Sign in to use this feature.

Years

Between: -

Search Results (3,995)

Search Parameters:
Keywords = MODIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13840 KiB  
Article
Estimating Forest Gross Primary Production Using Machine Learning, Light Use Efficiency Model, and Global Eddy Covariance Data
by Zhenkun Tian, Yingying Fu, Tao Zhou, Chuixiang Yi, Eric Kutter, Qin Zhang and Nir Y. Krakauer
Forests 2024, 15(9), 1615; https://doi.org/10.3390/f15091615 - 13 Sep 2024
Abstract
Forests play a vital role in atmospheric CO2 sequestration among terrestrial ecosystems, mitigating the greenhouse effect induced by human activity in a changing climate. The LUE (light use efficiency) model is a popular algorithm for calculating terrestrial GPP (gross primary production) based [...] Read more.
Forests play a vital role in atmospheric CO2 sequestration among terrestrial ecosystems, mitigating the greenhouse effect induced by human activity in a changing climate. The LUE (light use efficiency) model is a popular algorithm for calculating terrestrial GPP (gross primary production) based on physiological mechanisms and is easy to implement. Different versions have been applied for many years to simulate the GPP of different ecosystem types at regional or global scales. For estimating forest GPP using different approaches, we implemented five LUE models (EC-LUE, VPM, GOL-PEM, CASA, and C-Fix) in forests of type DBF, EBF, ENF, and MF, using the FLUXNET2015 dataset, remote sensing observations, and Köppen–Geiger climate zones. We then fused these models to additionally improve the ability of the GPP estimation using an RF (random forest) and an SVM (support vector machine). Our results indicated that under a unified parameterization scheme, EC-LUE and VPM yielded the best performance in simulating GPP variations, followed by GLO-PEM, CASA, and C-fix, while MODIS also demonstrated reliable GPP estimation ability. The results of the model fusion across different forest types and flux net sites indicated that the RF could capture more GPP variation magnitudes with higher R2 and lower RMSE than the SVM. Both RF and SVM were validated using cross-validation for all forest types and flux net sites, showing that the accuracy of the GPP simulation could be improved by the RF and SVM by 28% and 27%. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

22 pages, 6472 KiB  
Article
Identifying Determinants of Spatiotemporal Disparities in Ecological Quality of Mongolian Plateau
by Zhengtong Wang, Yongze Song, Zehua Zhang, Gang Lin, Peng Luo, Xueyuan Zhang and Zhengyuan Chai
Remote Sens. 2024, 16(18), 3385; https://doi.org/10.3390/rs16183385 - 12 Sep 2024
Viewed by 249
Abstract
Vegetation quality is crucial for maintaining ecological health, and remote sensing techniques offer precise assessments of vegetation’s environmental quality. Although existing indicators and remote sensing approaches provide extensive spatial coverage, challenges remain in effectively integrating diverse indicators for a comprehensive evaluation. This study [...] Read more.
Vegetation quality is crucial for maintaining ecological health, and remote sensing techniques offer precise assessments of vegetation’s environmental quality. Although existing indicators and remote sensing approaches provide extensive spatial coverage, challenges remain in effectively integrating diverse indicators for a comprehensive evaluation. This study introduces a comprehensive ecological quality index (EQI) to assess vegetation quality on the Mongolian Plateau from 2001 to 2020 and to identify the determinants of EQI variations over space and time. We developed the EQI using remotely sensed normalized difference vegetation index (NDVI) data and the net primary productivity (NPP). Our analysis revealed distinct spatial patterns, with high ecological quality concentrated in northern Mongolia and eastern Inner Mongolia. Temporal fluctuations, indicative of ecological shifts, were primarily observed in eastern Mongolia and specific zones of Inner Mongolia. We employed a Geographically Optimal Zones-based Heterogeneity (GOZH) model to analyze the spatial scales and interactions influencing EQI patterns. This study found that precipitation, with an Omega value of 0.770, was the dominant factor affecting the EQI, particularly at spatial scales of 40–50 km. The GOZH model provided deeper insights into the spatial determinants of the EQI compared with previous models, highlighting the importance of climatic variables and their interactions in driving ecological quality. This research enhanced our understanding of vegetation quality dynamics and established a foundation for ecosystem conservation and informed management strategies, emphasizing the critical role of climate, especially precipitation, in shaping ecological landscapes. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

