Sign in to use this feature.

Years

Between: -

Search Results (18)

Search Parameters:
Keywords = 316 and 304 stainless steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3053 KiB  
Article
Machine Learning-Assisted Prediction of Stress Corrosion Crack Growth Rate in Stainless Steel
by Peng Wang, Huanchun Wu, Xiangbing Liu and Chaoliang Xu
Crystals 2024, 14(10), 846; https://doi.org/10.3390/cryst14100846 (registering DOI) - 27 Sep 2024
Abstract
Stainless-steel is extensively utilized in the key structural components of the main equipment in the nuclear island of pressurized water reactor nuclear power plants. The operational experience of nuclear power plants demonstrates that stress corrosion is one of the significant factors influencing the [...] Read more.
Stainless-steel is extensively utilized in the key structural components of the main equipment in the nuclear island of pressurized water reactor nuclear power plants. The operational experience of nuclear power plants demonstrates that stress corrosion is one of the significant factors influencing the long-term safe operation of stainless steel in the high-temperature water of pressurized water reactor nuclear power plants. This study is based on the stress corrosion crack growth rate data of 316SS and 304SS stainless steel in the simulated primary water environment of pressurized water reactor nuclear power plants. Data mining and modeling were conducted using multiple machine learning algorithms, including Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Gaussian Process Regression (GPR), and the Sharpley Additive explanation (SHAP) method was employed to analyze the interpretability of the model. The results indicate that the stress corrosion crack growth rate prediction model based on XGBoost outperforms other models in all assessment indicators. Compared with empirical equations, XGBoost exhibits high flexibility and excellent data-driven learning capabilities. In the test set, 90% of the prediction errors are within the range of experimental values, with the maximum error multiple being 2.5, which significantly improves the prediction accuracy. Moreover, the distribution of SHAP values is consistent with the theoretical study of the stress corrosion behavior of stainless-steel, effectively reflecting the impact of cold working, temperature, and stress intensity factor on the stress corrosion crack growth rate, thereby proving the reliability of the model’s prediction results. The achievements of this study hold significant reference value and application prospects for the prediction of the stress corrosion behavior of stainless-steel in a high-temperature and high-pressure water environment of pressurized water reactor nuclear power plants. Full article
(This article belongs to the Special Issue High-Performance Metallic Materials)
Show Figures

Figure 1

16 pages, 8550 KiB  
Article
Characterization of Various Stainless Steels Containing Gadolinium as Thermal Neutron Absorbing and Shielding Materials
by SeKwon Oh, Ji-Ho Ahn, Rockhoon Jung, Hyun-Jong Kim, Younghwan Chu, Dae Hyun Choi, Hyun Lee and Hyun-Do Jung
Metals 2024, 14(1), 16; https://doi.org/10.3390/met14010016 - 22 Dec 2023
Cited by 1 | Viewed by 1373
Abstract
Developing next-generation thermal-neutron-shielding and -absorbing materials for the safe storage and transportation of spent nuclear fuel is a topic of active research in academia. Gadolinium (Gd) boasts superior neutron absorption capacity compared with other nuclei. Consequently, it has garnered significant attention as a [...] Read more.
Developing next-generation thermal-neutron-shielding and -absorbing materials for the safe storage and transportation of spent nuclear fuel is a topic of active research in academia. Gadolinium (Gd) boasts superior neutron absorption capacity compared with other nuclei. Consequently, it has garnered significant attention as a potential replacement for boron in spent nuclear fuel (SNF) applications. In this study, the austenitic stainless steels 304 and 316 and the duplex stainless steel 5A were reinforced with 2 wt.% of gadolinium to explore their thermal-neutron-absorbing efficiency. Their properties were then compared with commercial-grade borated stainless steel, as per ASTM standard A887. After the inclusion of Gd, both the yield strength and ultimate tensile strength of the alloys slightly increased, which was attributed to the evenly distributed Gd intermetallics within the matrix. However, the elongation rate was reduced. The Charpy impact absorption energy also decreased. The influence of the Gd intermetallic was further explored by examining the fractography. While the corrosion resistance of the alloy slightly diminished after the addition of Gd, its neutron absorption capacity demonstrated superior performance, especially when the Gd content was equivalent to that of boron. Although most properties of the experimental alloy deteriorated after the Gd addition, they still outperformed commercial borated stainless steel, suggesting that this alloy might be a promising candidate for SNF applications. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

