Sign in to use this feature.

Years

Between: -

Search Results (31,574)

Search Parameters:
Keywords = remote sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 740 KiB  
Article
Activation of ABA Signaling Pathway and Up-Regulation of Salt-Responsive Genes Confer Salt Stress Tolerance of Wheat (Triticum aestivum L.) Seedlings
by Zhiyou Zou, Aziz Khan, Adnan Khan, Zhongyi Tao, Sheng Zhang, Qiteng Long, Jinfu Lin and Shunshe Luo
Agronomy 2024, 14(9), 2095; https://doi.org/10.3390/agronomy14092095 - 13 Sep 2024
Abstract
Salt is a potent abiotic stress that arrests plant growth by impairing their physio-biochemical and molecular processes. However, it is unknown how the ABA signaling system and vacuolar-type Na+/H+ antiporter proteins induce stress tolerance in wheat (Triticum aestivum L.) [...] Read more.
Salt is a potent abiotic stress that arrests plant growth by impairing their physio-biochemical and molecular processes. However, it is unknown how the ABA signaling system and vacuolar-type Na+/H+ antiporter proteins induce stress tolerance in wheat (Triticum aestivum L.) seedlings. The present study aimed to identify salt-responsive proteins and signaling pathways involved in the resistance of wheat to salt stress. We explored the proteome profile, 20 amino acids, 14 carbohydrates, 8 major phytohormones, ion content, and salt tolerance genes in wheat (Triticum aestivum L., cv.) under 200 mM NaCl with control plants for six days. The results showed that amino acids such as alanine, serine, proline, glutamine, and aspartic acid were highly expressed under salt stress compared with control plants, suggesting that amino acids are the main players in salinity tolerance. The ABA signaling system was activated in response to salinity stress through the modulation of protein phosphatase 2C (PP2C) and ABA-responsive element binding factor (ABF), resulting in an ABA-mediated downstream response. Additionally, the vacuolar-type Na+/H+ antiporter was identified as a key protein in salt stress tolerance via compartmentalizing Na+ in the vacuole. Furthermore, a significant increase in the abundance of the 14-3-3 protein was noticed in salt-fed plants, suggesting that this protein plays an important role in Na+ compartmentalization. Moreover, up-regulation of ascorbate peroxidase (APX), glutathione-S-transferase (GST), and thioredoxin-scavenged reactive oxygen species resulted in improved plant growth under salt stress. These data will help to identify salt-responsive proteins that can be used in future breeding programs to develop salt-tolerant varieties. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
20 pages, 7101 KiB  
Article
Tracking Evapotranspiration Patterns on the Yinchuan Plain with Multispectral Remote Sensing
by Junzhen Meng, Xiaoquan Yang, Zhiping Li, Guizhang Zhao, Peipei He, Yabing Xuan and Yunfei Wang
Sustainability 2024, 16(18), 8025; https://doi.org/10.3390/su16188025 - 13 Sep 2024
Abstract
Evapotranspiration (ET) is a critical component of the hydrological cycle, and it has a decisive impact on the ecosystem balance in arid and semi-arid regions. The Yinchuan Plain, located in the Gobi of Northwest China, has a strong surface ET, which has a [...] Read more.
Evapotranspiration (ET) is a critical component of the hydrological cycle, and it has a decisive impact on the ecosystem balance in arid and semi-arid regions. The Yinchuan Plain, located in the Gobi of Northwest China, has a strong surface ET, which has a significant impact on the regional water resource cycle. However, there is a current lack of high-resolution evapotranspiration datasets and a substantial amount of time is required for long-time series remote sensing evapotranspiration estimation. In order to assess the ET pattern in this region, we obtained the actual ET (ETa) of the Yinchuan Plain between 1987 and 2020 using the Google Earth Engine (GEE) platform. Specifically, we used Landsat TM+/OLI remote sensing imagery and the GEE Surface Energy Balance Model (geeSEBAL) to analyze the spatial distribution pattern of ET over different seasons. We then reproduced the interannual variation in ET from 1987 to 2020, and statistically analyzed the distribution patterns and contributions of ET with regard to different land use types. The results show that (1) the daily ETa of the Yinchuan Plain is the highest in the central lake wetland area in spring, with a maximum value of 4.32 mm day−1; in summer, it is concentrated around the croplands and water bodies, with a maximum value of 6.90 mm day−1; in autumn and winter, it is mainly concentrated around the water bodies and impervious areas, with maximum values of 3.93 and 1.56 mm day−1, respectively. (2) From 1987 to 2020, the ET of the Yinchuan Plain showed an obvious upward and downward trend in some areas with significant land use changes, but the overall ET of the region remained relatively stable without dramatic fluctuations. (3) The ETa values for different land use types in the Yinchuan Plain region are ranked as follows: water body > cultivated land > impervious > grassland > bare land. Our results showed that geeSEBAL is highly applicable in the Yinchuan Plain area. It allows for the accurate and detailed inversion of ET and has great potential for evaluating long-term ET in data-scarce areas due to its low meteorological sensitivity, which facilitates the study of the regional hydrological cycle and water governance. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

