/lb | cf/bbIFOE | |-------------|------|-----------|-----------| | Ethane | CC2 | .003245 | 3,861 | | Process gas | PGS | .003245 | 3,861 | | Ethylene | C2E | .003219 | 4,180 | - One barrel FOE is 6.287 million Btu. - 4.6 The assumed Btu content for other major refinery streams is shown below: | Stream | Code | MMBtu/bbl | |-------------------|---------|-----------| | Gasoline | TRG | 5.202 | | Jet Fuel | JTA | 5.670 | | No. 2 Heating Oil | N2H | 5.825 | | Residual Oil | N6I,N6B | 6.287 | | LPG | LPG | 3.603 | | Ethanol | ETH | 3.539 | - 4.7 Yields of coke are measured in short tons per barrel and demands are in short tons per day. A factor of 5.0 crude oil equivalent (COE) barrels per short ton is used. Heat content is 6.024 MMBtu/bbl. - Yields of sulfur are also measured in short tons per barrel and demands are in 4.8 short tons per day. A factor of 3.18 barrels per short ton is used. - 4.9 Process unit capacities are generally measured in terms of feedstock volume. Exceptions are units, principally those with gaseous feeds and liquid products, whose capacities are measured in terms of product volume. These include: OLE, ETH, ETB, ETM, C24, IOT, ALK, CPL, DIP, DIM, ARP, C4I, SMD, SOD, CTX/CTZ, BTL, CBL, CET, CLE/CLX, AET, BDV, BDN, BDW, BPU, MOH, H2P, H2X, and SUL. Also, STG, KWG, FUM. - Note also that the unit activity levels for H2P, H2X, and SUL represent the 4.10 production of 0.1 thousand fuel oil equivalent barrels of hydrogen and 0.1 thousand short tons of sulfur per day, for a unit with 0.1 bbls/cd or tons/cd of capacity. - 4.11 Quality and specification units are those specified in each ASTM test method or are dimensionless (as in the case of blending indices). Gasoline sulfur contents and specs, SPM, are in parts per million by weight, while those for distillates, SPC, are in percent weight. - 4.12 Steam consumption is given in pounds per barrel (lb/bbl). Thus an activity in Mbbl/cd consumes steam in thousands of pounds per day (M lb/day). Steam generation capacity is in millions of pounds per day (MM lb/day). The consumption of 0.00668 fuel oil equivalent barrels per day to raise 1 pound per hour of steam is equivalent to 1225 Btu per pound steam (assuming 70 percent energy conversion efficiency). 4.13 Electricity consumption is in KWh/bbl. Generation is in MWh/cd (megawatt-hrs/calendar day). #### A.3 PMM Model Data Tables This section describes in detail the function and content of the PMM model data tables used to generate the initial PMM matrix for NEMS. The entries in these tables are thousand barrels per calendar day (Mbbl/cd) for volume and 1987 dollars per barrel for costs, unless otherwise noted. With the shift of computer processing to the EIA RS6000 in 1995, the original OMNI code was replaced with FORTRAN, and subroutines from the Optimization Modeling Library (OML) were used to build the LP structure. The data table formats used by OMNI were no longer valid, which required a change in table format, organization and design from the *AEO1995* version. These changes are incorporated into the data tables presented in this section. The tables have been grouped into nine categories: Matrix Control, Crude Oil Availability, Other Raw Materials Availability, Product Imports, Product Demands, Crude and Product Transportation, Refinery Capacities and Operations, Product Blending and Specifications, and Refining Technology. All data tables currently are located in a directory on EIA's network NT server (nems-f8) named m:/default/input. The filename (bold and in parenthesis below) referenced in the following pages refers to the individual file name with a .dat extension that contains the tables described. The symbols (R) and (D) used in the table names represent a PMM refining region (R) or Census division (D) where: | (R)* | Refining Region | (D) | Census Division | |------|------------------|-----|-------------------------------| | Е | PAD District I | 1 | New England | | С | PAD District II | 2 | Middle Atlantic | | G | PAD District III | 3 | East North Central | | M | PAD District IV | 4 | West North Central | | W | PAD District V | 5 | South Atlantic | | | | 6 | East South Central | | | | 7 | West South Central | | | | 8 | Mountain | | | | 9 | Pacific, including California | *Note: Beginning with *AEO2004*, the PMM refining regions once again represent the five PAD Districts, I, II, III, IV, and V. For a short duration (*AEO1998* thru *AEO2003*), the number of PMM refining regions was changed from five to three, where PADDs I and V remained independent A-Error! Main Document Only. The NEMS processes data internally in 1987 dollars. The results from NEMS are then converted to *AEO* report year dollars (for *AEO2010*, 2008 dollars) using the chain-type discount factors from the Macroeconomic Activity Model. regions, and PADDs II, III, and IV were aggregated into a single region. #### **Matrix Control** This section describes the tables used to define the categories for the row constraints and column variables in the matrix, as well as the stipulations for the limits on individual constraints and variables. For example, the number of refining regions, demand regions, and export regions are defined, along with their identifications and mapping. # (refmain) TABLE REPORTED LIST OF ACTIVE PMM REFINING REGIONS Column names One column, PADD. Row names One character region codes, E, C, G, M, W. Entries Numeric value for PADDs 1-5. TABLE DEMNDREG LIST OF ACTIVE CENSUS DIVISION DEMAND REGIONS Column names One column, REGION. Row names Two character codes, first character is demand region, second character is PMM refining region E, C, G, M, W. Links demand region to refinery region. Entries Numeric value for Census Divisions 1-9. TABLE RFNEXP LIST OF PMM REFINING REGIONS LINKED TO EXPORT REGIONS Column names One column, RFID. Row names Two character codes, first character is exporting Census Division, second character is PMM refining region E, C, G, M, W. Links exporting demand region to refinery region. Entries Numeric value for export regions, 1-5. TABLE EXPROD LIST OF EXPORT PRODUCTS Column names One column, DUMMY. Row names Three character product codes for products being exported. Entries None. TABLE FORCRD LIST OF FOREIGN IMPORT CRUDES Column names One column, DUMMY. Row names Three character code for foreign crude group. Entries None. TABLE WOP WORLD OIL PRICE BY YEAR Column names One column, WOP. Row names Numeric value for year, e.g. 6 for 1995. Entries World Oil Price in 1987 \$/bbl. TABLE USERYEAR YEAR FOR MODEL RUN Column names One column, YEAR. Row names Three character code, e.g. Y96. Entries Numeric value for year, e.g. 7 for 1996. TABLE YRDOLLAR CONVERSION FROM 1987 TO 2000 DOLLARS Column names One column, 2000 (year dollars). Row names 1987 Entries Numeric value for converting 1987\$ to 2000\$ (1.37912). TABLE ZIRACFAC FACTOR FOR IRAC SPREAD Column names One column, DELTA. Row names ZIRAC Entries Average variability range (+/-) off World Oil Price, \$/bbl. TABLE TRSOVC FACTOR TO CONVERT OVC FROM 1987\$ TO 2000\$ Column names One column, OVC. Row names One character PMM refining region code (E, C, G, M, W). Entries Factor to convert variable operating costs from 1987\$ to 2000\$ (1.37913). TABLE INVFACT INVESTMENT LOCATION AND ENVIRONMENTAL FACTORS Column names LOC, ENV Row names One character PMM refining region code (E, C, G, M, W). Entries Column LOC contains the investment location factor multiplier (variable across regions). Column ENV contains the environmental investment cost multiplier (currently set at 1.0 for all regions). (akaexp) TABLE EXPAKA PRICE/QUANTITY VALUES FOR ALASKA EXPORTS Column names Two columns, P and Q Row names Six rows, three negative shifts N1, N2, N3 and three positive shifts, P4, P5, and P6. Entries P column is \$/bbl shift from reference price, Q column is bound value on volume supplied. TABLE PRQAKA PRICE/ QUANTITY FROM ALASKA NORTH SLOPE Column names VOL, TRP, and EXPPRC Row names OGSM code A for Alaska. Entries Volume limit on NGL supply, Mbbl/cd; Transportation cost to region W, \$/bbl; pseudo supply price, \$/bbl. TABLE NGLAKA COMPOSITION FROM ALASKA Column names One column, PER. Row names Three-character NGL stream codes. Entries Volume fraction composition of NGL's. (avoids) (no longer used) TABLE SADELQ DELTA FRACTION OF QUANTITIES FOR PRODUCT SHIFTS Column names Six columns, three negative shifts N3, N2, N1 and three positive shifts, P1, P2, and P3. Row names First three characters finished product codes. Entries Percentage (as a fraction) of demand quantity Q0 as an upper bound. The quantities are based on price shifts of 1 percent, 3 percent, and 9 percent using an elasticity of 0.1 for light products gasoline, jet fuel, heating oil and diesel, and an elasticity of 0.3 for all other products. (These column activities allow the shift of demands within a price range to help speed convergence in NEMS.) TABLE SADELPX FRACTION OF PRICES FOR EACH QUANTITY SHIFT
Column names One column, FACTORS Row names Six rows, three negative shifts N1, N2, N3 and three positive shifts, P1, P2, and P3. Entries Percentage (as a fraction) of price of import step R3 for imported products. TABLE PRDAVOID LIST OF PRODUCTS FOR AVOIDS Column names One column, DUMMY Row names Three character product codes. Entries None. # (ngprod) TABLE SPNGF SUPPLY STEP PRICES FOR NATURAL GAS TO REFINERY Column names One column, ALLREG Row names Two character names, first character is N (negative shift) or P (positive shift), second character is a number from 1 to 8 representing steps on the supply curve. Entries Price increments in \$/Mcf from reference wellhead price. TABLE SQNGF SUPPLY STEP QUANTITIES FOR NATURAL GAS TO REFINERY Column names Two columns, MAX and MIN Row names Two character names, first character is N (negative shift) or P (positive shift), second character is a number from 1 to 8 representing steps on the supply curve. Entries Percent (fraction) of total reference quantity supplied on each step. TABLE SCVAL SUPPLY OF NATURAL GAS TO REFINERY Column names Five columns, one for each PMM refining region (E, C, G, M, W). Row names One row, VOL. Entries Volume estimate reference quantity supply in mmcf/cd. ## (unfinish) TABLE UNFEQT COEFFICIENTS FOR UNFINISHED OIL IMPORTS Column names Two columns, SLOPE, CONST, that describe the regression equation coefficients. Row names One row, XYZ Entries Slope and intercept for equation that correlates total unfinished oil imports to the U.S. with crude input. TABLE UNFOIL UNFINISHED OIL IMPORT SHARES Column names Three columns; E, G represent the PMM refining regions that import unfinished oils; and PD is the cost of the imports. Row names Rows NPP, HGM, and ARB represent three types of unfinished oil streams imported to the United States. Entries Coefficients under refining regions (E,G) represent volume fractions of Total U.S. unfinished oil imports. Column PD values are imported costs in \$/bbl. (emish) TABLE EMUNS EMISSIONS FROM PROCESS UNITS Column names Five columns, representing type of emission - VOC, CO1, NOX, SOX, and CAR (Carbon). Row names Three character process unit codes. Entries Emissions in M lb/Mbbl for VOC, NOX, SOX. Units of MM lbs/Mbbl for CO1, CAR. TABLE EMFUM EMISSIONS FROM FUEL BURNING Column names Six columns, representing type of emission - VOC, CO1, CO2, NOX, SOX, and CAR (Carbon). Row names Three-character stream codes burned in refinery fuel system. Entries Emissions in M lb/Mbbl for VOC, NOX, SOX. Units of MM lbs/Mbbl for CO1, CO2, CAR. (fixcols) (no longer used) TABLES (R)RCOL LIST OF VARIABLES TO BE EXCLUDED FOR PMM REGION (R) Column names One column, FCC Row names Three-character FCC operating mode names Entries A 1.0 indicates that column will be fixed at level of 0.0 (distress) TABLE ZPX MAPPING OF DISTRESS IMPORT COSTS Column names One column, VALUE. Row names Three-character product codes. Entries One character value to map distress import costs (\$87/bbl): 0=\$0; 1=0.1 * import price at import curve step 1; 2=\$.99/bbl (for LPG); 3=\$.201/bbl FOE (for COK). ## **Crude Oil Availability** Crude oil supply availability is provided from two sources: (1) domestic production from the Oil and Gas Supply Model (OGSM), and (2) foreign imports to each refining region with five supply step increments. (domcrude) TABLE DCRSUP DOMESTIC CRUDE OIL IMPORTS BY OGSM REGION Column names Seven columns: one column for each OGSM region (including Alaska) Row names Rows for selected years from Y90 to Y10. Entries Domestic crude oil production volume in each OGSM region (Mbbl/d) These values are available from the NEMS restart file for a given scenario. TABLE DCRSHR SHARE BY LOWER 48 CRUDE GROUP Column names Seven columns: one column for each OGSM region (including Alaska) Row names Five domestic aggregate crude groups plus two Alaskan groups. Entries Fractional share of production volume in each OGSM region TABLE CREXP VOLUME OF CRUDE EXPORTS FROM UNITED STATES Column names Two columns: CRDEXP represents crude oil exports, CRDSPR represents the SPR fill rate. Row names One row, VOL. Entries Volume in Mbbl/cd # (crdimprt) TABLES ICR(crt)(R) CRUDE OIL IMPORTS BY FOREIGN CRUDE GROUP (crt) IN PMM REFINERY REGION (R) Column names Ten columns: C1,Q1,C2,Q2,C3,Q3,C4,Q4,C5,Q5 Row names NEMS year code (1,2,3,etc) Entries Columns Q(n) represent the availability in Mbbl/cd of each crude. Columns C(n) show the landed price in 1987 dollars per barrel at each refining region. (These values are available from the NEMS restart file for a given scenario.) TABLE CRUDETYP TYPES OF FOREIGN CRUDE OIL Column names One column, DUMMY Row names Three character codes for foreign crude type Entries None. ## Other Raw Materials Availability # (ethanol) TABLE Z:CDMAP LISTS CENSUS DIVISIONS THAT INCLUDE ETHANOL PRODUCTION Column names 1 column, DUMMY Row names Census Division demand region ID's (1-9) Entries Census Division demand region ID's (1-9) TABLE XDENETH Column names Row names TRANSFER DENATURANT FROM PADD TO CD (LINKS AND COST) Nine columns, each representing a Census Division (CD 1-9) Five rows, each representing a PADD region (E,C,G,M,W) Entries Cost to transfer denaturant (either NAT or SSE) from PADD to CD (cost, 87\$/bbl); if zero, then no transfer allowed TABLE CCT CARBON TAX CREDIT FOR ETHANOL AND BIODIESEL PRODUCTION Column names Four processing units which produce the liquids that receive the tax credit (CET, CLE, BDV, BDN, not for BDW) Row names Nine rows, each representing a Census Division (CD 1-9) Entries Carbon tax credits (\$87/bbl) TABLE CET INPUT AND YIELD BALANCE FOR CORN ETHANOL PRODUCTION Column names Four operating modes (existing wet mill, existing dry mill, new wet mill, advanced well mill) Row names Input and output streams, utility requirements, operating costs, and capacity utilization Entries Input and yield ratios per bbl of denatured corn ethanol: ETH, DEN (bbl/bbl), DDG, WMC (s-tons/bbl), CRN (bushels/bbl), KWH (KWh/bbl), NGS (bfoe/bbl), COA (MMBtu/bbl), OVC (\$87/bbl) TABLE CETCOPRC CORN ETHANOL COPRODUCT PRICE Column names One column, co-product price Row names Three rows, coproduct types (DDG, WMC, EDG) Entries Co-product prices, \$87/ton TABLE CETCAP CORN ETHANOL PLANT CAPACITY, UTILIZATION, BY MODE Column names Five columns, total capacity (CAP), utilization (PUL), capacity build option (BLD), mode capacities (WME, DME) Row names Census Division demand region ID's (1-9) Entries Data corresponding to columns: CAP, WME, DME (1000 bbl/cd), PUL (fraction), BLD (option flag, 1=build, 0=no build allowed) TABLE ETHINV INVESTMENT INFORMATION FOR CORN AND CELLULOSIC ETHANOL PLANT Column names Three columns, Investment categories (INV, FXOC, CAPREC) Row names Three rows, processing units (CET, CLE, AET) Entries Data corresponding to columns, \$87/bbl: INV (fixed investment costs), FXOC (fixed operating costs), CAPREC (capital cost recovery requirements) TABLE SUPCRN CORN SUPPLY FOR ETHANOL PRODUCTION BY CENSUS DIVISION Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 Row names Census Division demand region ID's (1-9) Entries Columns R(n) represent the availability of 1000 bushels/cd of Corn. Columns C(n) show the corresponding supply price in 1987 \$/bushel in each Census Division. (n=supply step) TABLE CLE INPUT AND YIELD BALANCE FOR CELLULOSIC ETHANOL PRODUCTION Column names One operating mode (LIG) Row names Input and output streams, utility requirements, operating costs, and capacity utilization Entries Input and yield ratios per bbl of denatured cellulosic ethanol: ETC, DEN (bbl/bbl), BIO (MM Btu/bbl), KWH (KWh/bbl), NGS (bfoe/bbl), OVC (\$87/bbl) TABLE CLECOGEN SALE PRICE FOR COGENERATED ELECTRICITY SOLD TO GRID Column names One price category (PRICE) Row names One electricity ID (KWH) Entries Sale price for excess electricity sold to the grid (generated during cellulosic ethanol production) (\$87/KWh) TABLE CLECAP CELLULOSIC ETHANOL PLANT CAPACITY, UTILIZATION Column names Three columns, total capacity (CAP), utilization (PUL), capacity build option (BLD) Row names Census Division demand region ID's (1-9) Entries Data corresponding to columns: CAP (1000 bbl/cd), PUL (fraction), BLD (option flag, 1=build, 0=no build allowed) TABLE AET INPUT AND YIELD BALANCE FOR ADVANCED ETHANOL PRODUCTION Column names One operating mode (GRN, grain) Row names Input and output streams, utility requirements, operating costs, and capacity utilization Entries Input and yield ratios per bbl of denatured corn ethanol: ETH, DEN (bbl/bbl), DDG, WMC (s-tons/bbl), CRN (bushels/bbl), KWH (KWh/bbl), NGS (bfoe/bbl), COA (MMBtu/bbl), OVC (\$87/bbl) TABLE AETCOPRC ADVANCED ETHANOL COPRODUCT PRICE Column names One column, co-product price Row names One row, coproduct type (BPM, barley protein meal) Entries Co-product prices, \$87/ton TABLE AETCAP ADVANCED ETHANOL PLANT CAPACITY, UTILIZATION, BY MODE Column names Three columns, total capacity (CAP), utilization (PUL), capacity build option (BLD) Row names Census Division demand region ID's (1-9) Entries Data corresponding to columns: CAP, PUL (fraction), BLD (option flag, 1=build, 0=no build allowed) TABLE SUPGRN GRAIN SUPPLY FOR ETHANOL PRODUCTION BY CENSUS DIVISION Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 Row names Census Division demand region ID's (1-9) Entries Columns R(n) represent the availability of 1000 bushels/cd of Corn. Columns C(n) show the corresponding supply price in 1987 \$/bushel in each Census Division. (n=supply step) TABLE IMPETC CELLULOSIC ETHANOL IMPORT SUPPLY CURVES BY CENSUS DIVISION Column names Eight columns, C1,R1,C2,R2,C3,R3,C4,R4 Row names Census Division demand region ID's (1-9) Entries Columns R(n) represent the availability of Mbbl/cd of Ethanol. Columns C(n) show the supply price in dollars per barrel in each Census Division. (n=supply step) (These values are available from the NEMS restart file for a given scenario.) (Note: T:ETHTAX presented in section