19 pages, 5991 KiB  
Article
Wire Electrical Discharge Machining of AISI304 and AISI316 Alloys: A Comparative Assessment of Machining Responses, Empirical Modeling and Multi-Objective Optimization
by Mona A. Aboueleaz, Noha Naeim, Islam H. Abdelgaliel, Mohamed F. Aly and Ahmed Elkaseer
J. Manuf. Mater. Process. 2023, 7(6), 194; https://doi.org/10.3390/jmmp7060194 - 3 Nov 2023
Viewed by 1651
Abstract
This research investigates the multi-response of both material removal rate (MRR) and surface roughness (Ra) for the wire electrical discharge machining (WEDM) of two stainless steel alloys: AISI 304 and AISI 316. Experimental results are utilized to compare the machining responses obtained for [...] Read more.
This research investigates the multi-response of both material removal rate (MRR) and surface roughness (Ra) for the wire electrical discharge machining (WEDM) of two stainless steel alloys: AISI 304 and AISI 316. Experimental results are utilized to compare the machining responses obtained for AISI 316 with those obtained for AISI 304, as previously reported in the literature. The experimental work is conducted through a full factorial experimental design of five running parameters with different levels: applied voltage, transverse feed, pulse-on/pulse-off times and current intensity. The machined workpieces are analyzed using an image processing technique in order to evaluate the size of cut slots to allow the calculation of the MRR. Followed by the characterization of the surface roughness along the side walls of the slots. Different mathematical regression techniques were developed to represent the multi-response of both materials using the MATLAB regression toolbox. It was found that WEDM process parameters have a fuzzy influence on the responses of both material models. This allowed for multi-objective optimization of the regression models using four different techniques: multi-objective genetic algorithm (MOGA), multi-objective pareto search algorithm (MOPSA), weighted value grey wolf optimizer (WVGWO) and osprey optimization algorithm (OOA). The optimization results reveal that the optimal WEDM parameters of each response are inconsistent to the others. Hence, the optimal results are considered a compromise between the best results of different responses. Noteworthily, the multi-objective pareto search algorithm outperformed the other candidates. Eventually, the optimal results of both materials share the high voltage, high transverse feed rate and low pulse-off time parameters; however, AISI 304 requires low pulse-on time and current intensity levels while AISI 316 optimal results entail higher pulse-on time and current levels. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

21 pages, 4891 KiB  
Article
Passive Films Formed on Fe- and Ni-Based Alloys in an Alkaline Medium: An Insight into Complementarities between Electrochemical Techniques and Near-Field Microscopies (AFM/SKPFM)
by N. E. Benaioun, N. Moulayat, N. E. Hakiki, H. Ramdane, E. Denys, A. Florentin, K. D. Khodja, M. M. Heireche and J. L. Bubendorff
Appl. Sci. 2023, 13(21), 11659; https://doi.org/10.3390/app132111659 - 25 Oct 2023
Cited by 2 | Viewed by 1050
Abstract
This study investigates the natural passivation process of two types of stainless steels (AISI 316 and AISI 304) and a nickel-based alloy (Inconel 600) as a function of immersion time in an alkaline medium. As shown by Atomic Force Microscopy (AFM), the oxide [...] Read more.
This study investigates the natural passivation process of two types of stainless steels (AISI 316 and AISI 304) and a nickel-based alloy (Inconel 600) as a function of immersion time in an alkaline medium. As shown by Atomic Force Microscopy (AFM), the oxide film growth on each substrate is only influenced by trenches formed during the polishing step and does not depend on the chemical composition. The evolution of EIS measurements is explained by this growth mode. After 3 days of immersion, the formed film constitutes a protective barrier against alloy dissolution, as shown by Scanning Kelvin Probe Microscopy (SKPFM). Full article
(This article belongs to the Special Issue Feature Papers in Surface Sciences and Technology Section)
Show Figures

