
Nitrosamine in Kosmetika Vortrag beim 35. Dt. Lebensmittelchemikertag 18.-20.09.2006, Dresden

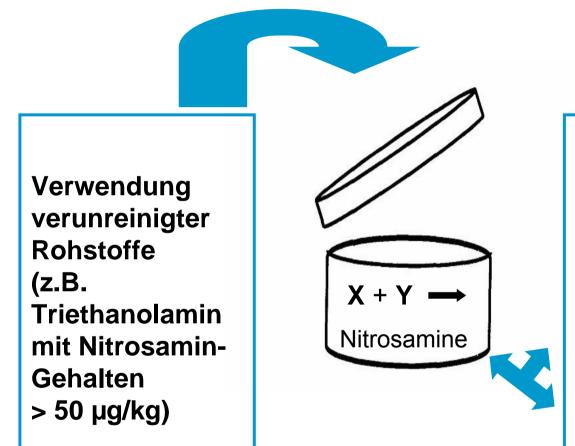
Dr. Cornelia Walther

LGL: Schwerpunktlabor Kosmetik / Tabak

Themenüberblick

Bildung / Aufnahme

Exogen:


Aufnahme von Nitrosaminen aus der Umwelt (Tabakrauch, Lebensmittel, Bedarfsgegenstände aus Gummi z.B. Schnuller, Luftballons, Kosmetika)

Mensch

Endogen:

Bildung von Nitrosaminen durch Reaktion von Aminen mit nitrosierenden Agentien

Herkunft / Quellen für Nitrosamine in Kosmetika (1)

Bildung im
Kosmetikprodukt
während Herstellung
und Lagerung durch
Reaktion zwischen
nitrosierenden
Komponenten (X) und
nitrosierbaren
Aminkomponenten (Y)

Herkunft / Quellen für Nitrosamine in Kosmetika (2)

Nitrosierbare Inhaltsstoffe:

Alkanolamine wie Mono- oder Triethanolamin (MEA, TEA), verunreinigt mit DEA Fettsäure-Dialkylamide und Dialkanolamide (Cocamide-DEA) Mono-, Trialkylamine und deren Salze

Nitrosierende Inhaltsstoffe:

Nitrite (z.B. Korrosionsschutzinhibitoren) Nitrogruppenhaltige Konservierungsstoffe Stickoxide (z.B. aus Umgebungsluft)

Funktion / Verwendung der nitrosierbaren Inhaltsstoffe in Kosmetika:

Emulgatoren

Körperpflegemittel

Tensidbestandteile / waschakt. Substanz - Shampoos, Reinigungsprod.

Schaumverstärker — Duschbädern etc.

TEA als Neutralisations-/Verdickungsmittel — Gelherstellung (z.B. Haargel)

TEA zur Verhinderung des Austrocknens — Wimperntusche, Eyeliner

Bildung von Nitrosaminen (1)

Startreaktion: N-Nitrosierung von sek. oder tert. Aminen

Sekundäre Amine: Rasche Weiterreaktion zu Nitrosaminen

Sekundäre Amine

= Hauptausgangspunkt für Nitrosamin-Bildung in Kosmetika

Bildung von Nitrosaminen (2)

Tertiäre Amine wie Triethanolamin (TEA) führen durch Umlagerung und Abspaltung von sek. Amin indirekt und mit geringerer Geschwindigkeit zur Nitrosaminbildung:

In Kosmetika häufiges Reaktionsprodukt:

N-Nitrosodiethanolamin (NDELA)
$$C_2H_5OH$$
 HOH_5C_2 — N — N = O

Toxikologie von NDELA

- Genotoxisch und cancerogen Kat.2 (MAK-Liste 2005)
- Dermale Penetration in Studien nachgewiesen; Resorptionsrate abhängig von der Matrix
- Verstoffwechslung in der Leber zu reaktiven Intermediaten, die kovalent an DNA binden.
- Systemisch wirkendes Kanzerogen: führt unabhängig vom Aufnahmeweg zur Tumorentstehung in Leber, Nieren und oberem Respirationstrakt

Dosis ohne schädliche Auswirkungen für menschliche Gesundheit nicht festlegbar für genotoxische Cancerogene

ALARA-Prinzip ("as low as reasonably achievable")

Rechtliche Situation in EU

Nitrosamine in Kosmetika verboten bis auf technisch unvermeidbare Reste in gesundheitlich unbedenklichen Anteilen. Verwendung von Dialkanolaminen und deren Salzen verboten.

