Sign in to use this feature.

Years

Between: -

Search Results (22)

Search Parameters:
Keywords = Envisat-MERIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7257 KiB  
Article
Constructing a Consistent and Continuous Cyanobacteria Bloom Monitoring Product from Multi-Mission Ocean Color Instruments
by Sachidananda Mishra, Richard P. Stumpf and Andrew Meredith
Remote Sens. 2023, 15(22), 5291; https://doi.org/10.3390/rs15225291 - 9 Nov 2023
Viewed by 1266
Abstract
Satellite-based monitoring of cyanobacterial harmful algal blooms (CyanoHABs) heavily utilizes historical Envisat-MERIS and current Sentinel-OLCI observations due to the availability of the 620 nm and 709 nm bands. The permanent loss of communication with Envisat in April 2012 created an observational gap from [...] Read more.
Satellite-based monitoring of cyanobacterial harmful algal blooms (CyanoHABs) heavily utilizes historical Envisat-MERIS and current Sentinel-OLCI observations due to the availability of the 620 nm and 709 nm bands. The permanent loss of communication with Envisat in April 2012 created an observational gap from 2012 until the operationalization of OLCI in 2016. Although MODIS-Terra has been used to bridge the gap from 2012 to 2015, differences in band architecture and the absence of the 709 nm band have complicated generating a consistent and continuous CyanoHAB monitoring product. Moreover, several Terra bands often saturate during extreme high-concentration CyanoHAB events. This study trained a fully connected deep network (CyanNet) to model MERIS-Cyanobacteria Index (CI)—a key satellite algorithm for detecting and quantifying cyanobacteria. The network was trained with Rayleigh-corrected surface reflectance at 12 Terra bands from 2002–2008, 2010–2012, and 2017–2021 and validated with data from 2009 and 2016 in Lake Okeechobee. Model performance was satisfactory, with a ~17% median difference in Lake Okeechobee annual bloom magnitude. The median difference was ~36% with 10-day Chlorophyll-a time series data, with differences often due to variations in data availability, clouds or glint. Without further regional training, the same network performed well in Lake Apopka, Lake George, and western Lake Erie. Validation success, especially in Lake Erie, shows the generalizability of CyanNet and transferability to other geographic regions. Full article
Show Figures

Figure 1

18 pages, 4449 KiB  
Article
Global Leaf Chlorophyll Content Dataset (GLCC) from 2003–2012 to 2018–2020 Derived from MERIS and OLCI Satellite Data: Algorithm and Validation
by Xiaojin Qian, Liangyun Liu, Xidong Chen, Xiao Zhang, Siyuan Chen and Qi Sun
Remote Sens. 2023, 15(3), 700; https://doi.org/10.3390/rs15030700 - 25 Jan 2023
Cited by 6 | Viewed by 2313
Abstract
Leaf chlorophyll content (LCC) is a prominent plant physiological trait and a proxy for leaf photosynthetic capacity. The acquisition of LCC data over large spatial and temporal scales facilitates vegetation growth monitoring and terrestrial carbon cycle modeling. In this study, a global 500 [...] Read more.
Leaf chlorophyll content (LCC) is a prominent plant physiological trait and a proxy for leaf photosynthetic capacity. The acquisition of LCC data over large spatial and temporal scales facilitates vegetation growth monitoring and terrestrial carbon cycle modeling. In this study, a global 500 m LCC weekly dataset (GLCC) was produced from ENVISAT MERIS and Sentinel-3 OLCI satellite data using a physical radiative transfer modeling approach that considers the influence of canopy structure and soil background. Firstly, five look-up-tables (LUTs) were generated using PROSPECT-D+4-Scale and PROSAIL-D models for woody and non-woody plants. For the four LUTs applicable to woody plants, each LUT contains three sub-LUTs corresponding to three types of crown height. The one LUT applicable to non-woody vegetation type includes 25 sub-LUTs corresponding to five kinds of canopy structures and five kinds of soil backgrounds. The final retrieval was considered the aggregation of the LCC inversion results of all sub-LUTs for each plant function type (PFT). Then, the GLCC dataset was generated and validated using field measurements, yielding an overall accuracy of R2 = 0.41 and RMSE = 8.94 μg cm−2. Finally, the GLCC dataset presented acceptable consistency with the existing MERIS LCC dataset. OLCI, as the successor to MERIS data, was used for the first time to co-produce LCC data from 2003–2012 to 2018–2020 in conjunction with MERIS data. This new GLCC dataset spanning nearly 20 years will provide a valuable opportunity to analyze variations in vegetation dynamics. Full article
(This article belongs to the Special Issue Remote Sensing of Primary Production)
Show Figures