Figure 1

23 pages, 4984 KiB  
Article
Effects of Different Coatings, Primers, and Additives on Corrosion of Steel Rebars
by Alireza Afshar, Soheil Jahandari, Haleh Rasekh, Aida Rahmani and Mohammad Saberian
Polymers 2023, 15(6), 1422; https://doi.org/10.3390/polym15061422 - 13 Mar 2023
Cited by 3 | Viewed by 2340
Abstract
In this research, methods of increasing the corrosion resistance of reinforced concrete were experimentally investigated. The study used silica fume and fly ash at optimized percentages of 10 and 25% by cement weight, polypropylene fibers at a ratio of 2.5% by volume of [...] Read more.
In this research, methods of increasing the corrosion resistance of reinforced concrete were experimentally investigated. The study used silica fume and fly ash at optimized percentages of 10 and 25% by cement weight, polypropylene fibers at a ratio of 2.5% by volume of concrete, and a commercial corrosion inhibitor, 2-dimethylaminoethanol (Ferrogard 901), at 3% by cement weight. The corrosion resistance of three types of reinforcements, mild steel (STt37), AISI 304 stainless steel, and AISI 316 stainless steel, was investigated. The effects of various coatings, including hot-dip galvanizing, alkyd-based primer, zinc-rich epoxy primer, alkyd top coating, polyamide epoxy top coating, polyamide epoxy primer, polyurethane coatings, a double layer of alkyd primer and alkyd top coating, and a double layer of epoxy primer and alkyd top coating, were evaluated on the reinforcement surface. The corrosion rate of the reinforced concrete was determined through results of accelerated corrosion and pullout tests of steel-concrete bond joints and stereographic microscope images. The samples containing pozzolanic materials, the corrosion inhibitor, and a combination of the two showed significant improvement in corrosion resistance by 7.0, 11.4, and 11.9 times, respectively, compared to the control samples. The corrosion rate of mild steel, AISI 304, and AISI 316 decreased by 1.4, 2.4, and 2.9 times, respectively, compared to the control sample; however, the presence of polypropylene fibers reduced the corrosion resistance by 2.4 times compared to the control. Full article
(This article belongs to the Special Issue Polymer Processing and Surfaces II)
Show Figures

Figure 1

15 pages, 23925 KiB  
Article
Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds
by Chia-Ying Kang, Tai-Cheng Chen and Leu-Wen Tsay
Metals 2023, 13(1), 69; https://doi.org/10.3390/met13010069 - 26 Dec 2022
Cited by 10 | Viewed by 2080
Abstract
Micro-shot peening on AISI 304 and 316 stainless steel (SS) laser welds was performed to evaluate its effect on the susceptibility to stress corrosion cracking (SCC) in a salt spray containing 10% NaCl at 80 °C. The cracking susceptibility of the welds was [...] Read more.
Micro-shot peening on AISI 304 and 316 stainless steel (SS) laser welds was performed to evaluate its effect on the susceptibility to stress corrosion cracking (SCC) in a salt spray containing 10% NaCl at 80 °C. The cracking susceptibility of the welds was disclosed by testing U-bend specimens in a salt spray. Micro-shot peening caused an intense but narrow deformed layer with a nanocrystal structure and residual compressive stress. Austenite to martensite transformation occurred heavily on the top surface of the micro-shot peened welds. SCC microcracks were more likely to be initiated at the fusion boundary (FB) of the non-peened welds. However, fine pits were formed more easily on the micro-shot peened 304 fusion zone (FZ), which was attributed to the extensive formation of strain-induced martensite. The nanograined structure and induced residual compressive stress in the micro-shot peened layer suppressed microcrack initiation in the 304 and 316 welds in a salt spray. Compared with the other zones in the welds in a salt spray, the high local strain at the FB was the cause of the high cracking susceptibility and could be mitigated by the micro-shot peening treatment. Full article
(This article belongs to the Topic Laser Welding of Metallic Materials)
Show Figures

