Sign in to use this feature.

Years

Between: -

Search Results (389)

Search Parameters:
Keywords = Visible Infrared Imaging Radiometer Suite (VIIRS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14739 KiB  
Article
Use of SLSTR Sea Surface Temperature Data in OSTIA as a Reference Sensor: Implementation and Validation
by Chongyuan Mao, Simon Good and Mark Worsfold
Remote Sens. 2024, 16(18), 3396; https://doi.org/10.3390/rs16183396 - 12 Sep 2024
Viewed by 155
Abstract
Sea surface temperature (SST) data from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the Sentinel-3 satellites have been used in the Met Office’s Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) since 2019 (Sentinel-3A SST data since March 2019 and [...] Read more.
Sea surface temperature (SST) data from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the Sentinel-3 satellites have been used in the Met Office’s Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) since 2019 (Sentinel-3A SST data since March 2019 and Sentinel-3B data since December 2019). The impacts of using SLSTR SSTs and the SLSTR as the reference sensor for the bias correction of other satellite data have been assessed using independent Argo float data. Combining Sentinel-3A and -3B SLSTRs with two Visible Infrared Imaging Radiometer Suite (VIIRS) sensors (onboard the joint NASA/NOAA Suomi National Polar-orbiting Partnership and National Oceanic and Atmospheric Administration-20 satellites) in the reference dataset has also been investigated. The results indicate that when using the SLSTR as the only reference satellite sensor, the OSTIA system becomes warmer overall, although there are mixed impacts in different parts of the global ocean. Using both the VIIRS and the SLSTR in the reference dataset leads to moderate but more consistent improvements globally. Numerical weather prediction (NWP) results also indicate a better performance when using both the VIIRS and the SLSTR in the reference dataset compared to only using the SLSTR at night. Combining the VIIRS and the SLSTR with latitudinal weighting shows the best validation results against Argo, but further investigation is required to refine this method. Full article
Show Figures

Figure 1

12 pages, 3145 KiB  
Communication
Comparison of the NASA Standard MODerate-Resolution Imaging Spectroradiometer and Visible Infrared Imaging Radiometer Suite Snow-Cover Products for Creation of a Climate Data Record: A Case Study in the Great Basin of the Western United States
by Dorothy K. Hall, George A. Riggs and Nicolo E. DiGirolamo
Remote Sens. 2024, 16(16), 3029; https://doi.org/10.3390/rs16163029 - 18 Aug 2024
Viewed by 486
Abstract
A nearly continuous daily, global Environmental Science Data Record of NASA Standard MODerate-resolution Imaging Spectroradiometer (MODIS) snow-cover extent (SCE) data products has been available since 2000. When the MODIS record ends, the ‘moderate resolution’ SCE record will continue with NASA Standard Visible Infrared [...] Read more.
A nearly continuous daily, global Environmental Science Data Record of NASA Standard MODerate-resolution Imaging Spectroradiometer (MODIS) snow-cover extent (SCE) data products has been available since 2000. When the MODIS record ends, the ‘moderate resolution’ SCE record will continue with NASA Standard Visible Infrared Imaging Radiometer Suite (VIIRS) SCE data products. The objective of this work is to evaluate and quantify the continuity between the MODIS and VIIRS SCE data products to enable the merging of the data product records. A climate data record (CDR) could be developed when 30 years of daily global moderate-resolution SCE become available if the continuity of the MODIS and VIIRS records can be established. Here, we focus on the daily cloud-gap-filled MODIS and VIIRS SCE NASA standard data products, MOD10A1F and VNP10A1F, respectively, for a case study in the Great Basin of the western United States during a period of sensor overlap. Using the methodologies described herein (daily percent of snow cover, duration of snow cover, average monthly number of days (Ndays) of snow cover, and trends in Ndays of snow cover, we show that the snow maps display excellent agreement. For example, the average monthly number of days of snow cover in the Great Basin calculated using MOD10A1F and VNP10A1F agrees with a Pearson’s correlation coefficient of r = 0.99 for our 11-year study period from WY 2013 to 2023. Additionally, the SCE derived from each data product agrees very well with meteorological station data, with a Pearson’s correlation coefficient of r = 0.91 and r = 0.92 for MOD10A1F and VNP10A1F, respectively. Our results support the eventual creation of a CDR. Full article
(This article belongs to the Special Issue New Insights in Remote Sensing of Snow and Glaciers)
Show Figures