Figure 1

20 pages, 7331 KiB  
Article
Consistent Multi-Mission Measures of Inland Water Algal Bloom Spatial Extent Using MERIS, MODIS and OLCI
by Chuiqing Zeng and Caren E. Binding
Remote Sens. 2021, 13(17), 3349; https://doi.org/10.3390/rs13173349 - 24 Aug 2021
Cited by 8 | Viewed by 2496
Abstract
Envisat’s MERIS and its successor Sentinel OLCI have proven invaluable for documenting algal bloom conditions in coastal and inland waters. Observations over turbid eutrophic waters, in particular, have benefited from the band at 708 nm, which captures the reflectance peak associated with intense [...] Read more.
Envisat’s MERIS and its successor Sentinel OLCI have proven invaluable for documenting algal bloom conditions in coastal and inland waters. Observations over turbid eutrophic waters, in particular, have benefited from the band at 708 nm, which captures the reflectance peak associated with intense algal blooms and is key to line-height algorithms such as the Maximum Chlorophyll Index (MCI). With the MERIS mission ending in early 2012 and OLCI launched in 2016, however, time-series studies relying on these two sensors have to contend with an observation gap spanning four years. Alternate sensors, such as MODIS Aqua, offering neither the same spectral band configuration nor consistent spatial resolution, present challenges in ensuring continuity in derived bloom products. This study explores a neural network (NN) solution to fill the observation gap between MERIS and OLCI with MODIS Aqua data, delivering consistent algal bloom spatial extent products from 2002 to 2020 using these three sensors. With 14 bands of MODIS level 2 partially atmospherically corrected spectral reflectance as the NN input, the missing MERIS/OLCI band at 708 nm required for the MCI is simulated. The resulting NN-derived MODIS MCI (NNMCI) is shown to be in good agreement with MERIS and OLCI MCI in 2011 and 2017 respectively over the western basin of Lake Erie (R2 = 0.84, RMSE = 0.0032). To overcome the impact of MODIS sensor saturation over bright water targets, which otherwise renders pixels unusable for bloom detection using R-NIR wavebands, a variant NN model is employed which uses the 9 MODIS bands with the lowest probability of saturation to simulate the MCI. This variant NN predicts MCI with only a small increase in uncertainty (R2 = 0.73, RMSE = 0.005) allowing reliable estimates of bloom conditions in those previously unreported pixels. The NNMCI is shown to be robust when applied beyond the initial training dataset on Lake Erie, and when re-trained on different geographic areas (Lake Winnipeg and Lake of the Woods). Despite differences in spatial, temporal, and spectral resolution, MODIS algal bloom presence/absence was correctly classified in >92% of cases and bloom spatial extent derived within 25% uncertainty, allowing the application to the 2012–2015 time period to form a continuous and consistent multi-mission monitoring dataset from 2002 to 2020. Full article
Show Figures