Figure 1

15 pages, 5906 KiB  
Article
Corrosion Behavior in Volcanic Soils: In Search of Candidate Materials for Thermoelectric Devices
by Carlos Berlanga-Labari, Leyre Catalán, José F. Palacio, Gurutze Pérez and David Astrain
Materials 2021, 14(24), 7657; https://doi.org/10.3390/ma14247657 - 12 Dec 2021
Cited by 2 | Viewed by 2149
Abstract
Thermoelectric generators have emerged as an excellent solution for the energy supply of volcanic monitoring stations due to their compactness and continuous power generation. Nevertheless, in order to become a completely viable solution, it is necessary to ensure that their materials are able [...] Read more.
Thermoelectric generators have emerged as an excellent solution for the energy supply of volcanic monitoring stations due to their compactness and continuous power generation. Nevertheless, in order to become a completely viable solution, it is necessary to ensure that their materials are able to resist in the acidic environment characteristic of volcanoes. Hence, the main objective of this work is to study the resistance to corrosion of six different metallic materials that are candidates for use in the heat exchangers. For this purpose, the metal probes have been buried for one year in the soil of the Teide volcano (Spain) and their corrosion behavior has been evaluated by using different techniques (OM, SEM, and XRD). The results have shown excessive corrosion damage to the copper, brass, and galvanized steel tubes. After evaluating the corrosion behavior and thermoelectric performance, AISI 304 and AISI 316 stainless steels are proposed for use as heat exchangers in thermoelectric devices in volcanic environments. Full article
(This article belongs to the Topic Thermoelectric Energy Harvesting)
Show Figures

Graphical abstract

10 pages, 354 KiB  
Article
Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
by Mohammad Marashdeh and Ibrahim F. Al-Hamarneh
Materials 2021, 14(22), 6873; https://doi.org/10.3390/ma14226873 - 15 Nov 2021
Cited by 4 | Viewed by 1853
Abstract
In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Zeff, effective electron density Neff and half-value layer (HVL) of four [...] Read more.
In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Zeff, effective electron density Neff and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient (μ/ρ). The μ/ρ coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The Kα1 of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of μ/ρ revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of μ/ρ was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of μ/ρ at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Zeff and Neff for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Zeff) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of μ/ρ, Zeff and Zeq and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

20 pages, 3567 KiB  
Article
Electrochemical Investigations of Steels in Seawater Sea Sand Concrete Environments
by Xiang Yu, Saad Al-Saadi, Xiao-Ling Zhao and R. K. Singh Raman
Materials 2021, 14(19), 5713; https://doi.org/10.3390/ma14195713 - 30 Sep 2021
Cited by 13 | Viewed by 2491
Abstract
Seawater and sea sand concrete (SWSSC) is an environmentally friendly alternative to ordinary Portland cement concrete for civil construction. However, the detrimental effect of high chloride content of SWSSC on the corrosion resistance of steel reinforcement is a concern. This study undertook the [...] Read more.
Seawater and sea sand concrete (SWSSC) is an environmentally friendly alternative to ordinary Portland cement concrete for civil construction. However, the detrimental effect of high chloride content of SWSSC on the corrosion resistance of steel reinforcement is a concern. This study undertook the electrochemical corrosion behaviour and surface characterizations of a mild steel and two stainless steels (AISI type 304 and 316) in various simulated concrete environments, including the alkaline + chloride environment (i.e., SWSSC). Open circuit potential (OCP), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were employed. Though chloride is detrimental to the corrosion resistance of mild steels, a simultaneous presence of high alkalinity in SWSSC negate the detrimental effect of chloride. In the case of stainless steels, a high level of alkalinity is found to be detrimental, whereas chloride seems to have less detrimental effect on their corrosion resistance. Full article
Show Figures

