Sign in to use this feature.

Years

Between: -

Search Results (14,009)

Search Parameters:
Keywords = LAI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7244 KiB  
Article
Dynamic Simulation and Performance Analysis of Alkaline Water Electrolyzers for Renewable Energy-Powered Hydrogen Production
by Jian Yang, Jing Zhang, Min Liu, Jie Sun and Zixuan Shangguan
Energies 2024, 17(19), 4915; https://doi.org/10.3390/en17194915 (registering DOI) - 30 Sep 2024
Abstract
This paper presents a comprehensive study on the dynamic simulation modeling of alkaline water electrolyzers. Detailed experimental testing and characteristic analysis reveal that alkaline water electrolyzers have long startup times, rapid dynamic responses, and poor dynamic stability. These characteristics are critical for the [...] Read more.
This paper presents a comprehensive study on the dynamic simulation modeling of alkaline water electrolyzers. Detailed experimental testing and characteristic analysis reveal that alkaline water electrolyzers have long startup times, rapid dynamic responses, and poor dynamic stability. These characteristics are critical for the development of accurate models and effective strategies. A dynamic simulation model was established in MATLAB R2022b and Simulink, enabling standalone simulation operation and module encapsulation. This model facilitates the construction of hydrogen production clusters and serves as a foundational tool for system strategy research. Simulations of rated current loading and unloading for four electrolyzers over 6 h showed significant differences in startup and operation. Key parameters such as cell voltage, maximum loadable power, hydrogen production efficiency, and energy consumption were analyzed. Temperature simulations indicated significant differences in thermal equilibrium points and cooling modes among the electrolyzers, as determined by structural design and cooling system efficiency. These findings highlight the need for efficiency improvements in high-current density electrolyzers. Overall, the model effectively represents commercial electrolyzer characteristics and offers a reliable tool for future research on control strategies for adapting hydrogen production systems to renewable energy power fluctuations, laying a solid foundation for the optimization of electrolyzer design and operation strategies. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 942 KiB  
Article
Myoblast-Derived Galectin 3 Impairs the Early Phases of Osteogenesis Affecting Notch and Akt Activity
by Emanuela Amore, Vittoria Cenni, Manuela Piazzi, Michele Signore, Giulia Orlandi, Simona Neri, Stefano Biressi, Rosario Barone, Valentina Di Felice, Matilde Y. Follo, Jessika Bertacchini and Carla Palumbo
Biomolecules 2024, 14(10), 1243; https://doi.org/10.3390/biom14101243 (registering DOI) - 30 Sep 2024
Abstract
Galectin-3 (Gal-3) is a pleiotropic lectin produced by most cell types, which regulates multiple cellular processes in various tissues. In bone, depending on its cellular localization, Gal-3 has a dual and opposite role. If, on the one hand, intracellular Gal-3 promotes bone formation, [...] Read more.
Galectin-3 (Gal-3) is a pleiotropic lectin produced by most cell types, which regulates multiple cellular processes in various tissues. In bone, depending on its cellular localization, Gal-3 has a dual and opposite role. If, on the one hand, intracellular Gal-3 promotes bone formation, on the other, its circulating form affects bone remodeling, antagonizing osteoblast differentiation and increasing osteoclast activity. From an analysis of the secretome of cultured differentiating myoblasts, we interestingly found the presence of Gal-3. After that, we confirmed that Gal-3 was expressed and released in the extracellular environment from myoblast cells during their differentiation into myotubes, as well as after mechanical strain. An in vivo analysis revealed that Gal-3 was triggered by trained exercise and was specifically produced by fast muscle fibers. Speculating a role for this peptide in the muscle-to-bone cross talk, a direct co-culture in vitro system, simultaneously combining media that were obtained from differentiated myoblasts and osteoblast cells, confirmed that Gal-3 is a mediator of osteoblast differentiation. Molecular and proteomic analyses revealed that the secreted Gal-3 modulated the biochemical processes occurring in the early phases of bone formation, in particular impairing the activity of the STAT3 and PDK1/Akt signaling pathways and, at the same time, triggering that one of Notch. Circulating Gal-3 also affected the expression of the most common factors involved in osteogenetic processes, including BMP-2, -6, and -7. Intriguingly, Gal-3 was able to interfere with the ability of differentiating osteoblasts to interact with the components of the extracellular bone matrix, a crucial condition required for a proper osteoblast differentiation. All in all, our evidence lays the foundation for further studies to present this lectin as a novel myokine involved in muscle-to-bone crosstalk. Full article
(This article belongs to the Section Molecular Biology)
39 pages, 6448 KiB  
Review
Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients
by Hisahide Nishio, Emma Tabe Eko Niba, Toshio Saito, Kentaro Okamoto, Tomoko Lee, Yasuhiro Takeshima, Hiroyuki Awano and Poh-San Lai
Genes 2024, 15(10), 1294; https://doi.org/10.3390/genes15101294 - 30 Sep 2024
Abstract
Background: Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term “SMA” usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on [...] Read more.
Background: Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term “SMA” usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. Methods: We conducted a non-systematic critical review to identify the characteristics of each SMA disease. Results: Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. Conclusion: Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future. Full article
(This article belongs to the Special Issue Advances in Genetics of Motor Neuron Diseases)
Show Figures