Graphical abstract

20 pages, 14384 KiB  
Article
Improving the Retrieval of Crop Canopy Chlorophyll Content Using Vegetation Index Combinations
by Qi Sun, Quanjun Jiao, Xiaojin Qian, Liangyun Liu, Xinjie Liu and Huayang Dai
Remote Sens. 2021, 13(3), 470; https://doi.org/10.3390/rs13030470 - 29 Jan 2021
Cited by 33 | Viewed by 4285
Abstract
Estimates of crop canopy chlorophyll content (CCC) can be used to monitor vegetation productivity, manage crop resources, and control disease and pests. However, making these estimates using conventional ground-based methods is time-consuming and resource-intensive when deployed over large areas. Although vegetation indices (VIs), [...] Read more.
Estimates of crop canopy chlorophyll content (CCC) can be used to monitor vegetation productivity, manage crop resources, and control disease and pests. However, making these estimates using conventional ground-based methods is time-consuming and resource-intensive when deployed over large areas. Although vegetation indices (VIs), derived from satellite sensor data, have been used to estimate CCC, they suffer from problems related to spectral saturation, soil background, and canopy structure. A new method was, therefore, proposed for combining the Medium Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll index (MTCI) and LAI-related vegetation indices (LAI-VIs) to increase the accuracy of CCC estimates for wheat and soybeans. The PROSAIL-D canopy reflectance model was used to simulate canopy spectra that were resampled to match the spectral response functions of the MERIS carried on the ENVISAT satellite. Combinations of the MTCI and LAI-VIs were then used to estimate CCC via univariate linear regression, binary linear regression and random forest regression. The accuracy using the field spectra and MERIS data was determined based on field CCC measurements. All the MTCI and LAI-VI combinations for the selected regression techniques resulted in more accurate estimates of CCC than the use of the MTCI alone (field spectra data for soybeans and wheat: R2 = 0.62 and RMSE = 77.10 μg cm−2; MERIS satellite data for soybeans: R2 = 0.24 and RMSE = 136.54 μg cm−2). The random forest regression resulted in better accuracy than the other two linear regression models. The combination resulting in the best accuracy was the MTCI and MTVI2 and random forest regression, with R2 = 0.65 and RMSE = 37.76 μg cm−2 (field spectra data) and R2 = 0.78 and RMSE = 47.96 μg cm−2 (MERIS satellite data). Combining the MTCI and a LAI-VI represents a further step towards improving the accuracy of estimation CCC based on multispectral satellite sensor data. Full article
Show Figures

Figure 1

21 pages, 6389 KiB  
Article
Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations
by Toma Dabuleviciene, Diana Vaiciute and Igor E. Kozlov
Remote Sens. 2020, 12(21), 3661; https://doi.org/10.3390/rs12213661 - 8 Nov 2020
Cited by 13 | Viewed by 3462
Abstract
Based on the analysis of multispectral satellite data, this work demonstrates the influence of coastal upwelling on the variability of chlorophyll-a (Chl-a) concentration in the south-eastern Baltic (SEB) Sea and in the Curonian Lagoon. The analysis of sea surface temperature (SST) data acquired [...] Read more.
Based on the analysis of multispectral satellite data, this work demonstrates the influence of coastal upwelling on the variability of chlorophyll-a (Chl-a) concentration in the south-eastern Baltic (SEB) Sea and in the Curonian Lagoon. The analysis of sea surface temperature (SST) data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua/Terra satellites, together with Chl-a maps from Medium Resolution Imaging Spectrometer (MERIS) onboard Envisat, shows a significant decrease of up to 40–50% in Chl-a concentration in the upwelling zone. This results from the offshore Ekman transport of more productive surface waters, which are replaced by cold and less-productive waters from deeper layers. Due to an active interaction between the Baltic Sea and the Curonian Lagoon which are connected through the Klaipeda Strait, coastal upwelling in the SEB also influences the hydrobiological conditions of the adjacent lagoon. During upwelling inflows, SST drops by approximately 2–8 °C, while Chl-a concentration becomes 2–4 times lower than in pre-upwelling conditions. The joint analysis of remotely sensed Chl-a and SST data reveals that the upwelling-driven reduction in Chl-a concentration leads to the temporary improvement of water quality in terms of Chl-a in the coastal zone and in the hyper-eutrophic Curonian Lagoon. This study demonstrates the benefits of multi-spectral satellite data for upscaling coastal processes and monitoring the environmental status of the Baltic Sea and its largest estuarine lagoon. Full article
(This article belongs to the Special Issue Baltic Sea Remote Sensing)
Show Figures