Figure 1

23 pages, 10796 KiB  
Article
Production of Annual Nighttime Light Based on De-Difference Smoothing Algorithm
by Shuyan Zhang, Yong Ma, Erping Shang, Wutao Yao, Ke Qiao, Jian Peng, Jin Yang and Chun Feng
Remote Sens. 2024, 16(16), 3013; https://doi.org/10.3390/rs16163013 - 16 Aug 2024
Viewed by 371
Abstract
Nighttime light (NTL) remote sensing has emerged as a powerful tool in various fields such as urban expansion, socio-economic estimation, light pollution, and energy domains. However, current annual NTL products suffer from several critical limitations, including poor consistency, severe background noise, and limited [...] Read more.
Nighttime light (NTL) remote sensing has emerged as a powerful tool in various fields such as urban expansion, socio-economic estimation, light pollution, and energy domains. However, current annual NTL products suffer from several critical limitations, including poor consistency, severe background noise, and limited comparability. These issues have significantly interfered with the research of long-term NTL trends and diminished the accuracy of related findings. Therefore, this study developed a de-difference smoothing algorithm for producing high-quality annual NTL products based on monthly National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data. It enabled the construction of a continuous global high-quality NTL dataset, named the De-Difference Smoothed Nighttime Light (DDSNL), covering the period from 2012 to 2023. Comparative analyses were conducted to validate the accuracy and availability of the DDSNL product against the benchmark EOG NPP-VIIRS and NPP-VIIRS-like NTL datasets. The results showed that DDSNL products had strong correlation with the NTL distribution of EOG NPP-VIIRS, but little correlation with NPP-VIIRS-like. Notably, DDSNL demonstrated better background noise reduction and higher separability between NTL and non-NTL areas compared to EOG NPP-VIIRS NTL. In contrast to the complete exclusion of background in NPP-VIIRS-Like, the retention of background values in DDSNL leads to more reasonable representation in the urban fringes. In the analysis of NTL changes matching impervious surface changes, the DDSNL product demonstrated the least interference from noise, resulting in the smallest segmentation threshold and the highest matching accuracy. This indirectly demonstrates the spatial and temporal consistency of the annual DDSNL product, ensuring its reliability in change detection-related studies. The annual DDSNL product developed in this research exhibits high fidelity, strong consistency, and improved comparability, and can provide reliable data reference for applications in electrification and urban studies. Full article
(This article belongs to the Special Issue Nighttime Light Remote Sensing Products for Urban Applications)
Show Figures

Graphical abstract

24 pages, 6993 KiB  
Article
Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation
by Giovanni Salvatore Di Bella, Claudia Corradino, Simona Cariello, Federica Torrisi and Ciro Del Negro
Remote Sens. 2024, 16(16), 2879; https://doi.org/10.3390/rs16162879 - 7 Aug 2024
Viewed by 925
Abstract
The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic [...] Read more.
The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic activity. A critical factor influencing VRP estimates is the identification of hotspots in satellite imagery, typically based on intensity. Different satellite sensors employ unique algorithms due to their distinct characteristics. Integrating data from multiple satellite sources, each with different spatial and spectral resolutions, offers a more comprehensive analysis than using individual data sources alone. We introduce an innovative Remote Sensing Data Fusion (RSDF) algorithm, developed within a Cloud Computing environment that provides scalable, on-demand computing resources and services via the internet, to monitor VRP locally using data from various multispectral satellite sensors: the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS), the Sea and Land Surface Temperature Radiometer (SLSTR), and the Visible Infrared Imaging Radiometer Suite (VIIRS), along with the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI). We describe and demonstrate the operation of this algorithm through the analysis of recent eruptive activities at the Etna and Stromboli volcanoes. The RSDF algorithm, leveraging both spatial and intensity features, demonstrates heightened sensitivity in detecting high-temperature volcanic features, thereby improving VRP monitoring compared to conventional pre-processed products available online. The overall accuracy increased significantly, with the omission rate dropping from 75.5% to 3.7% and the false detection rate decreasing from 11.0% to 4.3%. The proposed multi-sensor approach markedly enhances the ability to monitor and analyze volcanic activity. Full article
(This article belongs to the Special Issue Application of Remote Sensing Approaches in Geohazard Risk)
Show Figures

