Sign in to use this feature.

Years

Between: -

Search Results (13,709)

Search Parameters:
Keywords = planted area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3855 KiB  
Article
Influence of Hydrogel and Zinc Oxide Nanoparticles on the Germination and Establishment of Chenopodium quinoa
by José Luis Soto-Gonzales, José Vulfrano González-Fernández, Diego David Pinzón-Moreno, Eder Clidio Vicuña-Galindo and María Verónica Carranza-Oropeza
Life 2024, 14(9), 1163; https://doi.org/10.3390/life14091163 - 13 Sep 2024
Abstract
The aim of this study was to assess the influence of hydrogel and zinc oxide nanoparticles on quinoa germination and establishment. Various doses of a commercial potassium-based hydrogel (0, 5, 7, and 9 g), each dissolved in one liter of rainwater, were applied. [...] Read more.
The aim of this study was to assess the influence of hydrogel and zinc oxide nanoparticles on quinoa germination and establishment. Various doses of a commercial potassium-based hydrogel (0, 5, 7, and 9 g), each dissolved in one liter of rainwater, were applied. Additionally, 1.5 g of zinc oxide nanoparticles (ZnO-NP) and pre-crushed nitrogen fertilizer, at a rate of 1.6 kg/ha, were added to the solution to achieve a homogeneous mixture. Following the application of hydrogel in the 10-linear-meter rows corresponding to each treatment area in every block, 25 seeds per linear meter of the “Blanca de Juli” quinoa cultivar were sown with a 4 cm spacing between the seeds. Subsequently, a thin layer of soil, approximately 0.5 cm thick, was used to cover the seeds. Ten seedlings were randomly selected and labeled for subsequent evaluations. The experimental design employed in this research was a completely randomized block design. The collected data underwent an analysis of variance, and the means of all the treatments were compared using Tukey’s test with a 5% probability. Height and diameter evaluations of the plant neck were conducted every 45 days. The doses used in this study (5, 7, and 9 g of hydrogel per liter of water) significantly enhanced seed germination and increased the number of plants per linear meter (from 82.00 to 90.33) compared to the control dose without hydrogel (14.66), which resulted in an average of one plant per linear meter. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 35262 KiB  
Article
Distribution and Biology of Protaetia fieberi (Coleoptera, Scarabaeidae)—Is Protection Status Required?
by Leonid V. Egorov, Alexander B. Ruchin and Anatoliy A. Khapugin
Insects 2024, 15(9), 695; https://doi.org/10.3390/insects15090695 - 13 Sep 2024
Abstract
Studies on saproxylic species of Coleoptera have garnered significant attention due to the rarity of some of them. To investigate the distribution and biology of Protaetia fieberi (Kraatz, 1880) (Scarabaeidae: Cetoniinae) in European Russia, we analyzed data from 16 regions collected between 2018 [...] Read more.
Studies on saproxylic species of Coleoptera have garnered significant attention due to the rarity of some of them. To investigate the distribution and biology of Protaetia fieberi (Kraatz, 1880) (Scarabaeidae: Cetoniinae) in European Russia, we analyzed data from 16 regions collected between 2018 and 2024. This species has been reliably recorded in 26 regions. We describe the species’ distribution area boundaries and discuss limiting factors that inhibit its spread to the north, south, and southeast of European Russia. The primary limiting factor is the lack of suitable biotopes. Within its distribution, Protaetia fieberi prefers deciduous and mixed forests of various types. These habitats include both old-growth forest ecosystems and secondary forests that have regenerated following logging. The species also inhabits man-made forest ecosystems, such as field protection forest belts, old parks, and gardens. In forest ecosystems, Protaetia fieberi tends to occupy the upper levels and is rarely found on the ground layer. Conversely, in open areas such as glades, the species is more commonly found at ground level. This distribution pattern is linked to the adults’ feeding preferences, which include consuming sap on tree trunks in forests and feeding on flowering plants in open ecosystems. The seasonal activity of Protaetia fieberi peaks from the third decade of June to the second decade of July. It is hypothesized that the perceived rarity of Protaetia fieberi in research samples is due to the specific baiting methods used, with beer traps being the most effective. The status of the species is re-evaluated in light of new data, suggesting that Protaetia fieberi is common rather than rare in European Russia. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

