Sign in to use this feature.

Years

Between: -

Search Results (145)

Search Parameters:
Keywords = vegetation photosynthesis model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 14077 KiB  
Article
Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information
by Junru Yu, Yu Zhang, Zhenghua Song, Danyao Jiang, Yiming Guo, Yanfu Liu and Qingrui Chang
Remote Sens. 2024, 16(17), 3237; https://doi.org/10.3390/rs16173237 - 31 Aug 2024
Viewed by 624
Abstract
The Leaf Area Index (LAI) strongly influences vegetation evapotranspiration and photosynthesis rates. Timely and accurately estimating the LAI is crucial for monitoring vegetation growth. The unmanned aerial vehicle (UAV) multispectral digital camera platform has been proven to be an effective tool for this [...] Read more.
The Leaf Area Index (LAI) strongly influences vegetation evapotranspiration and photosynthesis rates. Timely and accurately estimating the LAI is crucial for monitoring vegetation growth. The unmanned aerial vehicle (UAV) multispectral digital camera platform has been proven to be an effective tool for this purpose. Currently, most remote sensing estimations of LAIs focus on cereal crops, with limited research on economic crops such as apples. In this study, a method for estimating the LAI of an apple orchard by extracting spectral and texture information from UAV multispectral images was proposed. Specifically, field measurements were conducted to collect LAI data for 108 sample points during the final flowering (FF), fruit setting (FS), and fruit expansion (FE) stages of apple growth in 2023. Concurrently, UAV multispectral images were obtained to extract spectral and texture information (Gabor transform). The Support Vector Regression Recursive Feature Elimination (SVR-REF) was employed to select optimal features as inputs for constructing models to estimate the LAI. Finally, the optimal model was used for LAI mapping. The results indicate that integrating spectral and texture information effectively enhances the accuracy of LAI estimation, with the relative prediction deviation (RPD) for all models being greater than 2. The Categorical Boosting (CatBoost) model established for FF exhibits the highest accuracy, with a validation set R2, root mean square error (RMSE), and RPD of 0.867, 0.203, and 2.482, respectively. UAV multispectral imagery proves to be valuable in estimating apple orchard LAIs, offering real-time monitoring of apple growth and providing a scientific basis for orchard management. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

28 pages, 22228 KiB  
Article
Application of the Reconstructed Solar-Induced Chlorophyll Fluorescence by Machine Learning in Agricultural Drought Monitoring of Henan Province, China from 2010 to 2022
by Guosheng Cai, Xiaoping Lu, Xiangjun Zhang, Guoqing Li, Haikun Yu, Zhengfang Lou, Jinrui Fan and Yushi Zhou
Agronomy 2024, 14(9), 1941; https://doi.org/10.3390/agronomy14091941 - 28 Aug 2024
Viewed by 341
Abstract
Solar-induced chlorophyll fluorescence (SIF) serves as a proxy indicator for vegetation photosynthesis and can directly reflect the growth status of vegetation. Using SIF for drought monitoring offers greater potential compared to traditional vegetation indices. This study aims to develop and validate a novel [...] Read more.
Solar-induced chlorophyll fluorescence (SIF) serves as a proxy indicator for vegetation photosynthesis and can directly reflect the growth status of vegetation. Using SIF for drought monitoring offers greater potential compared to traditional vegetation indices. This study aims to develop and validate a novel approach, the improved Temperature Fluorescence Dryness Index (iTFDI), for more accurate drought monitoring in Henan Province, China. However, the low spatial resolution, data dispersion, and short temporal sequence of SIF data hinder its direct application in drought studies. To overcome these challenges, this study constructs a random forest SIF downscaling model based on the TROPOspheric Monitoring Instrument SIF (TROPOSIF) and the Moderate-resolution Imaging Spectroradiometer (MODIS) data. Assuming an unchanging spatial scale relationship, an improved SIF (iSIF) product with a temporal resolution of 500 m over the period March to September, 2010–2022 was obtained for Henan Province. Subsequently, using the retrieved iSIF and the surface temperature difference data, the iTFDI was proposed, based on the assumption that under the same vegetation cover conditions, lower soil moisture and a greater diurnal temperature range of the surface indicate more severe drought. Results showed that: (1) The accuracy of the TROPOSIF downscaling model achieved coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.847, 0.073 mW m−2 nm−1 sr−1, and 0.096 mW m−2 nm−1 sr−1, respectively. (2) The 2022 iTFDI drought monitoring results indicated favorable soil moisture in Henan Province during March, April, July, and August, while extensive droughts occurred in May, June, and September, accounting for 70.27%, 71.49%, and 43.61%, respectively. The monitored results were consistent with the regional water conditions measured at ground stations. (3) The correlation between the Standardized Precipitation Evapotranspiration Index (SPEI) and iTFDI at five stations was significantly stronger than the correlation with the Temperature Vegetation Dryness Index (TVDI), with the values −0.631, −0.565, −0.612, −0.653, and −0.453, respectively. (4) The annual Sen’s slope and Mann–Kendall significance test revealed a significant decreasing trend in drought severity in the southern and western regions of Henan Province (6.74% of the total area), while the eastern region showed a significant increasing trend (4.69% of the total area). These results demonstrate that the iTFDI offers a significant advantage over traditional indices, providing a more accurate reflection of regional drought conditions. This enhances the ability to identify drought trends and supports the development of targeted drought management strategies. In conclusion, the iTFDI constructed using the downscaled iSIF data and surface temperature differential data shows great potential for drought monitoring. Full article
Show Figures