Graphical abstract

23 pages, 10245 KiB  
Article
Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs)
by Taeyoung Choi, Changyong Cao, Slawomir Blonski, Xi Shao, Wenhui Wang and Khalil Ahmad
Remote Sens. 2024, 16(15), 2737; https://doi.org/10.3390/rs16152737 - 26 Jul 2024
Viewed by 425
Abstract
The National Oceanic and Atmospheric Administration (NOAA) 21 Visible Infrared Imaging Radiometer Suite (VIIRS) was successfully launched on 10 November 2022. To ensure the required instrument performance, a series of Post-Launch Tests (PLTs) were performed and analyzed. The primary calibration source for NOAA-21 [...] Read more.
The National Oceanic and Atmospheric Administration (NOAA) 21 Visible Infrared Imaging Radiometer Suite (VIIRS) was successfully launched on 10 November 2022. To ensure the required instrument performance, a series of Post-Launch Tests (PLTs) were performed and analyzed. The primary calibration source for NOAA-21 VIIRS Reflective Solar Bands (RSBs) is the Solar Diffuser (SD), which retains the prelaunch radiometric calibration standard from prelaunch to on-orbit. Upon reaching orbit, the SD undergoes degradation as a result of ultraviolet solar illumination. The rate of SD degradation (called the H-factor) is monitored by a Solar Diffuser Stability Monitor (SDSM). The initial H-factor’s instability was significantly improved by deriving a new sun transmittance function from the yaw maneuver and one-year SDSM data. The F-factors (normally represent the inverse of instrument gain) thus calculated for the Visible/Near-Infrared (VISNIR) bands were proven to be stable throughout the first year of the on-orbit operations. On the other hand, the Shortwave Infrared (SWIR) bands unexpectedly showed fast degradation, which is possibly due to unknown substance accumulation along the optical path. To mitigate these SWIR band gain changes, the NOAA VIIRS Sensor Data Record (SDR) team used an automated calibration software package called RSBautoCal. In March 2024, the second middle-mission outgassing event to reverse SWIR band degradation was shown to be successful and its effects are closely monitored. Finally, the deep convective cloud trends and lunar collection results validated the operational F-factors. This paper summarizes the preliminary on-orbit radiometric calibration updates and performance for the NOAA-21 VIIRS SDR products in the RSB. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

22 pages, 10559 KiB  
Article
Development of an Algorithm for Assessing the Scope of Large Forest Fire Using VIIRS-Based Data and Machine Learning
by Min-Woo Son, Chang-Gyun Kim and Byung-Sik Kim
Remote Sens. 2024, 16(14), 2667; https://doi.org/10.3390/rs16142667 - 21 Jul 2024
Viewed by 946
Abstract
Forest fires pose a multifaceted threat, encompassing human lives and property loss, forest resource destruction, and toxic gas release. This crucial disaster’s global occurrence and impact have risen in recent years, primarily driven by climate change. Hence, the scope and frequency of forest [...] Read more.
Forest fires pose a multifaceted threat, encompassing human lives and property loss, forest resource destruction, and toxic gas release. This crucial disaster’s global occurrence and impact have risen in recent years, primarily driven by climate change. Hence, the scope and frequency of forest fires must be collected to establish disaster prevention policies and conduct relevant research projects. However, some countries do not share details, including the location of forest fires, which can make research problematic when it is necessary to know the exact location or shape of a forest fire. This non-disclosure warrants remote surveys of forest fire sites using satellites, which sidestep national information disclosure policies. Meanwhile, original data from satellites have a great advantage in terms of data acquisition in that they are independent of national information disclosure policies, making them the most effective method that can be used for environmental monitoring and disaster monitoring. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-Orbiting Partnership (NPP) satellite has worldwide coverage at a daily temporal resolution and spatial resolution of 375 m. It is widely used for detecting hotspots worldwide, enabling the recognition of forest fires and affected areas. However, information collection on affected regions and durations based on raw data necessitates identifying and filtering hotspots caused by industrial activities. Therefore, this study used VIIRS hotspot data collected over long periods and the Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN) algorithm to develop ST-MASK, which masks said hotspots. By targeting the concentrated and fixed nature of these hotspots, ST-MASK is developed and used to distinguish forest fires from other hotspots, even in mountainous areas, and through an outlier detection algorithm, it generates identified forest fire areas, which will ultimately allow for the creation of a global forest fire watch system. Full article
Show Figures

