Sign in to use this feature.

Years

Between: -

Search Results (170)

Search Parameters:
Keywords = HHO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 6077 KiB  
Article
MISAO: A Multi-Strategy Improved Snow Ablation Optimizer for Unmanned Aerial Vehicle Path Planning
by Cuiping Zhou, Shaobo Li, Cankun Xie, Panliang Yuan and Xiangfu Long
Mathematics 2024, 12(18), 2870; https://doi.org/10.3390/math12182870 - 14 Sep 2024
Viewed by 585
Abstract
The snow ablation optimizer (SAO) is a meta-heuristic technique used to seek the best solution for sophisticated problems. In response to the defects in the SAO algorithm, which has poor search efficiency and is prone to getting trapped in local optima, this article [...] Read more.
The snow ablation optimizer (SAO) is a meta-heuristic technique used to seek the best solution for sophisticated problems. In response to the defects in the SAO algorithm, which has poor search efficiency and is prone to getting trapped in local optima, this article suggests a multi-strategy improved (MISAO) snow ablation optimizer. It is employed in the unmanned aerial vehicle (UAV) path planning issue. To begin with, the tent chaos and elite reverse learning initialization strategies are merged to extend the diversity of the population; secondly, a greedy selection method is deployed to retain superior alternative solutions for the upcoming iteration; then, the Harris hawk (HHO) strategy is introduced to enhance the exploitation capability, which prevents trapping in partial ideals; finally, the red-tailed hawk (RTH) is adopted to perform the global exploration, which, enhances global optimization capability. To comprehensively evaluate MISAO’s optimization capability, a battery of digital optimization investigations is executed using 23 test functions, and the results of the comparative analysis show that the suggested algorithm has high solving accuracy and convergence velocity. Finally, the effectiveness and feasibility of the optimization path of the MISAO algorithm are demonstrated in the UAV path planning project. Full article
Show Figures

Figure 1

30 pages, 8374 KiB  
Article
Multi-Strategy Improved Harris Hawk Optimization Algorithm and Its Application in Path Planning
by Chaoli Tang, Wenyan Li, Tao Han, Lu Yu and Tao Cui
Biomimetics 2024, 9(9), 552; https://doi.org/10.3390/biomimetics9090552 - 12 Sep 2024
Viewed by 406
Abstract
Path planning is a key problem in the autonomous navigation of mobile robots and a research hotspot in the field of robotics. Harris Hawk Optimization (HHO) faces challenges such as low solution accuracy and a slow convergence speed, and it easy falls into [...] Read more.
Path planning is a key problem in the autonomous navigation of mobile robots and a research hotspot in the field of robotics. Harris Hawk Optimization (HHO) faces challenges such as low solution accuracy and a slow convergence speed, and it easy falls into local optimization in path planning applications. For this reason, this paper proposes a Multi-strategy Improved Harris Hawk Optimization (MIHHO) algorithm. First, the double adaptive weight strategy is used to enhance the search capability of the algorithm to significantly improve the convergence accuracy and speed of path planning; second, the Dimension Learning-based Hunting (DLH) search strategy is introduced to effectively balance exploration and exploitation while maintaining the diversity of the population; and then, Position update strategy based on Dung Beetle Optimizer algorithm is proposed to reduce the algorithm’s possibility of falling into local optimal solutions during path planning. The experimental results of the comparison of the test functions show that the MIHHO algorithm is ranked first in terms of performance, with significant improvements in optimization seeking ability, convergence speed, and stability. Finally, MIHHO is applied to robot path planning, and the test results show that in four environments with different complexities and scales, the average path lengths of MIHHO are improved by 1.99%, 14.45%, 4.52%, and 9.19% compared to HHO, respectively. These results indicate that MIHHO has significant performance advantages in path planning tasks and helps to improve the path planning efficiency and accuracy of mobile robots. Full article
Show Figures