Figure 1

17 pages, 3596 KiB  
Article
Exploring the Effect of Ionic Liquid Conformation on the Selective CO2 Capture of Supported Ionic Liquid-Phase Adsorbents Based on ZIFs
by Charitomeni M. Veziri, George V. Theodorakopoulos, Konstantinos G. Beltsios and George Em. Romanos
Materials 2024, 17(19), 4829; https://doi.org/10.3390/ma17194829 - 30 Sep 2024
Abstract
The CO2 adsorption capacity and the CO2/N2 selectivity of a series of Supported Ionic Liquid-Phase adsorbents (SILPs), including the novel inversely structured SILP “Inverse SILPs”, are thoroughly investigated. ZIF-8, ZIF-69 and ZIF-70 were involved as the solid matrix, while [...] Read more.
The CO2 adsorption capacity and the CO2/N2 selectivity of a series of Supported Ionic Liquid-Phase adsorbents (SILPs), including the novel inversely structured SILP “Inverse SILPs”, are thoroughly investigated. ZIF-8, ZIF-69 and ZIF-70 were involved as the solid matrix, while ILs, having tricyanomethanide (TCM) as an anion and alkyl-methylimidazolium of different alkyl chain lengths (C2, C6, C8) as a cation, were used as the liquid constituents of the SILPs. The ultimate target of the work was to ratify a few recently reported cases of enhanced CO2 absorptivity in ILs due to their incorporation in ZIFs and to corroborate phenomena of CO2/N2 selectivity improvements in ZIFs, due to the presence of ILs. This ambiguity originates from the vague assumption that the pores of the ZIF are filled with the IL phase, and the free pore volume of a SILP is almost zero. Yet, through the integration of theoretical predictions with N2 porosimetry analysis of an actual sample, it is suggested that a thin layer of IL covered the exterior surface of a ZIF crystal. This layer could act as an impermeable barrier for N2, inhibiting the gas molecules from reaching the empty cavities laying underneath the liquid film during porosimetry analysis. This consideration is based on the fact that the solubility of N2 in the IL is very low, and the diffusivity at 77 K is negligible. In this context, the observed result reflects an averaged adsorptivity of both the IL phase and the empty pores of the ZIF. Therefore, it is incorrect to attribute the adsorption capacity of the SILP solely to the mass of the IL that ‘hypothetically’ nests inside the pore cavities. In fact, the CO2 adsorption capacity of SILPs is always less than the average adsorptivity of an ideal ZIF/IL mixture, where the two phases do not interact. This reduction occurs because some ZIF pores may become inaccessible, particularly when the IL forms a layer on the pore walls, leaving only a small empty core accessible to CO2 molecules. Additionally, the IL layer masks the active sites on the ZIF’s pore walls. It should also be noted that the CO2/N2 selectivity increases only when the ZIF’s pores are completely filled with the IL phase. This is because ILs have a higher CO2/N2 selectivity compared to the bare ZIF. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications (2nd Edition))
20 pages, 3019 KiB  
Article
A Data-Driven Predictive Control Method for Modeling Doubly-Fed Variable-Speed Pumped Storage Units
by Peiyu Zhao, Haipeng Nan, Qingsen Cai, Chunyang Gao and Luochang Wu
Energies 2024, 17(19), 4912; https://doi.org/10.3390/en17194912 - 30 Sep 2024
Abstract
In this study, a data-driven model predictive control (MPC) method is proposed for the optimal control of a doubly-fed variable-speed pumped storage unit. This method combines modern control theory with the dynamic characteristics of the pumped storage unit to establish an accurate dynamic [...] Read more.
In this study, a data-driven model predictive control (MPC) method is proposed for the optimal control of a doubly-fed variable-speed pumped storage unit. This method combines modern control theory with the dynamic characteristics of the pumped storage unit to establish an accurate dynamic model based on actual operating data. In each control cycle, the MPC uses the system model to predict future system behavior and determines the optimal control input sequence by solving the constrained optimization problem, thereby effectively dealing with the nonlinearity, time-varying characteristics, and multivariable coupling problems of the system. When compared with a traditional PID control, this method significantly improves control accuracy, response speed, and system stability. The simulation results show that the proposed MPC method exhibits better steady-state error, overshoot, adjustment time, and control energy under various operating conditions, demonstrating its advantages in complex multivariable systems. This study provides an innovative solution for the efficient control of doubly-fed variable-speed pumped storage units and lays a solid foundation for the efficient utilization of new energy sources. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
16 pages, 5606 KiB  
Article
Synergistic Effects of Liquid Rubber and Thermoplastic Particles for Toughening Epoxy Resin
by Zhaodi Wang, Yuanchang Lai, Peiwen Xu, Junchi Ma, Yahong Xu and Xin Yang
Polymers 2024, 16(19), 2775; https://doi.org/10.3390/polym16192775 - 30 Sep 2024
Abstract
This study aims to investigate the toughening effects of rubber and thermoplastic particles on epoxy resin (EP), and to understand the mechanism underlying their synergistic effect. For this purpose, three EP systems were prepared using diglycidyl ether of bisphenol-A (DGEBA) epoxy resin (E-54) [...] Read more.
This study aims to investigate the toughening effects of rubber and thermoplastic particles on epoxy resin (EP), and to understand the mechanism underlying their synergistic effect. For this purpose, three EP systems were prepared using diglycidyl ether of bisphenol-A (DGEBA) epoxy resin (E-54) and 4,4-Diamino diphenyl methane (Ag-80) as matrix resin, 4,4-diaminodiphenyl sulfone (DDS) as a curing agent, and phenolphthalein poly (aryl ether ketone) particles (PEK-C) and carboxyl-terminated butyl liquid rubber (CTBN) as toughening agents. These systems are classified as an EP/PEK-C toughening system, EP/CTBN toughening system, and EP/PEK-C/CTBN synergistic toughening system. The curing behavior, thermal properties, mechanical properties, and phase structure of the synergistic-toughened EP systems were comprehensively investigated. The results showed that PEK-C did not react with EP, while CTBN reacted with EP to form a flexible block polymer. The impact toughness of EP toughened by PEK-C/CTBN was improved obviously without significantly increasing viscosity or decreasing thermal stability, flexural strength, and modulus, and the synergistic toughening effect was significantly higher than that of the single toughening system. The notable improvement in toughness is believed to be due to the synergistic energy dissipation effect of PEK-C/CTBN. Full article
(This article belongs to the Special Issue Damage and Failure Analysis of Polymer-Based Composites)
Show Figures