Figure 1

17 pages, 10729 KiB  
Article
Evolution and Mechanism Analysis of Terrestrial Ecosystems in China with Respect to Gross Primary Productivity
by Hanshi Sun, Yongming Cheng, Qiang An and Liu Liu
Land 2024, 13(9), 1346; https://doi.org/10.3390/land13091346 - 24 Aug 2024
Viewed by 414
Abstract
The gross primary productivity (GPP) of vegetation stores atmospheric carbon dioxide as organic compounds through photosynthesis. Its spatial heterogeneity is primarily influenced by the carbon uptake period (CUP) and maximum photosynthetic productivity (GPPmax). Grassland, cropland, and forest are crucial components of [...] Read more.
The gross primary productivity (GPP) of vegetation stores atmospheric carbon dioxide as organic compounds through photosynthesis. Its spatial heterogeneity is primarily influenced by the carbon uptake period (CUP) and maximum photosynthetic productivity (GPPmax). Grassland, cropland, and forest are crucial components of China’s terrestrial ecosystems and are strongly influenced by the seasonal climate. However, it remains unclear whether the evolutionary characteristics of GPP are attributable to physiology or phenology. In this study, terrestrial ecosystem models and remote sensing observations of multi-source GPP data were utilized to quantitatively analyze the spatio-temporal dynamics from 1982 to 2018. We found that GPP exhibited a significant upward trend in most areas of China’s terrestrial ecosystems over the past four decades. Over 60% of Chinese grassland and over 50% of its cropland and forest exhibited a positive growth trend. The average annual GPP growth rates were 0.23 to 3.16 g C m−2 year−1 for grassland, 0.40 to 7.32 g C m−2 year−1 for cropland, and 0.67 to 7.81 g C m−2 year−1 for forest. GPPmax also indicated that the overall growth rate was above 1 g C m−2 year−1 in most regions of China. The spatial trend pattern of GPPmax closely mirrored that of GPP, although local vegetation dynamics remain uncertain. The partial correlation analysis results indicated that GPPmax controlled the interannual GPP changes in most of the terrestrial ecosystems in China. This is particularly evident in grassland, where more than 99% of the interannual variation in GPP is controlled by GPPmax. In the context of rapid global change, our study provides an accurate assessment of the long-term dynamics of GPP and the factors that regulate interannual variability across China’s terrestrial ecosystems. This is helpful for estimating and predicting the carbon budget of China’s terrestrial ecosystems. Full article
Show Figures