Figure 1

15 pages, 7784 KiB  
Article
Effect of Martensitic Transformation and Grain Misorientation on Surface Roughening Behavior of Stainless Steel Thin Foils
by Abdul Aziz, Ming Yang, Tetsuhide Shimizu and Tsuyoshi Furushima
Eng 2021, 2(3), 372-385; https://doi.org/10.3390/eng2030024 - 15 Sep 2021
Cited by 2 | Viewed by 3021
Abstract
The surface roughening (Ra), martensitic phase transformation (MPT), and grain misorientation (GMO) behavior of stainless steel 304 and 316 in various grain sizes (Dg) were studied experimentally, including five cycles of sequential uniaxial tensile stress testing and Scanning Electron Microscope-Electron Back Scattered Diffraction [...] Read more.
The surface roughening (Ra), martensitic phase transformation (MPT), and grain misorientation (GMO) behavior of stainless steel 304 and 316 in various grain sizes (Dg) were studied experimentally, including five cycles of sequential uniaxial tensile stress testing and Scanning Electron Microscope-Electron Back Scattered Diffraction (SEM-EBSD) investigation. The MPT and GMO characteristics were sequentially investigated using tensile testing and SEM-EBSD analysis. The correlation between MPT, GMO, martensitic volume fraction (Mf), and Ra behavior were investigated. The experimental results showed that increasing the total strain from 5.0% to 25.0% increased the MPT, GMO, and Mf, which were transformed from the metastable austenitic phase in stainless steel (SUS) 304. The increasing total strain increased Ra for all kinds of Dg. Furthermore, SUS 304 and SUS 316 were used to compare the roughening mechanism. The MPT was very high and spread uniformly in fine grain of SUS 304 thin foil, but the MPT was low and not uniform in coarse grain of SUS 304 thin foil. There was no MPT in SUS 316 thin foil, both in coarse and fine grain. The GMO in fine grains, both in SUS 304 and SUS 316 thin foils, spread uniformly. The GMO in coarse grains, both in SUS 304 and SUS 316 thin foils, did not spread uniformly. Surface roughness increased higher in coarse grain than fine grain for both of SUS 304 and SUS 316 thin foil. SUS 304 increased higher than SUS 316 thin foil. The effect of inhomogeneous deformation due to the MPT is a more important factor than GMO in coarse grain. Full article
(This article belongs to the Special Issue Feature Papers in Eng)
Show Figures

Figure 1

12 pages, 3640 KiB  
Article
A Novel Accelerated Corrosion Test for Supporting Devices in a Floating Photovoltaic System
by Chun-Kuo Liu, Zhong-Ri Kong, Ming-Je Kao and Teng-Chun Wu
Appl. Sci. 2021, 11(8), 3308; https://doi.org/10.3390/app11083308 - 7 Apr 2021
Cited by 2 | Viewed by 2940
Abstract
Recently, countries from around the globe have been actively developing a new solar power system, namely, the floating photovoltaic (FPV) system. FPV is advantageous in terms of efficiency and cost effectiveness; however, environmental conditions on the surface of water are harsher than on [...] Read more.
Recently, countries from around the globe have been actively developing a new solar power system, namely, the floating photovoltaic (FPV) system. FPV is advantageous in terms of efficiency and cost effectiveness; however, environmental conditions on the surface of water are harsher than on the ground, and the regulations and standards for the long-term durability of supporting devices are insufficient. As a result, this study aims to investigate the durability of supporting devices through a novel type of accelerated corrosion test, copper-accelerated acetic acid salt spray (CASS). After an eight-day CASS test, the results demonstrated that only a small area of white protective layer on the SUPERDYMA shape steel was fully corroded and rusted. Moreover, five types of screw, fastened solidly on the SUPERDYMA shape steel, namely a galvanized steel screw capped with a type 316 stainless steel (SS) nut, a type 304 SS screw, a type 410 SS screw, a chromate-passivated galvanized steel screw, and a XP zinc–tin alloy coated steel screw, achieved varying degrees of rust. In general, the corrosion degree of the eight-day CASS test was more serious than that of the 136-day neutral salt spray (NSS) test. Therefore, the CASS test is faster and more efficient for the evaluation of the durability of supporting devices. Full article
(This article belongs to the Special Issue Selected Papers from IMETI 2020)
Show Figures