Figure 1

22 pages, 24332 KiB  
Article
Using Nighttime Light Data to Explore the Extent of Power Outages in the Florida Panhandle after 2018 Hurricane Michael
by Diana Mitsova, Yanmei Li, Ross Einsteder, Tiffany Roberts Briggs, Alka Sapat and Ann-Margaret Esnard
Remote Sens. 2024, 16(14), 2588; https://doi.org/10.3390/rs16142588 - 15 Jul 2024
Viewed by 732
Abstract
The destructive forces of tropical cyclones can have significant impacts on the land, contributing to degradation through various mechanisms such as erosion, debris, loss of vegetation, and widespread damage to infrastructure. Storm surge and flooding can wash away buildings and other structures, deposit [...] Read more.
The destructive forces of tropical cyclones can have significant impacts on the land, contributing to degradation through various mechanisms such as erosion, debris, loss of vegetation, and widespread damage to infrastructure. Storm surge and flooding can wash away buildings and other structures, deposit debris and sediments, and contaminate freshwater resources, making them unsuitable for both human use and agriculture. High winds and flooding often damage electrical disubstations and transformers, leading to disruptions in electricity supply. Restoration can take days or even weeks, depending on the extent of the damage and the resources available. In the meantime, communities affected by power outages may experience difficulties accessing essential services and maintaining communication. In this study, we used a weighted maximum likelihood classification algorithm to reclassify NOAA’s National Geodetic Survey Emergency Response Imagery scenes into debris, sand, water, trees, and roofs to assess the extent of the damage around Mexico Beach, Florida, following the 2018 Hurricane Michael. NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) was processed to estimate power outage duration and rate of restoration in the Florida Panhandle based on the 7-day moving averages. Percent loss of electrical service at a neighborhood level was estimated using the 2013–2017 American Community Survey block group data. Spatial lag models were employed to examine the association between restoration rates and socioeconomic factors. The analysis revealed notable differences in power-restoration rates between urbanized and rural areas and between disadvantaged and more affluent communities. The findings indicated that block groups with higher proportions of minorities, multi-family housing units, rural locations, and households receiving public assistance experienced slower restoration of power compared to urban and more affluent neighborhoods. These results underscore the importance of integrating socioeconomic factors into disaster preparedness and recovery-planning efforts, emphasizing the need for targeted interventions to mitigate disparities in recovery times following natural disasters. Full article
(This article belongs to the Special Issue Land Degradation Assessment with Earth Observation (Second Edition))
Show Figures