Figure 1

23 pages, 11067 KiB  
Article
A Down-Scaling Inversion Strategy for Retrieving Canopy Water Content from Satellite Hyperspectral Imagery
by Meihong Fang, Xiangyan Hu, Jing M. Chen, Xueshiyi Zhao, Xuguang Tang, Haijian Liu, Mingzhu Xu and Weimin Ju
Forests 2024, 15(8), 1463; https://doi.org/10.3390/f15081463 - 20 Aug 2024
Viewed by 439
Abstract
Vegetation canopy water content (CWC) crucially affects stomatal conductance and photosynthesis and, consequently, is a key state variable in advanced ecosystem models. Remote sensing has been shown to be an effective tool for retrieving CWCs. However, the retrieval of the CWC from satellite [...] Read more.
Vegetation canopy water content (CWC) crucially affects stomatal conductance and photosynthesis and, consequently, is a key state variable in advanced ecosystem models. Remote sensing has been shown to be an effective tool for retrieving CWCs. However, the retrieval of the CWC from satellite remote sensing data is affected by the vegetation canopy structure and soil background. This study proposes a methodology that combines a modified spectral down-scaling model with a high-universality leaf water content inversion model to retrieve the CWC through constraining the impacts of canopy structure and soil background on CWC retrieval. First, canopy spectra acquired by satellite sensors were down-scaled to leaf reflectance spectra according to the probabilities of viewing the sunlit foliage (PT) and background (PG) and the estimated spectral multiple scattering factor (M). Then, leaf water content, or equivalent water thickness (EWT), was obtained from the down-scaled leaf reflectance spectra via a leaf-scale EWT inversion model calibrated with PROSPECT simulation data. Finally, the CWC was calculated as the product of the estimated leaf EWT and canopy leaf area index. Validation of this coupled model was performed using satellite-ground synchronous observation data across various vegetation types within the study area, affirming the model’s broad applicability. Results indicate that the modified spectral down-scaling model accurately retrieves leaf reflectance spectra, aligning closely with site-level measured spectra. Compared to the direct inversion approach, which performs poorly with Hyperion satellite images, the down-scale strategy notably excels. Specifically, the Similarity Water Index (SWI)-based canopy EWT coupled model achieved the most precise estimation, with a normalized Root Mean Square Error (nRMSE) of 15.28% and an adjusted R2 of 0.77, surpassing the performance of the best index Shortwave Angle Normalized Index (SANI)-based model (nRMSE = 15.61%, adjusted R2 = 0.52). Given its calibration using simulated data, this coupled model proved to be a potent method for extracting canopy EWT from satellite imagery, suggesting its applicability to retrieve other vegetative biochemical components from satellite data. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 7108 KiB  
Article
Inversion of Soybean Net Photosynthetic Rate Based on UAV Multi-Source Remote Sensing and Machine Learning
by Zhen Lu, Wenbo Yao, Shuangkang Pei, Yuwei Lu, Heng Liang, Dong Xu, Haiyan Li, Lejun Yu, Yonggang Zhou and Qian Liu
Agronomy 2024, 14(7), 1493; https://doi.org/10.3390/agronomy14071493 - 10 Jul 2024
Viewed by 493
Abstract
Net photosynthetic rate (Pn) is a common indicator used to measure the efficiency of photosynthesis and growth conditions of plants. In this study, soybeans under different moisture gradients were selected as the research objects. Fourteen vegetation indices (VIS) and five canopy structure characteristics [...] Read more.
Net photosynthetic rate (Pn) is a common indicator used to measure the efficiency of photosynthesis and growth conditions of plants. In this study, soybeans under different moisture gradients were selected as the research objects. Fourteen vegetation indices (VIS) and five canopy structure characteristics (CSC) (plant height (PH), volume (V), canopy cover (CC), canopy length (L), and canopy width (W)) were obtained using an unmanned aerial vehicle (UAV) equipped with three different sensors (visible, multispectral, and LiDAR) at five growth stages of soybeans. Soybean Pn was simultaneously measured manually in the field. The variability of soybean Pn under different conditions and the trend change of CSC under different moisture gradients were analysed. VIS, CSC, and their combinations were used as input features, and four machine learning algorithms (multiple linear regression, random forest, Extreme gradient-boosting tree regression, and ridge regression) were used to perform soybean Pn inversion. The results showed that, compared with the inversion model using VIS or CSC as features alone, the inversion model using the combination of VIS and CSC features showed a significant improvement in the inversion accuracy at all five stages. The highest accuracy (R2 = 0.86, RMSE = 1.73 µmol m−2 s−1, RPD = 2.63) was achieved 63 days after sowing (DAS63). Full article
Show Figures