A.3.5) TABLE ETCICST CELLULOSIC ETHANOL IMPORT TRANSPORTATION COSTS INTO CENSUS DIVISION Column names One column, @ Row names @ (applied to all regions), and specified Census Division demand region ID's (2,5,7,9) Entries Transport costs (\$87/bbl) TABLE IMPETA ADVANCED ETHANOL IMPORT SUPPLY CURVE BY CENSUS DIVISION Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 Row names Specified Census Division demand region ID's (2,5,7,9) Entries Columns R(n) represent the import demand potential of Mbbl/cd of ethanol. Columns C(n) price in dollars per barrel in each Census Division. (n=supply step) TABLE ETAICST ADVANCED ETHANOL IMPORT TRANSPORTATION COSTS INTO CENSUS DIVISION Column names One column, @ Row names @ (applied to all regions), and specified Census Division demand region ID's (2,5,7,9) Entries Transport costs (\$87/bbl) TABLE CNIETC CELLULOSIC ETHANOL IMPORT SUPPLY CURVE BY CENSUS DIVISION, **FROM CANADA** Column names Ten columns, C1,N1,C2,N2,C3,N3,C4,N4,C5,N5 Row names Specified Census Division demand region ID's (2) Entries Columns N(n) represent the import demand potential of Mbbl/cd of ethanol. Columns C(n) price in dollars per barrel in each Census Division. (n=supply step) TABLE ETCCICST CELLULOSIC ETHANOL IMPORT TRANSPORTATION COSTS INTO CENSUS DIVISION, FROM CANADA Column names One column, @ Row names @ (applied to all regions), and specified Census Division demand region ID's (2) Entries Transport costs (\$87/bbl) TABLE CNIETA ADVANCED ETHANOL IMPORT SUPPLY CURVE BY CENSUS DIVISION, FROM **CANADA** Column names Ten columns, C1,N1,C2,N2,C3,N3,C4,N4,C5,N5 Row names Specified Census Division demand region ID's (8) Entries Columns N(n) represent the import demand potential of Mbbl/cd of ethanol. Columns C(n) price in dollars per barrel in each Census Division. (n=supply step) TABLE ETACICST ADVANCED ETHANOL IMPORT TRANSPORTATION COSTS INTO CENSUS DIVISION, FROM CANADA Column names One column. @ Row names @ (applied to all regions), and specified Census Division demand region ID's (8) Entries Transport costs (\$87/bbl) TABLE EXPETH Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 Row names Specified Census Division demand region ID's (3,4) Entries Columns R(n) represent the export demand potential of Mbbl/cd of ethanol. Columns C(n) price in dollars per barrel in each Census Division. (n=supply step) TABLE SUPBIO BIOMASS SUPPLY TO PRODUCE ETHANOL BY CENSUS DIVISION Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 (price and qty pair for curve) Row names Census Division demand region ID's (1-9) Entries Columns R(n) represent the availability of 1000 MMBtu/cd of biomass. Columns C(n) show the corresponding supply price in 1987 \$/MMBtu in each Census Division. (n=supply step) TABLE MINRENEW MINIMUM TOTAL RENEWABLES CONSUMED AT REFINERY Column names USMIN Row names NEMS Year code (1,2,3,etc) Entries Minimum total renewables (ethanol and virgin biodiesel) (all regions) consumed at the refinery (M bbl/cd) TABLE (BD-unt) INPUT AND YIELD BALANCE FOR (BD-unt = BDV, BDN, BDW) BIODIESEL **PRODUCTION** Column names One operating mode (SBO,YGR,WGR for BD-unt=BDV,BDN,BDW, respectively) Row names Input and output streams, utility requirements, operating costs, and capacity utilization Entries Input and yield ratios per bbl of biodiesel: For all: MET, GLY, ETC, DEN (bbl/bbl), KWH (KWh/bbl), STM (lb/bbl), OVC (\$87/bbl) For BDV: BIM, SBO (bbl/bbl) For BDN: BIN, YGR (bbl/bbl) For BDW: BIM, WGR (bbl/bbl) TABLE SUP(BD-fs) BIODIESEL FEEDSTOCK (BD-fs = SBO, YGR, WGR) SUPPLY CURVE Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 (price and qty pair for curve) Row names Census Division demand region ID's (1-9) Entries Columns R(n) represent the availability of 1000 bbl/cd of feedstock (BD-fs = SBO, YGR, WGR). Columns C(n) show the corresponding supply price in 1987 \$/bbl in each Census Division. (n=supply step) TABLE (BD-unt)CAP BIODIESEL (BD-unt=BDV,BDN,BDW) PLANT CAPACITY, UTILIZATION, INVESTMENT INFORMATION Column names Six columns, total capacity (CAP), utilization (PUL), capacity build option (BLD), and investment categories (INV, FXOC, CAPREC) Row names Census Division demand region ID's (1-9) Entries Data corresponding to first three columns: CAP (1000 bbl/cd), PUL (fraction), BLD (option flag, 1=build, 0=no build allowed); Data corresponding to last three columns, \$87/bbl: INV (fixed investment costs), FXOC (fixed operating costs), CAPREC (capital cost recovery requirements) TABLE IMPBIM BIODIESEL IMPORT SUPPLY CURVES BY CENSUS DIVISION Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 Row names Census Division demand region ID's (1-9) Entries Columns R(n) represent the availability of Mbbl/cd of Biodiesel. Columns C(n) show the supply price in dollars per barrel in each Census Division. (n=supply step) TABLE BIMICST BIODIESEL IMPORT TRANSPORTATION COSTS INTO CENSUS DIVISION Column names One column, @ Row names specified Census Division demand region ID's (7,9) Entries Transport costs (\$87/bbl) TABLE IMPPLM PALM OIL IMPORT SUPPLY CURVES BY CENSUS DIVISION Column names Ten columns, C1,R1,C2,R2,C3,R3,C4,R4,C5,R5 Row names Census Division demand region ID's (1-9) Entries Columns R(n) represent the availability of Mbbl/cd of Palm Oil. Columns C(n) show the supply price in dollars per barrel in each Census Division. (n=supply step) TABLE PLMICST PALM OIL IMPORT TRANSPORTATION COSTS INTO CENSUS DIVISION Column names One column, @ Row names specified Census Division demand region ID's (4,9) Entries Transport costs (\$87/bbl) (utility) TABLES (R)UAP UTILITY PURCHASES - PMM REFINERY REGION (R) Column names One column, CST. Row names Three character codes for purchased utilities: KWH, STM, NGF. (Only STM used. KWH defined using T:VPELIN. NGF defined using T:VALPNG) Entries Column CST contains the purchase price of the utility (KWH=1987) dollars/KWh, STM=1987 dollars/lb, NGF=1987 dollars/mcf). (Note: same tables also appear in mchproc.dat) TABLE UTITRS Column names NATURAL GAS PURCHASES One column, COEF. Row names One row, NGFNGS. Entries Barrels of fuel oil equivalent (0.162 BFOE/mcf--conversion factor) of Natural Gas. TABLE VALPNG INDUSTRUAL PRICE OF NATURAL GAS Column names Single character ID for PMM refinery regions (E, C, G, M, W). Row names NEMS year code (1,2,3, etc.). Entries Price of Natural Gas by PMM refinery region (1987 dollars/mcf). TABLE VPELIN INDUSTRIAL ELECTRIC GENERATION PRICES Column names Single character ID for PMM refinery regions (E, C, G, M, W). Row names NEMS year code (1,2,3, etc.). Entries Industrial electric utility prices (1987 dollars/KWh, given 3412 #### MMBtu/GWh). ### **Product Imports** ## (prdimprt) TABLES IPR(prd)(R) PRODUCT IMPORTS TO PMM REFINERY REGION (R) Column names Six columns, C1,R1,C2,R2,C3,R3 Row names NEMS Year code Entries For each imported product and import region, column R(n) represent the quantity available in Mbbl/cd, and columns C(n) is the landed price in 1987 dollars per barrel (These values are available from the NEMS restart file for a given scenario.) TABLE NEMSRSD IMPORTED RESIDUAL OIL SUPPLY QUANTITY AND PRICE Column names Two columns, R1B is fraction of step 1 import quantity, R1PR is multiplier of step 1 price. Row names R1 through R9. Step name increments for residual fuel imports. Entries R1B is fraction of step 1 import level. R1PR is price factor for each step, relative to the step 1 price. TABLE IMPLIM LIMIT ON U.S. PRODUCT IMPORTS Column names One column MAX Row names One row, @ implies all regions. Entries Limit on product imports in Mbbl/cd TABLE PRODTYP LIST OF PETROLEUM PRODUCT IMPORTS Column names One column, DUMMY Row names Three character product name Entries None. #### **Product Demands** ## (demand) TABLES (prd) PRODUCT DEMAND Column names One column for each Census Division. Row names NEMS Year code. Entries Demand in Mbbl/cd (These demands are available from the NEMS restart file for a given scenario.) (Note: T:RFHA represents product RFH) TABLE PRODLIST LIST OF PRODUCT FOR DEMANDS Column names One column DUMMY Row names Three characters for finished product codes. Entries None. (Note: RFHA represents product RFH. Changed here due to a table name conflict in data file refproc) TABLE DEMMET CHEMICAL METHANOL DEMAND Column names One column CHEM for volume demand by chemical industry. Row names NEMS Year code. Entries Demand volume in Mbbl/cd (Note: T:CKSMIX is presented in section A.3.8) # (prdexp) TABLE (D)PRDEXP PRODUCT EXPORTS FROM CENSUS DIVISION (D) Column names Ten columns, a MIN and MAX for 5 years: MINY1, MAXY1, MINY2, MAXY2, MINY3, MAXY3, MINY4, MAXY4, MINY5, MAXY5 Row names YEAR, and three-character export finished product codes. Entries Export volume in Mbbl/cd (Note: (D) represents CDs 2,3,7,8,9 only--product export regions) TABLE EXPLIM LIMIT ON PRODUCT EXPORTS Column names Two columns, YRPC and FIX for percent per year growth and fixed volume for the start year. Row names The start year, i.e. 1995 Entries YRPC value is multiplier for growth. FIX column is in Mbbl/cd. TABLE MULTEXPR PRICE MULTIPLIER FOR PRODUCT EXPORTS Column names One column MULT. Row names Price Entries Multiplier for export price as function of step 1 import price. ## (ethanol) TABLE ETHTAX ETHANOL TAX INCENTIVE Column names Two columns, TAXETH, TAXE85. Row names NEMS year code (1,2,3,etc) Entries Tax incentive (1987 dollars/bbl). ### **Crude and Product Transportation** Transportation links are specified for movements between all regions in the model: from domestic crude oil supply regions (Oil and Gas Supply Model - OGSM), crude oil import regions, refining regions, and demand regions. Modes of transportation are provided for marine vessel, pipeline, and barge/truck. Explicit pipelines were identified and aggregated where necessary to represent links from refining regions to Census Divisions. The table name structure uses the following first two characters to represent the corresponding modes of transportation: TP for tanker
movements (except ethanol transport combines all modes), PL for pipeline, and BV for Barge/Truck. Characters 3 and 4 are CR for crude oil, PR for products, LG for LPG, BD for biodiesel, ET for ethanol, ME for methanol, and NK for product pseudo-link. Shipping costs are in 1987 dollars per barrel from a source to a destination region. The value must be negative to allow movement. A positive value indicates a disallowed movement. An explicit zero indicates a no-cost movement. (transit) TABLES TPCR(S) DOMESTIC CRUDE MOVEMENTS (TANKER) EXITING OGSM REGION (S) Column names Crude group domestic, three characters; and GTL (gas to liquids stream). Row names First character is mode code; second character is code for destination refining region; and TAPS (Trans Alaska Pipeline System). Entries Shipping cost in dollars per barrel to destination region. TABLES PLCR(S) DOMESTIC CRUDE MOVEMENTS (PIPELINE) EXITING OGSM REGION (S) OR PMM **REGION (R)** Column names Crude group domestic, three characters. Row names First character is code for mode; second character is code for destination refining region. Entries Shipping cost in dollars per barrel to destination region. TABLES TPPR(R) PRODUCT SHIPPING COSTS (TANKER) EXITING REGION (R) Column names Codes for finished products that are shipped by tanker. Row names Transportation mode (one character) and destination region codes (one character) for a total of two characters. Entries Shipping cost in dollars per barrel. TABLES PLPR(R) PRODUCT SHIPPING COSTS (PIPELINE) EXITING REGION (R) OR CENSUS DIVISION (D) Column names Codes for finished products that are shipped by pipeline. Row names Transportation mode (one character) and destination region codes (one character) for a total of two characters. Entries Shipping cost in \$/bbl. TABLES BVPR(R) PRODUCT SHIPPING COSTS (BARGE/TRUCK) EXITING REGION (R) Column names Finished product codes for shipments by barge and/or truck. Row names Transportation mode (one character) and destination region codes (one character) for a total of two characters. Entries Shipping cost in \$/bbl. TABLES TPME(R) METHANOL SHIPPING COSTS EXITING REGION (R) Column names MET for methanol. Row names Transportation mode (one character) and destination region codes (one character) for a total of two characters. Entries Shipping cost in \$/bbl. TABLES TPET(D) ETHANOL SHIPPING COSTS EXITING CENSUS DIVISION (D) Column names ETH for ethanol. Row names Transportation mode (one character) and destination region codes (one character) for a total of two characters. Entries Shipping cost in \$/bbl. (Note: mode M represents quantity-weight average of transport costs for modes rail, truck, vessel, barge.) TABLES TPBD(D) BIOMASS DIESEL SHIPPING COSTS EXITING CENSUS DIVISION (D) Column names BIM and BIN for biomass diesel (virgin and non-virgin, respectively). Row names Transportation mode (one character) and destination region codes (one character) for a total of two characters. Entries Shipping cost in \$/bbl. TABLES TPCN(D) CORN SHIPPING COSTS EXITING CENSUS DIVISION (CD) Column names Corn feedstock ID (CRN). Row names Transportation mode (one character) and destination Census Division codes (one character) for a total of two characters. Entries Shipping cost in \$87/bushel. TABLES PLLG(R) LPG & PCF SHIPPING COSTS (PIPELINE) EXITING REGION (R) Column names LPG and Petrochemical Feed (PCF) products that are shipped by pipeline. Row names Transportation mode (one character) and destination region codes (one character) for a total of two characters. Entries Shipping cost in \$/bbl. TABLE MVCCAP MARINE VESSEL (CRUDE AND PRODUCTS) CAPACITY Column names MAX for maximum capacity Row names TVC(m)CP (for crude) or TVP(m)CP (for product), where m= single character transportation mode (5, 4, J, O) Entries Capacity in thousands of deadweight tons (DWT) TABLE PLCCAP PIPELINE (CRUDE, PRODUCTS, AND LPG) CAPACITY Column names MAX for maximum capacity Row names TPC (crude), TPP (products), or TPL (LPG), each followed by source region code (one character), transportation mode (one character) and destination region code (one character) Entries Capacity in Mbbl/cd TABLE BVPCAP MARINE BARGE (PRODUCTS) CAPACITY Column names MAX for maximum capacity Row names TVP(m)CP, where m= single character transportation mode (B or V) Entries Capacity in thousands of deadweight tons (DWT) TABLE PLNK(R) PRODUCT PIPELINE TRANSPORT EXITING REGION (R) OR CENSUS DIVISION (D) Column names Three-character codes for finished products. Row names Transportation mode (one character) and destination region code (one character) for a total of two characters. Currently shipped from PADD 3 (G) and CD 6 to CD 5 and CD 6. Entries Cost of product pipeline transport in \$/bbl (Note: T:PDCEN not used) ## **Refinery Capacities and Operations** ## (refproc) TABLES (R)CAP REFINING CAPACITIES - PMM REFINERY REGION (R) Column names CAP, PUL, and BLD. Row names Process unit codes. Entries Column CAP contains existing unit capacities in thousands of barrels per calendar day capacity (Mbbl/cd). -1 indicates no limit on capacity, typically applies to pseudo- or ideal units. Column PUL contains fractional utilizations, which convert nameplate calendar day capacity to capacity available to the PMM model. The PUL factors represent actual utilizations and will vary from unit to unit, from region to region, and from case to case. These factors are used to control over optimization. Column BLD contains a 1.0 if a unit can be expanded, otherwise a 0 or -1 means no capacity expansion allowed for that unit. TABLE MATBAL STREAMS REQUIRING MATERIAL BALANCE CONSTRAINTS Column names One column, A (B not used). Row names Three-character intermediate stream codes. Entries A flag (1=yes) indicating a need for material balance constraint on intermediate stream. TABLES (uns) REFINERY PROCESS UNIT YIELDS AND OTHER OPERATIONS (See Section A.3.9 for detailed information on specific processing units.) Column names Three-character process operating mode. Row names Three-character input/output stream codes; three-character utility codes; three-character policy codes; and CAP. Entries Consumption and yield fractions for streams, utilities (bbl output/bbl input); costs for OVC (2000 dollars/bbl—converted in matrix to 1987 dollars using T(r)OVCOBJ variable and T:TRSOVC data for year 2000). TABLE INV INVESTMENT PARAMETERS REFINERY UNITS Column names INV, FXOC, CAPREC. Row names Process unit codes. Entries Column INV contains investment in 2000 dollars/bbl, FXOC has the fixed operating cost in 2000\$/bbl, and CAPREC has the daily annualized investment cost 2000 dollars/bbl. (All dollars converted to 1987 dollars in MRM code using YRDOLLAR data.) This table provides the investment parameters required for the total annualized cost of investment and fixed cost coefficients which are placed on the process unit expansion activities. These values are generated offline and used as initial investment parameters in the LP matrix. These values are updated in the refine.f code each year to reflect changes in investment costs (see Appendix F.1). The capital recovery factor is built up from cost of capital, economic life, depreciation life and tax rate. Straight-line depreciation is assumed and depreciation is considered as an expense to be offset as a tax credit against the tax burden. The calculated capital recovery factor is on an after-tax basis and the resultant investment purchase vector costs are on the same basis. TABLE SCL SCALE FACTORS FOR TABLE COEFFICIENTS Column name Processing unit name (Three-Character code) Row names Intermediate stream or utility name (Three-Character code, e.g., FUL, OVC, LOS, HH2, etc). Entries Constants, multiples of 10 (e.g., 1000, 0.001, etc) to help control the size of the coefficient. (Note: tables T:DEBOT, T:INFCST, T:INVGEN, T:INVUNT, T:REVAMP not used) # (marfll) TABLE CRUDE OPERATING COSTS FOR US MARGINAL REFINERY BY MODE Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names Operating mode (defined by crude type) for marginal refinery. Entries Operating cost, \$87/bbl. TABLE EXISTFLL EXISTING CAPACITY AND UTILIZATION FOR US MARGINAL REFINERY BY REGION Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names Two rows, CAP, UTZ (existing capacity and utilization). Entries Existing capacity (M bbl/cd), utilization (fraction). TABLE FLLSPLT NON-GASOLINE AND NON-DIESEL PRODUCT YIELDS AT US MARGINAL REFINERY **BY REGION** Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names 3-char ID for non-gasoline, non-diesel products (LPG, JTA, N6I, OTH, PCF). Entries Product yields per volume of crude processed (bbl per bbl crude processed). TABLE EXTRASPLT GASOLINE AND DIESEL PRODUCT YIELDS AT US MARGINAL REFINERY BY REGION Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names 3-char ID for gasoline, diesel, distillate products, including swing (SWG) capability (GAS, DIS, RES, LRG, SWG). Entries Product yields per volume of crude processed (bbl per bbl crude processed). TABLE EXTRAGAS ADDED COST TO PRODUCE GASOLINE COMPONENTS AT US MARGINAL REFINERY **BY REGION** Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names 3-char ID for gasoline-type products (TRG, SSE, SSR) allowed to be produced. Entries Added cost to produce gasoline components (\$87/bbl). TABLE EXTRADIS ADDED COST TO PRODUCE DISTILLATE COMPONENTS AT US MARGINAL REFINERY **BY REGION** Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names 3-char ID for distillate-type products (DSL, DSU, N2H) allowed to be produced. Entries Added cost to produce distillate components (\$87/bbl). TABLE FLLBROW CONSUMPTION AND YIELD OF ADDITIONAL STREAMS AT US MARGINAL REFINERY **BY REGION** Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names 3-char ID for additional input and output streams (FUL, HYH, ARB, STG,