21 pages, 32879 KiB  
Article
Soil and Water Bioengineering in Fire-Prone Lands: Detecting Erosive Areas Using RUSLE and Remote Sensing Methods
by Melanie Maxwald, Ronald Correa, Edwin Japón, Federico Preti, Hans Peter Rauch and Markus Immitzer
Fire 2024, 7(9), 319; https://doi.org/10.3390/fire7090319 - 13 Sep 2024
Abstract
Soil and water bioengineering (SWBE) measures in fire-prone areas are essential for erosion mitigation, revegetation, as well as protection of settlements against inundations and landslides. This study’s aim was to detect erosive areas at the basin scale for SWBE implementation in pre- and [...] Read more.
Soil and water bioengineering (SWBE) measures in fire-prone areas are essential for erosion mitigation, revegetation, as well as protection of settlements against inundations and landslides. This study’s aim was to detect erosive areas at the basin scale for SWBE implementation in pre- and post-fire conditions based on a wildfire event in 2019 in southern Ecuador. The Revised Universal Soil Loss Equation (RUSLE) was used in combination with earth observation data to detect the fire-induced change in erosion behavior by adapting the cover management factor (C-factor). To understand the spatial accuracy of the predicted erosion-prone areas, high-resolution data from an Unmanned Aerial Vehicle (UAV) served for comparison and visual interpretation at the sub-basin level. As a result, the mean erosion at the basin was estimated to be 4.08 t ha−1 yr−1 in pre-fire conditions and 4.06 t ha−1 yr−1 in post-fire conditions. The decrease of 0.44% is due to the high autonomous vegetation recovery capacity of grassland in the first post-fire year. Extreme values increased by a factor of 4 in post-fire conditions, indicating the importance of post-fire erosion measures such as SWBE in vulnerable areas. The correct spatial location of highly erosive areas detected by the RUSLE was successfully verified by the UAV data. This confirms the effectivity of combining the RUSLE with very-high-resolution data in identifying areas of high erosion, suggesting potential scalability to other fire-prone regions. Full article
(This article belongs to the Special Issue Remote Sensing of Wildfire: Regime Change and Disaster Response)
Show Figures

Figure 1

24 pages, 11964 KiB  
Article
Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China
by Xiaoyuan Zhang, Shudong Wang, Kai Liu, Xiankai Huang, Jinlian Shi and Xueke Li
Remote Sens. 2024, 16(18), 3410; https://doi.org/10.3390/rs16183410 - 13 Sep 2024
Abstract
Exploring the dynamic response of land use and ecological vulnerability (EV) to future climate change and human ecological restoration policies is crucial for optimizing regional ecosystem services and formulating sustainable socioeconomic development strategies. This study comprehensively assesses future land use changes and EV [...] Read more.
Exploring the dynamic response of land use and ecological vulnerability (EV) to future climate change and human ecological restoration policies is crucial for optimizing regional ecosystem services and formulating sustainable socioeconomic development strategies. This study comprehensively assesses future land use changes and EV in the Yellow River Basin (YRB), a climate-sensitive and ecologically fragile area, by integrating climate change, land management, and ecological protection policies under various scenarios. To achieve this, we developed an EV assessment framework combining a scenario weight matrix, Markov chain, Patch-generating Land Use Simulation model, and exposure–sensitivity–adaptation. We further explored the spatiotemporal variations of EV and their potential socioeconomic impacts at the watershed scale. Our results show significant geospatial variations in future EV under the three scenarios, with the northern region of the upstream area being the most severely affected. Under the ecological conservation management scenario and historical trend scenario, the ecological environment of the basin improves, with a decrease in very high vulnerability areas by 4.45% and 3.08%, respectively, due to the protection and restoration of ecological land. Conversely, under the urban development and construction scenario, intensified climate change and increased land use artificialization exacerbate EV, with medium and high vulnerability areas increasing by 1.86% and 7.78%, respectively. The population in high and very high vulnerability areas is projected to constitute 32.75–33.68% and 34.59–39.21% of the YRB’s total population in 2040 and 2060, respectively, and may continue to grow. Overall, our scenario analysis effectively demonstrates the positive impact of ecological protection on reducing EV and the negative impact of urban expansion and economic development on increasing EV. Our work offers new insights into land resource allocation and the development of ecological restoration policies. Full article
Show Figures