Figure 1

18 pages, 24375 KiB  
Article
Refining Long-Time Series of Urban Built-Up-Area Extraction Based on Night-Time Light—A Case Study of the Dongting Lake Area in China
by Yinan Chen, Fu Ren, Qingyun Du and Pan Zhou
Land 2024, 13(7), 1006; https://doi.org/10.3390/land13071006 - 7 Jul 2024
Viewed by 779
Abstract
By studying the development law of urbanization, the problems of disorderly expansion and resource wastage in urban built-up areas can be effectively avoided, which is crucial for the long-term sustainable development of cities. This study proposes a high-precision urban built-up-area extraction method for [...] Read more.
By studying the development law of urbanization, the problems of disorderly expansion and resource wastage in urban built-up areas can be effectively avoided, which is crucial for the long-term sustainable development of cities. This study proposes a high-precision urban built-up-area extraction method for county-level cities for small and medium-sized towns in county-level regions. Our process is based on the Defense Meteorological Satellite/Operational Linescan System (DMSP/OLS) and the NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS), which develops long-term series of coordinated night-time light (NTL) datasets. We then combined this with the Normalized Vegetation Index (NDVI) to calculate the Vegetation-Adjusted NTL Urban Index (VANUI). We combine land use data and a support vector machine (SVM) for semi-supervised classification learning to propose a high-precision urban built-up-area extraction method for county-level cities. We achieved the following results: (1) we fit binary polynomials to the DMSP/OLS and VIIRS NTL datasets based on the correspondence of the mean values to construct a consistent time series of NTL data. (2) Our method effectively improves the accuracy of urban built-up-area extraction, especially for county-level cities, with an overall accuracy of 91.84% and a Kappa coefficient of 0.83. (3) Our method can perform a long-time series of urban built-up-area extraction, and, by studying the spatial and temporal changes in urban built-up areas, it can provide valuable information for sustainable urban development and urban planning. Full article
Show Figures

Figure 1

28 pages, 7681 KiB  
Article
Inversion and Analysis of Global Ocean Chlorophyll-a Concentration Based on Temperature Zoning
by Yanbo He, Liang Leng, Xue Ji, Mingchang Wang, Yanping Huo and Zheng Li
Remote Sens. 2024, 16(13), 2302; https://doi.org/10.3390/rs16132302 - 24 Jun 2024
Viewed by 570
Abstract
In recent years, the frequent occurrence of eutrophication problems in water bodies has been caused by changes in the climate environment and overexploitation of natural resources by humans. Chlorophyll-a, as a key indicator for water body assessment, plays an important role in eutrophication [...] Read more.
In recent years, the frequent occurrence of eutrophication problems in water bodies has been caused by changes in the climate environment and overexploitation of natural resources by humans. Chlorophyll-a, as a key indicator for water body assessment, plays an important role in eutrophication research and has a profound impact on the global biogeochemical cycle of the climate process. Studies have shown that temperature can directly or indirectly affect the concentration of chlorophyll-a by influencing the growth of algae and water quality indicators in water bodies. Considering the temperature factor in the inversion of chlorophyll-a concentration is a novel research approach. Based on the influence of temperature on chlorophyll-a concentration, we propose the idea of inverting global ocean chlorophyll-a concentration based on temperature zoning. Using monthly average remote sensing reflectance data from VIIRS (Visible and Infrared Imaging Radiometer Suite), combined with the results of temperature zoning, the OC3V(SST) model was constructed to invert the monthly average chlorophyll-a concentration in the global ocean in October 2018. The OC3V(SST) model has been validated by applying it to the remaining 11 months of January, April, July, and October in 2017, 2018, and 2019, as well as the entire 31-day dataset of October 2018. The results indicate that temperature zonation can significantly improve the inversion accuracy of chlorophyll-a and further explore the spatial distribution patterns of global chlorophyll-a concentrations across various temperature ranges based on monthly averages from the global ocean. Additionally, the study investigates the continuity issues of various models and the correlation between temperature and chlorophyll-a. Full article
Show Figures