Figure 1

10 pages, 3345 KiB  
Article
Analysis of Corrosion of Hastelloy-N, Alloy X750, SS316 and SS304 in Molten Salt High-Temperature Environment
by Ketan Kumar Sandhi and Jerzy Szpunar
Energies 2021, 14(3), 543; https://doi.org/10.3390/en14030543 - 21 Jan 2021
Cited by 13 | Viewed by 3691
Abstract
Nickel superalloy Hastelloy-N, alloy X-750, stainless steel 316 (SS316), and stainless steel 304 (SS304) are among the alloys used in the construction of molten salt reactor (MSR). These alloys were analyzed for their corrosion resistance behavior in molten fluoride salt, a coolant used [...] Read more.
Nickel superalloy Hastelloy-N, alloy X-750, stainless steel 316 (SS316), and stainless steel 304 (SS304) are among the alloys used in the construction of molten salt reactor (MSR). These alloys were analyzed for their corrosion resistance behavior in molten fluoride salt, a coolant used in MSR reactors with 46.5% LiF+ 11.5% NaF+ 42% KF. The corrosion tests were run at 700 °C for 100 h under the Ar cover gas. After corrosion, significant weight loss was observed in the alloy X750. Weight loss registered in SS316 and SS304 was also high. However, Hastelloy-N gained weight after exposure to molten salt corrosion. This could be attributed to electrochemical plating of corrosion products from other alloys on Hastelloy-N surface. SEM–energy-dispersive X-ray spectroscopy (EDXS) scans of cross-section of alloys revealed maximum corrosion damage to the depth of 250 µm in X750, in contrast to only 20 µm on Hastelloy-N. XPS wide survey scans revealed the presence of Fe, Cr, and Ni elements on the surface of all corroded alloys. In addition, Cr clusters were formed at the triple junctions of grains, as confirmed by SEM–EBSD (Electron Back Scattered Diffraction) analysis. The order of corrosion resistance in FLiNaK environment was X750 < SS316 < SS304 < Hastelloy-N. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Graphical abstract

23 pages, 1293 KiB  
Review
Diffusion Bonding and Transient Liquid Phase (TLP) Bonding of Type 304 and 316 Austenitic Stainless Steel—A Review of Similar and Dissimilar Material Joints
by Abdulaziz AlHazaa and Nils Haneklaus
Metals 2020, 10(5), 613; https://doi.org/10.3390/met10050613 - 8 May 2020
Cited by 52 | Viewed by 8032
Abstract
Similar and dissimilar material joints of AISI grade 304 (1.4301) and AISI grade 316 (1.4401) austenitic stainless steel by solid state diffusion bonding and transient liquid phase (TLP) bonding are of interest to academia and industry alike. Appropriate bonding parameters (bonding temperature, bonding [...] Read more.
Similar and dissimilar material joints of AISI grade 304 (1.4301) and AISI grade 316 (1.4401) austenitic stainless steel by solid state diffusion bonding and transient liquid phase (TLP) bonding are of interest to academia and industry alike. Appropriate bonding parameters (bonding temperature, bonding time, and bonding pressure) as well as suitable surface treatments, bonding atmosphere (usually high vacuum or protective gas) and interlayers are paramount for successful bonding. The three main parameters (temperature, time, and pressure) are interconnected in a strong non-linear way making experimental data important. This work reviews the three main parameters used for solid state diffusion bonding, TLP bonding and to a smaller degree hot isostatic pressing (HIP) of AISI grade 304 and AISI grade 316 austenitic stainless steel to the aforementioned materials (similar joints) as well as other materials, namely commercially pure titanium, Ti-6A-4V, copper, zircaloy and other non-ferrous metals and ceramic materials (dissimilar joints). Full article
Show Figures