17 pages, 17092 KiB  
Article
Detection and Assessment of White Flowering Nectar Source Trees and Location of Bee Colonies in Rural and Suburban Environments Using Deep Learning
by Atanas Z. Atanasov, Boris I. Evstatiev, Asparuh I. Atanasov and Ivaylo S. Hristakov
Diversity 2024, 16(9), 578; https://doi.org/10.3390/d16090578 - 13 Sep 2024
Abstract
Environmental pollution with pesticides as a result of intensive agriculture harms the development of bee colonies. Bees are one of the most important pollinating insects on our planet. One of the ways to protect them is to relocate and build apiaries in populated [...] Read more.
Environmental pollution with pesticides as a result of intensive agriculture harms the development of bee colonies. Bees are one of the most important pollinating insects on our planet. One of the ways to protect them is to relocate and build apiaries in populated areas. An important condition for the development of bee colonies is the rich species diversity of flowering plants and the size of the areas occupied by them. In this study, a methodology for detecting and distinguishing white flowering nectar source trees and counting bee colonies is developed and demonstrated, applicable in populated environments. It is based on UAV-obtained RGB imagery and two convolutional neural networks—a pixel-based one for identification of flowering areas and an object-based one for beehive identification, which achieved accuracies of 93.4% and 95.2%, respectively. Based on an experimental study near the village of Yuper (Bulgaria), the productive potential of black locust (Robinia pseudoacacia) areas in rural and suburban environments was determined. The obtained results showed that the identified blooming area corresponds to 3.654 m2, out of 89.725 m2 that were scanned with the drone, and the number of identified beehives was 149. The proposed methodology will facilitate beekeepers in choosing places for the placement of new apiaries and planning activities of an organizational nature. Full article
(This article belongs to the Special Issue Ecology and Diversity of Bees in Urban Environments)
Show Figures

Figure 1

15 pages, 4292 KiB  
Article
Spatial Analysis of the Ecogeographic Diversity of Wild Creeping Cucumber (Melothria pendula L.) for In Situ and Ex Situ Conservation in Mexico
by Rosalinda González-Santos, Luis Hernández-Sandoval and Mauricio Parra-Quijano
Plants 2024, 13(18), 2572; https://doi.org/10.3390/plants13182572 - 13 Sep 2024
Abstract
Melothria pendula L., a wild relative of cucurbit crops, is also used for food and as a medicinal plant in Mexico. The objective of this study was to ecogeographically characterize the known populations of M. pendula in Mexico, determining its adaptive range and [...] Read more.
Melothria pendula L., a wild relative of cucurbit crops, is also used for food and as a medicinal plant in Mexico. The objective of this study was to ecogeographically characterize the known populations of M. pendula in Mexico, determining its adaptive range and possible sites for in situ and ex situ conservation. To achieve this goal, we compiled a dataset of 1270 occurrences of M. pendula from herbarium and botanical databases and individual observations. Adaptive scenarios were generated through the development of an ecogeographic land characterization (ELC) map, preceded by the identification of abiotic variables influencing the species’ distribution. Eleven bioclimatic, edaphic, and geophysical variables were found to be important for the species’ distribution. The ELC map obtained contained 21 ecogeographic categories, with 14 exhibiting the presence of M. pendula. By analyzing ecogeographic representativeness, 111 sites of high interest were selected for the efficient collection of M. pendula in Mexico. Eight high-priority hotspots for future in situ conservation of M. pendula were also identified based on their high ecogeographic diversity, with only three of these hotspots located within protected natural areas. In this study, ecogeographic approaches show their potential utility in conservation prioritization when genetic data are scarce, a very common condition in crop wild relatives. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 8622 KiB  
Article
Litter Decomposition Rates of Four Species of Agroecological Importance in the Peruvian Coast and Andean Highland
by Tomás Samaniego, Jorge Ramirez and Richard Solórzano
Nitrogen 2024, 5(3), 772-789; https://doi.org/10.3390/nitrogen5030051 - 13 Sep 2024
Abstract
Crop residue decomposition is fundamental for ecosystems, influencing carbon cycling, organic matter accumulation, and promoting plant development through nutrient release. Therefore, this study aimed to ascertain the rate of decomposition of four commonly cultivated crops (alfalfa, maize, avocado, and eucalyptus) along the northern [...] Read more.
Crop residue decomposition is fundamental for ecosystems, influencing carbon cycling, organic matter accumulation, and promoting plant development through nutrient release. Therefore, this study aimed to ascertain the rate of decomposition of four commonly cultivated crops (alfalfa, maize, avocado, and eucalyptus) along the northern coast of Lima (Huaral) and in the Ancash Mountain range (Jangas) areas. Decomposition rates were assessed using mass loss from decomposition bags measuring 15 × 10 cm, filled with 10–15 g of material tailored to each species, and buried at a depth of approximately 5 cm. Sampling occurred every three months over a year, totaling four sampling events with three replicates each, resulting in ninety-six experimental units. The findings demonstrate that the decomposition rates and the release of nutrients were markedly greater in Huaral for maize and avocado. In contrast, these rates were notably elevated in Jangas for alfalfa and eucalyptus. The leaf litter of avocado and eucalyptus (tree) had periods of accumulation and release of heavy metals such as Cd. The initial C/N ratio was one of the main factors related to the nutrient decomposition rate; in contrast, there were no significant relationships with soil properties at the study sites. Full article
Show Figures

