Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

remove_circle_outline

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (4)

Search Parameters:
Keywords = non-malleable codes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1159 KiB  
Article
PudgyTurtle Mode Resists Bit-Flipping Attacks
by David A. August and Anne C. Smith
Cryptography 2023, 7(2), 25; https://doi.org/10.3390/cryptography7020025 - 10 May 2023
Viewed by 2190
Abstract
Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent message. While authenticated encryption and message authentication codes can effectively negate this attack, encryption modes can also [...] Read more.
Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent message. While authenticated encryption and message authentication codes can effectively negate this attack, encryption modes can also provide partial protection against bit-flipping. PudgyTurtle is a stream-cipher mode which uses keystream to encode (via an error-correcting code) and to encipher (via modulo-2 addition). Here, we describe the behavior of this mode during bit-flipping attacks and demonstrate how it creates uncertainty about the number, positions, and identities of decrypted bits that will be affected. Full article
Show Figures

Figure 1

38 pages, 959 KiB  
Article
Non-Malleable Code in the Split-State Model
by Divesh Aggarwal, Marshall Ball and Maciej Obremski
Entropy 2022, 24(8), 1038; https://doi.org/10.3390/e24081038 - 28 Jul 2022
Cited by 4 | Viewed by 1400
Abstract
Non-malleable codes are a natural relaxation of error correction and error detection codes applicable in scenarios where error-correction or error-detection is impossible. Over the last decade, non-malleable codes have been studied for a wide variety of tampering families. Among the most well studied [...] Read more.
Non-malleable codes are a natural relaxation of error correction and error detection codes applicable in scenarios where error-correction or error-detection is impossible. Over the last decade, non-malleable codes have been studied for a wide variety of tampering families. Among the most well studied of these is the split-state family of tampering channels, where the codeword is split into two or more parts and each part is tampered with independently. We survey various constructions and applications of non-malleable codes in the split-state model. Full article
(This article belongs to the Special Issue Recent Advances in Information-Theoretic Cryptography)
Show Figures

Figure 1

981 KiB  
Article
Genetic Code Evolution Reveals the Neutral Emergence of Mutational Robustness, and Information as an Evolutionary Constraint
by Steven E. Massey
Life 2015, 5(2), 1301-1332; https://doi.org/10.3390/life5021301 - 24 Apr 2015
Cited by 27 | Viewed by 7229
Abstract
The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its [...] Read more.
The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of “neutral emergence”. The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these “pseudaptations”, and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an “unfreezing” of the codon – amino acid mapping that defines the genetic code, consistent with Crick’s Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a selective pressure in the evolution of sexual reproduction, and differences in translational fidelity. Lastly, the utility of the concept of an informational constraint to other diverse fields of research is explored. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

421 KiB  
Review
Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis
by Erica Ballabio and Thomas A. Milne
Cancers 2012, 4(3), 904-944; https://doi.org/10.3390/cancers4030904 - 10 Sep 2012
Cited by 36 | Viewed by 12350
Abstract
Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues [...] Read more.
Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis. Full article
(This article belongs to the Special Issue Leukemia)
Show Figures

Figure 1

Back to TopTop