Figure 1

14 pages, 2607 KiB  
Article
Impact of Fragmentation on Carbon Uptake in Subtropical Forest Landscapes in Zhejiang Province, China
by Jiejie Jiao, Yan Cheng, Pinghua Hong, Jun Ma, Liangjin Yao, Bo Jiang, Xia Xu and Chuping Wu
Remote Sens. 2024, 16(13), 2393; https://doi.org/10.3390/rs16132393 - 29 Jun 2024
Viewed by 529
Abstract
Global changes cause widespread forest fragmentation, which, in turn, has given rise to many ecological problems; this is especially true if the forest carbon stock is profoundly impacted by fragmentation levels. However, the way in which forest carbon uptake changes with different fragmentation [...] Read more.
Global changes cause widespread forest fragmentation, which, in turn, has given rise to many ecological problems; this is especially true if the forest carbon stock is profoundly impacted by fragmentation levels. However, the way in which forest carbon uptake changes with different fragmentation levels and the main pathway through which fragmentation affects forest carbon uptake are still unclear. Remote sensing data, vegetation photosynthesis models, and fragmentation models were employed to generate a time series GPP (gross primary productivity) dataset, as well as forest fragmentation levels for forest landscapes in Zhejiang province, China. We analyzed GPP variation with forest fragmentation levels and identified the relative importance of the phenology (carbon uptake period—CUP) and physiology (maximum daily GPP—GPPmax) control pathways of GPP under different fragmentation levels. The results showed that the normalized mean annual GPP data of highly fragmented forests during the period from 2000 to 2018 were significantly higher than those of other fragmentation levels, while there was almost no significant difference in the annual GPP trend of forest landscapes with all fragmentation levels. Moreover, the percentage area of the control variable, GPPmax, gradually increased with fragmentation levels; the mean GPPmax between 2000 and 2018 of high-level fragmentation was higher than that of other fragmentation levels. Our results demonstrate that the carbon uptake capacity per unit area was enhanced in highly fragmented forest areas, and the maximum photosynthetic capacity (physiology-based process) played an important role in controlling carbon uptake, especially in highly fragmented forest landscapes. Our study calls for a better and deeper understanding of the potential of forest carbon uptake, and it is necessary to explore the mechanism by which forest fragmentation changes the vegetation photosynthetic process. Full article
Show Figures

Figure 1

15 pages, 4715 KiB  
Article
Overexpression of Liriodendron Hybrid LhGLK1 in Arabidopsis Leads to Excessive Chlorophyll Synthesis and Improved Growth
by Haoxian Qu, Shuang Liang, Lingfeng Hu, Long Yu, Pengxiang Liang, Zhaodong Hao, Ye Peng, Jing Yang, Jisen Shi and Jinhui Chen
Int. J. Mol. Sci. 2024, 25(13), 6968; https://doi.org/10.3390/ijms25136968 - 26 Jun 2024
Cited by 1 | Viewed by 910
Abstract
Chloroplasts is the site for photosynthesis, which is the main primary source of energy for plants. Golden2-like (GLK) is a key transcription factor that regulates chloroplast development and chlorophyll synthesis. However, most studies on GLK genes are performed in crops and model plants [...] Read more.
Chloroplasts is the site for photosynthesis, which is the main primary source of energy for plants. Golden2-like (GLK) is a key transcription factor that regulates chloroplast development and chlorophyll synthesis. However, most studies on GLK genes are performed in crops and model plants with less attention to woody plants. In this study, we identified the LhGLK1 and LhGLK2 genes in the woody plant Liriodendron hybrid, and they are specifically expressed in green tissues. We showed that overexpression of the LhGLK1 gene improves rosette leaf chlorophyll content and induces ectopic chlorophyll biogenesis in primary root and petal vascular tissue in Arabidopsis. Although these exhibit a late-flowering phenotype, transgenic lines accumulate more biomass in vegetative growth with improved photochemical quenching (qP) and efficiency of photosystem II. Taken together, we verified a conserved and ancient mechanism for regulating chloroplast biogenesis in Liriodendron hybrid and evaluated its effect on photosynthesis and rosette biomass accumulation in the model plant Arabidopsis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 8396 KiB  
Article
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm
by Yafeng Li, Xingang Xu, Wenbiao Wu, Yaohui Zhu, Guijun Yang, Xiaodong Yang, Yang Meng, Xiangtai Jiang and Hanyu Xue
Remote Sens. 2024, 16(12), 2174; https://doi.org/10.3390/rs16122174 - 15 Jun 2024
Viewed by 742
Abstract
Chlorophyll, as a key component of crop leaves for photosynthesis, is one significant indicator for evaluating the photosynthetic efficiency and developmental status of crops. Fractional-order differentiation (FOD) enhances the feature spectral information and reduces the background noise. In this study, we analyzed hyperspectral [...] Read more.
Chlorophyll, as a key component of crop leaves for photosynthesis, is one significant indicator for evaluating the photosynthetic efficiency and developmental status of crops. Fractional-order differentiation (FOD) enhances the feature spectral information and reduces the background noise. In this study, we analyzed hyperspectral data from grape leaves of different varieties and fertility periods with FOD to monitor the leaves’ chlorophyll content (LCC). Firstly, through sensitive analysis, the fractional-order differential character bands were identified, which was used to construct the typical vegetation index (VI). Then, the grape LCC prediction model was built based on the random forest regression algorithm (RFR). The results showed the following: (1) FOD differential spectra had a higher sensitivity to LCC compared with the original spectra, and the constructed VIs had the best estimation performance at the 1.2th-order differential. (2) The accuracy of the FOD-RFR model was better than that of the conventional integer-order model at different fertility periods, but there were differences in the number of optimal orders. (3) The LCC prediction model for whole fertility periods achieved good prediction at order 1.3, R2 = 0.778, RMSE = 2.1, and NRMSE = 4.7%. As compared to the original reflectance spectra, R2 improved by 0.173; RMSE and NRMSE decreased, respectively, by 0.699 and 1.5%. This indicates that the combination of FOD and RFR based on hyperspectral data has great potential for the efficient monitoring of grape LCC. It can provide technical support for the rapid quantitative estimation of grape LCC and methodological reference for other physiological and biochemical indicators in hyperspectral monitoring. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