Figure 1

15 pages, 11451 KiB  
Article
Impact of Climate Change on Distribution of Suitable Niches for Black Locust (Robinia pseudoacacia L.) Plantation in China
by Shanchao Zhao, Hesong Wang and Yang Liu
Forests 2024, 15(9), 1616; https://doi.org/10.3390/f15091616 - 13 Sep 2024
Abstract
Black locust (Robinia pseudoacacia L.), one of the major afforestation species adopted in vegetation restoration, is notable for its rapid root growth and drought resistance. It plays a vital role in improving the natural environment and soil fertility, contributing significantly to soil [...] Read more.
Black locust (Robinia pseudoacacia L.), one of the major afforestation species adopted in vegetation restoration, is notable for its rapid root growth and drought resistance. It plays a vital role in improving the natural environment and soil fertility, contributing significantly to soil and water conservation and biodiversity protection. However, compared with natural forests, due to the low diversity, simple structure and poor stability, planted forests including Robinia pseudoacacia L. are more sensitive to the changing climate, especially in the aspects of growth trend and adaptive range. Studying the ecological characteristics and geographical boundaries of Robinia pseudoacacia L. is therefore important to explore the adaptation of suitable niches to climate change. Here, based on 162 effective distribution records in China and 22 environmental variables, the potential distribution of suitable niches for Robinia pseudoacacia L. plantations in past, present and future climates was simulated by using a Maximum Entropy (MaxEnt) model. The results showed that the accuracy of the MaxEnt model was excellent and the area under the curve (AUC) value reached 0.937. Key environmental factors constraining the distribution and suitable intervals were identified, and the geographical distribution and area changes of Robinia pseudoacacia L. plantations in future climate scenarios were also predicted. The results showed that the current suitable niches for Robinia pseudoacacia L. plantations covered 9.2 × 105 km2, mainly distributed in the Loess Plateau, Huai River Basin, Sichuan Basin, eastern part of the Yunnan–Guizhou Plateau, Shandong Peninsula, and Liaodong Peninsula. The main environmental variables constraining the distribution included the mean temperature of the driest quarter, precipitation of driest the quarter, temperature seasonality and altitude. Among them, the temperature of the driest quarter was the most important factor. Over the past 90 years, the suitable niches in the Sichuan Basin and Yunnan–Guizhou Plateau have not changed significantly, while the suitable niches north of the Qinling Mountains have expanded northward by 2° and the eastern area of Liaoning Province has expanded northward by 1.2°. In future climate scenarios, the potential suitable niches for Robinia pseudoacacia L. are expected to expand significantly in both the periods 2041–2060 and 2061–2080, with a notable increase in highly suitable niches, widely distributed in southern China. A warning was issued for the native vegetation in the above-mentioned areas. This work will be beneficial for developing reasonable afforestation strategies and understanding the adaptability of planted forests to climate change. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 5377 KiB  
Article
Historical Pollution Exposure Impacts on PM2.5 Dry Deposition and Physiological Responses in Urban Trees
by Ruiyu Liu, Manli Wang, Shuyu Chen, Jing Zhang, Xiaoai Jin, Yuan Ren and Jian Chen
Forests 2024, 15(9), 1614; https://doi.org/10.3390/f15091614 - 13 Sep 2024
Abstract
Urban trees are known for their ability to settle fine particulate matter (PM2.5), yet the effects of historical pollution exposure on their dust-retention capacity and stress memory remain underexplored. Therefore, we selected Euonymus japonicus Thunb. var. aurea-marginatus Hort. and Photinia × [...] Read more.
Urban trees are known for their ability to settle fine particulate matter (PM2.5), yet the effects of historical pollution exposure on their dust-retention capacity and stress memory remain underexplored. Therefore, we selected Euonymus japonicus Thunb. var. aurea-marginatus Hort. and Photinia × fraseri Dress, which are two common urban greening tree species in the Yangtze River Delta, a highly urbanized region in China facing severe air pollution challenges, characterized by dense urban forests, and we employed an aerosol generator to perform controlled experiments aiming to simulate PM2.5 pollution exposure in a sealed chamber. The experiments encompassed a first pollution treatment period P1 (15 days), a recovery period R (15 days), and a second pollution treatment period P2 (15 days). The study investigates the historical impacts of pollution exposure by simulating controlled environmental conditions and assessing the morphological and physiological changes in trees. The main results are as follows: Vd of Euonymus japonicus Thunb. var. aurea-marginatus Hort. significantly decreased on the 10th day during P2 compared with that on the same day during P1, whereas Vd of Photinia × fraseri Dress significantly decreased on the 15th day. Compared with those during P1, the specific leaf area of both plants significantly decreased, the specific leaf weight significantly increased, the wax layer significantly thickened, the stomata decreased, and the content of photosynthetic pigments remained stable during P2. Furthermore, the air pollution tolerance index (APTI) generally increased during both P1 and P2. This study contributes to international knowledge by examining stress memory in urban trees and underscores the role of stress memory in enhancing plant resistance to periodic particulate pollution, offering insights into the adaptive mechanisms that can be applied globally, not just regionally. Full article
Show Figures