COK). Entries Input consumption and product yields per volume of crude processed (bbl per bbl crude processed). TABLE FLLUROW UTILITY CONSUMPTION AT US MARGINAL REFINERY BY REGION Column names Five columns, for each PMM refining region (R)=E,C,G,M,W. Row names 3-char ID for utilities consumed (KWH, STM). Entries Consumption of utilities per volume of crude processed (KWh per bbl crude, lb/bbl crude). # (limpol) TABLE UNITPOL PROCESS UNITS WITH POLICY ROW CONSTRAINTS Column name DUMMY Row names The three-character row names correspond to processing units that have policy limits. These units are described below as tables LIM(uns)(r). Entries None. (Note: the entries in tables LIM(uns)(r), which represent fraction of throughput, will appear as entries in the column Z(r)FLO(uns). The current set of (uns) are: FCC, RFL, RFH, DDS, FUM, KRF, ETH, and ETM.) TABLE LIM(uns)(R) POLICY LIMITS FOR EACH PMM REFINERY REGION (R) Column name Three-character policy limit code. Row names One row, DUM. Entries A value representing a volume fraction of the process unit capacity for the restriction, i.e. 0.99 stipulates that this mode will be limited to 99 percent of the unit's total capacity. The total capacity is the sum of the existing capacity, builds, and new capacity expansion. # (accunit) Atmospheric distillation refinery process unit. This unit characterizes the crude oils by differentiating the yields of the following fractions: | Name | Quality | Description | Stream Mnemonic code | |--------------------|---------|---------------------------|----------------------| | GAS (C2 & lighter) | | | PGS | | C3 | | | CC3 | | IC4 | | | IC4 | | NC4 | | | NC4 | | LSR (C5-175) | LON | low octane | SRL | | LSR (C5-175) | ION | intermediate octane | SRI | | LSR (C5-175) | HON | high octane | SRH | | LT NAPH (175-250) | Р | paraffinic | LNP | | LT NAPH (175-250) | 1 | intermediate | LNI | | LT NAPH (175-250) | N | naphthenic | LNN | | NAPH (250-325) | Р | paraffinic | NPP | | NAPH (250-325) | 1 | intermediate | NPI | | NAPH (250-325) | N | naphthenic | NPN | | H N/L J(325-375) | P/LF | paraffinic low freeze pt. | JPL | | Name | Quality | Description | Stream Mnemonic code | |------------------|----------|------------------------------------------------|----------------------| | | | index | | | H N/L J(325-375) | I/LF | intermediate low freeze pt. index | JIL | | H N/L J(325-375) | N/LF | naphthenic low freeze pt. index | JNL | | H N/L J(325-375) | P/HF | paraffinic high freeze pt. index | JPH | | H N/L J(325-375) | I/HF | intermediate high freeze pt. index | JIH | | H N/L J(325-375) | N/HF | naphthenic high freeze pt. index | JNH | | KERO(375-500) | LF/LL/LS | low fz pt., low smoke pt., low sulfur | KLL | | KERO(375-500) | LF/LL/HS | low fz pt., low smoke pt., high sulfur | KLH | | KERO(375-500) | LF/HL/LS | low fz pt., high smoke pt., low sulfur | KHL | | KERO(375-500) | LF/HL/HS | low fz pt., high smoke pt., high sulfur | КНН | | KERO(375-500) | HF/LL/LS | high fz pt., low smoke pt., low sulfur | 1LL | | KERO(375-500) | HF/LL/HS | high fz pt., low smoke pt., high sulfur | 1LH | | KERO(375-500) | HF/HL/LS | high fz pt., high smoke pt., low sulfur | 1HL | | KERO(375-500) | HF/HL/HS | high fz pt., high smoke pt., high sulfur | 1HH | | HKERO(500-550) | LF/LL/LS | low fz pt., low smoke pt., low sulfur | 3LL | | HKERO(500-550) | LF/LL/HS | low fz pt., low smoke pt., high sulfur | 3LH | | HKERO(500-550) | LF/HL/LS | low fz pt., high smoke pt., low sulfur | 3HL | | HKERO(500-550) | LF/HL/HS | high fz pt., low smoke pt., low sulfur | ЗНН | | HKERO(500-550) | HF/LL/LS | high fz pt., low smoke pt., low sulfur | 4LL | | HKERO(500-550) | HF/LL/HS | high fz pt., low smoke pt., high sulfur | 4LH | | HKERO(500-550) | HF/HL/LS | high fz pt., high smoke pt., low sulfur | 4HL | | HKERO(500-550) | HF/HL/HS | high fz pt., high smoke pt., high sulfur | 4НН | | DSL B(550-650) | LP/LC/LS | low pour pt., low cetane index, low sulfur | DLL | | DSL B(550-650) | LP/LC/HS | low pour pt., low cetane index, high sulfur | DLH | | DSL B(550-650) | LP/LC/MS | low pour pt., low cetane index, medium sulfur | DLM | | DSL B(550-650) | LP/HC/MS | low pour pt., high cetane index, medium sulfur | DHM | | DSL B(550-650) | LP/HC/LS | low pour pt., high cetane index, low sulfur | DHL | | DSL B(550-650) | LP/HC/HS | low pour pt., high cetane index, high sulfur | DHH | | Name | Quality | Description | Stream Mnemonic code | |------------------|----------------|-----------------------------------------------------|----------------------| | DSL B(550-650) | HP/LC/LS | high pour pt., low cetane index, low sulfur | 2LL | | DSL B(550-650) | HP/LC/MS | high pour pt., low cetane index, medium sulfur | 2LM | | DSL B(550-650) | HP/LC/HS | high pour pt., low cetane index, high sulfur | 2LH | | DSL B(550-650) | HP/HC/LS | high pour pt., high cetane index, low sulfur | 2HL | | DSL B(550-650) | HP/HC/MS | high pour pt., high cetane index, medium sulfur | 2HM | | DSL B(550-650) | HP/HC/HS | high pour pt., high cetane index, high sulfur | 2HH | | DSL C(650-690) | LP/HC/LS | low pour pt, high centane index, low sulfur | 6HL | | DSL C(650-690) | LP/HC/HS | low pour pt, high centane index, high sulfur | 6НН | | DSL C(650-690) | LP/LC/LS | low pour pt, low centane index, low sulfur | 6LL | | DSL C(650-690) | LP/LC/HS | low pour pt, low centane index, high sulfur | 6LH | | DSL C(650-690) | HP/LC/HS | high pour pt, low centane index, high sulfur | 7LH | | DSL C(650-690) | HP/HC/LS | high pour pt, high centane index, low sulfur | 7HL | | DSL C(650-690) | HP/HC/HS | high pour pt, high<br>centane index, high<br>sulfur | 7HH | | LGO (690-800) | N,LS | naphthenic, low sulfur | LGL | | LGO (690-800) | N,MS | naphthenic, medium sulfur | LGM | | LGO (690-800) | N,HS | naphthenic, high sulfur | LGH | | LGO (690-800) | P,LS | paraffinic low sulfur | LGP | | HGO FD(800-1050) | NAP,LS | naphthenic, low sulfur | HGL | | HGO FD(800-1050) | NAP,MS | naphthenic, medium sulfur | НСМ | | HGO FD(800-1050) | PFN,LS | paraffinic low sulfur | HGP | | VAC RES | V LO SUL (0.5) | very low sulfur | RSL | | VAC RES | HI SUL (2.3) | high sulfur | RSH | | ATMOS RED CRUDE | (A-M) | Type A through M | ARA-M | Data sources are the parent Turner Mason model data (vintage 1978) provided to ORNL by EIA (vintage 1985) and thereafter to EnSys and in-house EnSys assay data. These have been collected and compared from many sources and progressively built into the model. Assay data for stored SPR crude oils were obtained from U. S. Department of Energy, "Strategic Petroleum Reserve Crude Oil Stream Quality Characteristics," August 1, 1990. In the past, crude oil quality information resided in the crdval.dat data file used for PMM matrix generation. It has been transferred into two MSAccess database files residing on the EIA LAN at the following location: \\FS-F1\L6007\PRJ\MSACCESS\CRD95GRP (MRM processing) \\FS-F1\L6007\PRJ\MSACCESS\CRD95IND (ERM processing) The database file contains quantity, API gravity, sulfur, grade, and source information on individual crude oil streams. Macro programs have been developed to process this data to generate the following set of tables now residing in the accunit.dat data file: Table ACUCUTS, Table ACUPOL, and Table ACUUTI. Note that the Table ACUCUTS yields have been volume balanced to 0; i.e., total yields equal 1.0 exactly. Process losses are accounted for using Tables PFA and REL. Note: these units were deactivated (capacity = 0) beginning with *AEO2007* due to the breakout of the PGS intermediate stream into its component light ends (C1-C4). TABLE ACUCUTS ATMOSPHERIC DISTILLATION YIELD FOR CRUDE OILS Column names Three character crude stream group code AMH for Alaska North Slope, ALL for Alaska Light, D(ll) for domestic crude oils and F(ll) for imported crude oils. Row names Three-character intermediate stream codes. Entries Volume fractions (bbl Output/bbl Input). TABLE ACUPOL ATMOSPHERIC DISTILLATION NON-YIELD VALUES FOR CRUDE OILS Column names OVC for variable operating cost and LOS for losses Row names Three-character crude stream group codes Entries OVC: 2000 dollars/bbl (converted in matrix to 1987 dollars using T(r)OVCOBJ variable and T:TRSOVC data for year 2000). Volume fractions (bbl Output/bbl Input) for LOS. TABLE ACUUTI ATMOS. DISTILLATION UTILITY CONSUMPTION FOR CRUDE OILS Column names KWH and STM Row names Three-character crude stream group codes Entries Electricity (KWh/bbl) and steam (lb/bbl). TABLE INVLIM INVESTMENT LIMIT BY REGION Column names MAX Row names One-character PMM refinery region code and @ for total United States. Entries Million dollars (1987) of total capacity expansion investment. (setrows) TABLES (R)POL REFINERY POLICY CONSTRAINTS - PMM REFINERY REGION (R) Column name TYPE. Row names The three-character row names correspond to processing constraints (as discussed below). Entries A non-blank entry in the TYPE column causes generation of a row of corresponding type, either a max (1.0), min (-1.0), fixed (0.0), or free (99.0). The process constraint rows in the current formulation are as follows: SVR, SVH, SVL, SVC limit severity on FCC, RFH, RFL and RFC respectively. - PFH, PFU, PFB limit H2S, very low (0.3 percent), low (1 percent), and high (3 percent) sulfur fuel oil^{A-4} to refinery fuel respectively. - FLX limits the use of flexicoking activities (which are actually depicted as modes of operation of the fluid coker) to the level of known flexicoker (KRF) capacities. - MSL, MSR, FCR, MSD, MSZ, are used to control FCC activities: - 4.14 MSL: maximum use of light olefin modes - 4.15 MSR: maximum low sulfur residue feed - 4.16 FCR: maximum high sulfur residue feed - 4.17 MSD: maximum distillate feed - 4.18 MSZ: maximum use of ZSM high octane catalyst - MXU, L00, L05, H00, H05, C05, control reformer operations (RFL, RFH): - 4.19 MXU: maximum use of R62 high octane catalyst on the RFL unit - 4.20 L00, L05: maximum use of 100 and 105 severity on the RFL unit - 4.21
H00, H05: maximum 100 and 105 severity on the RFH unit - 4.22 C05: maximum 105 severity operation of the RFC unit - DKU and DDU limit deep desulfurization of kerosene/heavy kerosene and of diesel/light cycle oil in the distillate desulfurizer (DDS). # (nrfplant) TABLE INVMOH INVESTMENT PARAMETERS METHANOL PLANT Column names INV, CAPREC, FXOC Row names Process unit MOH. Entries Column INV contains investment in 2000 dollars/bbl, CAPREC has the daily annualized investment cost (2000 dollars), and FXOC has the fixed operating cost in 2000 dollars/bbl. (All dollars converted to 1987 dollars in MRM code using YRDOLLAR data.) Note: This table provides the methanol plant investment parameters required for the total annualized cost of investment and fixed cost coefficients which are placed on the process unit expansion activities. These values are generated offline. TABLE MOHPLT METHANOL PLANT Column names Five columns, (R)01 for each PMM refining region (R)=E,C,G,M,W. A-Error! Main Document Only. PFH, PFU and PFB are used to set the amount of residual fuel input to refinery fuel, generally based on historical data. If left uncontrolled, resid input to refinery fuel can swing wildly and unrealistically. Row names CC1, (natural gas feed), MET methanol output, OVC operating cost, KWH electricity consumption. Entries CC1 natural gas feed coefficient is in mcf/bbl MET produced, MET yields in Mbbl/cd of methanol, OVC in \$87/bbl MET produced, KWH in KWh/bbl MET produced. TABLE MOHCAP CAPACITY OF METHANOL PLANT Column names Five columns, (R)01 for each PMM refining region (R)=E,C,G,M,W. Row names One row, CAP. Entries Plant capacity in Mbbl/cd. TABLE GASPLT GAS LIQUIDS PROCESSING PLANT Column names Five columns, (R)01 for each PMM refining region (R)=E,C,G,M,W. Row names GPL, (gas plant liquids), PGS, CC3, IC4, NC4, NAT, OVC operating cost, LOS processing loss. Entries Gas plant liquids (GPL) is basis for remaining yields, natural gas liquids yield coefficients are Mbbl/bbl of total gas plant liquids. TABLE GASSHFTX ALLOW SHIFT OF ETHANE AND PROPANE TO NATURAL GAS Column names Two columns, SC2 for shift of ethane to wet natural gas, PGS for shift of still gas to propane (LPG). Row names CC1, (natural gas), LPG, and OBJ. Entries Maximum fraction of CC1 or LPG made up by SC2 and PGS, respectively. OBJ represents credit for gas transfers. TABLE GPLCAP DRY GAS PRODUCTION (DGP) CAPACITY Column names Five columns, (R)01 for each PMM refining region (R)=E,C,G,M,W. Row names NEMS year code (1,2,3,etc = 1990, 1991, 1992, etc) Entries NGL production capacity in 1000 bbl/day. TABLE GASXFER TRANSFER LINKS FOR NGLs TO PRODUCT STREAMS Column names Five columns, representing products or refinery transfer destinations (LPG, FLG, OTH, PCF, RFN). Row names Five rows, NGL types (PGS, CC3, IC4, NC4, NAT). Entries FLAG indicating which NGLs transfer to which products. # (mchproc) TABLE (R)CAPMCH MERCHANT PLANT CAPACITIES - PMM REFINING REGION (R) Column names CAP, PUL, and BLD Row names Process unit codes - C4X, OLX, ETX, FUX, STX, SMD, SOD, IOX, CTX, CTZ. Entries Column CAP contains existing unit capacities in thousands of barrels per calendar day capacity (Mbbl/cd). Column PUL contains fractional utilizations, which convert nameplate calendar day capacity to capacity available to the PMM model. The PUL factors represent actual utilizations and will vary from unit to unit, from region to region, and from case to case. These factors are used to control over optimization. Column BLD contains a 1.0 if a unit can be expanded, otherwise no capacity expansion allowed for that unit. TABLES (uns)POL MERCHANT PLANT (uns) POLICY ROW CONSTRAINTS Column names OVC for variable operating cost and LOS for losses Row names Three-character mode. Entries OVC: 2000 dollars/bbl (converted in matrix to 1987 dollars using T(r)OVCOBJ variable and T:TRSOVC data for year 2000). LOSS: Volume fractions (bbl Output/bbl Input). TABLES (uns)UTI MERCHANT PLANT (uns) UTILITY CONSUMPTION FOR PROCESSING Column names KWH and STM Row names Three-character mode. Entries Electricity (KWh/bbl) and steam (lb/bbl). TABLES (uns)CAP MERCHANT PLANT (uns) CAPACITY FACTOR Column names One column, CAP Row names Three-character mode. Entries Capacity factor. TABLES (uns)REP MERCHANT PLANT (uns) PROCESS YIELDS Column names Three-character process mode codes. Row names Three-character intermediate stream codes. Entries Volume fractions (bbl output/bbl input). TABLES (uns)CREDT CREDIT PRICE FOR SALEABLE CO-PRODUCT AT MERCHANT PLANT (uns) Column names One column, PRICE Row names Three-character co-product codes (BCH, ACA for uns=BPU). Entries Co-product price (1987\$/ton). TABLE TRANSFER MAPPING OF STREAM TRANSFERS BETWEEN PLANTS Column names One column, DUMMY. Row names Two-character plant code - GP, MP, or RF. Entries No entry. TABLES MPTRANS1 STREAM TRANSFER COSTS FOR GTL AND CTL OUTPUT STREAMS Column names Three-character processing unit code - GTLRF and CTLRF (transfer to refinery). Row names Three-character intermediate stream codes. Entries Cost of transferring stream from offsite facility to refinery (dollars/bbl). TABLES (xx)TRANS Column names Two-character plant code - GP, MP, or RF. Three-character intermediate stream codes. Entries Cost of transferring stream across plants (1987 dollars/bbl). (xx = GP (gas plant), MP (merchant plant), RF (refinery).) TABLE CO2LIST FLAG INDICATING CO2 CURVE LINK Column names One column, FLAG Row names Four rows, three-character ID for CO2 compression units and potential transport/sequestration ID (CAC, CAB, CAX, CO2) Entries Flag indicating if CO2 is linked (0=no, 1=yes) TABLE CO2CURV CO2 DEMAND CURVE BY PMM REGION Column names Eighteen columns, C1,N1, C2,N2, C3,N3, C4,N4, C5,N5, C6,N6, C7,N7, C8,N8, C9,N9 Row names PMM region ID's (E,C,G,M,W) Entries Columns N(n) represent the transport/storage quantity of CO2 (1000 tonnes/cd). Columns C(n) show the price in dollars per ton CO2 in each PMM region. (n=supply step) TABLE MCHINV INVESTMENT PARAMETERS FOR MERCHANT PLANT UNITS Column names INV, FXOC, CAPREC. Row names Three-character process unit codes. Entries Column INV contains investment in 2000 dollars/bbl, FXOC has the fixed operating cost in 2000 dollars/bbl, and CAPREC has the daily annualized investment cost 2000 dollars/bbl. (All dollars converted to 1987 dollars in MRM code using YRDOLLAR data.) (cogener) TABLE CGNCAP REFINERY CHP PLANT CAPACITIES Column names CAP, PUL, and BLD Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Column CAP contains existing CHP capacities in MW. Column PUL contains fractional utilizations, which convert nameplate calendar-day capacity to capacity available to the PMM model. The PUL factors represent actual utilizations and will vary from unit to unit, from region to region, and from case to case. These factors are used to control over-optimization and to convert MW to MWh/cd. Column BLD contains a 1.0 if a unit can be expanded, otherwise no capacity expansion allowed. TABLE CGNINV INVESTMENT PARAMETERS FOR REFINERY CHP UNITS Column names Three columns: INV, FXOC, CAPREC Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Column INV contains investment in 2000 dollars/bbl, FXOC has the fixed operating cost in 2000 dollars/bbl, and CAPREC has the daily annualized investment cost 2000 dollars/bbl. (All dollars converted to 1987 dollars in MRM code using YRDOLLAR data.) TABLE CGNPOL REFINERY CHP POLICY ROW CONSTRAINTS Column names OVC for variable operating cost. Row names One row, three-character mode - CGN. Entries OVC: 2000 dollars/bbl (converted in matrix to 1987 dollars using T(r)OVCOBJ variable and T:TRSOVC data for year 2000). TABLE CGNUTI UTILITY PRODUCTION FOR REFINERY CHP Column names KWH and STM Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Electricity (KWh/bbl fuel) and steam (lb/bbl fuel). TABLE CGNREP REFINERY CHP FUEL CONSUMPTION Column names One column, CGN Row names One row, FUL Entries Fuel consumption (bbl/KWh) TABLE SELCGN REFINERY CHP SALES BY PADD Column names One column, SOLD Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Fraction sold in each PADD. TABLE VPELAS ELECTRIC UTILITY PRICES FOR REFINERY CHP Column names One-character PMM refinery region ID (E,C,G,M,W). Row names NEMS year code (1,2,3,etc). Entries Electric utility prices (1987 dollars/KWh, based on 3412 Btu/KWh). TABLE CGXCAP MERCHANT CHP PLANT CAPACITIES Column names CAP, PUL, and BLD Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Column CAP contains existing CHP capacities in MW. Column PUL contains fractional utilizations, which convert nameplate calendar-day capacity to capacity available to the PMM model. The PUL factors represent actual utilizations and will vary from unit to unit, from region to region, and from case to case. These factors are used to control over-optimization and to convert MW to MWh/cd. Column BLD contains a 1.0 if a unit can be expanded, otherwise no capacity expansion allowed. TABLE CGXINV INVESTMENT PARAMETERS FOR MERCHANT CHP UNITS Column names Three columns: INV, FXOC, CAPREC Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Column INV contains investment in 2000 dollars/bbl, FXOC has the fixed operating cost in 2000 dollars/bbl, and CAPREC has the daily annualized investment cost 2000 dollars/bbl. (All dollars converted to 1987 dollars in MRM code using YRDOLLAR data.) TABLE CGXPOL MERCHANT CHP POLICY ROW CONSTRAINTS Column names OVC for variable operating cost. Row names One row, three-character mode - CGN. Entries OVC: 2000 dollars/bbl (converted in matrix to 1987 dollars using T(r)OVCOBJ variable and T:TRSOVC data for year 2000). TABLE CGXUTI UTILITY CONSUMPTION FOR MERCHANT CHP Column names KWH and STM Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Electricity (KWh/bbl fuel) and steam (lb/bbl fuel). TABLE CGXREP MERCHANT CHP FUEL CONSUMPTION Column names One