Graphical abstract

21 pages, 3359 KiB  
Article
The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive
by J. Pastor-Guzman, L. Brown, H. Morris, L. Bourg, P. Goryl, S. Dransfeld and J. Dash
Remote Sens. 2020, 12(16), 2652; https://doi.org/10.3390/rs12162652 - 17 Aug 2020
Cited by 17 | Viewed by 6405
Abstract
The Ocean and Land Colour Instrument (OLCI) on-board Sentinel-3 (2016–present) was designed with similar mechanical and optical characteristics to the Envisat Medium Resolution Imaging Spectrometer (MERIS) (2002–2012) to ensure continuity with a number of land and marine biophysical products. The Sentinel-3 OLCI Terrestrial [...] Read more.
The Ocean and Land Colour Instrument (OLCI) on-board Sentinel-3 (2016–present) was designed with similar mechanical and optical characteristics to the Envisat Medium Resolution Imaging Spectrometer (MERIS) (2002–2012) to ensure continuity with a number of land and marine biophysical products. The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI) is an indicator of canopy chlorophyll content and is intended to continue the legacy of the Envisat MERIS Terrestrial Chlorophyll Index (MTCI). Despite spectral similarities, validation and verification of consistency is essential to inform the user community about the product’s accuracy, uncertainty, and fitness for purpose. This paper aims to: (i) describe the theoretical basis of the Sentinel-3 OTCI and (ii) evaluate the spatiotemporal consistency between the Sentinel-3 OTCI and the Envisat MTCI. Two approaches were used to conduct the evaluation. Firstly, agreement between the Sentinel-3 OTCI and the Envisat MTCI archive was assessed over the Committee for Earth Observation Satellites (CEOS) Land Product Validation (LPV) core validation sites, enabling the temporal consistency of the two products to be investigated. Secondly, intercomparison of monthly Level-3 Sentinel-3 OTCI and Envisat MTCI composites was carried out to evaluate the spatial distribution of differences across the globe. In both cases, the agreement was quantified with statistical metrics (R2, NRMSD, bias) using an Envisat MTCI climatology based on the MERIS archive as the reference. Our results demonstrate strong agreement between the products. Specifically, high 1:1 correspondence (R2 >0.88), low global mean percentage difference (−1.86 to 0.61), low absolute bias (<0.1), and minimal error (NRMSD ~0.1) are observed. The temporal profiles reveal consistency in the expected range of values, amplitudes, and seasonal trajectories. Biases and discrepancies may be attributed to changes in land management practices, land cover change, and extreme climatic events occurred during the time gap between the missions; however, this requires further investigation. This research confirms that Sentinel-3 OTCI dataset can be used along with the Envisat MTCI to provide a data coverage over the last 20 years. Full article
Show Figures

Graphical abstract

18 pages, 5829 KiB  
Article
Retrieving Crop Leaf Chlorophyll Content Using an Improved Look-Up-Table Approach by Combining Multiple Canopy Structures and Soil Backgrounds
by Xiaojin Qian and Liangyun Liu
Remote Sens. 2020, 12(13), 2139; https://doi.org/10.3390/rs12132139 - 3 Jul 2020
Cited by 22 | Viewed by 3027
Abstract
Leaf chlorophyll content (LCC) is a pivotal parameter in the monitoring of agriculture and carbon cycle modeling at regional and global scales. ENVISAT MERIS and Sentinel-3 OLCI data are suitable for use in the global monitoring of LCC because of their spectral specifications [...] Read more.
Leaf chlorophyll content (LCC) is a pivotal parameter in the monitoring of agriculture and carbon cycle modeling at regional and global scales. ENVISAT MERIS and Sentinel-3 OLCI data are suitable for use in the global monitoring of LCC because of their spectral specifications (covering red-edge bands), wide field of view and short revisit times. Generally, remote sensing approaches for LCC retrieval consist of statistically- and physically-based models. The physical approaches for LCC estimation require the use of radiative transfer models (RTMs), which are more robust and transferrable than empirical models. However, the operational retrieval of LCC at large scales is affected by the large variability in canopy structures and soil backgrounds. In this study, we proposed an improved look-up-table (LUT) approach to retrieve LCC by combining multiple canopy structures and soil backgrounds to deal with the ill-posed inversion problem caused by the lack of prior knowledge on canopy structure and soil-background reflectance. Firstly, the PROSAIL-D model was used to simulate canopy spectra with diverse imaging gometrics, canopy structures, soil backgrounds and leaf biochemical contents, and the canopy spectra were resampled according to the spectral response functions of ENVISAT MERIS and Sentinel-3 OLCI instruments. Then, an LUT that included 25 sub-LUTs corresponding to five types of canopy structure and five types of soil background was generated for LCC estimation. The mean of the best eight solutions, rather than the single best solution with the smallest RMSE value, was selected as the retrieval of each sub-LUT. The final inversion result was obtained by calculating the mean value of the 25 sub-LUTs. Finally, the improved LUT approach was tested using simulations, field measurements and ENVISAT MERIS satellite data. A simulation using spectral bands from the MERIS and Sentinel-3 OLCI simulation datasets yielded an R2 value of 0.81 and an RMSE value of 10.1 μg cm−2. Validation performed well with field-measured canopy spectra and MERIS imagery giving RMSE values of 9.9 μg cm−2 for wheat and 9.6 μg cm−2 for soybean using canopy spectra and 8.6 μg cm−2 for soybean using MERIS data. The comparison with traditional chlorophyll-sensitive indices showed that our improved LUT approach gave the best performance for all cases. Therefore, these promising results are directly applicable to the use of ENVISAT MERIS and Sentinel-3 OLCI data for monitoring of crop LCC at a regional or global scale. Full article
Show Figures