Figure 1

27 pages, 6340 KiB  
Article
Design and Evaluation of Real-Time Data Storage and Signal Processing in a Long-Range Distributed Acoustic Sensing (DAS) Using Cloud-Based Services
by Abdusomad Nur and Yonas Muanenda
Sensors 2024, 24(18), 5948; https://doi.org/10.3390/s24185948 - 13 Sep 2024
Abstract
In cloud-based Distributed Acoustic Sensing (DAS) sensor data management, we are confronted with two primary challenges. First, the development of efficient storage mechanisms capable of handling the enormous volume of data generated by these sensors poses a challenge. To solve this issue, we [...] Read more.
In cloud-based Distributed Acoustic Sensing (DAS) sensor data management, we are confronted with two primary challenges. First, the development of efficient storage mechanisms capable of handling the enormous volume of data generated by these sensors poses a challenge. To solve this issue, we propose a method to address the issue of handling the large amount of data involved in DAS by designing and implementing a pipeline system to efficiently send the big data to DynamoDB in order to fully use the low latency of the DynamoDB data storage system for a benchmark DAS scheme for performing continuous monitoring over a 100 km range at a meter-scale spatial resolution. We employ the DynamoDB functionality of Amazon Web Services (AWS), which allows highly expandable storage capacity with latency of access of a few tens of milliseconds. The different stages of DAS data handling are performed in a pipeline, and the scheme is optimized for high overall throughput with reduced latency suitable for concurrent, real-time event extraction as well as the minimal storage of raw and intermediate data. In addition, the scalability of the DynamoDB-based data storage scheme is evaluated for linear and nonlinear variations of number of batches of access and a wide range of data sample sizes corresponding to sensing ranges of 1–110 km. The results show latencies of 40 ms per batch of access with low standard deviations of a few milliseconds, and latency per sample decreases for increasing the sample size, paving the way toward the development of scalable, cloud-based data storage services integrating additional post-processing for more precise feature extraction. The technique greatly simplifies DAS data handling in key application areas requiring continuous, large-scale measurement schemes. In addition, the processing of raw traces in a long-distance DAS for real-time monitoring requires the careful design of computational resources to guarantee requisite dynamic performance. Now, we will focus on the design of a system for the performance evaluation of cloud computing systems for diverse computations on DAS data. This system is aimed at unveiling valuable insights into performance metrics and operational efficiencies of computations on the data in the cloud, which will provide a deeper understanding of the system’s performance, identify potential bottlenecks, and suggest areas for improvement. To achieve this, we employ the CloudSim framework. The analysis reveals that the virtual machine (VM) performance decreases significantly the processing time with more capable VMs, influenced by Processing Elements (PEs) and Million Instructions Per Second (MIPS). The results also reflect that, although a larger number of computations is required as the fiber length increases, with the subsequent increase in processing time, the overall speed of computation is still suitable for continuous real-time monitoring. We also see that VMs with lower performance in terms of processing speed and number of CPUs have more inconsistent processing times compared to those with higher performance, while not incurring significantly higher prices. Additionally, the impact of VM parameters on computation time is explored, highlighting the importance of resource optimization in the DAS system design for efficient performance. The study also observes a notable trend in processing time, showing a significant decrease for every additional 50,000 columns processed as the length of the fiber increases. This finding underscores the efficiency gains achieved with larger computational loads, indicating improved system performance and capacity utilization as the DAS system processes more extensive datasets. Full article
Show Figures