15 pages, 2912 KiB  
Article
Spectral Index-Based Estimation of Total Nitrogen in Forage Maize: A Comparative Analysis of Machine Learning Algorithms
by Aldo Rafael Martínez-Sifuentes, Ramón Trucíos-Caciano, Nuria Aide López-Hernández, Enrique Miguel-Valle and Juan Estrada-Ávalos
Nitrogen 2024, 5(2), 468-482; https://doi.org/10.3390/nitrogen5020030 - 29 May 2024
Cited by 1 | Viewed by 723
Abstract
Nitrogen plays a fundamental role as a nutrient for the growth of leaves and the process of photosynthesis, as it directly influences the quality and yield of corn. The importance of knowing the foliar nitrogen content through Machine Learning algorithms will help determine [...] Read more.
Nitrogen plays a fundamental role as a nutrient for the growth of leaves and the process of photosynthesis, as it directly influences the quality and yield of corn. The importance of knowing the foliar nitrogen content through Machine Learning algorithms will help determine the efficient use of nitrogen fertilization in a context of sustainable agronomic management by avoiding Nitrogen loss and preventing it from becoming a pollutant for the soil and the atmosphere. The combination of machine learning algorithms with vegetation spectral indices is a new practice that helps estimate parameters of agricultural importance such as nitrogen. The objective of the present study was to compare random forest and neural network algorithms for estimating total plant nitrogen with spectral indices. Five spectral indices were obtained from remotely piloted aircraft systems and analyzed by mean, maximum and minimum from each sample plot to finally obtain 15 indices, and total nitrogen was estimated from the georeferenced points. The most important variables were selected with backward, forward and stepwise methods and total nitrogen estimates by laboratory were compared with random forest models and artificial neural networks. The most important indices were NDREmax and TCARImax. Using 15 spectral indices, total nitrogen with a variance of 79% and 81% with random forest and artificial neural network, respectively, was estimated. And only using NDREmax and TCARmax indices, 73% and 79% were explained by random forest and artificial neural network, respectively. It is concluded that it is possible to estimate nitrogen in forage maize with two indices and it is recommended to analyze by phenological stage and with a greater number of field data. Full article
Show Figures

Figure 1

22 pages, 5800 KiB  
Article
Spatiotemporal Evolution and Impact Mechanisms of Gross Primary Productivity in Tropics
by Yujia Chen, Shunxue Zhang, Junshan Guo and Yao Shen
Forests 2024, 15(6), 913; https://doi.org/10.3390/f15060913 - 24 May 2024
Viewed by 802
Abstract
Gross primary productivity (GPP), representing organic carbon fixation through photosynthesis, is crucial for developing science-based strategies for sustainable development. Given that the tropical region harbors nearly half of all species, it plays a pivotal role in safeguarding the global environment against climate change [...] Read more.
Gross primary productivity (GPP), representing organic carbon fixation through photosynthesis, is crucial for developing science-based strategies for sustainable development. Given that the tropical region harbors nearly half of all species, it plays a pivotal role in safeguarding the global environment against climate change and preserving global biodiversity. Thus, investigating changes in vegetation productivity within this region holds substantial practical importance for estimating global vegetation productivity. In this study, we employed an enhanced P model to estimate vegetation GPP in the tropical region from 2001 to 2020, based on which we quantified the spatiotemporal changes and associated mechanisms. The results reveal that the annual mean GPP in the tropical region ranged from 2603.9 to 2757.1 g·cm−2 a−1, demonstrating an overall apparent increasing trend. Inland areas were mainly influenced by precipitation, while coastal areas were primarily influenced by temperature. Land cover changes, especially conversion to cropland, significantly influence GPP, with deciduous—evergreen forest transitions causing notable decreases. Climate change emerges as the dominant factor affecting GPP, as indicated by the contribution rate analysis. This research interprets the spatiotemporal pattern and mechanisms of GPP in the tropics, offering valuable insights for sustainable ecosystem management. Full article
Show Figures