27 pages, 1003 KiB  
Article
Surrogate-Assisted Symbolic Time-Series Discretization Using Multi-Breakpoints and a Multi-Objective Evolutionary Algorithm
by Aldo Márquez-Grajales, Efrén Mezura-Montes, Héctor-Gabriel Acosta-Mesa and Fernando Salas-Martínez
Math. Comput. Appl. 2024, 29(5), 78; https://doi.org/10.3390/mca29050078 - 11 Sep 2024
Viewed by 306
Abstract
The enhanced multi-objective symbolic discretization for time series (eMODiTS) method employs a flexible discretization scheme using different value cuts for each non-equal time interval, which incurs a high computational cost for evaluating each objective function. It is essential to mention that each solution [...] Read more.
The enhanced multi-objective symbolic discretization for time series (eMODiTS) method employs a flexible discretization scheme using different value cuts for each non-equal time interval, which incurs a high computational cost for evaluating each objective function. It is essential to mention that each solution found by eMODiTS is a different-sized vector. Previous work was performed where surrogate models were implemented to reduce the computational cost to solve this problem. However, low-fidelity approximations were obtained concerning the original model. Consequently, our main objective is to propose an improvement to this work, modifying the updating process of the surrogate models to minimize their disadvantages. This improvement was evaluated based on classification, predictive power, and computational cost, comparing it against the original model and ten discretization methods reported in the literature. The results suggest that the proposal achieves a higher fidelity to the original model than previous work. It also achieved a computational cost reduction rate between 15% and 80% concerning the original model. Finally, the classification error of our proposal is similar to eMODiTS and maintains its behavior compared to the other discretization methods. Full article
Show Figures

Graphical abstract

12 pages, 2364 KiB  
Case Report
A Korean Family Presenting with Renal Cysts and Maturity-Onset Diabetes of the Young Caused by a Novel In-Frame Deletion of HNF1B
by Ji Yoon Han, Jin Gwack, Tae Yun Kim and Joonhong Park
Int. J. Mol. Sci. 2024, 25(18), 9823; https://doi.org/10.3390/ijms25189823 - 11 Sep 2024
Viewed by 195
Abstract
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, [...] Read more.
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient’s clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes)
Show Figures

Figure 1

19 pages, 7218 KiB  
Article
Relationship between Vegetation and Soil Moisture Anomalies Based on Remote Sensing Data: A Semiarid Rangeland Case
by Juan José Martín-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay and Ana M. Tarquis
Remote Sens. 2024, 16(18), 3369; https://doi.org/10.3390/rs16183369 - 11 Sep 2024
Viewed by 233
Abstract
The dynamic of rangelands results from complex interactions between vegetation, soil, climate, and human activity. This scenario makes rangeland’s condition challenging to monitor, and degradation assessment should be carefully considered when studying grazing pressures. In the present work, we study the interaction of [...] Read more.
The dynamic of rangelands results from complex interactions between vegetation, soil, climate, and human activity. This scenario makes rangeland’s condition challenging to monitor, and degradation assessment should be carefully considered when studying grazing pressures. In the present work, we study the interaction of vegetation and soil moisture in semiarid rangelands using vegetation and soil moisture indices. We aim to study the feasibility of using soil moisture negative anomalies as a warning index for vegetation or agricultural drought. Two semiarid agricultural regions were selected in Spain for this study: Los Vélez (Almería) and Bajo Aragón (Teruel). MODIS images, with 250 m and 500 m spatial resolution, from 2002 to 2019, were acquired to calculate the Vegetation Condition Index (VCI) and the Water Condition Index (WCI) based on the Normalised Difference Vegetation Index (NDVI) and soil moisture component (W), respectively. The Optical Trapezoid Model (OPTRAM) estimated this latter W index. From them, the anomaly (Z-score) for each index was calculated, being ZVCI and ZWCI, respectively. The probability of coincidence of their negative anomalies was calculated every 10 days (10-day periods). The results show that for specific months, the ZWCI had a strong probability of informing in advance, where the negative ZVCI will decrease. Soil moisture content and vegetation indices show more similar dynamics in the months with lower temperatures (from autumn to spring). In these months, given the low temperatures, precipitation leads to vegetation growth. In the following months, water availability depends on evapotranspiration and vegetation type as the temperature rises and the precipitation falls. The stronger relationship between vegetation and precipitation from autumn to the beginning of spring is reflected in the feasibility of ZWCI to aid the prediction of ZVCI. During these months, using ZWCI as a warning index is possible for both areas studied. Notably, November to the beginning of February showed an average increase of 20–30% in the predictability of vegetation anomalies, knowing moisture soil anomalies four lags in advance. We found other periods of relevant increment in the predictability, such as March and April for Los Vélez, and from July to September for Bajo Aragón. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Regional Soil Moisture Monitoring)
Show Figures