Figure 1

21 pages, 5897 KiB  
Article
High-Throughput Sequencing Methods for the Detection of Two Strawberry Viruses in Post-Entry Quarantine
by Luciano Nunes-Leite, Lia W. Liefting, David W. Waite, Subuhi Khan and Jeremy R. Thompson
Viruses 2024, 16(10), 1550; https://doi.org/10.3390/v16101550 - 30 Sep 2024
Abstract
High-throughput sequencing (HTS) technologies may be a useful tool for testing imported plant germplasm for multiple pathogens present in a sample, offering strain-generic detection not offered by most PCR-based assays. Metatranscriptomics (RNAseq) and tiled amplicon PCR (TA-PCR) were tested as HTS-based techniques to [...] Read more.
High-throughput sequencing (HTS) technologies may be a useful tool for testing imported plant germplasm for multiple pathogens present in a sample, offering strain-generic detection not offered by most PCR-based assays. Metatranscriptomics (RNAseq) and tiled amplicon PCR (TA-PCR) were tested as HTS-based techniques to detect viruses present in low titres. Strawberry mottle virus (SMoV), an RNA virus, and strawberry vein banding virus (SVBV), a DNA virus, were selected for comparison of RNAseq and TA-PCR with quantitative PCR assays. RNAseq of plant ribosomal RNA-depleted samples of low viral titre was used to obtain datasets from 3 M to 120 M paired-end (PE) reads. RNAseq demonstrated PCR-like sensitivity, able to detect as few as 10 viral copies/µL when 60 million (M) PE reads were generated. The custom TA-PCR primer panels designed for each virus were successfully used to recover most of the reference genomes for each virus. Single- and multiple-target TA-PCR allowed the detection of viruses in samples with around 10 viral copies/µL with a minimum continuous sequence length recovery of 500 bp. The limit of detection of the HTS-based protocols described here is comparable to that of quantitative PCR assays. This work lays the groundwork for an increased flexibility in HTS detection of plant viruses. Full article
(This article belongs to the Special Issue Advances in Plant Virus/Viroid Detection and Identification Methods)
Show Figures

