Sign in to use this feature.

Years

Between: -

Search Results (442)

Search Parameters:
Keywords = NUE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 20690 KiB  
Article
Halving Environmental Impacts of Diverse Crop Production in Fujian, China through Optimized Nitrogen Management
by Jun Li, Minglei Wang, Wenjiao Shi and Xiaoli Shi
Agriculture 2024, 14(9), 1639; https://doi.org/10.3390/agriculture14091639 - 19 Sep 2024
Abstract
Nitrogen (N) fertilizer is essential for agricultural production as it is the main nutrient driving crop growth. However, in China, only one-third of applied N fertilizer is effectively absorbed by crops, while the rest leads to significant environmental impacts. In this study, we [...] Read more.
Nitrogen (N) fertilizer is essential for agricultural production as it is the main nutrient driving crop growth. However, in China, only one-third of applied N fertilizer is effectively absorbed by crops, while the rest leads to significant environmental impacts. In this study, we introduced a nitrogen threshold boundary (NTB) approach to establish different thresholds for N use efficiency (NUE) and N surplus without affecting crop yield. We also developed an integrated assessment framework to systematically evaluate the potential for improving N utilization and reducing environmental impacts in the production of grain crops (rice, wheat, maize, and soybeans) and cash crops (tea, fruits, and vegetables) at the county level in Fujian Province. Three N management strategies were evaluated: a scenario with reduced N surplus (S1), a scenario with increased NUE (S2), and a combined scenario that simultaneously reduces N surplus and increases NUE (S3). The predictions indicate that, under the aforementioned scenarios, there will be a decrease of 66%, 58%, and 71% in N application without affecting crop yields, respectively. Correspondingly, N surplus will decrease by 65%, 56%, and 67%, while greenhouse gas (GHG) emissions will decrease by 54%, 48%, and 57%. In addition, NUE will increase by 23%, 17% and 25%, respectively. It is notable that scenario S3 demonstrated the greatest potential for improvement. For cash crops, N application will decrease by 65–78%, NUE will increase by 13–21%, N surplus will decrease by 63–74%, and GHG emissions will reduce by 66–78%. In contrast, for grain crops, N application will decrease by 27–38%, NUE will increase by 9–13%, N surplus will decrease by 26–37%, and GHG emissions will reduce by 24–28%. Overall, the potential for improvement is greater for cash crops compared to grain crops. The application of the assessment framework in this study demonstrates its effectiveness as a valuable tool for promoting green and sustainable development in conventional agricultural regions. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

15 pages, 678 KiB  
Article
Physio-Morphological Traits Contributing to Genotypic Differences in Nitrogen Use Efficiency of Leafy Vegetable Species under Low N Stress
by Firdes Ulas, Yusuf Cem Yücel and Abdullah Ulas
Horticulturae 2024, 10(9), 984; https://doi.org/10.3390/horticulturae10090984 - 17 Sep 2024
Viewed by 256
Abstract
Soil fertility is declining in low-input agriculture due to insufficient fertilizer application by small-scale farmers. On the other hand, concerns are rising regarding the environmental pollution of both air and water in high-input agriculture due to the excessive use of N fertilizers in [...] Read more.
Soil fertility is declining in low-input agriculture due to insufficient fertilizer application by small-scale farmers. On the other hand, concerns are rising regarding the environmental pollution of both air and water in high-input agriculture due to the excessive use of N fertilizers in short growing seasons for vegetable crops, which is directly linked to the health of human beings and environmental safety. This study aimed to determine genotypic differences in the Nitrogen Use Efficiency (NUE) levels of different leafy vegetable species (Arugula, Spinach, Cress, Parsley, and Dill) grown hydroponically under two different N rates, low N (0.3 mM) and high N (3.0 mM), and to identify the plant traits that are contributing to NUE. A nutrient solution experiment was conducted between March and April 2024 by using an aerated Deep-Water Culture (DWC) technique in a fully automated climate room with a completely randomized block design (CRBD) with three replications for five weeks. The results indicated that shoot growth, as well as root morphological and leaf physiological responses, was significantly (p < 0.001) affected by genotype, the N rate, and genotype–N rate interactions. Shoot growth in some vegetable species (Arugula, Spinach, and Cress) was significantly higher under a low N than a high N rate, illustrating that they have a great capability for NUE under low N stress conditions. Similar results were also recorded for the root growth of the N-efficient species under low N rates. The NUE levels of these species were closely associated with leaf physiological (leaf area, leaf chlorophyll index (SPAD), photosynthesis, and total leaf chlorophyll (a + b) and carotenoids) and root morphological (root length, root volume, and average root diameter) characteristics. These plant traits could be useful indicators for the selection and breeding of ‘N-efficient’ leafy vegetable species for sustainable low-input agriculture systems in the future. However, further investigation should be carried out at the field level to confirm their commercial production viability. Full article
(This article belongs to the Special Issue Responses to Abiotic Stresses in Horticultural Crops—2nd Edition)
Show Figures