Figure 1

20 pages, 4165 KiB  
Article
Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale
by Srishti Gwal, Dipaka Ranjan Sena, Prashant K. Srivastava and Sanjeev K. Srivastava
Remote Sens. 2024, 16(18), 3409; https://doi.org/10.3390/rs16183409 - 13 Sep 2024
Abstract
Hydrological Ecosystem Services (HES) are crucial components of environmental sustainability and provide indispensable benefits. The present study identifies critical hot and cold spots areas of HES in the Aglar watershed of the Indian Himalayan Region using six HES descriptors, namely water yield (WYLD), [...] Read more.
Hydrological Ecosystem Services (HES) are crucial components of environmental sustainability and provide indispensable benefits. The present study identifies critical hot and cold spots areas of HES in the Aglar watershed of the Indian Himalayan Region using six HES descriptors, namely water yield (WYLD), crop yield factor (CYF), sediment yield (SYLD), base flow (LATQ), surface runoff (SURFQ), and total water retention (TWR). The analysis was conducted using weightage-based approaches under two methods: (1) evaluating six HES descriptors individually and (2) grouping them into broad ecosystem service categories. Furthermore, the study assessed pixel-level uncertainties that arose because of the distinctive methods used in the identification of hot and cold spots. The associated synergies and trade-offs among HES descriptors were examined too. From method 1, 0.26% area of the watershed was classified as cold spots and 3.18% as hot spots, whereas method 2 classified 2.42% area as cold spots and 2.36% as hot spots. Pixel-level uncertainties showed that 0.57 km2 and 6.86 km2 of the watershed were consistently under cold and hot spots, respectively, using method 1, whereas method 2 identified 2.30 km2 and 6.97 km2 as cold spots and hot spots, respectively. The spatial analysis of hot spots showed consistent patterns in certain parts of the watershed, primarily in the south to southwest region, while cold spots were mainly found on the eastern side. Upon analyzing HES descriptors within broad ecosystem service categories, hot spots were mainly in the southern part, and cold spots were scattered throughout the watershed, especially in agricultural and scrubland areas. The significant synergistic relation between LATQ and WYLD, and sediment retention and WYLD and trade-offs between SURFQ and HES descriptors like WYLD, LATQ, sediment retention, and TWR was attributed to varying factors such as land use and topography impacting the water balance components in the watershed. The findings underscore the critical need for targeted conservation efforts to maintain the ecologically sensitive regions at watershed scale. Full article
Show Figures

Figure 1

18 pages, 7297 KiB  
Article
Spatial–Temporal Dynamics of Land Use and Cover in Mata da Pimenteira State Park Based on MapBiomas Brasil Data: Perspectives and Social Impacts
by Júlio Cesar Gomes da Cruz, Alexandre Maniçoba da Rosa Ferraz Jardim, Anderson Santos da Silva, Marcos Vinícius da Silva, Jhon Lennon Bezerra da Silva, Rodrigo Ferraz Jardim Marques, Elisiane Alba, Antônio Henrique Cardoso do Nascimento, Araci Farias Silva, Elania Freire da Silva and Alan Cézar Bezerra
AgriEngineering 2024, 6(3), 3327-3344; https://doi.org/10.3390/agriengineering6030190 - 13 Sep 2024
Abstract
Caatinga is a typical Brazilian biome facing severe threats despite its ecological and socio-economic importance. Conservation strategies are essential in protecting ecosystems and ensuring natural resource sustainability. Mata da Pimenteira State Park (PEMP), launched in 2012, is an example of such a strategy. [...] Read more.
Caatinga is a typical Brazilian biome facing severe threats despite its ecological and socio-economic importance. Conservation strategies are essential in protecting ecosystems and ensuring natural resource sustainability. Mata da Pimenteira State Park (PEMP), launched in 2012, is an example of such a strategy. The current study aims to use orbital remote sensing techniques to assess human impacts on changes in land use and land cover (LULC) after the establishment of PEMP in the semi-arid region known as Caatinga, in Pernambuco State. The effects of this unit on vegetation preservation were specifically analyzed based on using data from the MapBiomas Brasil project to assess trends in LULC, both in and around PEMP, from 2002 to 2020. Man–Kendall and Pettitt statistical tests were applied to identify significant changes, such as converting forest areas into pastures and agricultural plantations. Trends of the loss and gain of LULC were observed over the years, such as forest areas’ conversion into pasture and vice versa, mainly before and after PEMP implementation. These findings highlight the importance of developing conservation measures and planning to help protecting the Caatinga, which is a vital biome in Brazil. Full article
Show Figures