Figure 1

24 pages, 8043 KiB  
Article
Pre-Launch Polarization Assessment of JPSS-3 and -4 VIIRS VNIR Bands and Comparison with Previous Builds
by David Moyer, Jeff McIntire, Amit Angal and Xiaoxiong Xiong
Remote Sens. 2024, 16(12), 2178; https://doi.org/10.3390/rs16122178 - 15 Jun 2024
Viewed by 610
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, deployed on multiple satellites including the Suomi National Polar-orbiting Partnership (S-NPP), National Oceanic and Atmospheric Administration 20 (NOAA-20), NOAA-21, Joint Polar Satellite System (JPSS-3), and JPSS-4 spacecraft, with launches in 2011, 2017, 2022, 2032, and [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, deployed on multiple satellites including the Suomi National Polar-orbiting Partnership (S-NPP), National Oceanic and Atmospheric Administration 20 (NOAA-20), NOAA-21, Joint Polar Satellite System (JPSS-3), and JPSS-4 spacecraft, with launches in 2011, 2017, 2022, 2032, and 2027, respectively, has polarization sensitivity that affects the at-aperture radiometric Sensor Data Record (SDR) calibration in the Visible Near InfraRed (VNIR) spectral region. These SDRs are key inputs into the VIIRS atmospheric, land, and water Environmental Data Records (EDRs) that are integral to weather and climate applications. If the polarization sensitivity of the VIIRS instrument is left uncorrected, EDR quality will degrade, causing diminished quality of weather and climate data. Pre-launch characterization of the instrument’s polarization sensitivity was performed to mitigate this on-orbit calibration effect and improve the quality of the EDRs. Specialized ground test equipment, built specifically for the VIIRS instrument, enabled high-fidelity characterization of the instrument’s polarization performance. This paper will discuss the polarization sensitivity characterization test approach, methodology, and results for the JPSS-3 and -4 builds. This includes a description of the ground test equipment, instrument requirements, and how the testing was executed and analyzed. A comparison of the polarization sensitivity results of the on-orbit S-NPP, NOAA-20, and -21 instruments with the JPSS-3 and -4 VIIRS instruments will be discussed as well. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

11 pages, 21400 KiB  
Communication
Arctic Winds Retrieved from FY-3D Microwave Humidity Sounder-II 183.31 GHz Brightness Temperature Using Atmospheric Motion Vector Method
by Bingxu Li, Xi Guo, Hao Liu, Donghao Han, Gang Li and Ji Wu
Remote Sens. 2024, 16(10), 1715; https://doi.org/10.3390/rs16101715 - 12 May 2024
Viewed by 1004
Abstract
In this study, we develop an Atmospheric Motion Vector (AMV)-based method for retrieving wind vectors using 183.31 GHz water-vapor absorption channels. The method involves tracking water-vapor features from image triplets and subsequently deriving wind fields from motion vectors. The height of the derived [...] Read more.
In this study, we develop an Atmospheric Motion Vector (AMV)-based method for retrieving wind vectors using 183.31 GHz water-vapor absorption channels. The method involves tracking water-vapor features from image triplets and subsequently deriving wind fields from motion vectors. The height of the derived wind for each channel is determined by calculating the weighing function peak using monthly averaged ERA5 reanalysis data. By utilizing Microwave Humidity Sounder-II (MWHS-II) brightness temperatures from the five channels centered around 183.31 GHz, wind vectors are retrieved within the Arctic region for the entire year of 2022. The retrieval quality is evaluated through comparative analysis with ERA5 reanalysis data and the Visible Infrared Imaging Radiometer Suite (VIIRS) wind product. The resultant vector root mean square errors (RMSEs) are approximately 4.5 m/s for the three lower-height channels and 5.5 m/s for the two upper-height channels. These findings demonstrate a wind retrieval performance comparable to the existing methods, highlighting its potential for augmenting wind availability at lower height levels. Full article
(This article belongs to the Special Issue Advancements in Microwave Radiometry for Atmospheric Remote Sensing)
Show Figures