Graphical abstract

16 pages, 11368 KiB  
Article
A Fine Velocity and Strain Rate Field of Present-Day Crustal Motion of the Northeastern Tibetan Plateau Inverted Jointly by InSAR and GPS
by Xiaogang Song, Yu Jiang, Xinjian Shan, Wenyu Gong and Chunyan Qu
Remote Sens. 2019, 11(4), 435; https://doi.org/10.3390/rs11040435 - 20 Feb 2019
Cited by 27 | Viewed by 4329
Abstract
Interferometric synthetic aperture radar (InSAR) data from 6 Envisat ASAR descending tracks; spanning the 2003–2010 period; was used to measure interseismic strain accumulation across the Northeastern Tibetan Plateau. Mean line-of-sight (LOS) ratemaps are computed by stacking atmospheric-corrected and orbital-corrected interferograms. The ratemaps from [...] Read more.
Interferometric synthetic aperture radar (InSAR) data from 6 Envisat ASAR descending tracks; spanning the 2003–2010 period; was used to measure interseismic strain accumulation across the Northeastern Tibetan Plateau. Mean line-of-sight (LOS) ratemaps are computed by stacking atmospheric-corrected and orbital-corrected interferograms. The ratemaps from one track with different atmospheric-corrected results or two parallel; partially overlapping tracks; show a consistent pattern of left-lateral motion across the fault; which demonstrates the MERIS and ECMWF atmospheric correction works satisfactorily for small stain measurement of this region; even with a limited number of interferograms. By combining the measurements of InSAR and GPS; a fine crustal deformation velocity and strain rate field was estimated on discrete points with irregular density depending on the fault location; which revealed that the present-day slip rate on the Haiyuan fault system varies little from west to east. A change (2–3 mm/year) in line-of-sight (LOS) deformation rate across the fault is observed from the Jinqianghe segment to its eastern end. Inversion from the cross-fault InSAR profiles gave a shallow locking depth of 3–6 km on the main rupture of the 1920 earthquake. We therefore infer that the middle-lower part of the seismogenic layer on the 1920 rupture is not yet fully locked since the 1920 large earthquake. Benefit from high spatial resolution InSAR data; a low strain accumulation zone with high strain rates on its two ends was detected; which corresponds to the creeping segment; i.e., the Laohushan fault segment. Contrary to the previous knowledge of squeezing structure; an abnormal tension zone is disclosed from the direction map of principal stress; which is consistent with the recent geological study. The distribution of principal stress also showed that the expanding frontier of the northeastern plateau has crossed the Liupan Shan fault zone; even arrived at the northeast area of the Xiaoguan Shan. This result agrees with the deep seismic reflection profile. Full article
(This article belongs to the Special Issue Remote Sensing of Tectonic Deformation)
Show Figures