Figure 1

16 pages, 10159 KiB  
Article
Contribution of Climatic Change and Human Activities to Vegetation Dynamics over Southwest China during 2000–2020
by Gang Qi, Nan Cong, Man Luo, Tangzhen Qiu, Lei Rong, Ping Ren and Jiangtao Xiao
Remote Sens. 2024, 16(18), 3361; https://doi.org/10.3390/rs16183361 - 10 Sep 2024
Viewed by 217
Abstract
Southwest China is an important carbon sink area in China. It is critical to track and assess how human activity (HA) and climate change (CC) affect plant alterations in order to create effective and sustainable vegetation restoration techniques. This study used MODIS NDVI [...] Read more.
Southwest China is an important carbon sink area in China. It is critical to track and assess how human activity (HA) and climate change (CC) affect plant alterations in order to create effective and sustainable vegetation restoration techniques. This study used MODIS NDVI data, vegetation type data, and meteorological data to examine the regional and temporal variations in the normalized difference vegetation index (NDVI) in Southwest China from 2000 to 2020. Using trend analysis, the study looks at the temporal and geographical variability in the NDVI. Partial correlation analysis was also used to assess the effects of precipitation, extreme climate indicators, and mean temperature on the dynamics of the vegetation. A new residual analysis technique was created to categorize the effects of CC and HA on NDVI changes while taking extreme climate into consideration. The findings showed that the NDVI in Southwest China grew at a rate of 0.02 per decade between 2000 and 2020. According to the annual NDVI, there was a regional rise in around 85.59% of the vegetative areas, with notable increases in 36.34% of these regions. Temperature had a major influence on the northern half of the research region, but precipitation and extreme climate had a notable effect on the southern half. The rates at which climatic variables and human activity contributed to changes in the NDVI were 0.0008/10a and 0.0034/10a, respectively. These rates accounted for 19.1% and 80.9% of the variances, respectively. The findings demonstrate that most areas displayed greater HA-induced NDVI increases, with the exception of the western Sichuan Plateau. This result suggests that when formulating vegetation restoration and conservation strategies, special attention should be paid to the impact of human activities on vegetation to ensure the sustainable development of ecosystems. Full article
Show Figures