Figure 1

33 pages, 7990 KiB  
Article
Phenotypic, Physiological, and Gene Expression Analysis for Nitrogen and Phosphorus Use Efficienies in Three Popular Genotypes of Rice (Oryza sativa Indica)
by Bhumika Madan and Nandula Raghuram
Plants 2024, 13(18), 2567; https://doi.org/10.3390/plants13182567 - 13 Sep 2024
Viewed by 457
Abstract
Crop nitrogen (N) and phosphorus (P) use efficiencies (NUE/PUE) are important to minimize wastage and nutrient pollution, but no improved crop for both is currently available. We addressed them together in rice, in the view of its high consumption of NPK fertilizers. We [...] Read more.
Crop nitrogen (N) and phosphorus (P) use efficiencies (NUE/PUE) are important to minimize wastage and nutrient pollution, but no improved crop for both is currently available. We addressed them together in rice, in the view of its high consumption of NPK fertilizers. We analyzed 46 morphophysiological parameters for the N/P response in three popular indica genotypes, namely, BPT 5204, Panvel 1, and CR Dhan 301 at low, medium, and normal N/P doses. They include 18 vegetative, 15 physiological, and 13 reproductive parameters. The segregation of significantly N/P-responsive parameters correlating with NUE/PUE revealed 21 NUE, 22 PUE, and 12 common parameters. Feature selection analyses revealed the common high-ranking parameters including the photosynthetic rate at the reproductive stage, tiller number, root–shoot ratio, culm thickness, and flag leaf width. The venn selection using the reported NUE/PUE-related candidate genes in rice revealed five genes in common for both, namely OsIAA3, OsEXPA10, OsCYP75B4, OsSultr3;4, and OsFER2, which were associated with three of the common traits for NUE/PUE. Their expression studies using qRT-PCR revealed the opposite regulation in contrasting genotypes for OsSultr3;4 and OsEXPA10 in N-response and for OsFER2 in P-response, indicating their role in contrasting N/P use efficiencies. Overall, CR Dhan 301 has the highest NUE and PUE followed by Panvel 1 and BPT5204 among the studied genotypes. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 2752 KiB  
Article
The Combined Application of Urea and Fulvic Acid Regulates Apple Tree Carbon and Nitrogen Metabolism and Improves Anthocyanin Biosynthesis
by Laiping Wang, Ru Chen, Zhenying Jiang, Huifeng Li and Xiaomin Xue
Agronomy 2024, 14(9), 2062; https://doi.org/10.3390/agronomy14092062 - 9 Sep 2024
Viewed by 316
Abstract
Improving apple peel color has been an important objective in apple production. To better understand the effect and mechanism of the combined application of urea and FA (fulvic acid) regulation of anthocyanin biosynthesis, a field experiment was performed in 2022 and 2023, respectively, [...] Read more.
Improving apple peel color has been an important objective in apple production. To better understand the effect and mechanism of the combined application of urea and FA (fulvic acid) regulation of anthocyanin biosynthesis, a field experiment was performed in 2022 and 2023, respectively, under five treatments of urea + FA (CK, urea only; FA50, urea + 50 kg ha−1 FA; FA100, urea + 100 kg ha−1 FA; FA150, urea + 150 kg ha−1 FA; FA200, urea + 200 kg ha−1 FA), using isotope (13C and 15N) marking to analyze the changes in carbon (C) and nitrogen (N) nutrient distribution as well as anthocyanin biosynthesis in fruits. We observed that, under FA application conditions, anthocyanin content in the peel was elevated in both years, with increases of 15.98~52.88% in 2022 and 15.93~52.94% in 2023. The best promotion effects were observed under FA150 treatment. Apart from the expression levels of anthocyanin biosynthesis-related genes and transcription factors in the apple peel, this positive effect on anthocyanin content induced by FA addition was also found to be associated with the optimization of C and N distribution in leaves and fruits. On the one hand, the application of FA not only enhanced leaf photosynthetic-related indexes (such as Pn, Gs, and Rubisco activity) and influenced (increased) S6PDH, SPS, and SS activities in leaves, but also elevated fruit sugar metabolism-related enzyme (SDH, SS-c, AI, and NI) activity and upregulated fruit stalk sugar transporter (MdSOT1, MdSOT3, MdSUT1 and MdSUT4) gene expression, which ultimately promoted the synthesis and the leaf to fruit transport of photosynthates, thus promoting 13C-photosynthate accumulation in fruits. On the other hand, FA application elevated leaves’ N metabolism-related enzyme (GS and GOGAT) activity and optimized 15N distribution in leaves and fruits. Moreover, we also observed that FA application altered the fate of N fertilizer in apple orchards, showed an elevation in apple tree 15NUE and soil 15N residuals and showed a decrease in soil 15N loss. In summary, the appropriate application of FA150 (urea + 150 kg ha−1) synergistically optimized C and N nutrient distribution, and promoted anthocyanin biosynthesis in apple trees. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