Graphical abstract

22 pages, 46504 KiB  
Article
Investigation of Ground Deformation in Taiyuan Basin, China from 2003 to 2010, with Atmosphere-Corrected Time Series InSAR
by Wei Tang, Peng Yuan, Mingsheng Liao and Timo Balz
Remote Sens. 2018, 10(9), 1499; https://doi.org/10.3390/rs10091499 - 19 Sep 2018
Cited by 18 | Viewed by 5051
Abstract
Excessive groundwater exploitation is common through the Taiyuan basin, China, and is well known to result in ground subsidence. However, most ground subsidence studies in this region focus on a single place (Taiyuan city), and thus fail to demonstrate the regional extent of [...] Read more.
Excessive groundwater exploitation is common through the Taiyuan basin, China, and is well known to result in ground subsidence. However, most ground subsidence studies in this region focus on a single place (Taiyuan city), and thus fail to demonstrate the regional extent of the deformation phenomena in the whole basin. In this study, we used Interferometric Synthetic Aperture Radar (InSAR) time series analysis to investigate land subsidence across the entire Taiyuan basin region. Our data set includes a total of 75 ENVISAT ASAR images from two different frames acquired from August 2003 to September 2010 and 33 TerraSAR-X scenes spanning between March 2009 and March 2010. ERA-Interim reanalysis was used to correct the stratified delay to reduce the bias expected from the systematic components of tropospheric delay. The residual delay after correction of stratified delay can be considered as a stochastic component and be mitigated through spatial-temporal filtering. A comparison with MERIS (Medium-Resolution Imaging Spectrometer) measurements indicates that our atmospheric corrections improved agreement over the conventional spatial-temporal filtering by about 20%. The displacement results from our atmosphere-corrected time series InSAR were further validated with continuous GPS data. We found eight subsiding centers in the basin and a surface uplift to the north of Taiyuan city. The causes of ground deformation are analyzed and discussed in relation to gravity data, pre-existing faults, and types of land use. Full article
(This article belongs to the Special Issue Imaging Geodesy and Infrastructure Monitoring)
Show Figures

Graphical abstract

9912 KiB  
Article
A Spectral Unmixing Method with Ensemble Estimation of Endmembers: Application to Flood Mapping in the Caprivi Floodplain
by Tsitsi Bangira, Silvia Maria Alfieri, Massimo Menenti, Adriaan Van Niekerk and Zoltán Vekerdy
Remote Sens. 2017, 9(10), 1013; https://doi.org/10.3390/rs9101013 - 30 Sep 2017
Cited by 27 | Viewed by 7094
Abstract
The Caprivi basin in Namibia has been affected by severe flooding in recent years resulting in deaths, displacements and destruction of infrastructure. The negative consequences of these floods have emphasized the need for timely, accurate and objective information about the extent and location [...] Read more.
The Caprivi basin in Namibia has been affected by severe flooding in recent years resulting in deaths, displacements and destruction of infrastructure. The negative consequences of these floods have emphasized the need for timely, accurate and objective information about the extent and location of affected areas. Due to the high temporal variability of flood events, Earth Observation (EO) data at high revisit frequency is preferred for accurate flood monitoring. Currently, EO data has either high temporal or coarse spatial resolution. Accurate methodologies for the estimation and monitoring of flooding extent using coarse spatial resolution optical image data are needed in order to capture spatial details in heterogeneous areas such as Caprivi. The objective of this work was the retrieval of the fractional abundance of water ( γ w ) by applying a new spectral indices-based unmixing algorithm to Medium Resolution Imaging Spectrometer Full Resolution (MERIS FR) data using a minimum number of spectral bands. These images are technically similar to the OLCI image data acquired by the Sentinel-3 satellite, which are to be systematically provided in the near future. The normalized difference wetness index (NDWI) was applied to delineate the water surface and combined with normalized difference vegetation index (NDVI) to account for emergent vegetation within the water bodies. The challenge to map flooded areas by applying spectral unmixing is the estimation of spectral endmembers, i.e., pure spectra of land cover features. In our study, we developed and applied a new unmixing method based on the use of an ensemble of spectral endmembers to capture and take into account spectral variability within each endmember. In our case study, forty realizations of the spectral endmembers gave a stable frequency distribution of γ w . Quality of the flood map derived from the Envisat MERIS (MERIS) data was assessed against high (30 m) spatial resolution Landsat Thematic Mapper (TM) images on two different dates (17 April 2008 and 22 May 2009) during which floods occurred. The findings show that both the spatial and the frequency distribution of the γ w extracted from the MERIS data were in good agreement with the high-resolution TM retrievals. The use of conventional linear unmixing, instead, applied using the entire available spectra for each image, resulted in relatively large differences between TM and MERIS retrievals. Full article
(This article belongs to the Special Issue Remote Sensing for Flood Mapping and Monitoring of Flood Dynamics)
Show Figures