- Höchstmengen, Verwendungsbeschränkungen und Reinheitsanforderungen bei verschiedenen nitrosierbaren und nitrosierenden Inhaltsstoffen
 - z.B. "nicht zusammen mit nitrosierend wirkenden Systemen verwenden" "in nitritfreien Behältern aufbewahren"

Höchstmenge an sek. Amin im Rohstoff: 0,5 %

Höchstmenge Triethanolamin: 2,5 % im Fertigprodukt ("Leave-on")

Höchstgehalt an Nitrosamin im Rohstoff: z.B. 50 µg/kg Triethanolamin

max. NDELA-Gehalt im Fertigprodukt: 1,25 µg/kg

Analytik von NDELA mittels GC/TEA (1)

(Modifiziert nach Rühl)

Probe + Kieselgel

- + Inhibitor (Ammoniumsulfamat)
- + Int. Standard (NDIPLA)

Reinigung über Kieselgelsäule

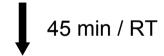
Einengen am Rotationsverdampfer zur Trockene

Lösen mit CHCl₃/Aceton

Reinigung über Sep-Pack-Silica-Cartridge

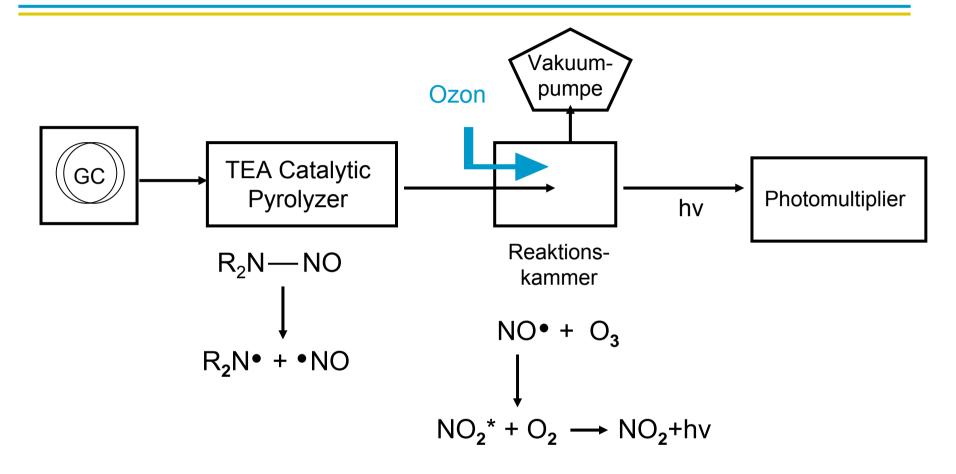
Elution mit Aceton

Flution mit n-Hexan/Aceton/MeOH

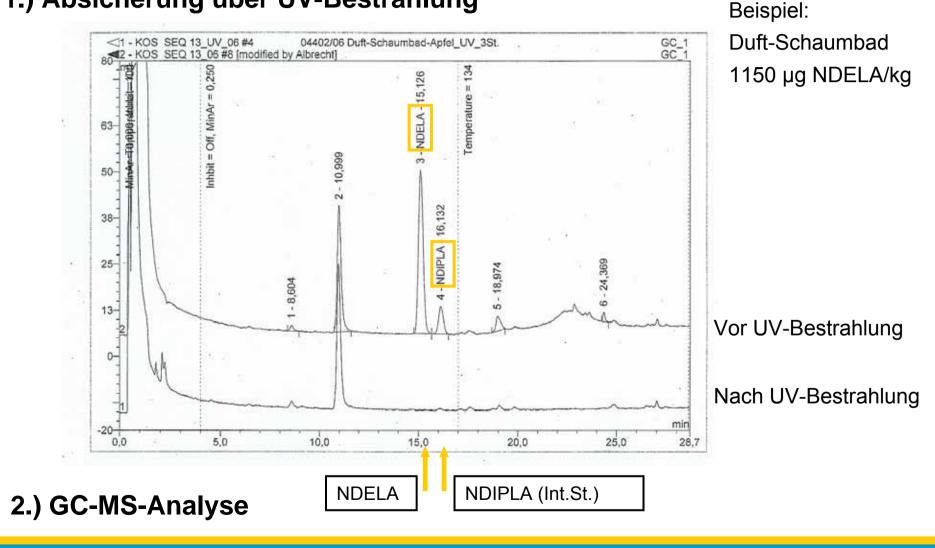

Analytik von NDELA mittels GC/TEA (2)

Einengen zur Trockne mit Stickstoff

Zugabe von Silylierungsmittel


Zugabe von Isooctan; bei Trübung Zentrifugation

GC-Thermal-Energy-Analyser (TEA)