Figure 1

25 pages, 10100 KiB  
Article
Innovative Data-Driven Machine Learning Approaches for Predicting Sandstone True Triaxial Strength
by Rui Zhang, Jian Zhou and Zhenyu Wang
Appl. Sci. 2024, 14(17), 7855; https://doi.org/10.3390/app14177855 - 4 Sep 2024
Viewed by 477
Abstract
Given the critical role of true triaxial strength assessment in underground rock and soil engineering design and construction, this study explores sandstone true triaxial strength using data-driven machine learning approaches. Fourteen distinct sandstone true triaxial test datasets were collected from the existing literature [...] Read more.
Given the critical role of true triaxial strength assessment in underground rock and soil engineering design and construction, this study explores sandstone true triaxial strength using data-driven machine learning approaches. Fourteen distinct sandstone true triaxial test datasets were collected from the existing literature and randomly divided into training (70%) and testing (30%) sets. A Multilayer Perceptron (MLP) model was developed with uniaxial compressive strength (UCS, σc), intermediate principal stress (σ2), and minimum principal stress (σ3) as inputs and maximum principal stress (σ1) at failure as the output. The model was optimized using the Harris hawks optimization (HHO) algorithm to fine-tune hyperparameters. By adjusting the model structure and activation function characteristics, the final model was made continuously differentiable, enhancing its potential for numerical analysis applications. Four HHO-MLP models with different activation functions were trained and validated on the training set. Based on the comparison of prediction accuracy and meridian plane analysis, an HHO-MLP model with high predictive accuracy and meridional behavior consistent with theoretical trends was selected. Compared to five traditional strength criteria (Drucker–Prager, Hoek–Brown, Mogi–Coulomb, modified Lade, and modified Weibols–Cook), the optimized HHO-MLP model demonstrated superior predictive performance on both training and testing datasets. It successfully captured the complete strength variation in principal stress space, showing smooth and continuous failure envelopes on the meridian and deviatoric planes. These results underscore the model’s ability to generalize across different stress conditions, highlighting its potential as a powerful tool for predicting the true triaxial strength of sandstone in geotechnical engineering applications. Full article
Show Figures

Figure 1

33 pages, 2134 KiB  
Article
A Methodical Framework Utilizing Transforms and Biomimetic Intelligence-Based Optimization with Machine Learning for Speech Emotion Recognition
by Sunil Kumar Prabhakar and Dong-Ok Won
Biomimetics 2024, 9(9), 513; https://doi.org/10.3390/biomimetics9090513 - 26 Aug 2024
Viewed by 409
Abstract
Speech emotion recognition (SER) tasks are conducted to extract emotional features from speech signals. The characteristic parameters are analyzed, and the speech emotional states are judged. At present, SER is an important aspect of artificial psychology and artificial intelligence, as it is widely [...] Read more.
Speech emotion recognition (SER) tasks are conducted to extract emotional features from speech signals. The characteristic parameters are analyzed, and the speech emotional states are judged. At present, SER is an important aspect of artificial psychology and artificial intelligence, as it is widely implemented in many applications in the human–computer interface, medical, and entertainment fields. In this work, six transforms, namely, the synchrosqueezing transform, fractional Stockwell transform (FST), K-sine transform-dependent integrated system (KSTDIS), flexible analytic wavelet transform (FAWT), chirplet transform, and superlet transform, are initially applied to speech emotion signals. Once the transforms are applied and the features are extracted, the essential features are selected using three techniques: the Overlapping Information Feature Selection (OIFS) technique followed by two biomimetic intelligence-based optimization techniques, namely, Harris Hawks Optimization (HHO) and the Chameleon Swarm Algorithm (CSA). The selected features are then classified with the help of ten basic machine learning classifiers, with special emphasis given to the extreme learning machine (ELM) and twin extreme learning machine (TELM) classifiers. An experiment is conducted on four publicly available datasets, namely, EMOVO, RAVDESS, SAVEE, and Berlin Emo-DB. The best results are obtained as follows: the Chirplet + CSA + TELM combination obtains a classification accuracy of 80.63% on the EMOVO dataset, the FAWT + HHO + TELM combination obtains a classification accuracy of 85.76% on the RAVDESS dataset, the Chirplet + OIFS + TELM combination obtains a classification accuracy of 83.94% on the SAVEE dataset, and, finally, the KSTDIS + CSA + TELM combination obtains a classification accuracy of 89.77% on the Berlin Emo-DB dataset. Full article
Show Figures