21 pages, 3481 KiB  
Article
Does Nitrogen Fertilization Improve Nitrogen-Use Efficiency in Spring Wheat?
by Aixia Xu, Yafei Chen, Xuexue Wei, Zechariah Effah, Lingling Li, Junhong Xie, Chang Liu and Sumera Anwar
Agronomy 2024, 14(9), 2049; https://doi.org/10.3390/agronomy14092049 - 7 Sep 2024
Viewed by 373
Abstract
To investigate the effects and mechanism of prolonged inorganic nitrogen (N) fertilization on the N-use efficiency of spring wheat (Triticum aestivum L.), a long-term study initiated in 2003 was conducted. The study analyzed how N fertilization affects dry matter translocation, N translocation, [...] Read more.
To investigate the effects and mechanism of prolonged inorganic nitrogen (N) fertilization on the N-use efficiency of spring wheat (Triticum aestivum L.), a long-term study initiated in 2003 was conducted. The study analyzed how N fertilization affects dry matter translocation, N translocation, soil NO3-N, and N-use efficiency. Five different N-fertilizer rate treatments were tested: N0, N52.5, N105, N157.5, and N210, corresponding to annual N fertilizer doses of 0, 52.5, 105.0, 157.5, and 210.0 kg N ha−1, respectively. Results showed that increasing N-fertilizer rates significantly enhanced the two-year average dry matter accumulation amount (DMA) at maturity by 22.97–56.25% and pre-flowering crop growth rate (CGR) by 17.11–92.85%, with no significant increase beyond 105 kg N ha−1. However, no significant correlation was observed between the dry matter translocation efficiency (DTE) and wheat grain yield. Both insufficient and excessive N applications resulted in an imbalanced N distribution favoring vegetative growth over reproductive growth, thus negatively impacting N-use efficiency. At maturity, the N-fertilized treatments significantly increased the two-year average N accumulation amount (NAA) by 52.04–129.98%, with no further increase beyond 105 kg N ha−1. N fertilization also improved the two-year average N translocation efficiency (NTE) by 56.89–63.80% and the N contribution proportion (NCP) of wheat vegetative organs by 27.79–57.83%, peaking in the lower-N treatment (N52.5). However, high-N treatment (N210) led to an increase in NO3-N accumulation in the 0–100 cm soil layer, with an increase of 26.27% in 2018 and 122.44% in 2019. This higher soil NO3-N accumulation in the 0–100 cm layer decreased NHI, NUE, NAE, NPFP, and NMB. Additionally, N fertilization significantly reduced the two-year average N harvest index (NHI) by 9.89–12.85% and N utilization efficiency (NUE) by 11.14–20.79%, both decreasing with higher N application rates. The NAA followed the trend of anthesis > maturity > jointing. At the 105 kg N ha−1 rate, the highest N agronomic efficiency (NAE) (9.31 kg kg−1), N recovery efficiency (NRE) (38.32%), and N marginal benefit (NMB) (10.67 kg kg−1) were observed. Higher dry matter translocation amount (DTA) and N translocation amount (NTA) reduced NHI and NUE, whereas higher NTE improved NHI, NUE, and N partial factor productivity (NPFP). Overall, N fertilization enhanced N-use efficiency in spring wheat by improving N translocation rather than dry matter translocation. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