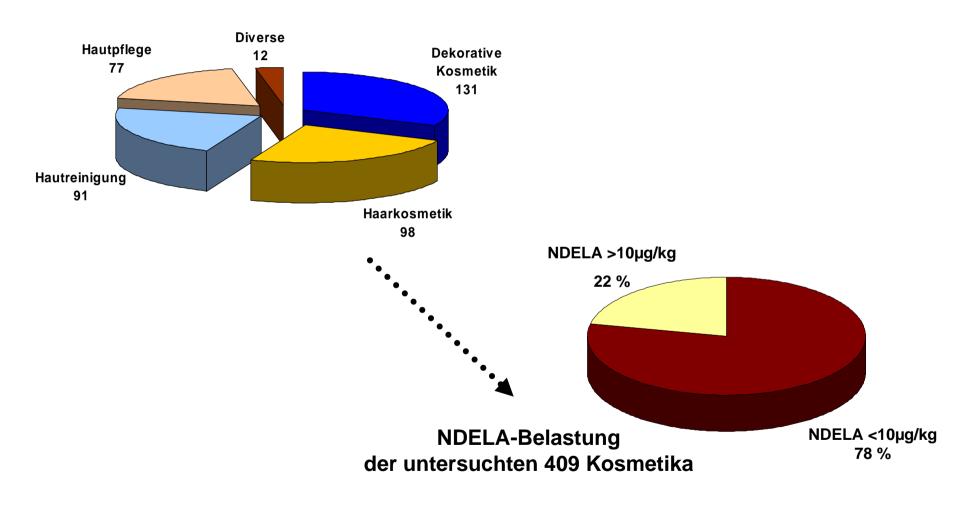
Analytik: Thermal Energy Analyser

Analytik: Absicherung

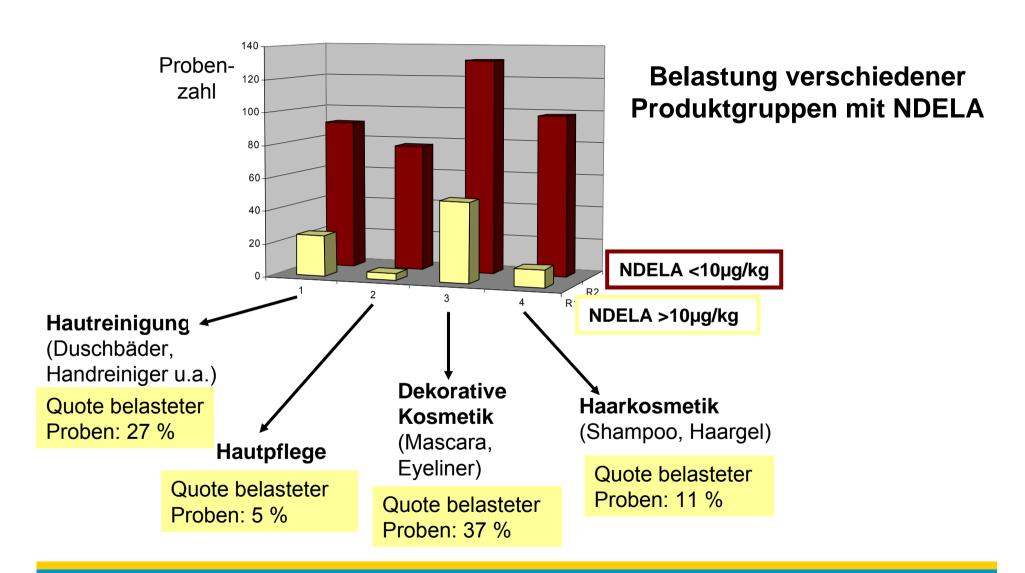
1.) Absicherung über UV-Bestrahlung

Untersuchungsergebnisse

1987/88: BGA /IKW weisen Kosmetikhersteller eindrücklich auf mögliche Nitrosaminbelastung bei Kosmetika und Maßnahmen zu deren Vermeidung hin


◆ 1989: Etablierung einer geeigneten Analysenmethode am LUA Südbayern

1990-1992: Ergebnisse der ersten NDELA-Untersuchungsserie


Jahr	Proben zahl	Probenart	Auffälligkeiten NDELA > 10µg/kg	Maximum NDELA
1990	52	v.a. Hautpflege- u. Hautschutzprod.	15 % Proben	42 μg/kg
1991	61	Diverse Kosmetika	10 % Proben	110 µg/kg
1992	99	davon 33 Proben Mascara	45 % der Mascaras	2420 μg/kg (M) 1100 μg/kg (S)

Untersuchungsergebnisse 2001-2005:

Spektrum untersuchter Proben

Untersuchungsergebnisse 2001-2005

Untersuchungsergebnisse 2001-2005

Intensität der NDELA-Belastung in verschiedenen Produktkategorien

Produktkategorie	Medianwert NDELA- Belastung µg/kg	Maximaler NDELA-Gehalt µg/kg	Probenart	Herkunft
Hautreinigung	46	801	Rosenseife	unbekannt
Hautpflege	90	4128	Aloe Hautpflegegel	Südafrika
Dekorative Kosmetik	42	1002	Eyeliner	EU
Haarkosmetik	149	1289	Haargel	Türkei

Ausblick

Weitere Anstrengungen zur Reduzierung der Nitrosaminbelastung erforderlich

- Strikte Einhaltung der Rechtsvorgaben bzgl. Spezifikationen der Rohstoffe und Kombinationsverbote von nitrosierenden / nitrosierbaren Komponenten
- Reduzierung zufälliger Nitritquellen
 (z.B. durch Verwendung von entsprechend aufbereitetem Wasser, nitritfreie Behälter, Minimierung des Kontakts mit NO-haltiger Luft...)
- Verwendung von Inhibitoren (geeignet für jeweilige Formulierung)
- Weitere Kontrollen der Fertigprodukte durch Hersteller und Kosmetiküberwachung

Ausblick

Ziel

Verwirklichung des ALARA-Prinzips

Nitrosaminbelastung durch Kosmetika so gering wie technisch erreichbar