Figure 1

20 pages, 4477 KiB  
Article
Multi-Scenario-Based Strategic Deployment of Electric Vehicle Ultra-Fast Charging Stations in a Radial Distribution Network
by Sharmistha Nandi, Sriparna Roy Ghatak, Parimal Acharjee and Fernando Lopes
Energies 2024, 17(17), 4204; https://doi.org/10.3390/en17174204 - 23 Aug 2024
Viewed by 425
Abstract
In the present work, a strategic multi-scenario EV ultra-fast charging station (CS) planning framework is designed to provide advantages to charging station owners, Distribution Network Operators, and EV owners. Locations of CSs are identified using zonal division and the Voltage Stability Index strategy. [...] Read more.
In the present work, a strategic multi-scenario EV ultra-fast charging station (CS) planning framework is designed to provide advantages to charging station owners, Distribution Network Operators, and EV owners. Locations of CSs are identified using zonal division and the Voltage Stability Index strategy. The number of chargers is determined using the Harris Hawk Optimization (HHO) technique while minimizing the installation, operational costs of CS, and energy loss costs considering all the power system security constraints. To ensure a realistic planning model, uncertainties in EV charging behavior and electricity prices are managed through the 2m-Point Estimate Method. This method produces multiple scenarios of uncertain parameters, which effectively represent the actual dataset, thereby facilitating comprehensive multi-scenario planning. This study incorporates annual EV and system load growth in a long-term planning model of ten years, ensuring the distribution network meets future demand for sustainable transportation infrastructure. The proposed research work is tested on a 33-bus distribution network and a 51-bus real Indian distribution network. To evaluate the financial and environmental benefits of the planning, a cost-benefit analysis in terms of the Return-on-Investment index and a carbon emission analysis are performed, respectively. Furthermore, to prove the efficacy of the HHO technique, the results are compared with several existing algorithms. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

28 pages, 4709 KiB  
Article
Prediction of Bonding Strength of Heat-Treated Wood Based on an Improved Harris Hawk Algorithm Optimized BP Neural Network Model (IHHO-BP)
by Yan He, Wei Wang, Ying Cao, Qinghai Wang and Meng Li
Forests 2024, 15(8), 1365; https://doi.org/10.3390/f15081365 - 5 Aug 2024
Viewed by 624
Abstract
In this study, we proposed an improved Harris Hawks Optimization (IHHO) algorithm based on the Sobol sequence, Whale Optimization Algorithm (WOA), and t-distribution perturbation. The improved IHHO algorithm was then used to optimize the BP neural network, resulting in the IHHO-BP model. This [...] Read more.
In this study, we proposed an improved Harris Hawks Optimization (IHHO) algorithm based on the Sobol sequence, Whale Optimization Algorithm (WOA), and t-distribution perturbation. The improved IHHO algorithm was then used to optimize the BP neural network, resulting in the IHHO-BP model. This model was employed to predict the bonding strength of heat-treated wood under varying conditions of temperature, time, feed rate, cutting speed, and grit size. To validate the effectiveness and accuracy of the proposed model, it was compared with the original BP neural network model, WOA-BP, and HHO-BP benchmark models. The results showed that the IHHO-BP model reduced the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) by at least 51.16%, 40.38%, and 51.93%, respectively, while increasing the coefficient of determination (R2) by at least 10.85%. This indicates significant model optimization, enhanced generalization capability, and higher prediction accuracy, better meeting practical engineering needs. Predicting the bonding strength of heat-treated wood using this model can reduce production costs and consumption, thereby significantly improving production efficiency. Full article
(This article belongs to the Special Issue Wood Properties: Measurement, Modeling, and Future Needs)
Show Figures