Figure 1

13 pages, 2717 KiB  
Article
A Preliminary Study on the Whole-Plant Regulations of the Shrub Campylotropis polyantha in Response to Hostile Dryland Conditions
by Hua Zhang, Xue Jiang, Lijun Zhu, Lei Liu, Zhengqiao Liao and Baoguo Du
Metabolites 2024, 14(9), 495; https://doi.org/10.3390/metabo14090495 - 13 Sep 2024
Viewed by 18
Abstract
Drylands cover more than 40% of global land surface and will continue to expand by 10% at the end of this century. Understanding the resistance mechanisms of native species is of particular importance for vegetation restoration and management in drylands. In the present [...] Read more.
Drylands cover more than 40% of global land surface and will continue to expand by 10% at the end of this century. Understanding the resistance mechanisms of native species is of particular importance for vegetation restoration and management in drylands. In the present study, metabolome of a dominant shrub Campylotropis polyantha in a dry-hot valley were investigated. Compared to plants grown at the wetter site, C. polyantha tended to slow down carbon (C) assimilation to prevent water loss concurrent with low foliar reactive oxygen species and sugar concentrations at the drier and hotter site. Nitrogen (N) assimilation and turn over were stimulated under stressful conditions and higher leaf N content was kept at the expense of root N pools. At the drier site, roots contained more water but less N compounds derived from the citric acid cycle. The site had little effect on metabolites partitioning between leaves and roots. Generally, roots contained more C but less N. Aromatic compounds were differently impacted by site conditions. The present study, for the first time, uncovers the apparent metabolic adaptations of C. polyantha to hostile dryland conditions. However, due to the limited number of samples, we are cautious about drawing general conclusions regarding the resistance mechanisms. Further studies with a broader spatial range and larger time scale are therefore recommended to provide more robust information for vegetation restoration and management in dryland areas under a changing climate. Full article
(This article belongs to the Special Issue Metabolic Responses of Plants to Abiotic Stress)
Show Figures