Figure 1

17 pages, 34922 KiB  
Article
Coastal Sea Ice Concentration Derived from Marine Radar Images: A Case Study from Utqiaġvik, Alaska
by Felix St-Denis, L. Bruno Tremblay, Andrew R. Mahoney and Kitrea Pacifica L. M. Takata-Glushkoff
Remote Sens. 2024, 16(18), 3357; https://doi.org/10.3390/rs16183357 - 10 Sep 2024
Viewed by 346
Abstract
We apply the Canny edge algorithm to imagery from the Utqiaġvik coastal sea ice radar system (CSIRS) to identify regions of open water and sea ice and quantify ice concentration. The radar-derived sea ice concentration (SIC) is compared against the (closest to the [...] Read more.
We apply the Canny edge algorithm to imagery from the Utqiaġvik coastal sea ice radar system (CSIRS) to identify regions of open water and sea ice and quantify ice concentration. The radar-derived sea ice concentration (SIC) is compared against the (closest to the radar field of view) 25 km resolution NSIDC Climate Data Record (CDR) and the 1 km merged MODIS-AMSR2 sea ice concentrations within the ∼11 km field of view for the year 2022–2023, when improved image contrast was first implemented. The algorithm was first optimized using sea ice concentration from 14 different images and 10 ice analysts (140 analyses in total) covering a range of ice conditions with landfast ice, drifting ice, and open water. The algorithm is also validated quantitatively against high-resolution MODIS-Terra in the visible range. Results show a correlation coefficient and mean bias error between the optimized algorithm, the CDR and MODIS-AMSR2 daily SIC of 0.18 and 0.54, and ∼−1.0 and 0.7%, respectively, with an averaged inter-analyst error of ±3%. In general, the CDR captures the melt period correctly and overestimates the SIC during the winter and freeze-up period, while the merged MODIS-AMSR2 better captures the punctual break-out events in winter, including those during the freeze-up events (reduction in SIC). Remnant issues with the detection algorithm include the false detection of sea ice in the presence of fog or precipitation (up to 20%), quantified from the summer reconstruction with known open water conditions. The proposed technique allows for the derivation of the SIC from CSIRS data at spatial and temporal scales that coincide with those at which coastal communities members interact with sea ice. Moreover, by measuring the SIC in nearshore waters adjacent to the shoreline, we can quantify the effect of land contamination that detracts from the usefulness of satellite-derived SIC for coastal communities. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

23 pages, 11041 KiB  
Article
Spatiotemporal Variations in Carbon Sources and Sinks in National Park Ecosystem and the Impact of Tourism
by Quanxu Hu, Jinhe Zhang, Huaju Xue, Jingwei Wang and Aiqing Li
Sustainability 2024, 16(18), 7895; https://doi.org/10.3390/su16187895 - 10 Sep 2024
Viewed by 516
Abstract
The capacity of carbon sinks varies among the different types of ecosystems, and whether national parks, as an important type of nature reserve, have a high carbon sink capacity (CSC) and whether eco-tourism in national parks affects their CSC are the main scientific [...] Read more.
The capacity of carbon sinks varies among the different types of ecosystems, and whether national parks, as an important type of nature reserve, have a high carbon sink capacity (CSC) and whether eco-tourism in national parks affects their CSC are the main scientific issues discussed. Using MODIS Net Primary Production (NPP) product data, this study analysed the spatiotemporal variation in carbon sources and sinks (CSSs) in the ecosystem of Huangshan National Park from 2000 to 2020, as well as the impact of tourism on these carbon sources and sinks. The findings indicate that, while the ecosystems of national parks generally have a strong CSC, they may not always function as carbon sinks, and during the study period, Huangshan National Park served as a carbon source for four years. Temporally, the CSSs in the ecosystem of the national park exhibit a cyclical pattern of change with a four-year cycle and strong seasonality, with spring and autumn functioning as carbon sinks, and summer and winter as carbon sources. Spatially, the CSSs of the national park ecosystem exhibited a vertical band spectrum of spatial distribution, and the CSC showed a trend of gradual enhancement from low altitude to high altitude. Tourism is a major factor that has an impact on the CSC of national park ecosystems. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