column, CGX Row names One row, FUL Entries Fuel consumption (bbl/KWh) TABLE SELCGX MERCHANT CHP SALES BY PADD Column names One column, SOLD Row names One-character PMM refinery region ID (E,C,G,M,W). Entries Fraction sold in each PADD. TABLE VPELWS ELECTRIC UTILITY PRICES FOR MERCHANT CHP Column names One-character PMM refinery region ID (E,C,G,M,W). Row names NEMS year code (1,2,3,etc). Entries Electric utility prices (1987 dollars/KWh, based on 3412 Btu/KWh). # (stream) TABLE TRS STREAM TO STREAM TRANSFERS Column names Three columns, MIN, MAX, and CST Row names Six-character code, consisting of a three-character intermediate stream code and another three-character intermediate stream code representing a from/to stream transfer; and OVCOBJ. Entries No entry; except CST column: -1 for OVCOBJ. Table TRS allows the transfer of one refinery stream to another - the transfer vector names are in the form xxxyyy where xxx is the source stream code and yyy is the destination stream code. Selected refinery minor finished product sales transfers are included in Table TRS, namely: - optional condensation of C3 and C4 streams into sales LPG. This is useful where data are not separately available for propane and butane sales (Would normally be de-activated through asterisks in Column 1.) - condensation of benzene, toluene, and xylene into aromatics and BTX sales. Table TRS is also used for condensation of feed streams for several of the key refinery process units. This economizes on detail in refinery process unit representations at the expense of adding a relatively small number of LP transfer vectors. The original transfers were derived from the parent Turner Mason model provided to EIA and has been amended and extended by EnSys and EIA. TABLE XSALE STREAM TO PRODUCT TRANSFERS Column names One column, DUMMY. Row names Six-character code, consisting of a three character intermediate stream code and a three-character product stream code. Entries -- blank -- TABLE XGASLIQ BTU-BASED CONVERSION FACTOR FOR GAS STREAMS (BFOE) TO SELECTED **LIQUIDS** Column names One column, DUMMY. Row names Six-character code, consisting of a three character intermediate stream code and a three-character product stream code. Entries -- blank -- # **Product Blending and Specifications** # (gasoblnd) Z:MAPGSLPD MAPPING OF CODE NAMES FOR GASOLINE Column names TEXT Row names Three-character code used by PMM to ID motor gasoline types produced at refinery Entries Three-character code used by Ensys to ID motor gasoline types corresponding to PMM ID Z:MAPGSLSP MAPPING OF CODE NAMES FOR SPEC CATEGORIES Column names TEXT Row names Two-character code used by PMM to ID gasoline quality spec categories Entries Three-character code used by Ensys to ID gasoline quality spec categories corresponding to PMM ID TABLES Q(R)GSL REGIONAL GASOLINE SPECIFICATIONS--PMM REGION (R) Column names Finished gasoline codes (RFG and TRG) Row names Two-character quality codes, followed by X (maximum) or N (minimum). Entries Columns contain specification levels for the corresponding qualities. TABLES (R)SSR SUBSPEC RFG QUALITY SPECIFICATIONS--PMM REGION (R) Column names Five columns: Y1,Y2,Y3,Y4,Y5--representing 5 transition years for changes in specifications. Row names Product qualities codes using six characters; the first three are RFG, the next two are quality codes, the last is either X for maximum or N for minimum; and a row YEAR to define the corresponding transition years. Entries Product quality specifications for each transition year. The quality coefficients of SSR reflect a reformulated gasoline that is to be blended with 7.8 percent ethanol and therefore has a lower octane and other qualities to accommodate the quality barrels delivered by ethanol. TABLES (R)SST SUBSPEC TRG QUALITY SPECIFICATIONS--PMM REGION (R) Column names Five columns: Y1,Y2,Y3,Y4,Y5--representing 5 transition years for changes in specifications. Row names Product qualities codes using six characters; the first three are TRG, the next two are quality codes, the last is either X for maximum or N for minimum; and a row YEAR to define the corresponding transition years. Entries Product quality specifications for each transition year. The quality coefficients of SST reflect a conventional gasoline that is to be blended with 7.8 percent ethanol and therefore has a lower octane and other qualities to accommodate the quality barrels delivered by ethanol. TABLES (R)SSE SUBSPEC TRG QUALITY SPECIFICATIONS--PMM REGION (R) Column names Five columns: Y1,Y2,Y3,Y4,Y5--representing 5 transition years for changes in specifications. Row names Product qualities codes using six characters; the first three are TRG, the next two are quality codes, the last is either X for maximum or N for minimum; and a row YEAR to define the corresponding transition years. Entries Product quality specifications for each transition year. The quality coefficients of SSE reflect a 10 percent ethanol blend. TABLES (R)RFH SUBSPEC RFG QUALITY SPECIFICATIONS--PMM REGION (R) Column names Five columns: Y1,Y2,Y3,Y4,Y5--representing 5 transition years for changes in specifications. Row names Product qualities codes using six characters; the first three are RFG, the next two are quality codes, the last is either X for maximum or N for minimum; and a row YEAR to define the corresponding transition years. Entries Product quality specifications for each transition year. TABLES (R)TRH SUBSPEC TRG QUALITY SPECIFICATIONS--PMM REGION (R) Column names Five columns: Y1,Y2,Y3,Y4,Y5--representing 5 transition years for changes in specifications. Row names Product qualities codes using six characters; the first three are TRG, the next two are quality codes, the last is either X for maximum or N for minimum; and a row YEAR to define the corresponding transition years. Entries Product quality specifications for each transition year. TABLE GCB GASOLINE QUALITIES (EX OCTANE) Column names Quality codes (except octane-- defined in Table MCO) Row names Intermediate stream codes Entries Blend spec contribution associated with each stream and blend characteristic. TABLE GCC GASOLINE COMPONENT USAGE CONTROL Column names Finished product codes. Row names Intermediate stream codes Entries A non-blank entry indicates that the intermediate is allowed as a component to the finished blend. (note: Ensys data did not include column RFM as needed by PMM; therefore, column RGC was copied into column RFM.) **Z:GASGROUP**Column names GAS GROUP CLASSIFICATION One column, TEXT(1). Row names Three-character stream code matching those in Table GCB. Entries Three-character gas group classification: G00-G12. TABLE GSLUTI GASOLINE BLEND UTILITIES Column names One column, KWH-- Utility, electricity Row names Seven rows, three-character gasoline type or blend ID. Entries KWh per barrel of gasoline type. TABLE MCO GASOLINE COMPONENT OCTANE RATINGS Column names Eight columns, R00, R05, R15, R30, M00, M05, M15, M30 of which the PMM model uses just two, R00 and M00 (lead-free research and motor octanes) Row names Intermediate stream gasoline component codes Entries Base research and motor octane blending numbers for each component at four levels of lead. TABLES (xxx)BV GASOLINE (XXX) COMPONENT BONUS BLENDING VALUES Column names Nine columns, R00, R05, R15, R30, M00, M05, M15, M30, TEL of which the PMM model uses just two, R00 and M00 (lead-free research and motor octanes) Row names Intermediate stream gasoline component codes Entries Bonus research and motor octane blending numbers for each component at four levels of lead. Non-zero entries are added to the base octanes from Table MCO and used in the relevant gasoline blend. Since the PMM model reduces all gasoline grades to an equivalent lead-free basis, the only entries relevant in these "BV" tables are those under unleaded ROO and MOO octane columns. (note: xxx = UNC and RFM (representing TRG and RFG, respectively).) # (distblnd) Z:MAPDFOPD MAPPING OF CODE NAMES FOR GASOLINE Column names TEXT Row names Three-character code used by PMM to ID distillate fuel types produced at refinery Entries Three-character code used by Ensys to ID distillate fuel types corresponding to PMM ID Z:MAPDFOSP MAPPING OF CODE NAMES FOR SPEC CATEGORIES Column names TEXT Row names Two-character code used by PMM to ID distillate fuel spec categories Entries Three-character code used by Ensys to ID distillate fuel spec categories corresponding to PMM ID TABLES Q(R)DFO REGIONAL DISTILLATE/FUEL OIL SPECIFICATIONS--PMM REFINERY REGION (R) Column names inished distillate fuel oil codes; Distillates JTA, N2H, DSL and residual fuel oils N6I,N6B. Row names Two-character quality codes, followed by X (maximum) or N (minimum). Entries Columns contain specification levels for the corresponding qualities. TABLE DCB DISTILLATE QUALITIES (EX OCTANE) Column names Quality codes Row names Intermediate stream codes Entries Blending values TABLE DCC DISTILLATE COMPONENT USAGE CONTROL Column names Finished product codes. Row names Intermediate stream codes Entries A non-blank entry indicates that the intermediate is allowed as a component to the finished blend. TABLE DFOUTI DISTILLATE BLENDING UTILITIES Column names One column, STM, steam. Row names Five distillate fuel oil products: JTA, N2H, DSL, N6I, N6B. Entries Steam use per barrel of distillate fuel type (lbs/bbl). (recipes) TABLE RCP RECIPE BLEND CONTROL Column names Multiple columns-- A, CST, and STM, plus intermediate stream codes. Row names Finished product codes followed by a number. The intention is to provide for different recipes for a given product. The row ending in a zero must be present. Entries A non-blank entry in column A activates the corresponding blend. Column CST contains any cost met in making the blend, e.g. TEL cost for production of aviation gasoline. The remaining columns contain the volume fractions of the components (column ID) making up the blend. TABLE RCPEIA RECIPE BLEND CONTROL Column names
Seven columns, A, CST, and five selected product streams (JTA, N2H, SLP, CKH, CKL). Row names Special products: salable sulfur, low- and high-sulfur coke. Entries A non-blank entry in column A activates the corresponding blend (row KERSPG not activated). Column CST contains any cost met in making the blend, e.g. TEL cost for production of aviation gasoline. The remaining columns contain the volume fractions of the components (column ID) making up the blend (including unit conversions for coke). (splash) TABLES BLNSP(D) RECIPE BLENDING FOR KEROSENE AND RESIDUAL OIL TO UTILITIES-CENSUS DIVISION (D) Column names Three columns, KER, N67, and N68. Row names Stream codes for components of each blend and blended product codes. Entries Volume fraction of each component in final blends. (Note: Kerosene currently is not modeled separately in the PMM.) TABLES BLOX(D)YXX RECIPE BLENDS FOR HIGH OXYGEN GASOLINES IN CENSUS DIVISION (D) Column names Six columns, E85, M85, TRH, RFH, RFG, and TRG. Row names Stream codes for components of each blend and blended product codes plus OBJ row. Entries Volume fraction of each component in final blends. Row OBJ contains tax credit for blends. TABLES BLBIOD(D) RECIPE BLENDS FOR BIODIESEL IN CENSUS DIVISION (D) Column names Two columns, DSL and DSU Row names Stream codes for biodiesel blend components, BIM, BIN. Entries Volume fraction of each component in final blends. TABLE HOXETH ETHANOL RECIPES FOR SPLASH BLENDING Column names Four columns, TRH, RFH, RFG, TRG. Row names Gasoline blend streams. Entries Consumption and yield fractions for ethanol blending streams. TABLE XETH OXYGEN CONTENT OF ETHANOL Column names One column, PO. Row names One row, XETH. Entries Volume percent oxygen for ethanol. TABLE SCB OXYGEN CONTENT OF OXYGENATES Column names One column, PO. Row names Three-character oxygenate (ethers) stream codes (ETB,MTB,TAE,TAM,THE,THM). Entries Volume percent oxygen for oxygenate streams. # (demand) TABLE CKSMIX SALABLE COKE RECIPES Column names Two columns, CKL and CKH for low sulfur and high sulfur coke, respectively. Row names Coke stream codes (CKL, CKH) and product coke (COK); OBJ is scaled for selling price for coke. Entries Ratio of coke price to WOP (to be multiplied by WOP). Conversion from tons to bblFOE of coke (0.217 s-tons/bblFOE), and 1.0 coefficient for material balance. (note: other demand.dat tables presented in Section A.3.5) # (fuelmix) TABLE GROUP FUEL MIX COMPONENTS Column names One column, DUMMY. Row names Six-character code, consisting of a three-character intermediate stream code and a three-character fuel stream code, indicating a transfer from intermediate stream to fuel stream. Entries No entry. # **Refining Technology** The tables described in this section are essential to the representation of refining technology. All the tables are named (uns), representing the refining technology processing unit. The Column names represent modes of operation. The Row names represent refinery process input and output streams (intermediate streams), policy (OVC, LOS, etc.) cost information, and utility (KWH, STM) consumption. The table entries are volume fractions (bbl Output/bbl Input) for intermediate streams; costs (\$/bbl) for policy information; and utility consumption rates (KWh/bbl and lb/bbl) for electricity and steam, respectively. Most of the following tables described in this section are located in the file named (refproc or mchproc). The CHP refinery processing unit (CGN) data is located in the file named (cogener). # (refproc) #### TABLE VCU CRUDE VACUUM DISTILLATION UNIT Vacuum distillation refinery process unit. This unit separates atmospheric distillation tower bottoms into the following fractions: - Heavy diesel cut (650-690 degrees Fahrenheit), according to sulfur content, pour point and cetane index - Light gas oil (690-800 degrees Fahrenheit), according to sulfur content - Heavy gas oil (800-1050 degrees Fahrenheit), according to sulfur content - Vacuum residuum (1050 + degrees Fahrenheit), according to sulfur content, with the high metal/asphaltene content residua being undercut below 1050 degrees Fahrenheit. The atmospheric residua, which feed the vacuum distillation unit tower, are classified according to similar API gravity, sulfur content, viscosity, and gas oil content into 13 categories. These provide sufficient differentiation for the RYM regional model: 4.22.1.1 Table A3. Atmospheric Residual Oil Qualities | Stream Code | Atm Resid Sulfur | Atm Resid API | |-------------|------------------|---------------| | ARA | 3.10 | 17.5 | | ARB | 2.67 | 17.7 | | ARC | 1.54 | 19.9 | | ARD | 1.30 | 12.4 | | ARE | 0.87 | 19.3 | | ARF | 0.34 | 25.4 | | ARG | 0.32 | 22.8 | | ARH | 2.70 | 14.0 | | ARI | 0.32 | 17.1 | | ARJ | 1.22 | 21.7 | | ARK | 0.70 | 21.2 | | ARL | 4.54 | 8.2 | | ARM | 3.92 | 15.0 | Data sources are based on in-house EnSys data and EnSys calculations and estimates. #### TABLE KRD DELAYED COKER Delayed coking of vacuum residua and FCC decant oil streams produce petroleum market coke and lighter products. Care has been taken to weight-balance the yields and to match both low- and high-sulfur coke productions against actual regional makes. The naphtha fractions produced are of necessity stabilized and reformed (the annualized cost of stabilizing the C5-175 fraction is included in the OVC unit operating cost row). The middle distillates require stabilization and hydrotreating before blending to distillate fuels. The coker gas oil produced may be desulfurized and routed either to FCC feed or residual fuel oil blending. Data sources are in-house EnSys data gathered from a variety of published sources, including J. H. Gary and G.E. Handwerk, "Petroleum Refining Technology and Economics," 1975, and the EIA RYM model data as provided to ORNL by EIA and thereafter to EnSys. #### TABLE KRF FLUID AND FLEXI COKER Fluid coking of vacuum residua to produce coke and lighter products. Care has been taken to weight-balance the yields and to match both low- and high-sulfur coke productions against actual regional makes. The naphtha fractions produced are of necessity stabilized and reformed (the annualized cost of stabilizing the C5-175 fraction is included in the OVC unit operating cost row). The middle distillates require stabilization and hydrotreating before blending to distillate fuels. The coker gas oil produced may be desulfurized and routed either to FCC feed or residual fuel oil blending. Flexicoking is also represented in this program module, reflecting the gasification of the coke produced to fuel gas. The data sources include the following: Busch, R. A. et al, "Flexicoking + Hydrotreating Processes for Quality Products," presented at the AIChE Spring Meeting, April 1979. Blaser, D. E. et al, "Fluid Coking/Flexicoking, a Flexible Process for Upgrading Heavy Crudes," Exxon Research and Engineering Company, October 26, 1978. #### TABLE SDA PROPANE DE-ASPHALTER Residua produced by the vacuum distillation unit are solvent extracted to produce asphalt, FCC feed, and heavy fuel oil blending components. Data sources are in-house EnSys data gathered from a variety of published sources. Because of the limited number of vacuum residua depicted in the model, it is not possible for this unit to convert one residuum into another, plus gas oil and retain reasonable volume, weight and sulfur balances. Accordingly, the model activities represent only the partial conversion of one residuum into another. ### TABLE VBR VISBREAKER Visbreaking of vacuum residua to produce lowered viscosity residual blendstocks. Visbreaking is a mild thermal cracking process and produces a proportion of lighter products. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. The range of potential feeds has been extended by EnSys. # TABLE NDS NAPHTHA HYDROTREATER Hydrotreating of various refinery naphtha streams prior to reforming or blending with naphtha sales. The data source is the NETL data. # TABLE DDS HEAVY NAPHTHA, KEROSENE, AND MIDDLE AND HEAVY DISTILLATE DESULFURIZER This unit represents the desulfurization of a broad and comprehensive set of refinery streams, ranging from 325 IBP to 690 EP degrees Fahrenheit. Various degrees of desulfurization intensity are also represented, ranging from normal (90 percent desulfurization) to the ultra-low-sulfur mode for blending to meet 0.05 weight percent diesel fuel. The different modes are also reflected through the use of the CAP row, with coefficients ranging from 0.8 to 3.33 to represent the different catalyst to oil ratios required to achieve different degrees of desulfurization. The increase in the CAP coefficients is tantamount to forcing a reduction in unit throughput and space velocity to reduce the sulfur level of the product stream. High-, medium-, and low-sulfur (adequate for conventional, but not ultra-low-sulfur fuels) feeds are included in Table DDS. These include virgin heavy naphtha; light and heavy kerosene fractions; diesel and Number 2 fuel oil streams; FCC light cycle oil streams, reflecting different FCC conversion levels and gas oil feed sulfur levels; middle distillate furfural extraction unit raffinates; de-waxed diesel fractions; and select JP8-X and JP11 cuts from specialty naphthenic crude oils used for producing high-density jet fuels. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and EnSys analysis of published sources. These include: Shih, S. S. et al, "Deep Desulfurization of Distillate Components," Paper 264B presented at the AIChE Fall Meeting, November 1990. McCulloch, D. C. et al, "Higher Severity Diesel Hydrotreating," Paper AM-87-58 presented at the NPRA Annual Meeting, March 1987. Johnson, A. D., "Study Shows Marginal Gains from Hydrotreating," Oil & Gas Journal, May 30, 1983, p.78. Yoes, J. R. and Asim, M. Y., "Confronting New Challenges in Distillate Hydrotreating," Paper AM-87-59 presented at the NPRA
Annual Meeting, March 1987. #### TABLE FDS GAS OIL DESULFURIZER/MILD HYDRO-CRACKER This unit represents the desulfurization of light and heavy gas oils, including coker gas oil, to produce hydro-treated gas oils for FCC feed and heavy fuel oil blending. A light hydrocracking mode is also represented to produce a very low sulfur content gas oil for the purpose of removing sulfur from light and heavy catalytic gasolines in order to produce reformulated gasoline at the 50 ppm sulfur level. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. The mild gas oil hydrocracking data were obtained from: Belt, B. A., "New Approaches to FCC Hydrotreating," Paper 44C presented at the AIChE Spring Meeting, March 1990. # TABLE RDS RESIDUUM DESULFURIZER This unit represents the desulfurization of vacuum and atmospheric residua, gas oils and asphalt. Two levels of desulfurization are represented: 77 percent and 85 percent desulfurization. The heavy products are generally in the 0.5- to 1.0-weight percent sulfur content level and may be used as low-sulfur residual fuel oil blendstocks, or to provide the FCC with feed for residuum cracking. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys, in-house EnSys data, and other published sources, including the following: Billon, A. et al, "Hyvahl F and T Processes for High Conversion and Deep Refining of Residues," Paper AM-88-62 presented at the NPRA Annual Meeting, March 1988. ### TABLE LUB LUBE OIL AND WAX PRODUCTION This is a rather simplified representation which transfers 800-1050 degree Fahrenheit hydrofined gas oil and paraffin base gas oil to combined lube oil and wax sales. The unit contains the estimated fuel, power, steam, and operating cost requirements to produce these products. Data sources are the EIA RYM model data. ### TABLE HCR DISTILLATE HYDROCRACKER This process unit hydrocracks a range of distillates to produce either predominantly light, medium, and heavy naphtha for gasoline blending and reformer feed, or distillate for jet fuel and middle distillate products (particularly low-sulfur blends). These two modes of operation require large quantities of hydrogen, from 1800 to 3600 cf/bbl of feed, depending on the feedstock and severity of the operation. The primary feeds are light and heavy gas oils: LGP, LGL, paraffinic, low, medium, and high sulfur light gas oils, LGM and LGH: 690 to 800 degrees Fahrenheit. HGP, HGL, paraffinic, low, medium, and high sulfur heavy gas oils, HGM and HGH: 800 to 1050 degrees Fahrenheit. LC6: high aromatic content, high sulfur light cycle oil The lighter virgin distillates may also be routed to hydrocracker feed. These streams are gathered into feeds HFL and HFH in Table TRS as follows: | DSL B(550-650)LP/LC/LS | CRACKER FD LO S | DLLHFL | |------------------------|-----------------|--------| | DSL B(550-650)LP/HC/LS | CRACKER FD LO S | DHLHFL | | DSL B(550-650)LP/HC/HS | CRACKER FD HI S | DHHHFH | | DSL B(550-650)HP/LC/LS | CRACKER FD LO S | 2LLHFL | | DSL B(550-650)HP/HC/LS | CRACKER FD LO S | 2HLHFL | | DSL C(650-690)LP/LC/LS | CRACKER FD LO S | 6LLHFL | | DSL C(650-690)LP/HC/LS | CRACKER FD LO S | 6HLHFL | | DSL C(650-690)HP/LC/LS | CRACKER FD LO S | 7LLHFL | | DSL C(650-690)HP/HC/LS | CRACKER FD LO S | 7HLHFL | | DIST(550-650) HS/LM | CRACKER FEED | DHLHFH | | DIST(650-690) HS/LM | CRACKER FEED | 6HLHFH | | LGO FD(690-800) PFFN | CRACKER FD LO S | LGPHFL | | LGO FD(690-800) LO S | CRACKER FD LO S | LGLHFL | | LGO FD(690-800) HI S | CRACKER FD HI S | LGHHFH | | COKER DIST (375-620) | CRACKER FD HI S | CKDHFH | | COKER DIST (375-570) | CRACKER FD HI S | CCLHFH | | COKER DIST (575-620) | CRACKER FD HI S | CCHHFH | | CKR DIST RAFFINATE | CRACKER FD HI S | CLRHFH | | | | | # CKR DIST EXTRACT CRACKER FD HI S CLEHFH Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. Published sources include the following: Alcock, L. et al, "BP Hydrocracks For Mid Distillates," Oil & Gas Journal, July 6, 1974, p.102. J. H. Gary and G.E. Handwerk, "Petroleum Refining Technology and Economics," 1975. Logwinuk, A. K., "The ART Process Offers Increased Refinery Flexibility," Petroleum Review, October 1985, p.41. # TABLE HCV RESIDUUM HYDROCRACKER This unit hydrocracks a range of vacuum residua producing a synthetic crude containing the full range of streams from light gas oils to gas oil and bottoms fractions. Hydrogen consumption is of the order of 1500 cf/bbl net residuum feed. The feedstocks are vacuum residuals produced by the vacuum distillation unit VCU and subsequently condensed to a smaller set of streams in Table TRS: | VAC RES | V HI SUL(3.8) | RSV | |---------|---------------|-----| | VAC RES | HI SUL (2.3) | RSH | | VAC RES | INT SUL (1.5) | RSM | | VAC RES | LO SUL (0.9) | RSI | | VAC RES | VLO SUL (0.5) | RSL | Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. Published sources include: Seko, M. et al, "Super Oil Cracking (SOC) Process for Upgrading Vacuum Residues," Paper AM-88-61 presented at the NPRA Annual Meeting, March 1988. Suchanek, A.J. and Christian, B. R., "New Diversity Shown for the ART Process," Paper AM-88-74 presented at the NPRA Annual Meeting, March 1988. Boening, R.E. et al, "Recent Data on Resid Hydrocracker," *Hydrocarbon Processing*, September 1987, p.59. #### TABLE HCN NAPHTHA HYDROCRACKER This unit consumes on the order of 1500 cf/bbl of hydrogen to hydrocrack naphthas. The naphthas are hydrocracked to produce primarily propane, isobutane, and normal butane. While this process has a history of commercial operation, it is not in widespread use. However, the advent of reformulated gasoline has renewed interest because the naphtha hydocracker functions to supply feed to alkylation and oxygenate process units. The propane may be de-hydrogenated to produce alkylate feed or the ether DIPE, the isobutane may be used directly for alkylation plant feed or de-hydrogenated to produce isobutylene to make MTBE or ETBE and the normal butane may be isomerized to produce isobutane. An additional fit with reformulated gasoline production is the fact that naphtha is subtracted from the reformer feed, thus lowering the quantities of benzene and aromatics that are produced. Data sources are based on in-house EnSys data, calculations and estimates. TABLE TCG THERMAL CRACKER-LIGHT GAS STREAMS TABLE TCN THERMAL CRACKER-(250-375) NAPHTHA STREAMS TABLE TCV THERMAL CRACKER-DESULFURIZED VACUUM GAS OIL #### **STREAMS** The above process units are olefin plant petrochemical units which are characteristic of petrochemical plant operations. They are included in the model because they have potential relevance to the production of reformulated gasoline since they produce light olefins (ethylene, propylene and iso- and normal butylenes) for alkylation plant feed and (the isobutylene) for MTBE and ETBE plant feed. They can also be used directly in any representation of the petrochemical sector via the PMM "oxy-refinery" feature. Process unit TCG may use ethane, propane or iso or normal butanes as feedstocks. Process unit TCN consumes reformer feed naphtha (which would otherwise produce high-aromatics-content reformate). Process unit TCV consumes desulfurized light and heavy gas oils produced by process unit FDS. Data sources are based on published data: Zdonik, S. B. and Meilun, E. C., "Olefin Feedstock and Product Flexibility," Chemical Engineering Progress, September 1983. Barendrect, S. et al, "BUTACRACKING - Steam Cracking For Butane Upgrading," Paper 26E, presented at the AIChE Spring Meeting, April 1991. #### TABLE JPS JET FUEL CUT POINT ADJUSTMENT This unit adjusts the cut point of the 375 to 500 degree Fahrenheit atmospheric tower kerosene cut to a 470-degree endpoint cut in order to make the freezing point specification for JP-8 and Jet A/A-1 jet fuels in the optimal manner conforming to industry practice. This can be regarded as a "pseudo-unit" corresponding to an atmospheric tower cut point adjustment when making a jet fuel run, or as a real side-stream fractionator. Data sources are based on in-house EnSys data, calculations, and estimates. # TABLE JFP LIGHT CYCLE OIL/COKER DISTILLATE PRE-FRACTIONATION This is a specialty unit which prepares cracked aromatic streams for furfural unit extraction and hydrogenation (units FEX and HDN) for the production of high-density jet fuels. High-density jet fuels are experimental fuels which increase the flight range of volume-limited aircraft. The cuts are 70 Overhead/30 Bottoms for LCO and 80 Overhead/20 Bottoms for coker distillate. The fractionated streams may also be routed to conventional distillate products and heavy fuel oils, thus increasing blending flexibility. Data sources are based on in-house EnSys data, calculations and estimates. #### TABLE SYD DISTILLATE DEEP HYDROTREATER (used to be identified as DHT prior to AEO2001) This process hydrogenates middle distillate aromatics and achieves deep desulfurization (to levels beyond those available with conventional distillate desulfurization, see Table DDS). Potential feeds include kerosene, diesel, and light cycle oils, covering the boiling range from 375 to 650 degrees Fahrenheit. The deep hydrotreating process can be used to raise jet fuel smoke point, raise diesel fuel cetane number, and produce ultra-low-sulfur/aromatics fuels (less than 0.05 percent sulfur and less than 10 percent aromatics content). Conventional distillate desulfurization units, on the other hand, are generally capable of reducing the aromatics content by only 1 to 2 percent aromatics. This process is an alternative to middle distillate furfural extraction, but avoids the problem of aromatics disposition. However, hydrogen consumption is high, from 750 to 900 cf/bbl feed for virgin distillates and from 1100 to 2100 cf/bbl for the more aromatic FCC cycle oils. This process may be
linked to the production of reformulated gasoline since some reformulated gasoline production schemes involve very high conversion FCC operations, which in turn increase the aromaticity of the light cycle oils produced. Deep distillate hydrotreating makes it possible to more easily produce specification diesel fuel under these circumstances, without downgrading cycle oils to heavy residual fuel oil. Data sources are in-house EnSys data and published data, including: Suchanek, A.J. and Hamilton, G. L., "Diesel by SYNSAT - Low Pressure/Low Cost/Low Aromatics," Paper AM-91-35 presented at the NPRA Annual Meeting, March 1991. Nash, R.M., "Meeting the Challenge of Low Aromatics Diesel," Paper AM-89-29 presented at the NPRA Annual Meeting, March 1989. #### TABLE FEX DISTILLATE FURFURAL EXTRACTION This process extracts aromatics from distillate with the aromatics being concentrated in the furfural phase. Furfural extraction also lowers the sulfur content of the treated raffinate. Potential feeds include kerosene, diesel fractions, light cycle oils, and coker distillates, covering the boiling range from 375 to 690 degrees Fahrenheit. The reduction in distillate aromatics content can be used to raise jet fuel smoke point and/or raise diesel fuel cetane number and produce ultra-low-aromatics fuels (less than 10 percent aromatics content). Conventional desulfurization units, on the other hand, are generally capable of reducing the aromatics content by only 1 to 2 percent. This process is an alternative to middle distillate deep hydrotreating, but necessitates the disposition of the aromatics produced, generally by attempting to dump to other distillates, or by using them to reduce the viscosity and perhaps the sulfur content of heavy residual fuel oils. However, the significant hydrogen consumption associated with deep hydrotreating is avoided, ranging from 750 to 900 cf/bbl feed for virgin distillates and from 1100 to 2100 cf/bbl for the more aromatic FCC cycle oils. The furfural extraction unit is also used to extract aromatics from virgin distillate streams, FCC cycle oil and coker distillate overhead cuts prior to the hydrogenation of the aromatic extracts to produce distillate range naphthenes. The naphthenes are blended to produce experimental high density jet fuels. Data sources are based on EnSys calculations and estimates and in-house EnSys data. Published data sources include: Refinery Handbook, Furfural Extraction of Gas Oils, Hydrocarbon Processing, September 1982, p.183. Benham, A. L. et al, "REDEX Process Extracts Aromatics," *Hydrocarbon Processing*, September 1967, p.135. #### TABLE RST RESID FUEL TRANSFERS This can be regarded as a "pseudo-unit" that converts high-sulfur fuel oil to marketable fuel oil. Data sources are based on in-house EnSys data, calculations, and estimates (updated June 2003). # TABLE HDN HIGH DENSITY JET FUEL HYDROPROCESSING This unit hydroprocesses several types of streams to produce highly naphthenic blending components for high-density jet fuel. The feedstocks are: - light pyrolysis fuel oil - FCC light cycle oil 70 percent overhead cuts - the corresponding light cycle oil furfural extracts - coker distillate 80 percent overhead cuts - the corresponding coker distillate furfural extracts - the aromatic furfural unit extracts produced from virgin distillate streams, ranging from 375 to 500 degree Fahrenheit boiling range. This unit employs severe processing conditions and the fuel, power, and steam costs are high. Hydrogen consumption can reach 2400 cf/bbl for the virgin distillate stream aromatic extracts and 3500 cf/bbl for the other highly refractory streams. The former Soviet Union has utilized high-density jet fuels to increase the mission range of volume-limited military jet aircraft. Data were gathered and pieced together from several published Russian and other foreign sources with the help of ORNL. Other published sources used include: Korosi, A. et al, "Hydroprocessing of Light Pyrolysis Fuel Oil for Kerosene Jet Fuel," Technical Report AFWAL-TR-80-2012, February 1980. Hall, L. W., "Production of Jet Fuel Samples from Light Cycle and Light Pyrolysis Oil," Technical Report AFWAL-TR-87-2001, March 1987. # TABLE DEW CATALYTIC GAS OIL DEWAXING This is a catalytic process based on the Mobil process for converting the paraffin wax components in intermediate and heavy middle distillate streams in order to meet the freezing and pour point specifications for low-pour distillate and heavy fuel oils. This process is an alternative to solvent dewaxing, where finished refinery waxes are sold. It may accompany or replace the use of pour point depressants. This unit feeds high pour refinery streams covering the range of 550 to 690 degrees Fahrenheit, where the high boiling paraffin waxes are concentrated. Approximately 200 cf/bbl of hydrogen is consumed. #### Published sources include: Collins, J. M. and Unzelman, G. H., "Alternatives Available to Meet Diesel Cetane Quality Challenge," Oil & Gas Journal, May 30, 1983, p.71. # TABLE RFL REFORMER-SEMI REGEN – LOW PRESSURE TABLE RFC CONTINUOUS/CYCLIC REFORMER - LOW PRESSURE Naphtha reforming refinery process units. These individual key processes represent the different stages of reformer technology development. Paraffinic, naphthenic, and intermediate naphtha feeds are represented to produce reformates spanning the range of 80 to 105 clear research octane number. The low end of the reforming severity range is geared to accommodating the lower aromatic content of reformulated gasoline; the high end represents the limit of current reforming technology. The effect of low through high reforming severity on reformer throughput capacity is represented in row CAP, with coefficients ranging from 0.9 to 1.2; with an entry of 1.0 representing 95-100 RONC reformate