Figure 1

20 pages, 6004 KiB  
Article
The Effects of Auxin Transport Inhibition on the Formation of Various Leaf and Vein Patterns
by Carol L. Wenzel, David M. Holloway and Jim Mattsson
Plants 2024, 13(18), 2566; https://doi.org/10.3390/plants13182566 - 12 Sep 2024
Viewed by 152
Abstract
Polar auxin transport (PAT) is a known component controlling leaf complexity and venation patterns in some model plant species. Evidence indicates that PAT generates auxin converge points (CPs) that in turn lead to local leaf formation and internally into major vein formation. However, [...] Read more.
Polar auxin transport (PAT) is a known component controlling leaf complexity and venation patterns in some model plant species. Evidence indicates that PAT generates auxin converge points (CPs) that in turn lead to local leaf formation and internally into major vein formation. However, the role of PAT in more diverse leaf arrangements and vein patterns is largely unknown. We used the pharmacological inhibition of PAT in developing pinnate tomato, trifoliate clover, palmate lupin, and bipinnate carrot leaves and observed dosage-dependent reduction to simple leaves in these eudicots. Leaf venation patterns changed from craspedodromous (clover, carrot), semi-craspedodromous (tomato), and brochidodromous (lupin) to more parallel patterning with PAT inhibition. The visualization of auxin responses in transgenic tomato plants showed that discrete and separate CPs in control plants were replaced by diffuse convergence areas near the margin. These effects indicate that PAT plays a universal role in the formation of different leaf and vein patterns in eudicot species via a mechanism that depends on the generation as well as the separation of auxin CPs. Computer simulations indicate that variations in PAT can alter the number of CPs, corresponding leaf lobe formation, and the position of major leaf veins along the leaf margin in support of experimental results. Full article
(This article belongs to the Special Issue Advances in Plant Auxin Biology)
Show Figures

Figure 1

23 pages, 8780 KiB  
Article
Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece
by Evangelos E. Pompodakis, Georgios I. Orfanoudakis, Yiannis Katsigiannis and Emmanouel Karapidakis
Energies 2024, 17(18), 4588; https://doi.org/10.3390/en17184588 - 12 Sep 2024
Viewed by 183
Abstract
The decarbonization goals of each country necessitate the utilization of renewable resources, with photovoltaic (PV) and wind turbine (WT) generators being the most common forms. However, spatial constraints, especially on islands, can hinder the expansion of PV and WT installations. In this context, [...] Read more.
The decarbonization goals of each country necessitate the utilization of renewable resources, with photovoltaic (PV) and wind turbine (WT) generators being the most common forms. However, spatial constraints, especially on islands, can hinder the expansion of PV and WT installations. In this context, wave energy emerges as a viable supplementary renewable source. Islands are candidate regions to accommodate wave power resources due to their abundant wave potential. While previous studies have explored the wave energy potential of the Aegean Sea, they have not focused on the electricity production and techno-economic aspects of wave power facilities in this area. This paper aims to fill this knowledge gap by conducting a comprehensive techno-economic analysis to evaluate the feasibility of deploying an offshore wave power facility in the Aegean Sea, Greece. The analysis includes a detailed sensitivity assessment of CAPEX and OPEX variability, calculating key indicators like LCOE and NPV to determine the economic viability and profitability of wave energy investments in the region. Additionally, the study identifies hydraulic efficiency and CAPEX thresholds that could make wave power more competitive compared with traditional energy sources. The techno-economic analysis is conducted for a 45 MW offshore floating wave power plant situated between eastern Crete and Kasos—one of the most wave-rich areas in Greece. Despite eastern Crete’s promising wave conditions, the study reveals that with current techno-economic parameters—CAPEX of 7 million EUR/MW, OPEX of 6%, a 20-year lifetime, and 25% efficiency—the wave energy in this area yields a levelized cost of energy (LCOE) of 1417 EUR/MWh. This rate is significantly higher than the prevailing LCOE in Crete, which is between 237 and 300 EUR/MWh. Nonetheless, this study suggests that the LCOE of wave energy in Crete could potentially decrease to as low as 69 EUR/MWh in the future under improved conditions, including a CAPEX of 1 million EUR/MW, an OPEX of 1%, a 30-year lifetime, and 35% hydraulic efficiency for wave converters. It is recommended that manufacturing companies target these specific thresholds to ensure the economic viability of wave power in the waters of the Aegean Sea. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