Figure 1

21 pages, 3473 KiB  
Article
Establishing a Hyperspectral Model for the Chlorophyll and Crude Protein Content in Alpine Meadows Using a Backward Feature Elimination Method
by Tong Ji and Xiaoni Liu
Agriculture 2024, 14(5), 757; https://doi.org/10.3390/agriculture14050757 - 13 May 2024
Viewed by 709
Abstract
(1) Background: The effective selection of hyperspectral feature bands is pivotal in monitoring the nutritional status of intricate alpine grasslands on the Qinghai–Tibet Plateau. The traditional methods often employ hierarchical screening of multiple feature indicators, but their universal applicability suffers due to the [...] Read more.
(1) Background: The effective selection of hyperspectral feature bands is pivotal in monitoring the nutritional status of intricate alpine grasslands on the Qinghai–Tibet Plateau. The traditional methods often employ hierarchical screening of multiple feature indicators, but their universal applicability suffers due to the use of a consistent methodology across diverse environmental contexts. To remedy this, a backward feature elimination (BFE) selection method has been proposed to assess indicator importance and stability. (2) Methods: As research indicators, the crude protein (CP) and chlorophyll (Chl) contents in degraded grasslands on the Qinghai–Tibet Plateau were selected. The BFE method was integrated with partial least squares regression (PLS), random forest (RF) regression, and tree-based regression (TBR) to develop CP and Chl inversion models. The study delved into the significance and consistency of the forage quality indicator bands. Subsequently, a path analysis framework (PLS-PM) was constructed to analyze the influence of grassland community indicators on SpecChl and SpecCP. (3) Results: The implementation of the BFE method notably enhanced the prediction accuracy, with ΔR2RF-Chl = 56% and ΔR2RF-CP = 57%. Notably, spectral bands at 535 nm and 2091 nm emerged as pivotal for CP prediction, while vegetation indices like the PRI and mNDVI were critical for Chl estimation. The goodness of fit for the PLS-PM stood at 0.70, indicating the positive impact of environmental factors such as grassland cover on SpecChl and SpecCP prediction (rChl = 0.73, rCP = 0.39). SpecChl reflected information pertaining to photosynthetic nitrogen associated with photosynthesis (r = 0.80). (4) Disscusion: Among the applied model methods, the BFE+RF method is excellent in periodically discarding variables with the smallest absolute coefficient values. This variable screening method not only significantly reduces data dimensionality, but also gives the best balance between model accuracy and variables, making it possible to significantly improve model prediction accuracy. In the PLS-PM analysis, it was shown that different coverage and different community structures and functions affect the estimation of SpecCP and SpecChl. In addition, SpecChl has a positive effect on the estimation of SpecCP (r = 0.80), indicating that chlorophyll does reflect photosynthetic nitrogen information related to photosynthesis, but it is still difficult to obtain non-photosynthetic and compound nitrogen information. (5) Conclusions: The application of the BFE + RF method to monitoring the nutritional status of complex alpine grasslands demonstrates feasibility. The BFE filtration process, focusing on importance and stability, bolsters the system’s generalizability, resilience, and versatility. A key research avenue for enhancing the precision of CP monitoring lies in extracting non-photosynthetic nitrogen information. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