Figure 1

21 pages, 4988 KiB  
Article
An Adaptive Noise Reduction Method for High Temperature and Low Voltage Electromagnetic Detection Signals Based on SVMD Combined with ICEEMDAN
by Zhizeng Ge, Jinjie Zhou, Xingquan Shen, Xingjun Zhang and Caixia Qi
Micromachines 2024, 15(8), 977; https://doi.org/10.3390/mi15080977 - 30 Jul 2024
Viewed by 535
Abstract
In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in [...] Read more.
In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in noise. For the extraction of the EMAT signal, an adaptive noise reduction method is proposed. Firstly, the minimum envelope entropy is taken as the fitness function for the Harris Hawks Optimizer (HHO), and the optimal successive variational mode decomposition (SVMD) balance parameter is searched by HHO adaptive iteration to decompose LEV EMAT signals at high temperatures. Then the filter is carried out according to the excitation center frequency and correlation coefficient threshold function. Then, improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used to decompose the filtered signal and combine the kurtosis factor to select the appropriate intrinsic mode functions. Finally, the signal is extracted by the Hilbert transform. In order to verify the effectiveness of the method, it is applied to the low-voltage detection of 40Cr from 25 °C to 700 °C. The results show that the method not only suppresses the background noise and clutter noise but also significantly improves the SNR of EMAT signals, and most importantly, it is able to detect and extract the 2 mm small defects from the echo signals. It has great application prospects and value in the LEV detection of high-temperature equipment. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

35 pages, 9273 KiB  
Article
Crown Growth Optimizer: An Efficient Bionic Meta-Heuristic Optimizer and Engineering Applications
by Chenyu Liu, Dongliang Zhang and Wankai Li
Mathematics 2024, 12(15), 2343; https://doi.org/10.3390/math12152343 - 26 Jul 2024
Viewed by 619
Abstract
This paper proposes a new meta-heuristic optimization algorithm, the crown growth optimizer (CGO), inspired by the tree crown growth process. CGO innovatively combines global search and local optimization strategies by simulating the growing, sprouting, and pruning mechanisms in tree crown growth. The pruning [...] Read more.
This paper proposes a new meta-heuristic optimization algorithm, the crown growth optimizer (CGO), inspired by the tree crown growth process. CGO innovatively combines global search and local optimization strategies by simulating the growing, sprouting, and pruning mechanisms in tree crown growth. The pruning mechanism balances the exploration and exploitation of the two stages of growing and sprouting, inspired by Ludvig’s law and the Fibonacci series. We performed a comprehensive performance evaluation of CGO on the standard testbed CEC2017 and the real-world problem set CEC2020-RW and compared it to a variety of mainstream algorithms such as SMA, SKA, DBO, GWO, MVO, HHO, WOA, EWOA, and AVOA. The best result of CGO after Friedman testing was 1.6333/10, and the significance level of all comparison results under Wilcoxon testing was lower than 0.05. The experimental results show that the mean and standard deviation of repeated CGO experiments are better than those of the comparison algorithm. In addition, CGO also achieved excellent results in specific applications of robot path planning and photovoltaic parameter extraction, further verifying its effectiveness and broad application potential in practical engineering problems. Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

14 pages, 5099 KiB  
Article
Synthesis of Non-Uniform Spiral Antenna with Low Peak Sidelobe Level Using Enhanced Harris Hawks Optimization Algorithm
by Tianlong Li, Zhijun Liu, Chen Zhang, Fei Cheng, Yali Yao, Xiumei Li, Haidan He and Yang Yang
Electronics 2024, 13(15), 2959; https://doi.org/10.3390/electronics13152959 - 26 Jul 2024
Viewed by 480
Abstract
In this paper, to obtain antenna arrays with grating lobes suppression capability in wideband and achieve a low peak sidelobe level (PSLL), two non-uniform spiral antenna arrays and an enhanced Harris Hawks optimization (EHHO) algorithm are proposed. By controlling the parameters of the [...] Read more.
In this paper, to obtain antenna arrays with grating lobes suppression capability in wideband and achieve a low peak sidelobe level (PSLL), two non-uniform spiral antenna arrays and an enhanced Harris Hawks optimization (EHHO) algorithm are proposed. By controlling the parameters of the spiral line and sampling equidistant on the spiral line, the sampling points that make up the non-uniform array can be arranged in the plane uniformly and non-uniformly. The simulation results indicate that, because of this special arrangement, the non-uniform arrays obtain the capability of grating lobe suppression in wideband or wide spacing arrangement when compared to the classic uniform array. In addition, to obtain lower PSLL, the Harris Hawks optimization (HHO) algorithm is used for array synthesis because of its diversity of search methods. By employing the step-type taper distribution strategy and the migration strategy, the algorithm’s search ability is enhanced, and the simulation results indicate the EHHO algorithm obtains a better solution in terms of the PSLL than other algorithms. A simple patch antenna is designed to build the non-uniform spiral arrays synthesized by the EHHO algorithm. The calculation and simulation results validate the superior performance of the proposed algorithm. Full article
(This article belongs to the Special Issue AI-Powered Antenna and Radio Frequency Technologies)
Show Figures