25 pages, 4117 KiB  
Article
Modeling the Effects of Irrigation and Its Interaction with Silicon on Quinoa Seed Yield and Water Use Efficiency in Arid Regions
by Amira M. El-Tahan, Mohamed Emran, Fatmah A. Safhi, Asal M. Wali, Sherien E. Sobhy and Omar M. Ibrahim
Agronomy 2024, 14(9), 2088; https://doi.org/10.3390/agronomy14092088 - 12 Sep 2024
Viewed by 254
Abstract
Despite quinoa (Chenopodium quinoa Willd.) gaining international popularity in the early 21st century for its nutritional benefits, there remains a critical need to optimize its cultivation practices in arid regions. Current research often overlooks the combined effects of supplemental irrigation and foliar [...] Read more.
Despite quinoa (Chenopodium quinoa Willd.) gaining international popularity in the early 21st century for its nutritional benefits, there remains a critical need to optimize its cultivation practices in arid regions. Current research often overlooks the combined effects of supplemental irrigation and foliar treatments on quinoa’s yield and water efficiency, particularly under challenging environmental conditions like those in Borg El-Arab, Egypt. Field studies were conducted in Borg El-Arab, Alexandria, Egypt, during the winter seasons of 2021/2022 and 2022/2023 to determine the influence of supplemental irrigation (rainfed, 2000, and 4000 m3/hectare, respectively) and foliar spraying of sodium silicate (control, 200, and 400 ppm) on yield, yield components, seed quality, and water usage efficiency in quinoa cv. Chibaya grown in arid lands. Three replications were used in a split-plot design. The main plots were designated for irrigation, while the subplots were designated for foliar spraying. The results indicate that applying irrigation at a rate of 4000 m3/hectare significantly increased leaf dry weight per plant by 23.5%, stem dry weight per plant by 18.7%, total dry weight per 25 plants by 21.4%, leaf area per plant by 19.2%, and straw yield by 26.8% compared to the control treatment. There were no significant differences between irrigation with the rate of 4000 m3 or 2000 m3/hectare on biological yield kg/hectare, N (%), P (mg/100 g), and protein (%). The utilization of sodium silicate had no significance on all studied features except for straw yield kg ha−1 at the rate of 200 or 400 ppm. The results regarding the RAPD1 primer revealed that the 2000+0 silicon treatment was the only treatment that resemble the control with no up- or downregulated fragment. Moreover, 20 upregulated fragments were observed in all treatments, while 19 DNA fragments were downregulated. Furthermore, the results obtained regarding the RAPD2 primer revealed that 53 fragments were upregulated and 19 downregulated. Additionally, the RAPD3 primer demonstrated that 40 DNA fragments were upregulated, whereas 18 downregulated DNA fragments were detected. It may be inferred that the application of irrigation at a rate of 4000 m3 ha−1 might serve as a supplemental irrigation method. Spraying sodium silicate at a 400 mg L−1 concentration could alleviate the dry climate on the Egyptian shore. Full article
Show Figures

Figure 1

17 pages, 5016 KiB  
Article
Effects of Poultry Manure Biochar on Salicornia herbacea L. Growth and Carbon Sequestration
by Danbi Chun, Hyun Cho, Victor J. Hahm, Michelle Kim, Seok Won Im, Hong Gun Kim and Young Soon Kim
Agriculture 2024, 14(9), 1590; https://doi.org/10.3390/agriculture14091590 - 12 Sep 2024
Viewed by 219
Abstract
In order to explore the potential of biochar produced from poultry manure for sustainable waste utilization, carbon sequestration, and agricultural development, this study examines the impact of biochar on the growth of the halophyte plant Salicornia herbacea L., or glasswort. Because of their [...] Read more.
In order to explore the potential of biochar produced from poultry manure for sustainable waste utilization, carbon sequestration, and agricultural development, this study examines the impact of biochar on the growth of the halophyte plant Salicornia herbacea L., or glasswort. Because of their properties of morphological and chemical properties, biochar has been gaining interest as a potential solution to addressing both the concerns of climate change and unsustainable agriculture. In this study, the characteristics of biochar were analyzed and its impact on plant growth by stem length was measured over 15 weeks. Poultry-based biochar was created through pyrolysis at the temperatures of 400, 500, and 700 °C. Various amounts of biochar produced from pyrolysis at 500 °C were put to soil. However, the average surface area and average pore size values of poultry manure biochar produced from temperatures 400, 500, and 700 °C were similar enough to be negligible. The biochar sample produced from the pyrolysis temperature of 500 °C had an average pore size of 17.18 nm and a surface area of 18.06 m2/g. From weeks 4 to 15, all groups exhibited increased stem length, with the most significant differences observed between the biochar 0% (control) and biochar 10% groups, with biochar 0% and biochar 10% denoting 0% and 10% weight concentrations of biochar, respectively. While biochar 5% and biochar 7% groups showed minimal differences in stem length, biochar 10% demonstrated a significant increase, suggesting an optimal biochar percentage for enhancing plant growth. Carbon credit estimations have suggested that 1 ton of poultry manure biochar produced from pyrolysis at 500 C° equates to an estimate of 0.5248 ± 0.0580 carbon credits, the highest of all three biochar samples. All three samples (biochar produced from 400, 500, and 700 °C pyrolysis temperatures) had increased heavy metal contents and a wider range of functional groups. The findings indicate that biochar can effectively improve soil health and plant performance overall, with biochar 10% showing the most significant impact on Salicornia growth. Full article
Show Figures

Figure 1

19 pages, 3262 KiB  
Article
Evaluating the Efficacy of Plant Extracts in Managing the Bruchid Beetle, Callosobruchus maculatus (Coleoptera: Bruchidae)
by Rasheed Akbar, Brekhna Faheem, Tariq Aziz, Amjad Ali, Asmat Ullah, Imtiaz Ali Khan and Jianfan Sun
Insects 2024, 15(9), 691; https://doi.org/10.3390/insects15090691 - 12 Sep 2024
Viewed by 206
Abstract
An estimated 2000 plant species have been employed for pest control worldwide. The use of these botanical derivatives is thought to be one of the most cost-effective and sustainable options for pest management in stored grain. The present study was designed to assess [...] Read more.
An estimated 2000 plant species have been employed for pest control worldwide. The use of these botanical derivatives is thought to be one of the most cost-effective and sustainable options for pest management in stored grain. The present study was designed to assess the efficacy of five plant extracts viz; Nicotiana tabacum L., Nicotiana rustica L., Azadirachta indica A. Juss., Thuja orientalis L., and Melia azedarach L. against Callosobruchus maculatus L. Plant species extracts were applied at six different concentrations, i.e., 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0% in four replications. The phytochemical analyses of ethanolic extracts of five plant species showed variable amounts of phytochemicals i.e., alkaloids, flavonoids, saponins, diterpenes, phytosterol, and phenols. Total phenolic and flavonoid compounds were also observed. The efficacy of A. indica was highest, characterized by the lowest infestation rate (16.65%), host seed weight loss (7.85%), mean oviposition (84.54), and adult emergence (58.40%). In contrast, T. orientalis was found to be the least effective against C. maculatus, with the highest infestation rate of 25.60%, host seed weight loss of 26.73%, mean oviposition of 117.17, and adult emergence rate of 82.01%. Probit analysis was performed by estimating LC50 and LC90. The toxicity percentages of N. tabacum (LC50 = 0.69%, LC90 = 14.59%), N. rustica (LC50 = 0.98%, LC90 = 22.06%), and A. indica (LC50 = 1.09%, LC90 = 68.52%) were notable in terms of the lower LC50 and LC90 values after the 96-h exposure period against C. maculatus. Repellency was assessed by using the area preference and filter paper method. The repellency of C. maculatus on plant extracts increased with the increasing dose and time, such that it was the highest after 48 h. Likewise, at a 3% concentration, A. indica demonstrated 100.00% (Class-V) repellency followed by N. tabacum (96.00%, Class-V), N. rustica (74%, Class-IV), M. azedarach (70.00%, Class-IV), and T. orientalis (68.00%, Class-IV). Based on the findings of this study, we recommend integrating N. rustica, N. tabacum, A. indica, and M. azedarach for effective management of C. maculatus and highlight the potential of these plant species in the formulation of new biocidal agents. Full article
(This article belongs to the Special Issue New Formulations of Natural Substances against Insect Pests)
Show Figures