Graphical abstract

8560 KiB  
Article
Correcting InSAR Topographically Correlated Tropospheric Delays Using a Power Law Model Based on ERA-Interim Reanalysis
by Bangyan Zhu, Jiancheng Li and Wei Tang
Remote Sens. 2017, 9(8), 765; https://doi.org/10.3390/rs9080765 - 26 Jul 2017
Cited by 12 | Viewed by 4836
Abstract
Tropospheric delay caused by spatiotemporal variations in pressure, temperature, and humidity in the lower troposphere remains one of the major challenges in Interferometric Synthetic Aperture Radar (InSAR) deformation monitoring applications. Acquiring an acceptable level of accuracy (millimeter-level) for small amplitude surface displacement is [...] Read more.
Tropospheric delay caused by spatiotemporal variations in pressure, temperature, and humidity in the lower troposphere remains one of the major challenges in Interferometric Synthetic Aperture Radar (InSAR) deformation monitoring applications. Acquiring an acceptable level of accuracy (millimeter-level) for small amplitude surface displacement is difficult without proper delay estimation. Tropospheric delay can be estimated from the InSAR phase itself using the spatiotemporal relationship between the phase and topography, but separating the deformation signal from the tropospheric delay is difficult when the deformation is topographically related. Approaches using external data such as ground GPS networks, space-borne spectrometers, and meteorological observations have been exploited with mixed success in the past. These methods are plagued, however, by low spatiotemporal resolution, unfavorable weather conditions or limited coverage. A phase-based power law method recently proposed by Bekaert et al. estimates the tropospheric delay by assuming the phase and topography following a power law relationship. This method can account for the spatial variation of the atmospheric properties and can be applied to interferograms containing topographically correlated deformation. However, the parameter estimates of this method are characterized by two limitations: one is that the power law coefficients are estimated using the sounding data, which are not always available in a study region; the other is that the scaled factor between band-filtered topography and phase is inverted by least squares regression, which is not outlier-resistant. To address these problems, we develop and test a power law model based on ERA-Interim (PLE). Our version estimates the power law coefficients by using ERA-Interim (ERA-I) reanalysis. A robust estimation technique was introduced in the PLE method to estimate the scaled factor, which is insensitive to outliers. We applied the PLE method to ENVISAT ASAR images collected over Southern California, US, and Tianshan, China. We compared tropospheric corrections estimated from using our PLE method with the corrections estimated using the linear method and ERA-I method. Accuracy was evaluated by using delay measurements from the Medium Resolution Imaging Spectrometer (MERIS) onboard the ENVISAT satellite. The PLE method consistently delivered greater standard deviation (STD) reduction after tropospheric corrections than both the linear method and ERA-I method and agreed well with the MERIS measurements. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

2618 KiB  
Article
Assessment of Satellite-Derived Surface Reflectances by NASA’s CAR Airborne Radiometer over Railroad Valley Playa
by Said Kharbouche, Jan-Peter Muller, Charles K. Gatebe, Tracy Scanlon and Andrew C. Banks
Remote Sens. 2017, 9(6), 562; https://doi.org/10.3390/rs9060562 - 5 Jun 2017
Cited by 9 | Viewed by 4822
Abstract
CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May [...] Read more.
CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada, USA (38.504°N, 115.692°W). The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CAR’s land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol effects in the EO derived reflectances. Full article
Show Figures

Graphical abstract

3856 KiB  
Article
An Optical Classification Tool for Global Lake Waters
by Marieke A. Eleveld, Ana B. Ruescas, Annelies Hommersom, Timothy S. Moore, Steef W. M. Peters and Carsten Brockmann
Remote Sens. 2017, 9(5), 420; https://doi.org/10.3390/rs9050420 - 29 Apr 2017
Cited by 61 | Viewed by 9073
Abstract
Shallow and deep lakes receive and recycle organic and inorganic substances from within the confines of these lakes, their watershed and beyond. Hence, a large range in absorption and scattering and extreme differences in optical variability can be found between and within global [...] Read more.
Shallow and deep lakes receive and recycle organic and inorganic substances from within the confines of these lakes, their watershed and beyond. Hence, a large range in absorption and scattering and extreme differences in optical variability can be found between and within global lakes. This poses a challenge for atmospheric correction and bio-optical algorithms applied to optical remote sensing for water quality monitoring applications. To optimize these applications for the wide variety of lake optical conditions, we adapted a spectral classification scheme based on the concept of optical water types. The optical water types were defined through a cluster analysis of in situ hyperspectral remote sensing reflectance spectra collected by partners and advisors of the European Union 7th Framework Programme (FP7) Global Lakes Sentinel Services (GLaSS) project. The method has been integrated in the Envisat-BEAM software and the Sentinel Application Platform (SNAP) and generates maps of water types from image data. Two variations of water type classification are provided: one based on area-normalized spectral reflectance focusing on spectral shape (6CN, six-class normalized) and one that retains magnitude with no modification to the reflectance signal (6C). This resulted in a protocol, or processing scheme, that can also be applied or adapted for Sentinel-3 Ocean and Land Colour Imager (OLCI) datasets. We apply both treatments to MERIS imagery of a variety of European lakes to demonstrate its applicability. The studied target lakes cover a range of biophysical types, from shallow turbid to deep and clear, as well as eutrophic and dark absorbing waters, rich in colored dissolved organic matter (CDOM). In shallow, high-reflecting Dutch and Estonian lakes with high sediment load, 6C performed better, while in deep, low-reflecting clear Italian and Swedish lakes, 6CN performed better. The 6CN classification of in situ data is promising for very dark, high CDOM, absorbing lakes, but we show that our atmospheric correction of the imagery was insufficient to corroborate this. We anticipate that the application of the protocol to other lakes with unknown in-water characterization, but with comparable biophysical properties will suggest similar atmospheric correction (AC) and in-water retrieval algorithms for global lakes. Full article
(This article belongs to the Special Issue Water Optics and Water Colour Remote Sensing)
Show Figures