Figure 1

19 pages, 1301 KiB  
Article
State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm
by Guangyi Yang, Xianglin Wang, Ran Li and Xiaoyu Zhang
Sustainability 2024, 16(15), 6316; https://doi.org/10.3390/su16156316 - 24 Jul 2024
Viewed by 681
Abstract
Accurately estimating the state of health (SOH) of lithium-ion batteries ensures the proper operation of the battery management system (BMS) and promotes the second-life utilization of retired batteries. The challenges of existing lithium-ion battery SOH prediction techniques primarily stem from the different battery [...] Read more.
Accurately estimating the state of health (SOH) of lithium-ion batteries ensures the proper operation of the battery management system (BMS) and promotes the second-life utilization of retired batteries. The challenges of existing lithium-ion battery SOH prediction techniques primarily stem from the different battery aging mechanisms and limited model training data. We propose a novel transferable SOH prediction method based on a neural network optimized by Harris hawk optimization (HHO) to address this challenge. The battery charging data analysis involves selecting health features highly correlated with SOH. The Spearman correlation coefficient assesses the correlation between features and SOH. We first combined the long short-term memory (LSTM) and fully connected (FC) layers to form the base model (LSTM-FC) and then retrained the model using a fine-tuning strategy that freezes the LSTM hidden layers. Additionally, the HHO algorithm optimizes the number of epochs and units in the FC and LSTM hidden layers. The proposed method demonstrates estimation effectiveness using multiple aging data from the NASA, CALCE, and XJTU databases. The experimental results demonstrate that the proposed method can accurately estimate SOH with high precision using low amounts of sample data. The RMSE is less than 0.4%, and the MAE is less than 0.3%. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 29419 KiB  
Article
Optimization Design of Laser Arrays Based on Absorption Spectroscopy Imaging for Detecting Temperature and Concentration Fields
by Limei Fan, Fangxu Dong, Jian Duan, Yan Sun, Fei Wang, Junyan Liu, Zhenhe Tang and Liangwen Sun
Materials 2024, 17(14), 3569; https://doi.org/10.3390/ma17143569 - 18 Jul 2024
Viewed by 618
Abstract
Detecting temperature and concentration fields within engine combustors holds paramount significance in enhancing combustion efficiency and ensuring operational safety. Within the realm of engine combustors, the laminar absorption spectroscopy technique has garnered considerable attention. Particularly crucial is the optimization of the optical path [...] Read more.
Detecting temperature and concentration fields within engine combustors holds paramount significance in enhancing combustion efficiency and ensuring operational safety. Within the realm of engine combustors, the laminar absorption spectroscopy technique has garnered considerable attention. Particularly crucial is the optimization of the optical path configuration to enhance the efficacy of reconstruction. This study presents a flame parameter field reconstruction model founded on laminar absorption spectroscopy. Furthermore, an optimization approach for refining the optical path configuration is delineated. In addressing non-axisymmetric flames, the simulated annealing algorithm (SA) and Harris’s Hawk algorithm (HHO) are employed to optimize the optical path layout across varying beam quantities. The findings underscore a marked reduction in imaging errors with the optimized optical path configuration compared to conventional setups, thereby elevating detection precision. Notably, the HHO algorithm demonstrates superior performance over the SA algorithm in terms of optimization outcomes and computational efficiency. Compared with the parallel optical path, the optimized optical path of the HHO algorithm reduces the temperature field error by 25.5% and the concentration field error by 26.5%. Full article
Show Figures