21 pages, 10744 KiB  
Article
Spatiotemporal Variations in MODIS EVI and MODIS LAI and the Responses to Meteorological Drought across Different Slope Conditions in Karst Mountain Regions
by Mei Yang, Zhonghua He, Guining Pi and Man You
Sustainability 2024, 16(17), 7870; https://doi.org/10.3390/su16177870 - 9 Sep 2024
Viewed by 400
Abstract
Based on monthly MODIS EVI and LAI data from 2001 to 2020, combined with the Standardized Precipitation Evapotranspiration Index (SPEI), this study employs Theil–Sen trend analysis, Mann–Kendall (MK) test, Hurst index analysis, and correlation analysis to comparatively analyze the overall vegetation trends, spatial [...] Read more.
Based on monthly MODIS EVI and LAI data from 2001 to 2020, combined with the Standardized Precipitation Evapotranspiration Index (SPEI), this study employs Theil–Sen trend analysis, Mann–Kendall (MK) test, Hurst index analysis, and correlation analysis to comparatively analyze the overall vegetation trends, spatial distribution characteristics, and future trends of different vegetation types in Guizhou Province under varying slope conditions. The study also explores the response of vegetation to SPEI at different time scales across different slopes. The results indicate the following: (1) From 2001 to 2020, the average values of EVI (0.34%/a) and LAI (1.4%/a) during the growing season exhibited an increasing trend, with the improved vegetation areas primarily concentrated in the western region of Guizhou, while the degradation areas were mainly located in the central and eastern regions. (2) Under different slope conditions, EVI generally showed slight improvement, while LAI exhibited significant improvement, with dry-lands experiencing the largest changes. Future trends indicate continuous improvement, but the proportion of vegetation improvement area decreases with increasing slope. When the slope is less than 5°, the proportion of vegetation improvement area is the highest. (3) The positive correlation between EVI, LAI, and SPEI at different time scales is stronger than the negative correlation, with the strongest correlations observed when the slope is less than 5°. When the slope exceeds 35°, the relationship between vegetation and drought response is almost unaffected by the slope. These findings provide a scientific basis for vegetation growth monitoring and the study of climate change and vegetation interactions in Guizhou Province. Full article
Show Figures

Figure 1

24 pages, 15733 KiB  
Article
Evolution Patterns and Dominant Factors of Soil Salinization in the Yellow River Delta Based on Long-Time-Series and Similar Phenological-Fusion Images
by Bing Guo, Mei Xu and Rui Zhang
Remote Sens. 2024, 16(17), 3332; https://doi.org/10.3390/rs16173332 - 8 Sep 2024
Viewed by 408
Abstract
Previous studies were mostly conducted based on sparse time series and different phenological images, which often ignored the dramatic changes in salinization evolution throughout the year. Based on Landsat and moderate-resolution-imaging spectroradiometer (MODIS) images from 2000 to 2020, this study applied the Enhanced [...] Read more.
Previous studies were mostly conducted based on sparse time series and different phenological images, which often ignored the dramatic changes in salinization evolution throughout the year. Based on Landsat and moderate-resolution-imaging spectroradiometer (MODIS) images from 2000 to 2020, this study applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) algorithm to obtain similar phenological images for the month of April for the past 20 years. Based on the random forest algorithm, the surface parameters of the salinization were optimized, and the feature space index models were constructed. Combined with the measured ground data, the optimal monitoring index model of salinization was determined, and then the spatiotemporal evolution patterns of salinization and its driving mechanisms in the Yellow River Delta were revealed. The main conclusions were as follows: (1) The derived long-time-series and similar phenological-fusion images enable us to reveal the patterns of change in the dramatic salinization in the year that we examined using the ESTARFM algorithm. (2) The NDSI-TGDVI feature space salinization monitoring index model based on point-to-point mode had the highest accuracy of 0.92. (3) From 2000 to 2020, the soil salinization in the Yellow River Delta showed an aggravating trend. The average value of salinization during the past 20 years was 0.65, which is categorized as severe salinization. The degree of salinization gradually decreased from the northeastern coastal area to the southwestern inland area. (4) The dominant factors affecting soil salinization in different historical periods varied. The research results could provide support for decision-making regarding the precise prevention and control of salinization in the Yellow River Delta. Full article
Show Figures