Figure 1

21 pages, 11739 KiB  
Article
Land Cover and Spatial Distribution of Surface Water Loss Hotspots in Italy
by Irene Palazzoli, Gianluca Lelli and Serena Ceola
Sustainability 2024, 16(18), 8021; https://doi.org/10.3390/su16188021 - 13 Sep 2024
Abstract
Increasing water withdrawals and changes in land cover/use are critically altering surface water bodies, often causing a noticeable reduction in their area. Such anthropogenic modification of surface waters needs to be thoroughly examined to recognize the dynamics through which humans affect the loss [...] Read more.
Increasing water withdrawals and changes in land cover/use are critically altering surface water bodies, often causing a noticeable reduction in their area. Such anthropogenic modification of surface waters needs to be thoroughly examined to recognize the dynamics through which humans affect the loss of surface water. By leveraging remotely-sensed data and employing a distance–decay model, we investigate the loss of surface water resources that occurred in Italy between 1984 and 2021 and explore its association with land cover change and potential human pressure. In particular, we first estimate the land cover conversion across locations experiencing surface water loss. Next, we identify and analytically model the influence of irrigated and built-up areas, which heavily rely on surface waters, on the spatial distribution of surface water losses across river basin districts and river basins in Italy. Our results reveal that surface water losses are mainly located in northern Italy, where they have been primarily replaced by cropland and vegetation. As expected, we find that surface water losses tend to be more concentrated in the proximity of both irrigated and built-up areas yet showing differences in their spatial occurrence and extent. These observed spatial patterns are well captured by our analytical model, which outlines the predominant role of irrigated areas, mainly across northern Italy and Sicily, and more dominant effects of built-up areas across the Apennines and in Sardinia. By highlighting land cover patterns following the loss of surface water and evaluating the relative distribution of surface water losses with respect to areas of human pressure, our analysis provides key information that could support water management and prevent future conditions of water scarcity due to unsustainable water exploitation. Full article
Show Figures

Figure 1

15 pages, 10244 KiB  
Article
Identification of Floating Green Tide in High-Turbidity Water from Sentinel-2 MSI Images Employing NDVI and CIE Hue Angle Thresholds
by Lin Wang, Qinghui Meng, Xiang Wang, Yanlong Chen, Xinxin Wang, Jie Han and Bingqiang Wang
J. Mar. Sci. Eng. 2024, 12(9), 1640; https://doi.org/10.3390/jmse12091640 - 13 Sep 2024
Abstract
Remote sensing technology is widely used to obtain information on floating green tides, and thresholding methods based on indices such as the normalized difference vegetation index (NDVI) and the floating algae index (FAI) play an important role in such studies. However, as the [...] Read more.
Remote sensing technology is widely used to obtain information on floating green tides, and thresholding methods based on indices such as the normalized difference vegetation index (NDVI) and the floating algae index (FAI) play an important role in such studies. However, as the methods are influenced by many factors, the threshold values vary greatly; in particular, the error of data extraction clearly increases in situations of high-turbidity water (HTW) (NDVI > 0). In this study, high spatial resolution, multispectral images from the Sentinel-2 MSI mission were used as the data source. It was found that the International Commission on Illumination (CIE) hue angle calculated using remotely sensed equivalent multispectral reflectance data and the RGB method is extremely effective in distinguishing floating green tides from areas of HTW. Statistical analysis of Sentinel-2 MSI images showed that the threshold value of the hue angle that can effectively eliminate the effect of HTW is 218.94°. A test demonstration of the method for identifying the floating green tide in HTW in a Sentinel-2 MSI image was carried out using the identified threshold values of NDVI > 0 and CIE hue angle < 218.94°. The demonstration showed that the method effectively eliminates misidentification caused by HTW pixels (NDVI > 0), resulting in better consistency of the identification of the floating green tide and its distribution in the true color image. The method enables rapid and accurate extraction of information on floating green tide in HTW, and offers a new solution for the monitoring and tracking of green tides in coastal areas. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