Figure 1

34 pages, 11952 KiB  
Article
Optimizing the Steering of Driverless Personal Mobility Pods with a Novel Differential Harris Hawks Optimization Algorithm (DHHO) and Encoder Modeling
by Mohamed Reda, Ahmed Onsy, Amira Y. Haikal and Ali Ghanbari
Sensors 2024, 24(14), 4650; https://doi.org/10.3390/s24144650 - 17 Jul 2024
Viewed by 854
Abstract
This paper aims to improve the steering performance of the Ackermann personal mobility scooter based on a new meta-heuristic optimization algorithm named Differential Harris Hawks Optimization (DHHO) and the modeling of the steering encoder. The steering response in the Ackermann mechanism is crucial [...] Read more.
This paper aims to improve the steering performance of the Ackermann personal mobility scooter based on a new meta-heuristic optimization algorithm named Differential Harris Hawks Optimization (DHHO) and the modeling of the steering encoder. The steering response in the Ackermann mechanism is crucial for automated driving systems (ADS), especially in localization and path-planning phases. Various methods presented in the literature are used to control the steering, and meta-heuristic optimization algorithms have achieved prominent results. Harris Hawks optimization (HHO) algorithm is a recent algorithm that outperforms state-of-the-art algorithms in various optimization applications. However, it has yet to be applied to the steering control application. The research in this paper was conducted in three stages. First, practical experiments were performed on the steering encoder sensor that measures the steering angle of the Landlex mobility scooter, and supervised learning was applied to model the results obtained for the steering control. Second, the DHHO algorithm is proposed by introducing mutation between hawks in the exploration phase instead of the Hawks perch technique, improving population diversity and reducing premature convergence. The simulation results on CEC2021 benchmark functions showed that the DHHO algorithm outperforms the HHO, PSO, BAS, and CMAES algorithms. The mean error of the DHHO is improved with a confidence level of 99.8047% and 91.6016% in the 10-dimension and 20-dimension problems, respectively, compared with the original HHO. Third, DHHO is implemented for interactive real-time PID tuning to control the steering of the Ackermann scooter. The practical transient response results showed that the settling time is improved by 89.31% compared to the original response with no overshoot and steady-state error, proving the superior performance of the DHHO algorithm compared to the traditional control methods. Full article
Show Figures

Figure 1

24 pages, 6330 KiB  
Article
Pelican Optimization Algorithm-Based Proportional–Integral–Derivative Controller for Superior Frequency Regulation in Interconnected Multi-Area Power Generating System
by Abidur Rahman Sagor, Md Abu Talha, Shameem Ahmad, Tofael Ahmed, Mohammad Rafiqul Alam, Md. Rifat Hazari and G. M. Shafiullah
Energies 2024, 17(13), 3308; https://doi.org/10.3390/en17133308 - 5 Jul 2024
Viewed by 1034
Abstract
The primary goal of enhancing automatic generation control (AGC) in interconnected multi-area power systems is to ensure high-quality power generation and reliable distribution during emergencies. These systems still struggle with consistent stability and effective response under dynamic load conditions despite technological advancements. This [...] Read more.
The primary goal of enhancing automatic generation control (AGC) in interconnected multi-area power systems is to ensure high-quality power generation and reliable distribution during emergencies. These systems still struggle with consistent stability and effective response under dynamic load conditions despite technological advancements. This research introduces a secondary controller designed for load frequency control (LFC) to maintain stability during unexpected load changes by optimally tuning the parameters of a Proportional–Integral–Derivative (PID) controller using pelican optimization algorithm (POA). An interconnected power system for ith multi-area is modeled in this study; meanwhile, for determining the optimal PID gain settings, a four-area interconnected power system is developed consisting of thermal, reheat thermal, hydroelectric, and gas turbine units based on the ith area model. A sensitivity analysis was conducted to validate the proposed controller’s robustness under different load conditions (1%, 2%, and 10% step load perturbation) and adjusting nominal parameters (R, Tp, and Tij) within a range of ±25% and ±50%. The performance response indicates that the POA-optimized PID controller achieves superior performance in frequency stabilization and oscillation reduction, with the lowest integral time absolute error (ITAE) value showing improvements of 7.01%, 7.31%, 45.97%, and 50.57% over gray wolf optimization (GWO), Moth Flame Optimization Algorithm (MFOA), Particle Swarm Optimization (PSO), and Harris Hawks Optimization (HHO), respectively. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