12 pages, 1311 KiB  
Article
Comparative Efficiency of Nitrogen Fertilization Levels in Two Sorghum Hybrids for Bioenergy Production
by Antonio M. Cabrera-Ariza, Miguel Aguilera-Peralta and Rómulo Santelices-Moya
Agronomy 2024, 14(9), 2026; https://doi.org/10.3390/agronomy14092026 - 5 Sep 2024
Viewed by 261
Abstract
To achieve sustainable and profitable production of sorghum for energy purposes, it is crucial to ensure the efficient use of the nutrients necessary for its growth and development. This research investigates the influence of diverse management practices on biomass production, nutrient use efficiency, [...] Read more.
To achieve sustainable and profitable production of sorghum for energy purposes, it is crucial to ensure the efficient use of the nutrients necessary for its growth and development. This research investigates the influence of diverse management practices on biomass production, nutrient use efficiency, and nitrogen balance in two sorghum hybrids cultivated for bioenergy applications. A comprehensive field study was conducted over two growing seasons, evaluating the effects of fertilization methods and crop rotation strategies. Results indicate that high nitrogen (HN) fertilization increased dry biomass production (up to 20.7 Mg ha−1) and nutrient removal (up to 343.5 kg K ha−1) in both sorghum hybrids. The H128 hybrid showed higher nutrient use efficiency, especially for phosphorus, while the nitrogen balance was positive under HN but varied under low nitrogen (LN), with the H133 hybrid experiencing a net nitrogen loss at LN. These findings contribute valuable insights into sustainable sorghum cultivation for bioenergy production, highlighting the importance of tailored management practices in achieving optimal crop performance. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 3474 KiB  
Article
Integrating Heterosis for Root Architecture and Nitrogen Use Efficiency of Maize: A Comparison between Hybrids from Different Decades
by Yuanyuan Li, Lanfang Bai, Shuli Wei, Hao Wu, Rongfa Li, Yongqiang Wang and Zhigang Wang
Agronomy 2024, 14(9), 2018; https://doi.org/10.3390/agronomy14092018 - 4 Sep 2024
Viewed by 322
Abstract
Exploring the biological potential of maize root architecture is one of the most important ways to improve nitrogen use efficiency (NUE). The NUE and its heterosis in maize hybrids have improved remarkably over decades. Yet, there is little research on maize hybrid heterosis [...] Read more.
Exploring the biological potential of maize root architecture is one of the most important ways to improve nitrogen use efficiency (NUE). The NUE and its heterosis in maize hybrids have improved remarkably over decades. Yet, there is little research on maize hybrid heterosis for root architecture and its possible physiological relationship to heterosis for NUE. A field study lasting two years was carried out on four typical maize hybrids from old and new eras, including their parental inbred lines with two levels of nitrogen (0, 150 kg N ha−1). Compared to old-era maize hybrids, the brace root angle (BA) and crown root angle (CA) of new-era maize hybrids increased by 19.3% and 8.0% under 0 N, and by 18.8% and 7.9% under 150 N, which exhibited a steeper root architecture; the crown root number (CN) of new-era maize hybrids increased by 30.5% and 21.4% under 0 N and 150 N, respectively, which showed a denser root system; meanwhile, the depth of 95% cumulative root weight (D95) of new-era maize hybrids separately increased by 10.5% and 8.5% under 0 N and 150 N, which exhibited a deeper root distribution. This steeper-denser-deeper root architecture enhanced pre-anthesis N uptake and provided a premise of greater post-anthesis N remobilization. All maize hybrids displayed significant heterosis for root architecture compared to their parental inbred lines. The brace root branching (BB) and crown root branching (CB) of new-era maize hybrids and D95 have positive heterosis, while the BA, CA, and CB of old-era maize hybrids, brace root number (BN), and CN have negative heterosis. Regardless of whether root architecture heterosis was positive or negative, new-era maize hybrids showed an overall elevated trend compared to old-era maize hybrids. Structural equation modeling (SEM) showed that heterosis for nitrogen internal efficiency (NIE) was the primary reason for NUE heterosis in maize, influenced by heterosis for root architecture, which was steeper, denser, and deeper. Our results indicated that, compared with old-era maize hybrids, new-era maize hybrids had stronger heterosis for root architecture, which was beneficial to pre-silking nitrogen absorption and is an important physiological basis for the higher NIE heterosis and NUE heterosis in new-era maize hybrids. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

23 pages, 39763 KiB  
Article
Exploring the Molecular Landscape of Nitrogen Use Efficiency in Potato (Solanum tuberosum L.) under Low Nitrogen Stress: A Transcriptomic and Metabolomic Approach
by Rui Xie, Xiaolei Jin, Jing Fang, Shuli Wei, Jie Ma, Ying Liu, Yuchen Cheng, Liyu Chen, Jiawei Liu, Yanan Liu, Zhigang Han, Binyu Guo, Jingshan Guo, Xiaoqing Zhao, Xiangqian Zhang and Zhanyuan Lu
Agronomy 2024, 14(9), 2000; https://doi.org/10.3390/agronomy14092000 - 2 Sep 2024
Viewed by 473
Abstract
Enhancing crop nitrogen use efficiency (NUE) in agricultural sciences is a pivotal challenge, particularly for high-demand crops like potatoes (Solanum tuberosum L.), the world’s third most significant food crop. This study delves into the molecular responses of potatoes to low nitrogen (LN) [...] Read more.
Enhancing crop nitrogen use efficiency (NUE) in agricultural sciences is a pivotal challenge, particularly for high-demand crops like potatoes (Solanum tuberosum L.), the world’s third most significant food crop. This study delves into the molecular responses of potatoes to low nitrogen (LN) stress, employing an integrative approach that combines transcriptomics and metabolomics to compare two cultivars with divergent NUE traits: XS6, known for its high NUE, and NS7, characterized by lower NUE. Our research unveils that XS6 exhibits higher chlorophyll and N content, increased tuber yield, and elevated N assimilation capacity under LN stress conditions compared to NS7. Through transcriptome analysis, we identified critical genes involved in C and N metabolism that had higher expression in XS6. A significant discovery was the high-affinity nitrate transporter 2.7 gene, which showed elevated expression in XS6, suggesting its key role in enhancing NUE. Metabolomics analysis further complemented these findings, revealing a sophisticated alteration of 1252 metabolites under LN stress, highlighting the dynamic interplay between carbon and N metabolism in coping with N scarcity. The integration of transcriptomic and metabolomic data underscored the crucial role of trehalose in mitigating N deficiency and enhancing NUE. This study provides novel insights into the molecular mechanisms governing NUE in potatoes, offering valuable perspectives for molecular breeding to enhance NUE in potatoes and potentially other crops. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 3805 KiB  
Article
Evaluation of the Effectiveness of a Humic Substances-Based Product for Lettuce Growth and Nitrogen Use Efficiency under Low Nitrogen Conditions
by Santiago Atero-Calvo, Francesco Magro, Giacomo Masetti, Eloy Navarro-León, Juan Jose Rios and Juan Manuel Ruiz
Agriculture 2024, 14(9), 1492; https://doi.org/10.3390/agriculture14091492 - 1 Sep 2024
Viewed by 606
Abstract
Increasing crop yield with low-N supplies has become one of the main aims of current agriculture to reduce the excessive use of chemical fertilizers. A sustainable strategy to improve crop productivity, N assimilation, and N Use Efficiency (NUE) under limit-N growth conditions is [...] Read more.
Increasing crop yield with low-N supplies has become one of the main aims of current agriculture to reduce the excessive use of chemical fertilizers. A sustainable strategy to improve crop productivity, N assimilation, and N Use Efficiency (NUE) under limit-N growth conditions is the application of biostimulants, such as humic substances (HS). Here, we evaluated the effectiveness of an HS-based biostimulant, BLACKJAK®, in improving lettuce growth and NUE under N-deficit conditions. Thus, BLACKJAK® was applied radicularly (R) and foliarly (F) at the following doses: R-HS 0.40 mL/L, R-HS 0.60 mL/L, F-HS 7.50 mL/L, and F-HS 10.00 mL/L. Three N levels were applied: optimal (7 mM) and N-deficit (3 mM and 1 mM). The results showed that shoot dry weight (DW) was reduced at 3 mM N (−32%) and 1 mM N (−42%). However, R and F BLACKJAK® enhanced plant growth at all three N levels, especially with F-HS at 10.00 mL/L, which showed an increase of 43% in shoot DW at 3 and 1 mM N, compared to plants not treated with HS. BLAKCJAK® also improved photosynthesis, NO3 and organic N accumulation, the activity of N assimilation enzymes, and the concentration of amino acids and proteins, regardless of the N level. In addition, HS enhanced NUE parameters under all N conditions, except for R-HS 0.60 mL/L at 1 mM N. Hence, our study suggests that the HS-based product BLACKJAK® could be a good candidate for reducing chemical fertilizer use and improving lettuce growth and NUE under low N conditions, although further research is required. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 783 KiB  
Article
Short-Term Effect of the Combined Application of Rice Husk Biochar and Organic and Inorganic Fertilizers on Radish Growth and Nitrogen Use Efficiency
by War War Mon and Hideto Ueno
Plants 2024, 13(17), 2376; https://doi.org/10.3390/plants13172376 - 26 Aug 2024
Viewed by 503
Abstract
Research on soil biochar fertilization has mainly been conducted on cereal crops, and information on its potential for radish production remains inconsistent. Therefore, a pot experiment was conducted to examine the short-term effects of rice husk biochar on radish growth and nitrogen use [...] Read more.
Research on soil biochar fertilization has mainly been conducted on cereal crops, and information on its potential for radish production remains inconsistent. Therefore, a pot experiment was conducted to examine the short-term effects of rice husk biochar on radish growth and nitrogen use efficiency (NUE). An investigation was conducted with two application rates of biochar alone, (10 t ha−1 (B10) and 25 t ha−1 (B25), and biochar + chicken manure application with and without NPK fertilizer. The results indicated that the application of biochar 25 t ha−1 + chicken manure (B25:CHM) and the combination of biochar 25 t ha−1 + chicken manure + NPK fertilizer (B25:CHM:NPK) significantly increased root yield by improving NUE, fertilizer recovery efficiency (REN), agronomic efficiency (AE), nitrogen harvest index (NHI), and retaining soil NH4+-N. Although biochar application alone did not significantly influence radish growth on a short-term basis, B10 and B25 increased root yields by 10% and 20%, respectively, compared with the control. Notably, the role of biochar application when combined with organic and inorganic fertilizers was to retain fertilizer N and promote N uptake efficiency by radishes, as higher rates of biochar resulted in higher NUE. Our results suggest that B25:CHM is a suitable combination for organic farming. Full article
Show Figures