15 pages, 4826 KiB  
Article
Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates
by Leonardo Laipelt, Julia Brusso Rossi, Bruno Comini de Andrade, Morris Scherer-Warren and Anderson Ruhoff
Remote Sens. 2024, 16(18), 3404; https://doi.org/10.3390/rs16183404 - 13 Sep 2024
Abstract
The expansion of cropland in tropical regions has significantly accelerated in recent decades, triggering an escalation in water demand and changing the total water loss to the atmosphere (evapotranspiration). Additionally, the increase in areas dedicated to agriculture in tropical climates coincides with an [...] Read more.
The expansion of cropland in tropical regions has significantly accelerated in recent decades, triggering an escalation in water demand and changing the total water loss to the atmosphere (evapotranspiration). Additionally, the increase in areas dedicated to agriculture in tropical climates coincides with an increased frequency of drought events, leading to a series of conflicts among water users. However, detailed studies on the impacts of changes in water use due to agriculture expansion, including irrigation, are still lacking. Furthermore, the higher presence of clouds in tropical environments poses challenges for the availability of high-resolution data for vegetation monitoring via satellite images. This study aims to analyze 37 years of agricultural expansion using the Landsat collection and a satellite-based model (geeSEBAL) to assess changes in evapotranspiration resulting from cropland expansion in tropical climates, focusing on the São Marcos River Basin in Brazil. It also used a methodology for estimating daily evapotranspiration on days without satellite images. The results showed a 34% increase in evapotranspiration from rainfed areas, mainly driven by soybean cultivation. In addition, irrigated areas increased their water use, despite not significantly changing water use at the basin scale. Conversely, natural vegetation areas decreased their evapotranspiration rates by 22%, suggesting possible further implications with advancing changes in land use and land cover. Thus, this study underscores the importance of using satellite-based evapotranspiration estimates to enhance our understanding of water use across different land use types and scales, thereby improving water management strategies on a large scale. Full article
Show Figures

Figure 1

35 pages, 6364 KiB  
Article
Mapping the Influence of Olympic Games’ Urban Planning on the Land Surface Temperatures: An Estimation Using Landsat Series and Google Earth Engine
by Joan-Cristian Padró, Valerio Della Sala, Marc Castelló-Bueno and Rafael Vicente-Salar
Remote Sens. 2024, 16(18), 3405; https://doi.org/10.3390/rs16183405 - 13 Sep 2024
Abstract
The Olympic Games are a sporting event and a catalyst for urban development in their host city. In this study, we utilized remote sensing and GIS techniques to examine the impact of the Olympic infrastructure on the surface temperature of urban areas. Using [...] Read more.
The Olympic Games are a sporting event and a catalyst for urban development in their host city. In this study, we utilized remote sensing and GIS techniques to examine the impact of the Olympic infrastructure on the surface temperature of urban areas. Using Landsat Series Collection 2 Tier 1 Level 2 data and cloud computing provided by Google Earth Engine (GEE), this study examines the effects of various forms of Olympic Games facility urban planning in different historical moments and location typologies, as follows: monocentric, polycentric, peripheric and clustered Olympic ring. The GEE code applies to the Olympic Games that occurred from Paris 2024 to Montreal 1976. However, this paper focuses specifically on the representative cases of Paris 2024, Tokyo 2020, Rio 2016, Beijing 2008, Sydney 2000, Barcelona 1992, Seoul 1988, and Montreal 1976. The study is not only concerned with obtaining absolute land surface temperatures (LST), but rather the relative influence of mega-event infrastructures on mitigating or increasing the urban heat. As such, the locally normalized land surface temperature (NLST) was utilized for this purpose. In some cities (Paris, Tokyo, Beijing, and Barcelona), it has been determined that Olympic planning has resulted in the development of green spaces, creating “green spots” that contribute to lower-than-average temperatures. However, it should be noted that there is a significant variation in temperature within intensely built-up areas, such as Olympic villages and the surrounding areas of the Olympic stadium, which can become “hotspots.” Therefore, it is important to acknowledge that different planning typologies of Olympic infrastructure can have varying impacts on city heat islands, with the polycentric and clustered Olympic ring typologies displaying a mitigating effect. This research contributes to a cloud computing method that can be updated for future Olympic Games or adapted for other mega-events and utilizes a widely available remote sensing data source to study a specific urban planning context. Full article
(This article belongs to the Special Issue Urban Planning Supported by Remote Sensing Technology II)
Show Figures