Figure 1

17 pages, 5075 KiB  
Article
CNN-BiLSTM: A Novel Deep Learning Model for Near-Real-Time Daily Wildfire Spread Prediction
by Mohammad Marjani, Masoud Mahdianpari and Fariba Mohammadimanesh
Remote Sens. 2024, 16(8), 1467; https://doi.org/10.3390/rs16081467 - 20 Apr 2024
Cited by 2 | Viewed by 2086
Abstract
Wildfires significantly threaten ecosystems and human lives, necessitating effective prediction models for the management of this destructive phenomenon. This study integrates Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) modules to develop a novel deep learning model called CNN-BiLSTM for near-real-time [...] Read more.
Wildfires significantly threaten ecosystems and human lives, necessitating effective prediction models for the management of this destructive phenomenon. This study integrates Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) modules to develop a novel deep learning model called CNN-BiLSTM for near-real-time wildfire spread prediction to capture spatial and temporal patterns. This study uses the Visible Infrared Imaging Radiometer Suite (VIIRS) active fire product and a wide range of environmental variables, including topography, land cover, temperature, NDVI, wind informaiton, precipitation, soil moisture, and runoff to train the CNN-BiLSTM model. A comprehensive exploration of parameter configurations and settings was conducted to optimize the model’s performance. The evaluation results and their comparison with benchmark models, such as a Long Short-Term Memory (LSTM) and CNN-LSTM models, demonstrate the effectiveness of the CNN-BiLSTM model with IoU of F1 Score of 0.58 and 0.73 for validation and training sets, respectively. This innovative approach offers a promising avenue for enhancing wildfire management efforts through its capacity for near-real-time prediction, marking a significant step forward in mitigating the impact of wildfires. Full article
Show Figures

Figure 1

27 pages, 2083 KiB  
Article
A Wide-Angle Hyperspectral Top-of-Atmosphere Reflectance Model for the Libyan Desert
by Fuxiang Guo, Xiaobing Zheng, Yanna Zhang, Wei Wei, Zejie Zhang, Quan Zhang and Xin Li
Remote Sens. 2024, 16(8), 1406; https://doi.org/10.3390/rs16081406 - 16 Apr 2024
Viewed by 723
Abstract
Reference targets with stability, uniformity, and known reflectance on the Earth’s surface, such as deserts, can be used for the absolute radiometric calibration of satellite sensors. A wide-angle hyperspectral reflectance model at the top of atmosphere (TOA) over such a reference target will [...] Read more.
Reference targets with stability, uniformity, and known reflectance on the Earth’s surface, such as deserts, can be used for the absolute radiometric calibration of satellite sensors. A wide-angle hyperspectral reflectance model at the top of atmosphere (TOA) over such a reference target will expand the applicability of on-orbit calibration to different spectral bands and angles. To achieve the long-term, continuous, and high-precision absolute radiometric calibration of remote sensors, a wide-angle hyperspectral TOA reflectance model of the Libyan Desert was constructed based on spectral reflectance data, satellite overpass parameters, and atmospheric parameters from the Terra/Aqua and Earth Observation-1 (EO-1) satellites between 2003 and 2012. By means of angle fitting, viewing angle grouping, and spectral extension, the model is applicable for absolute radiometric calibration of the visible to short-wave infrared (SWIR) bands for sensors within viewing zenith angles of 65 degrees. To validate the accuracy and precision of the model, a total of 3120 long-term validations of model accuracy and 949 cross-validations with the Landsat 8 Operational Land Imager (OLI) and Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellite sensors between 2013 and 2020 were conducted. The results show that the TOA reflectance calculated by the model had a standard deviation (SD) of relative differences below 1.9% and a root-mean-square error (RMSE) below 0.8% when compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 OLI. The SD of the relative differences and the RMSE were within 2.7% when predicting VIIRS data. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Graphical abstract