19 pages, 5422 KiB  
Article
Assessing the Potential for Photochemical Reflectance Index to Improve the Relationship between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity in Crop and Soybean
by Jidai Chen, Lizhou Huang, Qinwen Zuo and Jiasong Shi
Atmosphere 2024, 15(4), 463; https://doi.org/10.3390/atmos15040463 - 9 Apr 2024
Viewed by 753
Abstract
Photosynthesis is influenced by dynamic energy allocation under various environmental conditions. Solar-induced chlorophyll fluorescence (SIF), an important pathway for dissipating absorbed energy, has been extensively used to evaluate gross primary productivity (GPP). However, the potential for photochemical reflectance index (PRI), as an indicator [...] Read more.
Photosynthesis is influenced by dynamic energy allocation under various environmental conditions. Solar-induced chlorophyll fluorescence (SIF), an important pathway for dissipating absorbed energy, has been extensively used to evaluate gross primary productivity (GPP). However, the potential for photochemical reflectance index (PRI), as an indicator of non-photochemical quenching (NPQ), to improve the SIF-based GPP estimation, has not been thoroughly investigated. In this study, using continually tower-based observations, we examined how PRI affected the link between SIF and GPP for corn and soybean at half-hourly and daily timescales. The relationship of GPP to SIF and PRI is impacted by stress indicated by vapor pressure deficit (VPD) and crop water stress index (CWSI). Moreover, the ratio of GPP to SIF of corn was more sensitive to PRI compared to soybean. Whether in Pearson or Partial correlation analysis, the relationships of PRI to the ratio of GPP to SIF were almost all significant, regardless of controlling structural-physiological (stomatal conductance, vegetation indices) and environmental variables (light intensity, etc.). Therefore, PRI significantly affects the SIF–GPP relationship for corn (r > 0.31, p < 0.01) and soybean (r > 0.22, p < 0.05). After combining SIF and PRI using the multi-variable linear model, the GPP estimation has been largely improved (the coefficient of determination, abbreviated as R2, increased from 0.48 to 0.49 to 0.78 to 0.84 and the Root Mean Square Error, abbreviated as RMSE, decreased from 6.38 to 10.22 to 3.56 to 6.60 μmol CO2·m2·s1 for corn, R2 increased from 0.54 to 0.62 to 0.78 to 0.82 and RMSE decreased from 6.25 to 9.59 to 4.34 to 6.60 μmol CO2·m2·s1 for soybean). It suggests that better GPP estimations for corn and soybean can be obtained when SIF is combined with PRI. Full article
(This article belongs to the Special Issue Agrometeorology and Remote Sensing of Land–Atmosphere)
Show Figures

Figure 1

15 pages, 3605 KiB  
Communication
Evaluation of Leaf Chlorophyll Content from Acousto-Optic Hyperspectral Data: A Multi-Crop Study
by Anastasia Zolotukhina, Alexander Machikhin, Anastasia Guryleva, Valeria Gresis, Anastasia Kharchenko, Karina Dekhkanova, Sofia Polyakova, Denis Fomin, Georgiy Nesterov and Vitold Pozhar
Remote Sens. 2024, 16(6), 1073; https://doi.org/10.3390/rs16061073 - 18 Mar 2024
Cited by 1 | Viewed by 1037
Abstract
Chlorophyll plays a crucial role in the process of photosynthesis and helps to regulate plants’ growth and development. Timely and accurate evaluation of leaf chlorophyll content provides valuable information about the health and productivity of plants as well as the effectiveness of agricultural [...] Read more.
Chlorophyll plays a crucial role in the process of photosynthesis and helps to regulate plants’ growth and development. Timely and accurate evaluation of leaf chlorophyll content provides valuable information about the health and productivity of plants as well as the effectiveness of agricultural treatments. For non-contact and high-performance chlorophyll content mapping in plants, spectral imaging techniques are the most widely used. Due to agility and rapid random-spectral-access tuning, acousto-optical imagers seem to be very attractive for the detection of vegetation indices and chlorophyll content assessment. This laboratory study demonstrates the capabilities of an acousto-optic imager for evaluation of leaf chlorophyll content in six crops with different biophysical properties: Ribes rubrum, Betula populifolia, Hibiscus rosa-sinensis, Prunus padus, Hordeum vulgare and Triticum aestivum. The experimental protocol includes plant collecting, reference spectrophotometric measurements, hyperspectral imaging data acquisition, processing and analysis and building a multi-crop chlorophyll model. For 90 inspected samples of plant leaves, the optimal vegetation index and model were found. Obtained values of chlorophyll concentrations correlate well with reference values (determination coefficient of 0.89 and relative error of 15%). Applying a multi-crop model to each pixel, we calculated chlorophyll content maps across all plant samples. The results of this study demonstrate that acousto-optic imagery is very promising for fast chlorophyll content assessment and other laboratory spectral-index-based measurements. Full article
(This article belongs to the Special Issue Advances in Hyperspectral Data Exploitation II)
Show Figures

Figure 1

18 pages, 13516 KiB  
Article
Impacts of Compound Hot–Dry Events on Vegetation Productivity over Northern East Asia
by Jing Kang, Miao Yu, Ye Xia, Shanlei Sun and Botao Zhou
Forests 2024, 15(3), 549; https://doi.org/10.3390/f15030549 - 18 Mar 2024
Cited by 1 | Viewed by 1300
Abstract
Climate extremes, such as heatwaves and droughts, significantly impact terrestrial ecosystems. This study investigates the influence of compound hot–dry (CHD) events on vegetation productivity in northern East Asia. Four of the most widespread CHD events occurring during the summer from 2003 to 2019 [...] Read more.
Climate extremes, such as heatwaves and droughts, significantly impact terrestrial ecosystems. This study investigates the influence of compound hot–dry (CHD) events on vegetation productivity in northern East Asia. Four of the most widespread CHD events occurring during the summer from 2003 to 2019 were selected as the focus of this research. We first verified the performance of the Community Land Model version 5 (CLM5) in the region and then conducted factor-controlled experiments using CLM5 to assess the effects of different climate factors on gross primary productivity (GPP) changes during CHD events. Our results show that vegetation productivity exhibits greater sensitivity to CHD events within the transitional climatic zone (TCZ) than in other affected areas. In grassland areas within the TCZ, precipitation deficit is the primary factor leading to the decrease in GPP (explaining 56%–90% of GPP anomalies), while high temperatures serve as a secondary detrimental factor (explaining 13%–32% of GPP anomalies). In high-latitude forests outside the TCZ, high temperature has a more significant impact on suppressing GPP, while the decrease in soil moisture has a synchronously negligible impact on GPP. There are differences in the effects of high solar radiation on grasslands and woodlands during CHD events. It was observed that high radiation benefits trees by increasing the maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax), as well as enhancing photosynthesis, but has a negligible impact on grasses. Furthermore, this study highlights the potential for compound events to impact vegetation productivity more than expected from individual events due to confounding nonlinear effects between meteorological factors. More than 10% of the negative anomalies in GPP during two CHD events in 2017 and 2010 were attributed to these nonlinear effects. These research findings are significant for understanding ecosystem responses to climate extremes and their influence on carbon cycling in terrestrial ecosystems. They can also contribute to more precisely evaluating and predicting carbon dynamics in these regions. Full article
(This article belongs to the Special Issue Impacts of Extreme Climate Events on Forests)
Show Figures

Figure 1

22 pages, 8410 KiB  
Article
Gaps between Rice Actual and Potential Yields Based on the VPM and GAEZ Models in Heilongjiang Province, China
by Luoman Pu, Junnan Jiang, Menglu Ma and Duan Huang
Agriculture 2024, 14(2), 277; https://doi.org/10.3390/agriculture14020277 - 8 Feb 2024
Viewed by 1175
Abstract
Heilongjiang Province is a significant region for grain production and serves as a crucial commodity grain production base in China. In recent years, due to the threat of declining cropland quality and quantity, coupled with the increasingly prominent demand for grain, there is [...] Read more.
Heilongjiang Province is a significant region for grain production and serves as a crucial commodity grain production base in China. In recent years, due to the threat of declining cropland quality and quantity, coupled with the increasingly prominent demand for grain, there is an urgent need to enhance rice yields in Heilongjiang Province. It is imperative to accurately identify the gaps between actual and potential grain yields and effectively implement yield-enhancing measures in regions with significant yield gaps. This study aimed to determine the rice reproductive periods of Heilongjiang Province for 2000, 2010, and 2020, estimate the rice actual yields using the Vegetation Photosynthesis Model (VPM), simulate the rice potential yields based on the Global Agro-Ecological Zones (GAEZ) Model, and then identify the rice yield gaps at the pixel level by calculating the rice absolute yield gap (AYG) and relative yield gap (RYG). Additionally, yield-enhancing measures were proposed for regions with significant yield gaps. The results were as follows. (1) The rice reproductive periods of Heilongjiang Province for 2000, 2010, and 2020 were determined as days 153~249, days 145~249, and days 137~249. (2) The mean rice actual yield and potential yields decreased by 1222 and 5941 kg ha−1 during the 2000–2020 period, respectively, and the total actual and potential production increased by 3.75 and 1.70 million tons in Heilongjiang Province, respectively. (3) The rice AYG and RYG in the Sanjiang Plain region, such as Jixi City, Hegang City, and Jiamusi City were relatively large compared to other regions for the three years, and the rice yield gaps continued to decrease during the 2000–2020 period. (4) With regard to the Sanjiang Plain region with a large rice yield gap, this study proposes measures to narrow the rice yield gap by establishing ecological protection forests on cropland, transforming low- and middle-yielding fields, increasing agricultural science and technology inputs, selecting better rice cultivars, etc., which are important for ensuring food security. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

Back to TopTop