Figure 1

21 pages, 13840 KiB  
Article
Estimating Forest Gross Primary Production Using Machine Learning, Light Use Efficiency Model, and Global Eddy Covariance Data
by Zhenkun Tian, Yingying Fu, Tao Zhou, Chuixiang Yi, Eric Kutter, Qin Zhang and Nir Y. Krakauer
Forests 2024, 15(9), 1615; https://doi.org/10.3390/f15091615 - 13 Sep 2024
Abstract
Forests play a vital role in atmospheric CO2 sequestration among terrestrial ecosystems, mitigating the greenhouse effect induced by human activity in a changing climate. The LUE (light use efficiency) model is a popular algorithm for calculating terrestrial GPP (gross primary production) based [...] Read more.
Forests play a vital role in atmospheric CO2 sequestration among terrestrial ecosystems, mitigating the greenhouse effect induced by human activity in a changing climate. The LUE (light use efficiency) model is a popular algorithm for calculating terrestrial GPP (gross primary production) based on physiological mechanisms and is easy to implement. Different versions have been applied for many years to simulate the GPP of different ecosystem types at regional or global scales. For estimating forest GPP using different approaches, we implemented five LUE models (EC-LUE, VPM, GOL-PEM, CASA, and C-Fix) in forests of type DBF, EBF, ENF, and MF, using the FLUXNET2015 dataset, remote sensing observations, and Köppen–Geiger climate zones. We then fused these models to additionally improve the ability of the GPP estimation using an RF (random forest) and an SVM (support vector machine). Our results indicated that under a unified parameterization scheme, EC-LUE and VPM yielded the best performance in simulating GPP variations, followed by GLO-PEM, CASA, and C-fix, while MODIS also demonstrated reliable GPP estimation ability. The results of the model fusion across different forest types and flux net sites indicated that the RF could capture more GPP variation magnitudes with higher R2 and lower RMSE than the SVM. Both RF and SVM were validated using cross-validation for all forest types and flux net sites, showing that the accuracy of the GPP simulation could be improved by the RF and SVM by 28% and 27%. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

31 pages, 7177 KiB  
Article
Estimation Model and Spatio-Temporal Analysis of Carbon Emissions from Energy Consumption with NPP-VIIRS-like Nighttime Light Images: A Case Study in the Pearl River Delta Urban Agglomeration of China
by Mengru Song, Yanjun Wang, Yongshun Han and Yiye Ji
Remote Sens. 2024, 16(18), 3407; https://doi.org/10.3390/rs16183407 - 13 Sep 2024
Abstract
Urbanization is growing at a rapid pace, and this is being reflected in the rising energy consumption from fossil fuels, which is contributing significantly to greenhouse gas impacts and carbon emissions (CE). Aiming at the problems of the time delay, inconsistency, uneven spatial [...] Read more.
Urbanization is growing at a rapid pace, and this is being reflected in the rising energy consumption from fossil fuels, which is contributing significantly to greenhouse gas impacts and carbon emissions (CE). Aiming at the problems of the time delay, inconsistency, uneven spatial coverage scale, and low precision of the current regional carbon emissions from energy consumption accounting statistics, this study builds a precise model for estimating the carbon emissions from regional energy consumption and analyzes the spatio-temporal characteristics. Firstly, in order to estimate the carbon emissions resulting from energy consumption, a fixed effects model was built using data on province energy consumption and NPP-VIIRS-like nighttime lighting data. Secondly, the PRD urban agglomeration was selected as the case study area to estimate the carbon emissions from 2012 to 2020 and predict the carbon emissions from 2021 to 2023. Then, their multi-scale spatial and temporal distribution characteristics were analyzed through trends and hotspots. Lastly, the influence factors of CE from 2012 to 2020 were examined with the OLS, GWR, GTWR, and MGWR models, as well as a ridge regression to enhance the MGWR model. The findings indicate that, from 2012 to 2020, the carbon emissions in the PRD urban agglomeration were characterized by the non-equilibrium feature of “high in the middle and low at both ends”; from 2021 to 2023, the central and eastern regions saw the majority of its high carbon emission areas, the east saw the region with the highest rate of growth, the east and the periphery of the high value area were home to the area of medium values, while the southern, central, and northern regions were home to the low value areas; carbon emissions were positively impacted by population, economics, land area, and energy, and they were negatively impacted by science, technology, and environmental factors. This study could provide technical support for the long-term time-series monitoring and remote sensing inversion of the carbon emissions from energy consumption in large-scale, complex urban agglomerations. Full article
Show Figures