Figure 1

22 pages, 25616 KiB  
Article
Identification of High-Quality Vegetation Areas in Hubei Province Based on an Optimized Vegetation Health Index
by Yidong Chen, Linrong Xie, Xinyu Liu, Yi Qi and Xiang Ji
Forests 2024, 15(9), 1576; https://doi.org/10.3390/f15091576 - 8 Sep 2024
Viewed by 388
Abstract
This research proposes an optimized method for identifying high-quality vegetation areas, with a focus on forest ecosystems, using an improved Vegetation Health Index (VHI). The study introduces the Land Cover Vegetation Health Index (LCVHI), which integrates the Vegetation Condition Index (VCI) and the [...] Read more.
This research proposes an optimized method for identifying high-quality vegetation areas, with a focus on forest ecosystems, using an improved Vegetation Health Index (VHI). The study introduces the Land Cover Vegetation Health Index (LCVHI), which integrates the Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI) with land cover data. Utilizing MODIS (Moderate Resolution Imaging Spectroradiometer) satellite imagery and Google Earth Engine (GEE), the study assesses the impact of land cover changes on vegetation health, with particular attention to forested areas. The application of the LCVHI demonstrates that forests exhibit a VHI approximately 25% higher than that of croplands, and wetlands show an 18% higher index compared to grasslands. Analysis of data from 2012 to 2022 in Hubei Province, China, reveals an overall upward trend in vegetation health, highlighting the effectiveness of environmental protection and forest management measures. Different land cover types, including forests, wetlands, and grasslands, significantly impact vegetation health, with forests and wetlands contributing most positively. These findings provide important scientific evidence for regional and global ecological management strategies, supporting the development of forest conservation policies and sustainable land use practices. The research results offer valuable insights into the effective management of regional ecological dynamics. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 23150 KiB  
Article
Analysis of the Influence of Driving Factors on Vegetation Changes Based on the Optimal-Parameter-Based Geographical Detector Model in the Yima Mining Area
by Zhichao Chen, Honghao Feng, Xueqing Liu, Hongtao Wang and Chengyuan Hao
Forests 2024, 15(9), 1573; https://doi.org/10.3390/f15091573 - 7 Sep 2024
Viewed by 366
Abstract
The growth of vegetation directly maintains the ecological security of coal mining areas. It is of great significance to monitor the dynamic changes in vegetation in mining areas and study the driving factors of vegetation spatial division. This study focuses on the Yima [...] Read more.
The growth of vegetation directly maintains the ecological security of coal mining areas. It is of great significance to monitor the dynamic changes in vegetation in mining areas and study the driving factors of vegetation spatial division. This study focuses on the Yima mining area in Henan Province. Utilizing MODIS and multi-dimensional explanatory variable data, the Theil–Sen Median + Mann–Kendall trend analysis, variation index, Hurst index, and optimal-parameter-based geographical detector model (OPGD) are employed to analyze the spatiotemporal changes and future trends in the EVI (enhanced vegetation index) from 2000 to 2020. This study further investigates the underlying factors that contribute to the spatial variation in vegetation. The results indicate the following: (1) During the period studied, the Yima mining area was primarily characterized by a moderate-to-low vegetation cover. The area exhibited significant spatial variation, with a notable pattern of “western improvement and eastern degradation”. This pattern indicated that the areas that experienced improvement greatly outnumbered the areas that underwent degradation. Moreover, there was an inclination towards a deterioration in vegetation in the future. (2) Based on the optimal parameter geographic detector, it was found that 2 km was the optimal spatial scale for the analysis of the driving factors of vegetation change in this area. The optimal parameter combination was determined by employing five spatial data discretization methods and selecting an interval classification range of 5–10. This approach effectively addresses the subjective bias in spatial scales and data discretization, leading to enhanced accuracy in vegetation change analysis and the identification of its driving factors. (3) The spatial heterogeneity of vegetation is influenced by various factors, such as topography, socio-economic conditions, climate, etc. Among these factors, population density and mean annual temperature were the primary driving forces in the study area, with Q > 0.29 and elevation being the strongest explanatory factor (Q = 0.326). The interaction between temperature and night light was the most powerful explanation (Q = 0.541), and the average Q value of the interaction between the average annual temperature and other driving factors was 0.478, which was the strongest cofactor among the interactions. The interactions between any two factors enhanced their impact on the vegetation’s spatial changes, and each driving factor had its suitable range for affecting vegetative growth within this region. This research provides scientific support for conserving vegetation and restoring the ecological system. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Vegetation Dynamic and Ecology)
Show Figures

Figure 1

18 pages, 9816 KiB  
Article
Temporal Dynamics of Global Barren Areas between 2001 and 2022 Derived from MODIS Land Cover Products
by Marinos Eliades, Stelios Neophytides, Michalis Mavrovouniotis, Constantinos F. Panagiotou, Maria N. Anastasiadou, Ioannis Varvaris, Christiana Papoutsa, Felix Bachofer, Silas Michaelides and Diofantos Hadjimitsis
Remote Sens. 2024, 16(17), 3317; https://doi.org/10.3390/rs16173317 - 7 Sep 2024
Viewed by 295
Abstract
Long-term monitoring studies on the transition of different land cover units to barren areas are crucial to gain a better understanding of the potential challenges and threats that land surface ecosystems face. This study utilized the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover [...] Read more.
Long-term monitoring studies on the transition of different land cover units to barren areas are crucial to gain a better understanding of the potential challenges and threats that land surface ecosystems face. This study utilized the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover products (MCD12C1) to conduct geospatial analysis based on the maximum extent (MaxE) concept, to assess the spatiotemporal changes in barren areas from 2001 to 2022, at global and continental scales. The MaxE area includes all the pixels across the entire period of observations where the barren land cover class was at least once present. The relative expansion or reduction of the barren areas can be directly assessed with MaxE, as any annual change observed in the barren distribution is comparable over the entire dataset. The global barren areas without any land change (UA) during this period were equivalent to 12.8% (18,875,284 km2) of the global land surface area. Interannual land cover changes to barren areas occurred in an additional area of 3,438,959 km2 (2.3% of the global area). Globally, barren areas show a gradual reduction from 2001 (91.1% of MaxE) to 2012 (86.8%), followed by annual fluctuations until 2022 (88.1%). These areas were mainly interchanging between open shrublands and grasslands. A relatively high transition between barren areas and permanent snow and ice is found in Europe and North America. The results show a 3.7% decrease in global barren areas from 2001 to 2022. Areas that are predominantly not barren account for 30.6% of the transitional areas (TAs), meaning that these areas experienced short-term or very recent transitions from other land cover classes to barren. Emerging barren areas hotspots were mainly found in the Mangystau region (Kazakhstan), Tibetan plateau, northern Greenland, and the Atlas Mountains (Morocco, Tunisia). Full article
Show Figures