Figure 1

29 pages, 6780 KiB  
Article
Phenological and Biophysical Mediterranean Orchard Assessment Using Ground-Based Methods and Sentinel 2 Data
by Pierre Rouault, Dominique Courault, Guillaume Pouget, Fabrice Flamain, Papa-Khaly Diop, Véronique Desfonds, Claude Doussan, André Chanzy, Marta Debolini, Matthew McCabe and Raul Lopez-Lozano
Remote Sens. 2024, 16(18), 3393; https://doi.org/10.3390/rs16183393 - 12 Sep 2024
Viewed by 262
Abstract
A range of remote sensing platforms provide high spatial and temporal resolution insights which are useful for monitoring vegetation growth. Very few studies have focused on fruit orchards, largely due to the inherent complexity of their structure. Fruit trees are mixed with inter-rows [...] Read more.
A range of remote sensing platforms provide high spatial and temporal resolution insights which are useful for monitoring vegetation growth. Very few studies have focused on fruit orchards, largely due to the inherent complexity of their structure. Fruit trees are mixed with inter-rows that can be grassed or non-grassed, and there are no standard protocols for ground measurements suitable for the range of crops. The assessment of biophysical variables (BVs) for fruit orchards from optical satellites remains a significant challenge. The objectives of this study are as follows: (1) to address the challenges of extracting and better interpreting biophysical variables from optical data by proposing new ground measurements protocols tailored to various orchards with differing inter-row management practices, (2) to quantify the impact of the inter-row at the Sentinel pixel scale, and (3) to evaluate the potential of Sentinel 2 data on BVs for orchard development monitoring and the detection of key phenological stages, such as the flowering and fruit set stages. Several orchards in two pedo-climatic zones in southeast France were monitored for three years: four apricot and nectarine orchards under different management systems and nine cherry orchards with differing tree densities and inter-row surfaces. We provide the first comparison of three established ground-based methods of assessing BVs in orchards: (1) hemispherical photographs, (2) a ceptometer, and (3) the Viticanopy smartphone app. The major phenological stages, from budburst to fruit growth, were also determined by in situ annotations on the same fields monitored using Viticanopy. In parallel, Sentinel 2 images from the two study sites were processed using a Biophysical Variable Neural Network (BVNET) model to extract the main BVs, including the leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fraction of green vegetation cover (FCOVER). The temporal dynamics of the normalised FAPAR were analysed, enabling the detection of the fruit set stage. A new aggregative model was applied to data from hemispherical photographs taken under trees and within inter-rows, enabling us to quantify the impact of the inter-row at the Sentinel 2 pixel scale. The resulting value compared to BVs computed from Sentinel 2 gave statistically significant correlations (0.57 for FCOVER and 0.45 for FAPAR, with respective RMSE values of 0.12 and 0.11). Viticanopy appears promising for assessing the PAI (plant area index) and FCOVER for orchards with grassed inter-rows, showing significant correlations with the Sentinel 2 LAI (R2 of 0.72, RMSE 0.41) and FCOVER (R2 0.66 and RMSE 0.08). Overall, our results suggest that Sentinel 2 imagery can support orchard monitoring via indicators of development and inter-row management, offering data that are useful to quantify production and enhance resource management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

20 pages, 14793 KiB  
Article
Predicted Responses of Genetically Improved Populations to Climate Changes Based on Second-Cycle Douglas-Fir Progeny Tests
by Terrance Z. Ye and Keith J. S. Jayawickrama
Forests 2024, 15(9), 1610; https://doi.org/10.3390/f15091610 - 12 Sep 2024
Viewed by 144
Abstract
The current planting of economically important timber species, such as Douglas-fir, mainly relies on genetically improved seeds from seed orchards. However, published research on the effects of climate change has largely focused on natural populations. To bridge this gap, data from 80 cooperative [...] Read more.
The current planting of economically important timber species, such as Douglas-fir, mainly relies on genetically improved seeds from seed orchards. However, published research on the effects of climate change has largely focused on natural populations. To bridge this gap, data from 80 cooperative second-cycle coastal Douglas-fir progeny tests across eight breeding zones in western Washington and Oregon were analyzed. Climate transfer functions for age-12 growth were derived, showing significant results for the US Pacific Northwest. Region-specific transfer functions (Coast, Inland, and Cascade) displayed stronger correlations. Mean annual temperature and mean coldest month temperature were the most important climatic variables explaining growth. The study found that populations from slightly warmer areas tended to grow better but moving populations from colder to warmer areas by 2 °C (analogous to projected global warming) would result in an 8% genetic loss in age-12 height and a 25% genetic loss in age-12 volume. However, substantial diversity in climatic response was found among full-sib families within large breeding zones, suggesting that breeding and selecting suitable families for future climatic conditions within breeding zones is feasible. The study discusses potential strategies to adapt current breeding programs to address the impacts of future climate change while maintaining high population growth rates in Douglas-fir breeding programs. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

Back to TopTop