Graphical abstract

2276 KiB  
Article
Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations
by Oz Kira, Anthony L. Nguy-Robertson, Timothy J. Arkebauer, Raphael Linker and Anatoly A. Gitelson
Remote Sens. 2017, 9(4), 318; https://doi.org/10.3390/rs9040318 - 28 Mar 2017
Cited by 28 | Viewed by 5365
Abstract
Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models [...] Read more.
Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models using Aqua and Terra MODIS, Landsat TM and ETM+, ENVISAT MERIS surface reflectance products, and simulated data of the recently-launched Sentinel 2 MSI and Sentinel 3 OLCI. Special emphasis was placed on testing generic models which require no re-parameterization for these species. Four techniques were investigated: support vector machines (SVM), neural network (NN), multiple linear regression (MLR), and vegetation indices (VI). For each technique two types of models were tested based on (a) reflectance data, taken at close range and resampled to simulate spectral bands of satellite sensors; and (b) surface reflectance satellite products. Both types of models were validated using MODIS, TM/ETM+, and MERIS data. MERIS was used as a prototype of OLCI Sentinel-3 data which allowed for assessment of the anticipated accuracy of OLCI. All models tested provided a robust and consistent selection of spectral bands related to green LAI in crops representing a wide range of biochemical and structural traits. The MERIS observations had the lowest errors (around 11%) compared to the remaining satellites with observational data. Sentinel 2 MSI and OLCI Sentinel 3 estimates, based on simulated data, had errors below 8%. However the accuracy of these models with actual MSI and OLCI surface reflectance products remains to be determined. Full article
Show Figures

Graphical abstract

3403 KiB  
Article
The Land Surface Temperature Synergistic Processor in BEAM: A Prototype towards Sentinel-3
by Ana Belen Ruescas, Olaf Danne, Norman Fomferra and Carsten Brockmann
Data 2016, 1(3), 18; https://doi.org/10.3390/data1030018 - 21 Oct 2016
Cited by 13 | Viewed by 5943
Abstract
Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the European [...] Read more.
Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the European Space Agency (ESA) Sentinel 3 (S3) satellite, accurate LST retrieval methodologies are being developed by exploiting the synergy between the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR). In this paper we explain the implementation in the Basic ENVISAT Toolbox for (A)ATSR and MERIS (BEAM) and the use of one LST algorithm developed in the framework of the Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project. The LST algorithm is based on the split-window technique with an explicit dependence on the surface emissivity. Performance of the methodology is assessed by using MEdium Resolution Imaging Spectrometer/Advanced Along-Track Scanning Radiometer (MERIS/AATSR) pairs, instruments with similar characteristics than OLCI/ SLSTR, respectively. The LST retrievals were properly validated against in situ data measured along one year (2011) in three test sites, and inter-compared to the standard AATSR level-2 product with satisfactory results. The algorithm is implemented in BEAM using as a basis the MERIS/AATSR Synergy Toolbox. Specific details about the processor validation can be found in the validation report of the SEN4LST project. Full article
(This article belongs to the Special Issue Temperature of the Earth)
Show Figures

Figure 1

Back to TopTop