Graphical abstract

16 pages, 6543 KiB  
Article
Climate Warming Has Contributed to the Rise of Timberlines on the Eastern Tibetan Plateau but Slowed in Recent Years
by Xuefeng Peng, Yu Feng, Han Zang, Dan Zhao, Shiqi Zhang, Ziang Cai, Juan Wang and Peihao Peng
Atmosphere 2024, 15(9), 1083; https://doi.org/10.3390/atmos15091083 - 6 Sep 2024
Viewed by 343
Abstract
The alpine timberline is a component of terrestrial ecosystems and is highly susceptible to climate change. Since 2000, the Tibetan Plateau’s high-altitude zone has been experiencing a persistent warming, clarifying that the response of the alpine timberline to climate warming is important for [...] Read more.
The alpine timberline is a component of terrestrial ecosystems and is highly susceptible to climate change. Since 2000, the Tibetan Plateau’s high-altitude zone has been experiencing a persistent warming, clarifying that the response of the alpine timberline to climate warming is important for mitigating the negative impacts of global warming. However, it is difficult for traditional field surveys to clarify changes in the alpine timberline over a wide range of historical periods. Therefore, alpine timberline sites were extracted from 2000–2021, based on remote sensing data sources (LANDSAT, MODIS), to quantify the timberline vegetation growth in the Gexigou National Nature Reserve and to explore the impacts of climate change on timberline vegetation growth. The results show that the mean temperature increased significantly from 2000 to 2021 (R2 = 0.35, p = 0.0036) at a rate of +0.03 °C/year. The alpine timberline continued to shift upwards, but at a slower rate, by +22.87 m, +23.23 m, and +2.73 m in 2000–2007, 2007–2014, and 2014–2021, respectively. The sample plots of the timberline showing an upward shift experienced a decreasing trend. The timberline NDVI increased significantly from 2000 to 2021 (R2 = 0.2678, p = 0.0136) with an improvement in its vegetation. The timberline NDVI is positively correlated with the annual mean temperature (p < 0.05), February mean temperature (p < 0.05), June minimum temperature (p < 0.05), February maximum temperature (p < 0.01), June maximum temperature (p < 0.01), and June mean temperature (p < 0.01). It was also found to be negatively correlated with annual precipitation (p < 0.01). The study showcases the practicality of using remote sensing techniques to investigate the alpine timberline shifts and timberline vegetation. The findings are valuable in developing approaches to the sustainable management of timberline ecosystems. Full article
Show Figures

Figure 1

21 pages, 7794 KiB  
Article
Spatial–Temporal Variations and Driving Factors of the Albedo of the Qilian Mountains from 2001 to 2022
by Huazhu Xue, Haojie Zhang, Zhanliang Yuan, Qianqian Ma, Hao Wang and Zhi Li
Atmosphere 2024, 15(9), 1081; https://doi.org/10.3390/atmos15091081 - 6 Sep 2024
Viewed by 270
Abstract
Surface albedo plays a pivotal role in the Earth’s energy balance and climate. This study conducted an analysis of the spatial distribution patterns and temporal evolution of albedo, normalized difference vegetation index (NDVI), normalized difference snow index snow cover (NSC), and land surface [...] Read more.
Surface albedo plays a pivotal role in the Earth’s energy balance and climate. This study conducted an analysis of the spatial distribution patterns and temporal evolution of albedo, normalized difference vegetation index (NDVI), normalized difference snow index snow cover (NSC), and land surface temperature (LST) within the Qilian Mountains (QLMs) from 2001 to 2022. This study evaluated the spatiotemporal correlations of albedo with NSC, NDVI, and LST at various temporal scales. Additionally, the study quantified the driving forces and relative contributions of topographic and natural factors to the albedo variation of the QLMs using geographic detectors. The findings revealed the following insights: (1) Approximately 22.8% of the QLMs exhibited significant changes in albedo. The annual average albedo and NSC exhibited a minor decline with rates of −0.00037 and −0.05083 (Sen’s slope), respectively. Conversely, LST displayed a marginal increase at a rate of 0.00564, while NDVI experienced a notable increase at a rate of 0.00178. (2) The seasonal fluctuations of NSC, LST, and vegetation collectively influenced the overall albedo changes in the Qilian Mountains. Notably, the highly similar trends and significant correlations between albedo and NSC, whether in intra-annual monthly variations, multi-year monthly anomalies, or regional multi-year mean trends, indicate that the changes in snow albedo reflected by NSC played a major role. Additionally, the area proportion and corresponding average elevation of PSI (permanent snow and ice regions) slightly increased, potentially suggesting a slow upward shift of the high mountain snowline in the QLMs. (3) NDVI, land cover type (LCT), and the Digital Elevation Model (DEM, which means elevation) played key roles in shaping the spatial pattern of albedo. Additionally, the spatial distribution of albedo was most significantly influenced by the interaction between slope and NDVI. Full article
(This article belongs to the Special Issue Vegetation and Climate Relationships (3rd Edition))
Show Figures

Figure 1

Back to TopTop