production. The severity rows SVH, SVL and SVC contain the reformate RONC octane. Several operating mode limitation rows are also available in the reformer tables to link to Tables (R)POL constraints: L00, H00 to limit maximum 100 RONC reforming severity C05, L05, H05 to limit maximum 105 RONC reforming severity MXU to limit the proportion of UOP type R-62 high density bimetallic reforming catalyst RCU to limit very low pressure and low benzene advanced modes on the continuous reformer (RFC). The specific reformer feed streams represented include the following: | 158-175 degrees Fahrenheit | very light virgin naphtha | |----------------------------|-------------------------------------------------| | 175-250 degrees Fahrenheit | light virgin naphtha | | 250-325 degrees Fahrenheit | intermediate virgin naphtha | | 325-375 degrees Fahrenheit | heavy virgin naphtha | | 250-400 degrees Fahrenheit | heavy FCC gasoline | | 175-375 degrees Fahrenheit | coker naphtha | | 250-325 degrees Fahrenheit | heavy hydrocrackate | | 215-250 degrees Fahrenheit | light virgin naphtha, prefractionated to remove | | | benzene precursors. | The capability to reform 325-375 virgin naphtha feed stock is not immediately apparent in the reformer data tables because it is represented in Table TRS by combining naphtha desulfurizer feeds, namely: | H N/L J(325-375) P/LF | NAPHTHA(250-325) P | JPLNPP | |-----------------------|--------------------|--------| | H N/L J(325-375) I/LF | NAPHTHA(250-325) I | JILNPI | | H N/L J(325-375) N/LF | NAPHTHA(250-325) N | JNLNPN | | H N/L J(325-375) P/HF | NAPHTHA(250-325) P | JPHNPP | | H N/L J(325-375) I/HF | NAPHTHA(250-325) I | JIHNPI | | H N/L J(325-375) N/HF | NAPHTHA(250-325) N | JNHNPN | The reformer products include hydrogen (95 percent purity), fuel gas, LPG, and full boiling range reformate. The gradation of reformate feed cut ranges is consistent with (a) maximizing reformer feed, e.g. for foreign regions where gasoline demand is high, but also (b) controlling benzene content of reformate for use in reformulated gasoline. This latter can be achieved in the model by eliminating the 158-175 fraction and, if necessary, the 175-250 fractions from reformer feed. In addition, the model now has the option to pre-fractionate light naphtha at 215 degrees Fahrenheit to produce feedstock to the RFC unit for very low benzene reformate production. (See Table GCB for comparison of reformate benzene contents.) Altogether, the PMM model contains several methods for benzene reduction or removal: - Reformer feed pre-fractionation as discussed above, - Reformate splitting (Table RES) - Extraction of benzene (for sale) from reformate aromatics (Table ARP) - Very low pressure reformate operation (Table RFC) - Alkylation of benzene in reformate (Table ALM). RFC unit ultra-low-pressure reforming, at 90 psi, reduces the reformate benzene content by approximately 30 percent for reformulated gasoline production. Commercial plant data have not yet been obtained to verify the model reforming yields. #### Sources: Jacobs Refinery Database, 2005. Data compiled by NETL, 2005. # TABLE SPL NAPHTHA SPLITTER (not used) This is a feed preparation unit which fractionates light naphtha for reformer feed. C5-175 degrees Fahrenheit straight run gasoline is fractionated to produce C5-158 light gasoline for gasoline blending and 158-175 degrees Fahrenheit light naphtha for reformer feed. This represents the light end range of currently feasible reformer feed. The splitter now also enables splitting 175-250 degrees Fahrenheit light naphtha at 215 degrees Fahrenheit to produce a 175-215 degrees Fahrenheit light naphtha and a 215-250 degrees Fahrenheit low-benzene reformer feedstock. The fractionated light naphthas produced may also be blended to JP4 military jet fuel and to naphtha sales. Data sources are in-house EnSys data and the following: "UOP Process Solutions for Reformulated Gasoline," Copyright 1991, UOP/RFG SK 05-91, provided by UOP to ORNL. van Broekhoven, E. B. et al, "On the Reduction of Benzene in Reformate," Paper 28B presented at the AIChE Spring Meeting, March 1990. # TABLE RESREFORMATE SPLITTER
(not used) This unit splits the reformates produced from 250-375 degrees Fahrenheit intermediate/heavy naphtha into an overhead and a bottoms cut. These fractions may be separately blended into conventional and reformulated gasolines to aid in meeting reformulated gasoline specifications. The aromatics concentrate in the bottoms cut and the benzene in the overhead. Data sources are in-house EnSys data and EnSys calculations, estimates and published data, including: van Broekhoven, E. B. et al, "On the Reduction of Benzene in Reformate," Paper 28B presented at the AIChE Spring Meeting, March 1990. "UOP Process Solutions for Reformulated Gasoline," Copyright 1991, UOP/RFG SK 05-91, provided by UOP to ORNL. # TABLE ARP AROMATICS EXTRACTION This unit employs solvent extraction of reformate and reformate fractions to produce benzene, toluene, and xylene (BTX) aromatics for sale, and light and heavy raffinates for gasoline and jet/distillate fuel blending. All of the reformates produced in the semi-regenerative, continuous and cyclic reformers are potential unit feeds, along with their overhead and bottoms cuts produced in the reformate splitter. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data and EnSys calculations and estimates. # **TABLE ALM** ALKYMAX (not used) This unit is patterned after the UOP Alkymax process for alkylating benzene with C2 and C3 olefins (ethylene and propylene) to produce higher-boiling aromatics. The reformates produced from 158-250 light/intermediate naphtha are reacted with fuel gas containing ethylene or with propylene to produce an essentially benzene-free reformate. These reformates are then blended to meet reformulated gasoline benzene specification. (Note: the aromatics concentration in the gasoline blend is hardly altered.) Data sources include the following: B. M. Wood et al, "Alkylate Aromatics in the Gasoline via the UOP ALKYMAX Process," Copyright 1990, provided by UOP to ORNL. "UOP Process Solutions for Reformulated Gasoline," Copyright 1991, UOP/RFG SK 05-91, provided by UOP to ORNL. #### TABLE CYC CYCLAR Cyclar refinery process unit is based on the UOP cyclar process to cyclarize propane and butane to produce BTX. A fractionated benzene stream is produced along with a TX (toluene, xylene) stream designated as cyclar gasoline. This is a de-hydrogenation process which produces approximately 2000 cf/bbl feed of hydrogen. The data sources include the following: Anderson, R. F. et al, "Cyclar - One Step Processing of LPG to Aromatics and Hydrogen," Paper 83D presented at the AIChE Spring Meeting, March 1985. ## TABLE FCC FLUID CATALYTIC CRACKER This key process unit is capable of catalytically cracking gas oil, light gas oil, distillate and residua streams to produce light ends, FCC gasoline, light cycle oil (distillate) and decant oil (residua). The primary feeds represented are: | Feed stream | Description | |----------------------|-------------------------------------------------------------------| | HGP: | paraffinic low sulfur gas oil (800-1050 degrees Fahrenheit) | | HGL: | low sulfur gas oil (800-1050 degrees Fahrenheit) | | HGM: | medium sulfur gas oil (800-1050 degrees Fahrenheit) | | HGH: | high sulfur gas oil (800-1050 degrees Fahrenheit) | | GOH: | hydrofined gas oil (800-1050 degrees Fahrenheit) | | GOU: | hydrofined gas oil (800-1050 degrees Fahrenheit) ultra low sulfur | | DFF: | distillate feed (550-690 degrees Fahrenheit) | | DHK: | desulfurized atmospheric residuum (1050 | | | degrees Fahrenheit +). Produced by unit RDS. | | HGX: | gas oil raffinate produced by propane solvent de-asphalting | | Atmospheric Residua: | several residua of sufficiently low asphalt and metals content | (which tend to be the lower-sulfur-content residua) to conform to current FCC technology limitations. In order to contain the already large number of FCC feed vectors, several streams are composited into the above primary feeds in Table TRS as listed below: | DSL C(650-690) LO S N | HGO FD(800-1050) LO S N | 6LLHGL | |---------------------------|-------------------------|--------| | DSL C(650-690) LO S N | HGO FD(800-1050) LO S N | 6HLHGL | | DSL C(650-690) LO S N | HGO FD(800-1050) LO S N | 7LLHGL | | DSL C(650-690) PFFN | HGO FD(800-1050) PFFN | 7HLLGP | | COKER GAS OIL | HGO FD(800-1050) HI S N | CGOHGH | | LGO FD(690-800) HI S N | HGO FD(800-1050) HI S N | LGHHGH | | LGO FD(690 800) MD S N | HGO FD(800-1050) MD S N | LGMHGM | | LGO FD(690-800) LO S N | HGO FD(800-1050) LO S N | LGLHGL | | LGO FD(690-800) PFFN | HGO FD(800-1050) PFFN | LGPHGP | | HGO FD(800 1050) LO S N | HYD G.O. LOS N UNH | HGLGOH | | DIST LS/LM | DIST FCC FEED | DLLDFF | | DSL B(550-650) HP/HC/LS | DIST FCC FEED | 2HLDFF | | DSL C(650-690) LP/HC/LS | H DIST FCC FEED | 6HLDFF | | DSL C(650-690) HP/HC/LS H | DIST FCC FEED | 7HLDFF | | DSL C(650-690) LO S N | HGO FD(800-1050) LO S N | 6LLHGL | | DSL C(650-690) LO S N | HGO FD(800-1050) LO S N | 6HLHGL | | DSL C(650-690) LO S N | HGO FD(800-1050) LO S N | 7LLHGL | | | | | The FCC is characterized by several modes of operation and provision for activating restrictions on flexibility have been built in for constraining advanced FCC catalyst technology options and limiting over-optimization. The FCC representation now accurately equates FCC gasoline, distillates, and decant oil product sulfur with feed sulfur. The available options are: | Option | FCC gasoline codes | Constraints | |-------------------------------|--------------------|---------------------| | Conventional zeolite catalyst | | | | high-sulfur feed/product | FI6, FI7, FI8 | MSD, MSR, FCR | | medium-sulfur feed/product | FC6, FC7, FC8 | | | low-sulfur feed/product | FR6, FR7, FR8 | | | ultra-low-sulfur feed/product | FQ6, FQ7, FQ8* | | | High octane zeolite catalyst | | | | high-sulfur feed/product | ZI6, ZI7, ZI8 | MSD,MSR,MSZ and FCR | | medium-sulfur feed/product | ZC6, ZC7, ZC8 | | | low-sulfur feed/product | ZR6, ZR7, ZR8 | | | ultra-low-sulfur feed/product | RC6, RC7, RC8 | | | Low olefin content gasoline | | | | high-sulfur feed/product | 6ZI, 7ZI, 8ZI | MSZ | | medium-sulfur feed/product | 6ZF, 7ZF, 8ZF | | | low-sulfur feed/product | 6ZR, 7ZR, 8ZR | | | ultra-low-sulfur feed/product | 6RF, 7RF, 8RF | | | High light olefin yield | | | | Option | FCC gasoline codes | Constraints | |-------------------------------|--------------------|-------------| | high-sulfur feed/product | 851 | MSL | | medium-sulfur feed/product | 85F | | | low-sulfur feed/product | 85R | | | ultra-low-sulfur feed/product | 85U | | | Ultra-Low-Sulfur Modes | | FCU | | All Modes | | SVR | ^{*} This feed sulfur/catalyst mode currently not activated, although FCC gasoline properties are held in Table GCB, etc. MSD and MSR refer to constraints on distillate/light gas oil and atmospheric residuum proportions. A value of "1" in the FCR row signals a residuum which is eligible for FCC residuum cracking, generally higher than 20 API, with the associated sulfur content lower than 0.7 percent. MSZ and MSL limit the proportion of specialty zeolite catalysts. The above references to low sulfur FCC gasoline refer to the production of catalytic gasolines generally suited to making reformulated gasoline at the 50-ppm level. FCU is the constraint on all ultra-low-sulfur modes. The low olefin content gasoline mode is directed at reducing the olefin content of reformulated gasoline by reducing the olefins in the catalytic gasoline, principally the light catalytic gasoline. This mode also lowers the octane somewhat and reduces the yield of C5 and lighter olefins. The high light-olefin yield operation takes a different approach to reformulated gasoline production and utilizes enhanced octane ZSM-5 catalyst with OHS additive to maximize the yield of light olefins to produce feedstocks for the oxygenate and alkylation refinery process units. The operating cost row OVC coefficient has been raised by \$0.60/bbl of gas oil feed to account for the unit revamp and increased fractionation costs associated with this operation. This is a high conversion operation in the 80- to 85-percent range. The FCC conversion range represented in the model is from 65 to 85 percent conversion to 430 degrees Fahrenheit- FCC gasoline. The SVR row may be used to constrain or report the overall conversion level. The light end yields contained in the model reflect an overall C3 recovery of 75 percent. Light cycle oil characterizations (qualities) are a function of conversion and FCC feed sulfur level. Decanted (clarified) oil characterizations are a function of sulfur level only: | LCO ULOW | 0.05S 60P CO | NV LC7 | |---------------|--------------|--------| | LCO ULOW | 0.05S 80P CO | NV LC8 | | LCO | 0.25S 60P CO | NV LC1 | | LCO | 0.25S 80P CO | NV LC2 | | LCO | 0.85S 60P CO | NV LC3 | | LCO | 0.85S 80P CO | NV LC4 | | LCO | 2.00S 60P CO | NV LC5 | | LCO | 2.00S 80P CO | NV LC6 | | CLARIFIED OIL | 0.10 SUL | COX | | CLARIFIED OIL | 0.65 SUL | COL | | CLARIFIED OIL | 2.20 SUL | COM | | CLARIFIED OIL | 5.50 SUL | COH | | | | | The four levels of LCO and decant oil sulfur correspond to the four base levels of FCC feed sulfur, namely: 0.05 percent, 0.30 percent, 1.00 percent, and 2.50 percent. Actual feeds may produce mixes of products depending upon actual feed sulfur level. Weight fraction catalytic coke yields are contained in the model (row COK) and are set to be activated for checking the FCC weight balance and to provide input to any EIA type reports which contain FCC catalytic coke production. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data include the following published data: "Fuels for Tomorrow," staff article, Oil & Gas Journal, June 18, 1990, p.52. Chin, A. A. et al, "FCC Cracking of Coker Gas Oils", Paper 91C presented at the AIChE Fall Meeting, November 1989 Humphries, A. et al, "The Resid Challenge: FCC Catalyst Technology Update," Paper 70C
presented at the AIChE Spring Meeting, April 1991. Stokes G. M. et al, "Reformulated Gasoline Will Change FCC Operations and Catalysts," *Oil & Gas Journal*, July 2, 1990, p.58. Keyworth, D. A. and Reid, T. A., "Octane Enhancement From LPG," Paper 5A presented at the AIChE Summer Meeting, August 1989. "Innovative Improvements Highlight FCC's Past and Future," staff article, *Oil & Gas Journal*, January 8, 1990, p.33. Deady, J. et al, "Strategies For Reducing FCC Gasoline Sensitivity," Paper AM-89-13 presented at the NPRA Annual Meeting, March 1989. Dwyer, F.G. et al, "Octane Enhancement In FCC Via ZSM-5," Paper AM-87-63 presented at the NPRA Annual Meeting, March 1987. Yanik, S. J. et al, "A Novel Approach to Octane Enhancement Via FCC Catalysis," Paper AM-85-48 presented at the NPRA Annual Meeting, March 1985. Krikorian, K. V. and Brice, J. C., "FCC's Effect on Refinery Yields," *Hydrocarbon Processing*, September 1987, p.63. ### TABLE FGS GASOLINE FRACTIONATION This idealized unit, representing a probable series of distillation towers, fractionates: - Whole catalytic gasoline specific to the different FCC unit operating modes - Coker naphtha produced by the coker units KRD and KRF - Purchased natural gasoline. The whole FCC gasoline is fractionated to produce reactive amylenes for alkylation and oxygenate plant feed; normal amylene for gasoline blending, alkylation or hydrogenation; reactive hexylenes for oxygenate plant feed; normal hexylene for gasoline blending or hydrogenation; light catalytic gasoline, containing isopentane, normal pentane and iso- and normal hexanes plus the C7 to 250 degrees Fahrenheit fractions; heavy catalytic gasoline (250 - 400 degrees Fahrenheit) for reformer feed and gasoline blending; and the front end of light cycle oil for distillate blending. Coker naphtha (175 - 375 degrees Fahrenheit) is fractionated to produce iso-amylene, the other reactive amylenes and reactive hexylenes, and the remaining naphtha bottoms. Natural gasoline is fractionated to produce iso and normal butane and light and medium naphtha cuts. Data sources are in-house EnSys data, calculations and estimates supported by the following: Keefer, P. and Masters, K., "Ultimate C4/C5 Olefin Processing Scheme for Maximizing Reformulated Gasoline Production," Paper AM-91-50 presented at the NPRA Annual Meeting, March 1991. Stokes G. M. et al, "Reformulated Gasoline Will Change FCC Operations and Catalysts," *Oil & Gas Journal*, July 2, 1990, p.58. #### TABLE ETS ETHYLENE CRYOGENIC FRACTIONATION This unit distills ethylene from refinery gas for alkylation plant feed using cryogenic (low temperature technology). All feed and product streams are in barrels of fuel oil equivalents (bblFOE) and the saturate co-product PGS (ethane) is used for refinery fuel gas and to meet any refinery sales requirements. Data sources are based on in-house EnSys data, calculations, and estimates. # TABLE OLE C2-C5 DE-HYDROGENATION ("OLEX") This process unit dehydrogenates saturated C2/C3/C4 and IC5 refinery streams to produce on the order of 1500 cf/bbl of hydrogen per bbl of feed and the corresponding olefin streams for alkylation and oxygenate plant feeds. The propylene may be used for alkylation (or ether DIPE) plant feed and petrochemical sales, the normal butylene for alkylation plant feed, the isobutylene for MTBE/ETBE oxygenate production and alkylation plant feed and the isoamylene for TAME/TAEE oxygenate production and alkylation plant feed. This process is suited for reformulated gasoline production and aids in RVP reduction through removing butane and isopentane from the gasoline pool. Data sources include the following: "UOP Process Solutions for Reformulated Gasoline," Copyright 1991, UOP/RFG SK 05-91, provided by UOP to ORNL. Buonomo, G. et al, "The Fluidized Bed Technology for Paraffins Dehydrogenation: Snam Progetti-Yarsintez Process," presented to DEWITT 1990 Petrochemical Review, Houston, Texas, March 27-29, 1990. #### TABLE C4I BUTANE ISOMERIZATION This unit isomerizes normal butane to produce isobutane. The isobutane may be used for alkylation plant feed and, potentially, for dehydrogenation to produce isobutylene for MTBE and ETBE production. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. ## TABLE C4S BUTENE TRANSFER PSEUDO-UNIT This unit splits FCC and coker total butylenes into 70 percent normal butylene (C4E) and 30 percent isobutylene (I4E). No costs are attached to this unit because the total stream is normally fed to MTBE/ETBE plants without fractionation and only the isobutylene is consumed. The costs of processing the total butylene stream are included in the oxygenate plant costs. The problem of reflecting the C4E/I4E split on alkylation plant costs is complex. The alkylate produced by normal butylene is approximately 4 RONC/MONC higher than that produced by isobutylene. Therefore, if the alkylation unit is preferentially consuming normal butylene from FCC/coker mixed butylenes, pre-fractionation costs should be attached to the alkylation plant for taking advantage of this option. However, if, as is often the case, oxygenate and alkylation units are both present in the LP solution (to produce reformulated gasoline), then the MTBE/ETBE unit is situated upstream of the alkylation unit so as to avoid the fractionation costs. The practice in this model is not to add additional alkylation plant feed pre-fractionation costs. This could cause overoptimization (understate costs) for some cases. Data sources are in-house EnSys data. # TABLE ETH, ETM OXYGENATE PRODUCTION A process unit which consumes methanol or ethanol to produce a wide range of oxygenates. The olefin feeds and corresponding oxygenate products are: 4.22.1.2 Table A4. Oxygenate Products | Oxygenate Products | | | | | |--------------------|------|------|------|------| | Methanol Feed | Code | MTBE | TAME | THME | | Isobutylene | I4E | Х | | | | Reactive Amylenes | R5E | | Х | | | Reactive Hexylenes | R6E | | | Х | | | | | | | | Ethanol Feed | Code | ETBE | TAEE | THEE | | Isobutylene | I4E | Х | | | | Reactive Amylenes | R5E | | Х | | | Reactive Hexylenes | R6E | | | Х | The Tables (R)POL constraint NME can be used to constrain or eliminate all modes other than iso-butylene/MTBE. The data for THME and THEE were estimated by EnSys, since there is little or no commercial experience to provide operating data. Other data sources include the following: Bakas, S.T. et al, "Production of Ethers from Field Butanes and Refinery Streams," presented at the AIChE Summer Meeting in San Diego, California, August 1990. Prichard, "Novel Catalyst Widens Octane Opportunities," NPRA Annual Meeting, San Antonio, Texas, March 29-31, 1987. Miller, D. J., "Ethyl Tertiary Butyl Ether (ETBE) Production," Paper 42B presented at the AIChE Summer Meeting, August 1989. Des Courieres, J., "The Gasoline Ethers: MTBE, ETBE, TAME & TAEE: Their Production," Paper 13A presented at the AIChE Summer Meeting, August 1990. Chemical Engineering Progress, August 1991, p.16. Unzelman, G. W., "Future Role of Ethers in U. S. Gasoline," Paper AM-89-06 presented at the NPRA Annual Meeting, March 1989. Refinery Handbook, Ethers, Hydrocarbon Processing, November 1990, p.126. "UOP Process Solutions for Reformulated Gasoline," Copyright 1991, UOP/RFG SK 05-91, provided by UOP to ORNL. Prichard, G., "Novel Catalyst Widens Octane Opportunities," Paper AM-87-48 presented at the NPRA Annual Meeting, March 1987. # TABLE DIP PROPYLENE OXYGENATE PRODUCTION (not used) This unit is modeled after a recently announced Mobil process which reacts propylene and water to produce a propylene ether (DIPE). # TABLE C24 DIMERIZATION OF ETHYLENE TO 1-BUTENE This unit dimerizes ethylene to 1-butene for alkylation plant feed. It produces a small byproduct quantity of 1-hexene. Data sources are based on in-house EnSys data, calculations, and estimates. # TABLE C4T ISOMERIZATION OF BUTENE-1 TO BUTENE-2 This unit isomerizes butene-1 to butene-2 for the purpose of improving alkylate quality and reducing the alkylation plant acid consumption. Approximately 13 cf/bbl of hydrogen is consumed to hydrogenate butadiene and reduce the mercaptan content. Alkylate octanes are increased 1.8 RONC and 0.8 MONC and alkylation plant operating costs are reduced by approximately 30 percent. Data sources include the following: Novalany, S. and McClung, R. G., "Better Alky from Treated Olefins," *Hydrocarbon Processing*, September 1989, p.66. # TABLE ALK ALKYLATION (replaced with HFA and SFA) The isobutane sulfuric acid alkylation of the following feed streams is represented: | ETHYLENE (FOE) | C2E | |-----------------------|-----| | PROPYLENE | UC3 | | MIXED BUTYLENES | UC4 | | N-BUTYLENE | C4E | | TRT/ISOM BUTENE-2 | T4E | | ISOBUTYLENE | I4E | | NORMAL AMYLENE | C5E | | REACTIVE AMYLENE(ISO) | R5E | The feedstocks are reacted with iso-butane to produce alkylate product. The range of feedstocks has been extended because of the high significance of alkylates as reformulated gasoline blendstocks. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. Published sources include: Leonard, J. et al, "What to do with Refinery Propylenes," Paper 5B, presented at the AIChE Summer Meeting, August 1989. Masters, K. R., "Alkylation's Role in Reformulated Gasoline," presented at the AIChE Spring Meeting, April 1991. Masters, K. and Prohaska, E.A., "Add MTBE Unit Ahead of Alkylation," *Hydrocarbon Processing*, August 1988, p.48. "UOP Process Solutions for Reformulated Gasoline," Copyright 1991, UOP/RFG SK 05-91, provided by UOP to ORNL. #### TABLE SFA SULFURIC ACID ALKYLATION The sulfuric acid alkylation of the following feed streams is represented: | PROPYLENE | UC3 | |-------------------|-----| | MIXED BUTYLENES | UC4 | | N-BUTYLENE | C4E | | ISOBUTYLENE | I4E | | TRT/ISOM BUTENE-2 | T4E | | OTHER AMYLENE | C5E | | REACTIVE AMYLENES | R5E | |
TRT/ISOM AMYLENES | T5E | | ISOBUTANE | IC4 | The feed stocks are reacted with iso-butane to produce alkylate product. The range of feedstocks has been extended because of the high significance of alkylates as reformulated gasoline blendstocks. The operating temperature range for H₂SO₄ alkylation (SFA) is 30-70°F. Pressures vary based on manufacturer (60-75 psia for the Stratco process and ~25psia for the XOM process). Isobutane-to-olefin ratios are typically lower than for the HFA process. Hydrogen transfer is not significant for C3 and C4 olefin feeds, and less than 20% of C5 olefins are converted to pentanes. Optimum acid concentration in the contactor is between 93-95% for the alkylation of C3 and C4 olefins and less than 90% for C5 olefin feeds. Feed drying is not critical and feed treatment is optional (depending on specific circumstances). Spent acid is typically sent off-site for regeneration. Recently, co-catalysts have been employed with SFA to inhibit the production of heavy polymers (ASO) and to reduce acid make-up requirements. The central data source was a paper written by John Marano for DOE/NETL and DOE/EIA, which contains references to many other published sources. Marano, John J. (Energy and Environmental Solutions, LLC), "Refinery Technology Profiles: Alkylation," report prepared for the U.S. Department of Energy, National Energy Technology Lab, and U.S. Energy Information Administration, September 2002. # TABLE HFA HYDROFLUORIC ACID ALKYLATION The hydrofluoric acid alkylation (HFA) of the following feed streams is represented: | PROPYLENE | UC3 | |-------------------|-----| | MIXED BUTYLENES | UC4 | | N-BUTYLENE | C4E | | ISOBUTYLENE | I4E | | TRT/ISOM BUTENE-2 | T4E | | OTHER AMYLENE | C5E | | REACTIVE AMYLENES | R5E | | TRT/ISOM AMYLENES | T5E | The feedstocks are reacted with iso-butane to produce alkylate product. The range of feedstocks has been extended because of the high significance of alkylates as reformulated gasoline blendstocks. The operating temperature range for HFA is higher than for the H₂SO₄ process, 70-100°F. Pressures between 115-165 psia are sufficient to keep both the feed and acid in the liquid phase. High isobutene-to-olefin ratios minimize polymerization and raise alkylate octane number. High acid concentrations between 83-92% are needed to produce high-quality alkylate, with concentrations of 86-90% preferred in the contactor. Feed drying using molecular sieves is required since any water present will have a large negative effect on catalyst activity. Other feed treatment is optional (depending on specific circumstances). Regeneration of the HF catalyst occurs within the plant by means of an HF re-run column, which separates HF from any heavy polymers (ASO) produced. Due to the toxicity of HF, all product and waste streams must be treated to remove HF. The central data source was a paper written by John Marano for DOE/NETL and DOE/EIA, which contains references to many other published sources. Marano, John J. (Energy and Environmental Solutions, LLC), "Refinery Technology Profiles: Alkylation," report prepared for the U.S. Department of Energy, National Energy Technology Lab, and U.S. Energy Information Administration, September 2002. #### TABLE CPL CATALYTIC POLYMERIZATION CPL is a process that uses solid phosphoric acid catalyst to polymerize propylene and butylenes to produce olefinic polymer gasoline. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. #### TABLE DIM DIMERSOL DIM is a process that uses liquid phosphoric acid catalyst to polymerize propylene to produce dimer, which is lighter and higher in octane than olefinic polymer gasoline. Data sources include: Leonard, J. et al, "What to do with Refinery Propylenes," Paper 5B, presented at the AIChE Summer Meeting, August 1989. ## TABLE H56 HYDROGENATION OF NORMAL AMYLENE AND HEXYLENE This unit hydrogenates the normal C5/C6 olefins to produce low octane normal pentanes and hexanes for isomerizer unit feed, where the octanes are raised. Hydrogen consumptions are in the range of 1300-1500 cf/bbl. Data sources are based on in-house EnSys data, calculations and estimates. In an era of reformulated gasolines, this process provides a means of removing the reactive normal C5 and C6 olefins from the gasoline pool. As described elsewhere, the iso C5 and C6 olefins are likely to be dealt with by alkylation or etherification. #### TABLE PHI PENTANE/HEXANE ISOMERIZATION This is a once-through isomerizer (without recycle) which produces isopentane- and isohexane-rich isomerates from the following potential feed streams: NATURAL GASOLINE NAT C5/C6 ISOM LSR FD LON SRL LSR GASO(C5-175)ION SRI LSR GASO(C5-158) SLI NORMAL PENTANE NC5 NORMAL HEXANE NC6 Sources: Jacobs Refinery Database, 2005. Data compiled by NETL, 2005. # TABLE TRI PENTANE/HEXANE (TOTAL RECYCLE) ISOMERIZATION This is a total recycle isomerizer with molecular sieve which produces a high octane isomerate, approximately 4 RONC and 7 MONC greater than produced by unit PHI. The capital and operating costs are also higher. #### Sources: Jacobs Refinery Database, 2005. Data compiled by NETL, 2005. # TABLE H2P HYDROGEN PRODUCTION VIA STEAM REFORMING TABLE H2X HYDROGEN PRODUCTION VIA PARTIAL OXYDATION These process units produce hydrogen by steam reforming and partial oxidation, respectively. The steam reforming feeds include natural gas, propane, butane, and light naphtha. The partial oxidation plant feeds include low, intermediate, and high sulfur fuel oils. Hydrogen is expressed in bblFOE throughout the model. Correspondence is 19,646 cf/bblFOE, equivalent to 50.9 bblFOE/MMcf of hydrogen. The hydrogen is produced at 97 percent purity, containing 3 percent methane. Data sources are in-house EnSys data. # TABLE HLO HYDROGEN TRANSFER TO FUEL This is essentially a model calibration table which permits the downgrading of produced hydrogen (95 percent purity) to fuel gas. The transfer ratio is established by matching the refinery hydrogen plant usage against known utilized capacity and reflects the fact that not all produced hydrogen, notably from catalytic reforming, is reclaimed for hydrotreating refinery streams. #### TABLE SUL SULFUR PLANT This unit reacts hydrogen sulfide with steam over iron oxide catalyst to produce sales grade sulfur. The unit is modeled after the Claus process with the capability to add a Stretford unit to reduce the hydrogen sulfide in the tail gas. The sulfur quantity is expressed in short tons, and the coefficients for the unit are scaled by 0.1 to increase the LP solution efficiency. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys and in-house EnSys data. ### TABLE FUM REFINERY FUEL PSEUDO-UNIT Pseudo-unit for routing refinery streams to refinery fuel. This unit mixes refinery gases, naphthas, distillates and fuel oils to the model "FUL" row for internal refinery process unit fuel consumption. The feed coefficients reflect the bblFOE conversion factors. The LP solution activities associated with this unit should be controlled and/or scrutinized since an over-constrained or otherwise infeasible model may be characterized by dumping high value streams to refinery fuel. Data sources are not pertinent except for the bblFOE conversion factors. These are based on EnSys calculations and estimates. TABLE STG STEAM GENERATION TABLE KWG POWER GENERATION These are steam and power generation refinery utility units. These represent the generation of steam (in units of M lb/day) from refinery fuel (in bblFOE) and electricity (in kilowatt-hours) from steam (Mlb/day). An efficiency of 31 percent is assumed for power generation and 70 percent for steam generation. The power and steam are consumed in the various refinery process units. Data sources are the EIA RYM model data provided to ORNL and thereafter to EnSys, in-house EnSys data and EnSys calculations and estimates. # TABLE REL REFINERY LOSS PSEUDO-UNIT This pseudo-unit is used to represent refinery light end losses and to adjust refinery loss to match calibration cases. The unit's single vector allocates light ends loss, as a fraction (currently 0.5 percent) of the crude run, across the light ends streams namely process gas, C3's, C4's, and light naphtha. The loss vector is equated with crude run via row FRL which is generated in Tables (R)POL. Each crude processing vector in Table ACUCUTS has a 1 entry against FRL. Estimates of the loss factors are based on in-house EnSys data and estimates based on calibration runs and knowledge of refinery losses. Note: this unit was deactivated (capacity = 0) beginning with *AEO2007* due to the breakout of the PGS intermediate stream into its component light ends (C1-C4). # TABLE PFA PRODUCED FUEL ADJUSTMENT PSEUDO-UNIT This pseudo-unit is used to represent refinery propane and butane losses to refinery fuel gas (C2 and lighter). The unit's single vector allocates C3 and C4 losses (transfers) to fuel gas as a fraction (currently 0.4 percent) of total crude run. The transfer vector is equated with crude run via row APF which is generated in Table (R)POL. Each crude processing vector in Table ACUCUTS has a one entry against APF. Estimates of the fuel adjustment factors are based on in-house EnSys data and estimates based on calibration runs and knowledge of refinery losses. Note: this unit is deactivated (capacity = 0) beginning with AEO2007. # TABLE ARD ATMOSPHERIC RESIDUUM DESULFURIZATION This is an atmospheric residuum desulfurization process which uses residuum as feed to produce high-value light products, such as transportation fuels, low-sulfur fuel oil (0.1 percent - 0.5 percent sulfur), RFCC feed (3-6 MCR, 5-15 ppm vanadium & nickel), and coker feed. Chevron manufactures a hydrogen-efficient, fixed-bed atmospheric RDS hydroprocessing unit. Source: **ORNL** # TABLE CDT CATALYTIC DESULFURIZATION This is a catalytic distillation unit from CDTech. This process uses two
stages of catalytic distillation to desulfurize FCC gasoline (as high as 95 percent reduction), while producing high yield and very little octane loss. The first stage (a CDHydro7 dehexanizer, combining fractionization with hydrogenation) receives FCC gasoline (C5+) to produce a C5/C6 overhead stream and a C7+ bottoms stream. The bottoms stream is further processed in the second stage (using CDHDSSM technology, a catalytic distillation process combining hydrodesulfurization and distillation) to remove up to 95 percent of the sulfur. Octane number loss is limited to only 1.0 (R+M)/2. The output stream from the second stage is combined with the C5/C6 overhead stream from the first stage. Data sources are based on in-house Ensys data. Source: Rock, Kerry L., Richard Foley, and Hugh M. Putman, "Improvements in FCC Gasoline Desulfurization Via Catalytic Distillation," AM-98-37, presented at the 1998 NPRA Annual Meeting, March 15-17, 1998, San Francisco, California. #### TABLE HCL LOW CONVERSION HYDROCRACKER Added for additional processing flexibility to allow for low conversion hydrocracking. These units operate at pressure ranges of 800 to 1,200 psig, which is consistent with the typical design pressures for existing hydrotreating units. The diesel yield and quality are limited by constraints of existing equipment, and the primary objective is to improve the level of conversion and not product quality. Source: ORNL, in reference to *Hydrocarbon Processing*, November 1999 Vol. 78 No. 11, "Use FCC feed pretreating methods to remove sulfur," by S. W. Shorey, D. A. Lomas, and W. H. Keesom, UOP LLC, Des Plaines, Illinois ### TABLE SYG CATALYTIC NAPHTHA HYDROTREATER (not used) Generic conventional cat naphtha desulfurization, producing 30-600 ppm sulfur cat naphtha product (depending on feed). A large drop in octane occurs. Data sources are based on in-house EnSys data. Source: EnSys technology database update, June 2002. #### TABLE HS2 HYDRODESULFURIZER 2 A second-stage process to further desulfurizes the low-sulfur output from the HL1 process to produce a sub-10ppm sulfur distillate product stream. This has limited commercial applications. Data sources are based on in-house EnSys data and report to EIA. Source: EnSys technology database update, June 2002. # TABLE HD1 DEEP HYDRODESULFURIZER 1 A first stage processing of high-sulfur straight run streams and medium plus high-sulfur high-conversion LCO streams to desulfurize and produce a 20-30 ppm output stream. This output is then processed in a second stage (HD2). This has limited commercial applications. Data sources are based on in-house EnSys data and report to EIA. Source: EnSys technology database update, June 2002. #### TABLE HD2 DEEP HYDRODESULFURIZER 2 A second-stage process to takes coker gas and high-sulfur high-conversion LCO stocks (from HD1) to further desulfurize and produce a sub-10-ppm sulfur distillate product stream. This has limited commercial applications. Data sources are based on in-house EnSys data and report to EIA. Source: EnSys technology database update, June 2002. # TABLE HCM HYDROCRACKER (PARTIAL) This ExxonMobil process uses a hydrocracker to convert a variety of refinery feedstocks into high-quality, lighter products. The feedstock can include AGO, VGO, FCC light cycle oil, DAO, and Coker gas oil. The processing goal can be to maximize 1) conversion to naphtha for gasoline production, 2) production of specification jet fuel, and 3) production of middle distillates. Also, it can be used in partial conversion operations to produce highly upgraded, low-sulfur heavy gas oils. Single stage, once-through partial conversion, and two-stage processing designs are available. The single-stage, single-train reactor is designed to process in excess of 30,000 bpsd fresh feed capacity. The MAK