Figure 1

19 pages, 6418 KiB  
Article
Evaluating Sugarcane Yield Estimation in Thailand Using Multi-Temporal Sentinel-2 and Landsat Data Together with Machine-Learning Algorithms
by Jaturong Som-ard, Savittri Ratanopad Suwanlee, Dusadee Pinasu, Surasak Keawsomsee, Kemin Kasa, Nattawut Seesanhao, Sarawut Ninsawat, Enrico Borgogno-Mondino and Filippo Sarvia
Land 2024, 13(9), 1481; https://doi.org/10.3390/land13091481 - 13 Sep 2024
Abstract
Updated and accurate crop yield maps play a key role in the agricultural environment. Their application enables the support for sustainable agricultural practices and the formulation of effective strategies to mitigate the impacts of climate change. Farmers can apply the maps to gain [...] Read more.
Updated and accurate crop yield maps play a key role in the agricultural environment. Their application enables the support for sustainable agricultural practices and the formulation of effective strategies to mitigate the impacts of climate change. Farmers can apply the maps to gain an overview of the yield variability, improving farm management practices and optimizing inputs to increase productivity and sustainability such as fertilizers. Earth observation (EO) data make it possible to map crop yield estimations over large areas, although this will remain challenging for specific crops such as sugarcane. Yield data collection is an expensive and time-consuming practice that often limits the number of samples collected. In this study, the sugarcane yield estimation based on a small number of training datasets within smallholder crop systems in the Tha Khan Tho District, Thailand for the year 2022 was assessed. Specifically, multi-temporal satellite datasets from multiple sensors, including Sentinel-2 and Landsat 8/9, were involved. Moreover, in order to generate the sugarcane yield estimation maps, only 75 sampling plots were selected and surveyed to provide training and validation data for several powerful machine-learning algorithms, including multiple linear regression (MLR), stepwise multiple regression (SMR), partial least squares regression (PLS), random forest regression (RFR), and support vector regression (SVR). Among these algorithms, the RFR model demonstrated outstanding performance, yielding an excellent result compared to existing techniques, achieving an R-squared (R2) value of 0.79 and a root mean square error (RMSE) of 3.93 t/ha (per 10 m × 10 m pixel). Furthermore, the mapped yields across the region closely aligned with the official statistical data from the Office of the Cane and Sugar Board (with a range value of 36,000 ton). Finally, the sugarcane yield estimation model was applied to over 2100 sugarcane fields in order to provide an overview of the current state of the yield and total production in the area. In this work, the different yield rates at the field level were highlighted, providing a powerful workflow for mapping sugarcane yields across large regions, supporting sugarcane crop management and facilitating decision-making processes. Full article
Show Figures

Figure 1

15 pages, 4542 KiB  
Article
DOUNet: Dynamic Optimization and Update Network for Oriented Object Detection
by Liwei Deng, Dexu Zhao, Qi Lan and Fei Chen
Appl. Sci. 2024, 14(18), 8249; https://doi.org/10.3390/app14188249 - 13 Sep 2024
Abstract
Object detection can accurately identify and locate targets in images, serving basic industries such as agricultural monitoring and urban planning. However, targets in remote sensing images have random rotation angles, which hinders the accuracy of remote sensing image object detection algorithms. In addition, [...] Read more.
Object detection can accurately identify and locate targets in images, serving basic industries such as agricultural monitoring and urban planning. However, targets in remote sensing images have random rotation angles, which hinders the accuracy of remote sensing image object detection algorithms. In addition, due to the long-tailed distribution of detected objects in remote sensing images, the network finds it difficult to adapt to imbalanced datasets. In this article, we designed and proposed the Dynamic Optimization and Update network (DOUNet). By introducing adaptive rotation convolution to replace 2D convolution in the Region Proposal Network (RPN), the features of rotating targets are effectively extracted. To address the issues caused by imbalanced data, we have designed a long-tail data detection module to collect features of tail categories and guide the network to output more balanced detection results. Various experiments have shown that after two stages of feature learning and classifier learning, our designed network can achieve optimal performance and perform better in detecting imbalanced data. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop