PET/CT with the glucose analog (18)F-FDG has several potential applications for monitoring tumor response to therapy in patients with non-small cell lung cancer (NSCLC). A prerequisite for many of these applications is detailed knowledge of the repeatability of quantitative parameters derived from (18)F-FDG PET/CT studies.
Methods: The repeatability of the (18)F-FDG signal was evaluated in 2 prospective multicenter trials. Patients with advanced NSCLC (tumor stage III-IV) underwent two (18)F-FDG PET/CT studies while not receiving therapy. Tumor (18)F-FDG uptake was quantified by measurement of the maximum standardized uptake value within a lesion (SUVmax) and the average SUV within a small volume of interest around the site of maximum uptake (SUVpeak). Analysis was performed for the lesion in the chest with the highest (18)F-FDG uptake and a size of at least 2 cm (target lesion) as well as for up to 6 additional lesions per patient. Repeatability was assessed by Bland-Altman plots and calculation of 95% repeatability coefficients (RCs) of the log-transformed SUV differences.
Results: Test-retest repeatability was assessed in 74 patients (34 from the ACRIN 6678 trial and 40 from the Merck MK-0646-008 trial). SUVpeak was 11.57 ± 7.89 g/mL for the ACRIN trial and 6.89 ± 3.02 for the Merck trial. The lower and upper RCs were -28% (95% confidence interval [CI], -35% to -23%) and +39% (95% CI, 31% to 54%) in the ACRIN trial, indicating that a decrease of SUVpeak by more than 28% or an increase by more than 39% has a probability of less than 2.5%. The corresponding RCs from the Merck trial were -35% (95% CI, -42% to -29%) and +53% (95% CI, 41% to 72%). Repeatability was similar for SUVmax of the target lesion, averaged SUVmax, and averaged SUVpeak of up to 6 lesions per patient.
Conclusion: The variability of repeated measurements of tumor (18)F-FDG uptake in patients with NSCLC is somewhat larger than previously reported in smaller single-center studies but comparable to that of gastrointestinal malignancies in a previous multicenter trial. The variability of measurements supports the definitions of tumor response according to PET Response Criteria in Solid Tumors.
Keywords: FDG PET/CT; quantification; repeatability; reproducibility.
© 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.