27 pages, 3962 KiB  
Article
Cost-Effective Planning of Hybrid Energy Systems Using Improved Horse Herd Optimizer and Cloud Theory under Uncertainty
by Ali S. Alghamdi
Electronics 2024, 13(13), 2471; https://doi.org/10.3390/electronics13132471 - 24 Jun 2024
Viewed by 650
Abstract
In this paper, an intelligent stochastic model is recommended for the optimization of a hybrid system that encompasses wind energy sources, battery storage, combined heat and power generation, and thermal energy storage (Wind/Battery/CHP/TES), with the inclusion of electric and thermal storages through the [...] Read more.
In this paper, an intelligent stochastic model is recommended for the optimization of a hybrid system that encompasses wind energy sources, battery storage, combined heat and power generation, and thermal energy storage (Wind/Battery/CHP/TES), with the inclusion of electric and thermal storages through the cloud theory model. The framework aims to minimize the costs of planning, such as construction, maintenance, operation, and environmental pollution costs, to determine the best configuration of the resources and storage units to ensure efficient electricity and heat supply simultaneously. A novel meta-heuristic optimization algorithm named improved horse herd optimizer (IHHO) is applied to find the decision variables. Rosenbrock’s direct rotational technique is applied to the conventional horse herd optimizer (HHO) to improve the algorithm’s performance against premature convergence in the optimization due to the complexity of the problem, and its capability is evaluated with particle swarm optimization (PSO) and manta ray foraging optimization (MRFO) methods. Also, the cloud theory-based stochastic model is recommended for solving problems with uncertainties of system generation and demand. The obtained results are evaluated in three simulation scenarios including (1) Wind/Battery, (2) Wind/Battery/CHP, and (3) Wind/Battery/CHP/TES systems to implement the proposed methodology and evaluate its effectiveness. The results show that scenario 3 is the best configuration to meet electrical and thermal loads, with the lowest planning cost (12.98% less than scenario 1). Also, the superiority of the IHHO is proven with more accurate answers and higher convergence rates in contrast to the conventional HHO, PSO, and MRFO. Moreover, the results show that when considering the cloud theory-based stochastic model, the costs of annual planning are increased for scenarios 1 to 3 by 4.00%, 4.20%, and 3.96%, respectively, compared to the deterministic model. Full article
Show Figures

Figure 1

23 pages, 2335 KiB  
Article
Enhanced Target Localization in the Internet of Underwater Things through Quantum-Behaved Metaheuristic Optimization with Multi-Strategy Integration
by Xiaojun Mei, Fahui Miao, Weijun Wang, Huafeng Wu, Bing Han, Zhongdai Wu, Xinqiang Chen, Jiangfeng Xian, Yuanyuan Zhang and Yining Zang
J. Mar. Sci. Eng. 2024, 12(6), 1024; https://doi.org/10.3390/jmse12061024 - 19 Jun 2024
Cited by 1 | Viewed by 756
Abstract
Underwater localization is considered a critical technique in the Internet of Underwater Things (IoUTs). However, acquiring accurate location information is challenging due to the heterogeneous underwater environment and the hostile propagation of acoustic signals, especially when using received signal strength (RSS)-based techniques. Additionally, [...] Read more.
Underwater localization is considered a critical technique in the Internet of Underwater Things (IoUTs). However, acquiring accurate location information is challenging due to the heterogeneous underwater environment and the hostile propagation of acoustic signals, especially when using received signal strength (RSS)-based techniques. Additionally, most current solutions rely on strict mathematical expressions, which limits their effectiveness in certain scenarios. To address these challenges, this study develops a quantum-behaved meta-heuristic algorithm, called quantum enhanced Harris hawks optimization (QEHHO), to solve the localization problem without requiring strict mathematical assumptions. The algorithm builds on the original Harris hawks optimization (HHO) by integrating four strategies into various phases to avoid local minima. The initiation phase incorporates good point set theory and quantum computing to enhance the population quality, while a random nonlinear technique is introduced in the transition phase to expand the exploration region in the early stages. A correction mechanism and exploration enhancement combining the slime mold algorithm (SMA) and quasi-oppositional learning (QOL) are further developed to find an optimal solution. Furthermore, the RSS-based Cramér–Raolower bound (CRLB) is derived to evaluate the effectiveness of QEHHO. Simulation results demonstrate the superior performance of QEHHO under various conditions compared to other state-of-the-art closed-form-expression- and meta-heuristic-based solutions. Full article
Show Figures

Figure 1

Back to TopTop