Figure 1

14 pages, 922 KiB  
Article
Deficit Irrigation and High Planting Density Improve Nitrogen Uptake and Use Efficiency of Cotton in Drip Irrigation
by Fengquan Wu, Qiuxiang Tang, Jianping Cui, Liwen Tian, Rensong Guo, Liang Wang and Tao Lin
Agronomy 2024, 14(9), 1876; https://doi.org/10.3390/agronomy14091876 - 23 Aug 2024
Viewed by 362
Abstract
The optimization of plant density plays a crucial role in cotton production, and deficit irrigation, as a water-saving measure, has been widely adopted in arid regions. However, regulatory mechanisms governing nitrogen absorption, transportation, and nitrogen use efficiency (NUE) in cotton under deficit irrigation [...] Read more.
The optimization of plant density plays a crucial role in cotton production, and deficit irrigation, as a water-saving measure, has been widely adopted in arid regions. However, regulatory mechanisms governing nitrogen absorption, transportation, and nitrogen use efficiency (NUE) in cotton under deficit irrigation and high plant density remain unclear. To clarify the mechanisms of N uptake and NUE of cotton, the main plots were subjected to three irrigation amounts based on field capacity (Fc): (315 [W1, 0.5 Fc], 405 [W2, 0.75 Fc, farmers’ irrigation practice], and 495 mm [W3, 1.0 Fc]). Subplots were planted and applied at three densities: (13.5 [M1], 18.0 [M2, farmers’ planting practice], and 22.5 [M3] plants m−2). The results revealed that under low-irrigation conditions, the cotton yield was 5.1% lower than that under the farmer’s irrigation practice. In all plant densities and years, the nitrogen uptake of cotton increased significantly with the increase in irrigation. However, excessive irrigation resulted in nitrogen accumulation and migration, mainly concentrated in the vegetative organs of cotton, which reduced the NUE by 9.2% compared with that under farmers’ irrigation practice. Concerning the interaction between irrigation and plant density, under low irrigation, the nitrogen uptake of high-density planting was higher, and the yield of seed cotton was only 2.9% lower than that of the control (the interaction effect of farmers’ irrigation × plant density), but the NUE was increased by 10.9%. Notably, with the increase in irrigation amount, the soil nitrate nitrogen at the 0–40 cm soil layer decreased, and high irrigation amounts would lead to the transfer of soil nitrate nitrogen to deep soil. With the increase in plant density, the rate of nitrogen uptake and the amount of nitrogen uptake increased, which significantly reduced the soil nitrate nitrogen content. In conclusion, deficit irrigation and high plant density can improve cotton yield and NUE. We anticipate that these findings will facilitate optimized agricultural management in areas with limited water. Full article
Show Figures