Figure 1

14 pages, 3469 KiB  
Article
Structural and Micromechanical Properties of Nd:YAG Laser Marking Stainless Steel (AISI 304 and AISI 316)
by Piotr Dywel, Robert Szczesny, Piotr Domanowski and Lukasz Skowronski
Materials 2020, 13(9), 2168; https://doi.org/10.3390/ma13092168 - 8 May 2020
Cited by 15 | Viewed by 3082
Abstract
The purpose of this study is to examine the microstructure and micromechanical properties of pulsed-laser irradiated stainless steel. The laser marking was conducted for AISI 304 and AISI 316 stainless steel samples through a Nd:YAG (1064 nm) laser. The influence of process parameters [...] Read more.
The purpose of this study is to examine the microstructure and micromechanical properties of pulsed-laser irradiated stainless steel. The laser marking was conducted for AISI 304 and AISI 316 stainless steel samples through a Nd:YAG (1064 nm) laser. The influence of process parameters such as the pulse repetition rate and scanning speed have been considered. The microstructures of obtained samples were analyzed using confocal optical microscopy (COM). The continuous stiffness measurements (CSM) technique was applied for nanoindentional hardness and elastic modulus determination. The phase compositions of obtained specimens were characterized by X-ray diffraction (XRD) and confirmed by Raman spectroscopy. The results revealed that surface roughness is directly related to overlapping distance and the energy provided by a single pulse. The hardness of irradiated samples changes significantly with the indentation depth. The instrumental hardness HIT and elastic modulus EIT drop sharply with the rise of the indentation depth. Thus, the hardness enhancement can be observed as the indentation depth varies between 100–1000 nm for all exanimated samples. The maximum values of HIT and EIT were evaluated for the region of small depths (100–200 nm). The XRD results reveal the presence of iron and chromium oxides due to irradiation, which indicates a surface hardening effect. Full article
(This article belongs to the Special Issue Micromechanical Characterisation and Structures of Materials)
Show Figures

Figure 1

25 pages, 10591 KiB  
Review
Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review
by Le Zai, Chaoqun Zhang, Yiqiang Wang, Wei Guo, Daniel Wellmann, Xin Tong and Yingtao Tian
Metals 2020, 10(2), 255; https://doi.org/10.3390/met10020255 - 14 Feb 2020
Cited by 89 | Viewed by 9299
Abstract
Martensitic stainless steels are widely used in industries due to their high strength and good corrosion resistance performance. Precipitation-hardened (PH) martensitic stainless steels feature very high strength compared with other stainless steels, around 3-4 times the strength of austenitic stainless steels such as [...] Read more.
Martensitic stainless steels are widely used in industries due to their high strength and good corrosion resistance performance. Precipitation-hardened (PH) martensitic stainless steels feature very high strength compared with other stainless steels, around 3-4 times the strength of austenitic stainless steels such as 304 and 316. However, the poor workability due to the high strength and hardness induced by precipitation hardening limits the extensive utilization of PH stainless steels as structural components of complex shapes. Laser powder bed fusion (L-PBF) is an attractive additive manufacturing technology, which not only exhibits the advantages of producing complex and precise parts with a short lead time, but also avoids or reduces the subsequent machining process. In this review, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Then, the characteristics of defects in the as-built state and the causes are specifically analyzed. Afterward, the effect of process parameters and heat treatment conditions on mechanical properties are summarized and reviewed. Finally, the remaining issues and suggestions on future research on L-PBF of martensitic precipitation-hardened stainless steels are put forward. Full article
Show Figures

Figure 1

Back to TopTop