process utilizes a dual catalyst system to react feedstock and hydrogen to achieve desulfurization, denitrogenation, demodulation, and hydrocracking. Optimal conditions are set depending on the processing goal. The product is gas oil with a 200-300 ppm sulfur content, with by-products produced at 50-100 ppm gasoline and 100-200 ppm sulfur distillate. Data sources are based on in-house EnSys data. Sources: EnSys technology database update, June 2002. #### TABLE MOD CATALYTIC FLUIDIZED BED A prospective commercial process by ExxonMobil to convert olefins to gasoline and distillate with 20 ppm sulfur content. ExxonMobil's Olefin to Gasoline (MOG) is a catalytic fluidized bed reactor process which utilizes a ExxonMobil proprietary shape-selective zeolite catalyst (ZSM-5) to convert light olefins (in lower value refinery streams) into high octane gasoline (C5+ components), or distillate (MOD process). The feed to the MOG reactor can include reactive olefins (ethylene and propylene in FCC offgas), propylene in FCC C3 LPG cut, butenes in MTBE raffinate, and pentenes, hexenes, and heptenes in light FCC gasoline. The feed is converted into C5+ through oligomerization, carbon number redistribution, hydrogen transfer, aromatization, alkylation, and isomerization reactions. The quality of MOG gasoline produced depends on the processing severity and the feed olefins, with yields ranging from 60 - 75 percent of high-octane gasoline blendstock. Typical qualities include: RONC (94 - 98), MONC (81 - 85), density (62 - 57 API), and RVP (7.2 psi/0.5 bar). The zeolite catalyst is considered to be environmentally safe, and can be reused in the FCC unit to increase octane quality. Sources: EnSys technology database update, June 2002. # TABLE MDH MOBIL HYDROGENATION (not used) (renamed from MOH to MDH because PMM already had MOH defined for another unit) This unit is an ancillary ExxonMobil process to saturate MOD distillate olefins. Produces a 20 ppm sulfur distillate. Data sources are based on in-house EnSys data. Source: Ensys technology database update, June 2002. #### TABLE OCT CATALYTIC FIXED-BED HYDROPROCESSOR OCTGAIN is a commercially proven process from ExxonMobil which uses a proprietary catalyst system to selectively remove sulfur and saturate olefins from FCC naphtha or full range gasoline while maintaining (or even increasing) octane levels. Benzene content and vapor pressure in the product are nearly unchanged. The low mercaptan level of the desulfurized gasoline allows it to be directly blended into the refinery gasoline pool. There is a trade-off between C5+ yield and product octane (similar to naphtha reforming); however, the product yield has been increased with recent advancements in catalysts (OCT-220). The unit is a fixed-bed, low-pressure process that operates at essentially gasoline hydrofinishing conditions. Data sources are based on in-house EnSys data. Source: Shih, S.S., P.J. Owens, S. Palit, and D.A. Tryjankowski, "Mobil's OCTGAINTM Process: FCC Gasoline Desulfurization Reaches a New Performance Level," AM-99-30, presented at the 1999 NPRA Annual Meeting, 1999. EnSys technology database update, June 2002. #### TABLE SOX CAUSTIC SOX SCRUBBER This unit is an FCC regenerator gas caustic scrubber to meet current emission standards. Allows full benefit of FCC feed hydrodesulfurization. It has many commercial applications. Data sources are based on in-house EnSys data. Source: EnSys technology database update, July 1999. # TABLE MTO METHANOL TO OLEFINS FLUID BED (not used) An Exxon Mobil fluid bed process which converts methanol to olefins (MTO), and by-product gasoline with 5 ppm sulfur content (via subsequent oligomerization of the light olefin product). Provides olefins for ExxonMobil's MOG/MOD process. The MTO process was demonstrated in a semi-works plant (100 barrels per day) in Germany in 1982-83, a prospective commercial process. #### TABLE GSF/GSH COKE GASIFICATION The coke gasification unit is designed to gasify high-sulfur petroleum coke to produce either synthetic gas (SGS) or hydrogen (and synthetic gas). In order to properly represent the difference in investment costs between hydrogen and synthetic gas production, separate gasification units are modeled (identified as GSF and GSH, respectively). The product hydrogen is put into a pool stream to be used by other processing units at the refinery. The synthetic gas is sent to a combined heat and power unit (CHP) to produce steam and/or electricity. The byproduct H2S is also produced and sent to a pool stream. The design size of the coke gasification unit was set to 2000 short tons coke feed per calendar day (s-tons/cd). The capacity factor (or utilization rate) was assumed to be 0.85 for the gasification units. The original design allowed either petroleum coke feed or asphalt feed; however, only the coke feed design was adapted into the PMM due to competition issues between the coke and asphalt feeds. #### Source: -"Implementation of Petcoke Gasification in U.S. DOE's National Energy Modeling System (NEMS)," John J. Marano, PhD, Consultant, and Patricia A. Rawls, U.S. DOE (NETL), June 2003. Attachment file "PMM_GSF1.xls" in email from John Marano, Consultant for NETL to Han-Lin Lee, U.S. DOE and Elizabeth May, SAIC, April 2003. # TABLE CHP COMBINED HEAT/POWER UNIT WITH SYNGAS FEED The combined heat and power unit operates on an annual basis with a 90% synthetic gas and 10% natural gas feed. The natural gas feed is used when the synthetic fuel is unavailable (estimated at 10% of the operating year). The CHP can produce electricity and steam, or electricity only. Its annual utilization rate is 96%. Similar to CGN, the CHP receives a credit for selling a specified % of its produced electricity to the grid. All steam is consumed by the refinery operations. Source: "Implementation of Petcoke Gasification in U.S. DOE's National Energy Modeling System (NEMS)," John J. Marano, PhD, Consultant, and Patricia A. Rawls, U.S. DOE (NETL), June 2003. Attachment file "PMM_GSF1.xls" in email from John Marano, Consultant for NETL to Han-Lin Lee, U.S. DOE and Elizabeth May, SAIC, April 2003. ## TABLE SGP SATURATE GAS
PLANT This saturate gas plant processes gas streams coming from the crude unit, hydrotreaters, cat reformers, and hydrocrackers. The off-gases from these processes contain hydrogen, methane, ethane, propane, and butanes. Propane and butanes recovered in the gas plant may be sold as LPG. Components not recovered are processed to produce a gas suitable as refinery fuel or as feed to the hydrogen production plant. # Source: Data used in SGP are derived from J. H. Gary and G.E. Handwerk, Petroleum Refining Technology and Economic(4th ed)s, p.286. #### TABLE IOT ISOOCTANE The Isooctane process consists of a dimerization reactor, a separation unit, and an Olefin saturation unit (hydrogenation). The dimerization reactor and the separation unit convert the Olefin feed to Iso-octene (in the presence of an acid catalyst). The hydrogenation section then uses hydrogen to convert the Iso-octene to Isooctane. This also includes a feed pretreatment process (using hydrogen) to remove sulfur containing compounds. The Isooctane process serves to replace the MTBE process when the MTBE ban is enacted. #### Source: "Refinery Technology Profiles ISOOCTANE/ISOOCTENE and Related Technologies," John J. Marano, PhD, prepared for the U.S. DOE, January 2003. Attachment file "EnSys IOT Data.xls" in email from Martin Tallett, Ensys Energy & Systems Inc, to Han-Lin Lee, U.S. DOE, January 11, 2002. # TABLE PHS PHILLIPS S-ZORP ADSORPTION The PHS process removes sulfur from the FCC naphtha stream. The naphtha stream is combined with a small quantity of hydrogen. The mixture is heated to vaporize the gasoline. The gasoline vapor passes through a fluid bed reactor where a proprietary sorbent is used to remove the sulfur from the hydrocarbon stream. The sweet gasoline vapor is stripped from the sorbent, and is cooled. The sorbent passes through a regenerator where SO₂ is removed and sent to a sulfur recovery unit. The cleaned sorbent is recycled to the fluid bed reactor. Hydrogen is consumed by this process. Source: Tallett, Martin, Ensys Energy & Systems Inc, "PMM Refinery Technology Update and Transportation Links Update, Subtask 3. PMM Refinery Technology Update," delivered to DOE/EIA, Contract DE-AF-01-03EI37625.A000, June 17, 2003. Phillips Petroleum Company, "S Zorb Process Overview," accessed Dec. 2003, <a href="http://www.fuelstechnology.com/szorb">http://www.fuelstechnology.com/szorb</a> processover.htm # (cogener) ## TABLE CGN CHP UNIT This refinery process unit is used to produce steam and generate electricity for sale to the power grid. The fraction sold is contained in input Table SELCGN, the electricity not sold is consumed by refinery process units. Data sources are from EIA-906 survey form. # (mchproc) The processing units identified here are located outside the refinery at merchant facilities. These facilities provide the refinery with additional processing streams which are merged into the refining process. The following processing units located at the merchant facilities correspond with the refinery processing units defined as follows: | Merchant Processing Unit ID | Refinery Processing Unit ID | |-----------------------------|-----------------------------| | C4X | C4I | | OLX | OLE | | ETX | ETH | | IOX | IOT | | FUX | FUL | | STX | STG | | CGX | CGN | For detailed descriptions of these merchant processing units, refer to the corresponding refinery processing units defined above. ## TABLE SMD SHELL MIDDLE DISTILLATE SYSTHESIS A Shell GTL (gas to liquids) process for converting natural gas into ultra clean middle distillates, including diesel, kerosene, and naphtha. The GTL process involves three steps. First, natural gas is converted into a synthesis gas by steam reforming or partial oxidation. This is followed by the Fischer-Tropsch synthesis, which converts the synthesis gas into liquid hydrocarbons. The final step involves partial upgrading of these hydrocarbons to produce liquids boiling in the range of naphtha, kerosene (jet fuel) and diesel fuel. The overall process can be operated to maximize the production of jet or diesel fuel. These GTL's can be used as a blending stock to improve the quality of other products. GTL products have no sulfur, aromatics, nitrogen compounds, or particulates. In the PMM, the liquid product yield from GTL is 113 bbl/million scf of natural gas. In diesel mode, 71.5% of the liquid product is produced as diesel fuel, and in jet mode, 63% of the liquid is produced as a kerosene-jet fuel. The remaining liquid product in both modes is a naphtha fraction. For a GTL plant with a nominal capacity of 34,000 BPD. #### Source: Commercial processes developed by Sasol and Shell, researched by John J. Marano, PhD, Consultant, 2007 ### TABLE SOD SASOL MIDDLE DISTILLATE UNIT This unit is a Sasol Ltd. GTL (gas to liquids) process for converting natural gas into ultra clean middle distillates (similar to the information presented for SMD). #### Source: Commercial processes developed by Sasol and Shell, researched by John J. Marano, PhD, Consultant, 2007 #### TABLE PSA PRISM PRESSURE SWING ABSORPTION- H2 PURIFICATION The PSA performs hydrogen recovery from refinery gas, and produces 95-99.999+% H2 purity. Source: EnSys technology database update, June 2002 Hydrocarbon Processing, May 2002. ## TABLE HPM H2 PRURIFICATION (not used) The HPM performs hydrogen recovery from refinery gas using steam reforming. Source: EnSys technology database update, June 2002 Hydrocarbon Processing, May 2002. # TABLE HCU HYDROCRACKER(GASOIL)- ADVANCED TECHNOLOGY Represents an advanced state-of-the-art hydrocracking technology designed to increase middle distillate yield by 5 to 15%, with middle distillate 10 ppm sulfur level products, 5-15% aromatics content, and at the 60 cetane level. Employs an efficient means of recycling unconverted oil to the cracking reactor, an enhanced hot separator, and back-staged reactors. EnSys technology database update, June 2002 Hydrocarbon Processing, May 2002 (p. 117). # TABLE PSZ HYDRODESULFURIZATION (S ZORB) FOR DIESEL The PSZ is a Phillips' sulfur removing technology. It uses a regenerative sorbent to chemically attract and remove sulfur from gasolines, diesel, and distillates to 10 ppm levels. Operates at a very low net chemical hydrogen consumption, and at lower pressures than hydrotreating processes. It's capable of removing difficult sulfur species, such as 4,6 Dimethyldibenzothiophene. # Source: Source: EnSys technology database update, June 2002 Fuels Technology, www.fuelstechnology.com/szorbdiesel.htm #### TABLE SUP SULPHCO SELECTIVE OXYDATION Oxydation of sulfur containing components can effectively convert sulfur compounds. It is being investigated for practical use in refining. Oxidation can be very selective, and can be performed at mild conditions. #### Source: EnSys technology database update, June 2002 Sulphco website, www.sulphco.com/technology.htm #### TABLE PHP BENZENE SATURATION Saturates the high temperature naphtha-benzene cut from the NDS to eliminate the benzene component, leaving a C-6 isomerate, ready for blending into gasoline. "MSAT Affected Units 07P1907.xls" in email from John Marano, to William Brown, U.S. DOE, July 2007. TABLE CTX/CTZ COAL-TO-LIQUIDS CONVERSION TABLE CCC CO2 COMPRESSION, CAPTURED FROM CTL The coal-to-liquids process used in the PMM was updated for AEO2008 based on a recent DOE/NETL study. The process consists of a coal gasification unit, followed by a Fischer-Tropsch liquefaction unit, with CHP. It also has a CO₂ compression unit (CCC) represented and linked to a transport and sequestration cost curve. The CTL facility represented in the PMM is designed to maximize the production of liquid fuels, with only a small amount of excess power being exported to the electric grid. The CTL facility is capable of processing 21,800 TPD bituminous coal (e.g., Illinois Basin) with an energy content of 26.25 MM Btu/ton (dry), and produces 50,000 BPD of liquid hydrocarbons and 201.4 MW net power for sale to the grid. The liquid product consists of 43% naphtha, which is sold as a petrochemical feedstock for the production of ethylene and propylene, and 57% distillate, which is marketed as clean-burning diesel fuel. The capacity factor (or utilization rate) is assumed to be 0.85. ## Source: "Baseline Technical and Economic Assessment of a Commercial Scale Fischer-Tropsch Liquids Facility" (DOE/NETL-2007/1260), National Energy Technology Laboratory, supplemented with information from a number of other studies. # TABLE BTL BIOMASS-TO-LIQUIDS CONVERSION TABLE CCB CO2 COMPRESSION, CAPTURED FROM BTL The biomass-to-liquids process used in the PMM consists of a biomass gasification unit, followed by a Fischer-Tropsch liquefaction unit, with CHP. A CO₂ compression unit (CCB) is also represented, and is linked to a transport and sequestration cost curve. The BTL is designed with two operating modes: diesel and jet fuel production. The BTL facility processes 10.945 MM Btu's of biomass per barrel of liquids produced, and produces 254.4 KWh of excess electricity per barrel of liquids produced. This is sold to the grid. A standard size unit is assumed to be 3,143 bbl/cd of liquids production. ## Source: John Marano, PhD, JM Energy Consulting, Inc., Aug. 5, 2008, EXCEL spreadsheet containing BTL process inputs, yields, capital and operating costs, and fuel requirements: located on DOE/EIA server: 16007/prj/maranoreports/BTX PMM Tables-080508-Beth.xls. TABLE CBL COAL/BIOMASS-TO-LIQUIDS (CBTL) CONVERSION TABLE CCX CO2 COMPRESSION, CAPTURED FROM CBTL The CBL unit converts a mixture of coal and biomass to liquids using the same technology used for coal-to-liquids (CTL): consists of a biomass gasification unit, followed by a Fischer-Tropsch liquefaction unit, with CHP. As with the CTL unit, a CO2 compression unit (CCX) is also represented, and is linked to a transport and sequestration cost curve. The feed stream is assumed to consist of 20% biomass and 80% coal (by energy
content). Assuming a 50,000 BPD unit, the CBTL facility processes 17,450 TPD coal and 6,600 TPD of biomass, and produces 4.8 GWh per day of excess electricity. This is sold to the grid. Source: EIA analyst judgement, based on CTL processing characteristics; since AEO2010. #### TABLE BPU BIOMASS PYROLYSIS UNIT This represents a process for converting numerous forms of biomass into partially upgraded Pyrolysis oil. The BPU process involves three steps. First, biomass is converted into a gaseous stream and a char stream through fast Pyrolysis. This is followed immediately by a quench step in which the non-condensable gases are removed from a liquid Pyrolysis oil. In the final step, this Pyrolysis oil is upgraded through a traditional hydrocracking process to a liquid suitable for transportation in the existing petroleum infrastructure. This liquid, known as UBA, has a lowered oxygen content, density, and heating value compared to the untreated Pyrolysis oil. In the PMM, the liquid product yield from BPU is 72 gallons/ton of biomass. The O2 content in the final product is approximately 10%, which is assumed to be the limit at which it is miscible with crude oil. The non-condensable gases are converted to heat and power in order to operate the plant. It is assumed that any excess utility requirement (for startup) is negligible. Source: Commercial processes developed by Dynamotive and Ensyn, researched by Mac Statton, EIA, 2009. # TABLE GDT VEGETABLE OIL/TALLOW HYDROPROCESSINT (GREEN DIESEL) The hydroprocessing of vegetable oils and tallows to produce a renewable diesel fuel (sometimes referred to as green diesel). This can be carried out in a stand-alone unit or in conjunction with the processing of petroleum diesel. The latter could be carried out within a single unit within an existing refinery (as modeled in the PMM), sharing plant utilities and hydrogen. Two feedstocks are considered, vegetable (soy) oil and yellow grease (material collected from restaurants and other food preparation facilities as part of waste disposal and recycling operations). These inputs produce a green diesel of slightly lower quality and yield. In addition to diesel, small quantities of propane and naphtha are produces in the process. Green diesel has many advantages over biodiesels produced by transesterification. It is of much higher quality and can be used neat or in any blend proportions with petroleum-derived diesel. Source: Numerous papers and factsheets available from the technology developer's websites. The technology developers include UOP, Neste Oy, ConocoPhillips and Petrobras. All have or are in the process of conducting commercial demonstrations.