Figure 1

13 pages, 1206 KiB  
Article
Effects of Reducing Chemical Fertilisers Application on Tea Production and Soils Quality: An In Situ Field Experiment in Jiangsu, China
by Zhenmin Hu, Huan Li, Lingfei Ji and Yiyang Yang
Agronomy 2024, 14(8), 1864; https://doi.org/10.3390/agronomy14081864 - 22 Aug 2024
Viewed by 375
Abstract
In order to achieve sustainable development of the tea industry in China, it is necessary to reduce the use of chemical fertiliser rationally. With conventional fertilisation (CF) treatment as the control, five different chemical fertiliser-reduced regimes, including tea-specific formula fertiliser (T1), T1 + [...] Read more.
In order to achieve sustainable development of the tea industry in China, it is necessary to reduce the use of chemical fertiliser rationally. With conventional fertilisation (CF) treatment as the control, five different chemical fertiliser-reduced regimes, including tea-specific formula fertiliser (T1), T1 + acidification amendment (T2), organic substitution based on T1 (T3), urea formaldehyde slow-release fertiliser (T4) and carbon-based organic fertiliser (T5), were conducted and evaluated on a green tea plantation from 2018 to 2021. The results showed that the spring tea yield of T1–T5 increased by 4.65–28.67%, while the free amino acids, tea polyphenols and sensory evaluation scores did not remarkably decrease. In addition, the T1–T5 treatments had a slight effect on soil acidification mitigation (except T2) and maintained the essential nutrients for tea production. Nutrient use efficiency improved, with agronomic efficiency (AE) increasing by 0.01–0.08 kg kg−1, shoot nutrient use efficiency (NUE) by 0.14–0.70% and partial factor productivity (PFP) by 0.05–0.18 kg kg−1. The net economic benefits also improved, with T1 showing a 135.28% increase, followed by T3 (67.53%), T2 (48.65%), T4 (38.07%) and T5 (33.35%). Overall, our results indicated that the T1 treatment could maintain the tea yield and quality while reducing the chemical fertiliser input and maximising the net economic benefit and AE. Full article
Show Figures

Figure 1

25 pages, 5087 KiB  
Article
Soil and Plant Nitrogen Management Indices Related to Within-Field Spatial Variability
by Remigiusz Łukowiak, Przemysław Barłóg and Jakub Ceglarek
Agronomy 2024, 14(8), 1845; https://doi.org/10.3390/agronomy14081845 - 20 Aug 2024
Viewed by 407
Abstract
Field zones at risk of low nitrogen use efficiency (NUE) can be identified by analyzing in-field spatial variability. This hypothesis was validated by analyzing soil mineral nitrogen (Nmin) and several plant and soil N management indices. The research was conducted in [...] Read more.
Field zones at risk of low nitrogen use efficiency (NUE) can be identified by analyzing in-field spatial variability. This hypothesis was validated by analyzing soil mineral nitrogen (Nmin) and several plant and soil N management indices. The research was conducted in Karmin (central Poland) during two growing seasons, with winter oilseed rape (2018/2019) and winter wheat (2019/2020). The study showed that the crop yield was positively related to Nmin. However, this N trait did not explain all the observed differences in the spatial variation of crop yield and plant N accumulation. In addition, the soil N management indices were more spatially variable during the growing season than the plant N management indices. Particularly high variability was found for the indices characterizing the N surplus in the soil-plant system. The calculated N surplus (Nb = N fertilizer input − N seed output) ranged from −62.8 to 80.0 kg N ha−1 (coefficient of variation, CV = 181.2%) in the rape field and from −123.5 to 8.2 kg N ha−1 (CV = 60.2%) in the wheat field. The spatial distribution maps also confirm the high variability of the parameters characterizing the post-harvest N surplus, as well as the total N input (soil + fertilizer) to the field with rape. The results obtained indicate that a field N balance carried out in different field zones allows a more accurate identification of potential N losses from the soil-plant system. Full article
(This article belongs to the Special Issue Nitrogen Cycle in Farming Systems—2nd Edition)
Show Figures