23 pages, 11502 KiB  
Article
Evaluation of VIIRS Thermal Emissive Bands Long-Term Calibration Stability and Inter-Sensor Consistency Using Radiative Transfer Modeling
by Feng Zhang, Xi Shao, Changyong Cao, Yong Chen, Wenhui Wang, Tung-Chang Liu and Xin Jing
Remote Sens. 2024, 16(7), 1271; https://doi.org/10.3390/rs16071271 - 4 Apr 2024
Viewed by 811
Abstract
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS [...] Read more.
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS M TEBs among three satellites (S-NPP, NOAA-20, and NOAA-21) over eight months spanning from 18 March to 30 November 2023. The field of interest is limited to the ocean surface between 60°S and 60°N, specifically under clear-sky conditions. Taking radiative transfer modeling (RTM) as the transfer reference, we employed the Community Radiative Transfer Model (CRTM) to simulate VIIRS TEB brightness temperature (BTs), incorporating European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data as inputs. Our results reveal two key findings. Firstly, the reprocessed S-NPP VIIRS TEBs exhibit a robust long-term stability, as demonstrated through analyses of the observation minus background BT differences (O-B ∆BTs) between VIIRS measurements (O) and CRTM simulations (B). The drifts of the O-B BT differences are consistently less than 0.102 K/Decade across all S-NPP VIIRS M TEB bands. Notably, observations from VIIRS M14 and M16 stand out with drifts well within 0.04 K/Decade, reinforcing their exceptional reliability for climate change studies. Secondly, excellent inter-sensor consistency among these three VIIRS instruments is confirmed through the double-difference analysis method (O-O). This method relies on the O-B BT differences obtained from daily VIIRS operational data. The mean inter-VIIRS O-O BT differences remain within 0.08 K for all M TEBs, except for M13. Even in the case of M13, the O-O BT differences between NOAA-21 and NOAA-20/S-NPP have values of 0.312 K and 0.234 K, respectively, which are comparable to the 0.2 K difference observed in overlapping TEBs between VIIRS and MODIS. These disparities are primarily attributed to the significant differences in the Spectral Response Function (SRF) of NOAA-21 compared to NOAA-20 and S-NPP. It is also found that the remnant scene temperature dependence of NOAA-21 versus NOAA-20/S-NPP M13 O-O BT difference after accounting for SRF difference is ~0.0033 K/K, an order of magnitude smaller than the corresponding rates in the direct BT comparisons between NOAA-21 and NOAA-20/S-NPP. Our study confirms the versatility and effectiveness of the RTM-based TEB quality evaluation method in assessing long-term sensor stability and inter-sensor consistency. The double-difference approach effectively mitigates uncertainties and biases inherent to CRTM simulations, establishing a robust mechanism for assessing inter-sensor consistency. Moreover, for M12 operating as a shortwave infrared channel, it is found that the daytime O-B BT differences of S-NPP M12 exhibit greater seasonal variability compared to the nighttime data, which can be attributed to the idea that M12 radiance is affected by the reflected solar radiation during the daytime. Furthermore, in this study, we’ve also characterized the spatial distributions of inter-VIIRS BT differences, identifying variations among VIIRS M TEBs, as well as spatial discrepancies between the daytime and nighttime data. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

20 pages, 10124 KiB  
Article
Satellite Hyperspectral Nighttime Light Observation and Identification with DESIS
by Robert E. Ryan, Mary Pagnutti, Hannah Ryan, Kara Burch and Kimberly Manriquez
Remote Sens. 2024, 16(5), 923; https://doi.org/10.3390/rs16050923 - 6 Mar 2024
Viewed by 1423
Abstract
The satellite imagery of nighttime lights (NTLs) has been studied to understand human activities, economic development, and more recently, the ecological impact of brighter night skies. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) offers perhaps the most advanced nighttime imaging [...] Read more.
The satellite imagery of nighttime lights (NTLs) has been studied to understand human activities, economic development, and more recently, the ecological impact of brighter night skies. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) offers perhaps the most advanced nighttime imaging capabilities to date, but its large pixel size and single band capture large-scale changes in NTL while missing granular but important details, such as lighting type and brightness. To better understand individual NTL sources in a region, the spectra of nighttime lights captured by the DLR Earth Sensing Imaging Spectrometer (DESIS) were extracted and compared against near-coincident VIIRS DNB imagery. The analysis shows that DESIS’s finer spatial and spectral resolutions can detect individual NTL locations and types beyond what is possible with the DNB. Extracted night light spectra, validated against ground truth measurements, demonstrate DESIS’s ability to accurately detect and identify narrow-band atomic emission lines that characterize the spectra of high-intensity discharge (HID) light sources and the broader spectral features associated with different light-emitting diode (LED) lights. These results suggest the possible application of using hyperspectral data from moderate-resolution sensors to identify lamp construction details, such as illumination source type and light quality in low-light contexts. NTL data from DESIS and other hyperspectral sensors may improve the scientific understanding of light pollution, lighting quality, and energy efficiency by identifying, evaluating, and mapping individual and small groups of light sources. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
Show Figures

Graphical abstract

Back to TopTop