Figure 1

17 pages, 2456 KiB  
Article
Balancing Yield and Environmental Impact: Nitrogen Management and Planting Density for Rice in Southwest China
by Song Guo, Hua Yu, Xiangzhong Zeng, Yuxian Shangguan, Zijun Zhou, Xuyi Li, Zhigang Liu, Mingjiang He, Xing Luo, Yiting Ouyang, Su Liu, Liguo Wei, Yusheng Qin and Kun Chen
Agronomy 2024, 14(8), 1843; https://doi.org/10.3390/agronomy14081843 - 20 Aug 2024
Viewed by 421
Abstract
With growing concerns about global warming, it is crucial to adopt agronomic practices that enhance rice yields from paddy fields while reducing greenhouse gas (GHG) emissions for sustainable agriculture. An optimal nitrogen (N) fertilization rate and planting density are vital to ensure high [...] Read more.
With growing concerns about global warming, it is crucial to adopt agronomic practices that enhance rice yields from paddy fields while reducing greenhouse gas (GHG) emissions for sustainable agriculture. An optimal nitrogen (N) fertilization rate and planting density are vital to ensure high rice yields, minimize GHG emissions, and understand emission behavior for better field management. We hypothesized that optimizing N application rates and planting density to improve nitrogen use efficiency (NUE) in rice cultivation would reduce resource losses and GHG emissions. To test this hypothesis, we implemented five treatments with a rice straw return cultural system: two planting densities (16 hills m−2 (traditional density, D1) and 20 hills m−2 (25% higher density, D2)) and three N application rates (no N fertilizer (N0), 180 kg N ha−1 (N1), and 144 kg N ha−1 (N2)). The control treatment (CK) was traditional planting density with no N fertilizer. The four new cropping modes were N1D1, N1D2, N2D1, and N2D2. We investigated the effects of N application rates and planting density on rice grain yield, NUE, and GHG emissions in multiple rice-growing seasons. The N1D2 treatment exhibited the highest grain yield over the three years, with a value of 10,452 kg ha−1, representing an increase of 12.2% compared to CK. Moreover, N uptake in N1D2 was the highest, averaging 39.2% (p < 0.05) higher than CK, and 8.5%, 3.5%, and 2.8% (p < 0.05) higher than N1D1, N2D1 and N2D2, respectively. N2D2 exhibited the highest NUE, with a value of 58.99 kg kg−1, surpassing all other treatments over the three years. GHG emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI) in N2D2 were lower than in N1D1, N1D2, and N2D1. Additionally, reducing N application (comparing N1D1 to N2D1) and increasing plant density (comparing N1D1 to N1D2) improved N agronomic efficiency (NAE) and N partial productivity (PFPN). The negative correlation between the NAE and PFPN with GWP and GHG emissions further supports the potential for optimized N management and denser planting density to reduce environmental impact. These findings have important implications for sustainable rice cultivation practices in Southwest China and similar agroecosystems, emphasizing the need for integrated nutrient management strategies to achieve food security and climate change mitigation goals. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

16 pages, 4047 KiB  
Article
Measuring the Influence of Key Management Decisions on the Nitrogen Nutritional Status of Annual Ryegrass-Based Forage Crops
by Luís Silva, Sofia Barbosa, Fernando Cebola Lidon, José Santos-Silva and Luís Alcino Conceição
Agronomy 2024, 14(8), 1817; https://doi.org/10.3390/agronomy14081817 - 17 Aug 2024
Viewed by 667
Abstract
Increasing nitrogen use efficiency (NUE) by improving agricultural practices and soil knowledge, and implementing precision agriculture, is essential to reduce the overuse of fertilizers and increase nutrient retention. This study aimed to optimize N management in agriculture by establishing a critical N dilution [...] Read more.
Increasing nitrogen use efficiency (NUE) by improving agricultural practices and soil knowledge, and implementing precision agriculture, is essential to reduce the overuse of fertilizers and increase nutrient retention. This study aimed to optimize N management in agriculture by establishing a critical N dilution curve (CNDC) and analyzing variations in NUE and the N nutrition index (NNI) among different crops under various treatments. Using a Bayesian model, the CNDC was determined as %Nc = 3.63 × PDM−0.71. The results showed that plant dry matter (PDM) and plant N content (PNC) varied significantly with crop type and sampling moments. Strong positive correlations are presented by PDM with N uptake (NUp) (0.89) and NNI (0.88), along with an inverse correlation with critical N concentration (−0.95). The study found that crops under irrigation conditions had higher NUp and higher NNI. This study provides valuable insights into the influence of key management decisions on the N nutritional status of annual ryegrass-based forage crops. The results highlight the critical role of accurate and conscious decision-making in improving NUE and crop yields, emphasizing the complex interactions between biomass production and N dynamics in crops. The conclusions allow significant benefits to be realized, contributing to the sustainability of agricultural systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

Back to TopTop