Figure 1

9 pages, 511 KiB  
Article
Visual and Refractive Outcomes after Phacoemulsification Cataract Surgery in Nanophthalmic Eyes
by Tracy H. T. Lai, Jeffrey Y. T. Tse, Jacqueline W. T. Chan and Kenneth K. W. Li
J. Clin. Med. 2024, 13(19), 5852; https://doi.org/10.3390/jcm13195852 - 30 Sep 2024
Abstract
Background/Objectives: The aim of this study was to report the visual and refractive outcomes of nanophthalmic eyes undergoing phacoemulsification at a tertiary cataract center. Methods: This is a prospective consecutive case series. Patients with an axial length of ≤20.5 mm who underwent [...] Read more.
Background/Objectives: The aim of this study was to report the visual and refractive outcomes of nanophthalmic eyes undergoing phacoemulsification at a tertiary cataract center. Methods: This is a prospective consecutive case series. Patients with an axial length of ≤20.5 mm who underwent phacoemulsification at a tertiary cataract center in Hong Kong were included. Eyes undergoing extracapsular cataract extraction or with a previous history of intraocular surgery including trabeculectomy were excluded. The outcome measures were the corrected distance visual acuity (CDVA) and refractive status at four months post-operation. Different intraocular lens formulas were used to compare the refractive outcomes. Results: Out of 22,847 cataract surgeries performed from May 2011 to March 2020, 14 eyes (0.06%) of 10 patients had axial lengths of ≤20.5 mm and underwent phacoemulsification. The mean axial length was 20.13 ± 0.44 mm. Out of these fourteen eyes, three (21%) had postoperative myopic shift with spherical equivalent refraction of more than or equal to 1D compared to the original target. Eleven eyes (79%) had postoperative refraction within 0.5D compared to the original target. Nine out of fourteen eyes (64%) had improvements in postoperative vision. There were no intraoperative complications. When comparing the Hoffer Q, Holladay 1, Holladay 2, Haigis and Hill-RBF 2.0 formulas, there was no significant difference in the absolute errors between the five formulas (p = 0.072). Conclusions: There was no significant difference in the mean absolute errors between the Hoffer Q, Holladay 1, Holladay 2, Haigis and Hill-RBF 2.0 formulas. Myopic shift was not uncommon, and more studies on intraocular lens (IOL) power calculation for short eyes are warranted. Full article
(This article belongs to the Special Issue Corneal and Cataract Surgery: Clinical Updates)
Show Figures

Figure 1

13 pages, 3623 KiB  
Article
Modification of the Spectral Absorption Characteristics of ZnGeP2 in the THz and IR Wavelength Ranges Due to Diffusion Doping with Impurity Atoms of Mg, Se, Sn, and Pb
by Nikolay Yudin, Victor Dyomin, Sergey Podzyvalov, Alexey Lysenko, Houssain Baalbaki, Mikhail Zinovev, Vladimir Kuznetsov, Elena Slyunko, Akmal Gabdrakhmanov, Andrey Kalsin, Vladimir Voevodin, Maxim Kulesh and Denis Vlasov
Crystals 2024, 14(10), 867; https://doi.org/10.3390/cryst14100867 - 30 Sep 2024
Abstract
This study demonstrates that diffusion doping of ZGP single crystals with impurity atoms (Mg, Se, Sn, Pb) leads to a decrease in the specific conductivity of the samples. Consequently, this results in reduced absorption in the terahertz frequency range (150–1000 μm). It has [...] Read more.
This study demonstrates that diffusion doping of ZGP single crystals with impurity atoms (Mg, Se, Sn, Pb) leads to a decrease in the specific conductivity of the samples. Consequently, this results in reduced absorption in the terahertz frequency range (150–1000 μm). It has been shown that doping ZGP samples with selenium (Se) and lead (Pb) atoms reduces absorption in the infrared region from 0.3–0.6 cm−1 to 0.06–0.09 cm−1. Doping with tin (Sn) leads to a decrease in absorption only in the wavelength region near 2.1 μm from 0.2 cm−1 to 0.05 cm−1. The proposed mechanism for the decrease in infrared absorption is a reduction in zinc vacancies due to doping with impurity atoms. This research lays the groundwork for a technology that produces ZGP crystals with minimal absorption within the 2–8 μm wavelength range, eliminating the need for fast electron beam irradiation technology. This advancement will facilitate the fabrication of ZGP crystals with arbitrary apertures. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 3010 KiB  
Article
Overcoming the Learning Curve in Robot-Assisted Spinal Surgery—How Does It Compare to O-Arm Navigation?
by Pirateb Paramasivam Meenakshi Sundaram, Mun Chun Lai, Arun-Kumar Kaliya-Perumal and Jacob Yoong-Leong Oh
Surgeries 2024, 5(4), 896-907; https://doi.org/10.3390/surgeries5040072 - 30 Sep 2024
Abstract
Background: Robotic systems have the potential to significantly enhance the accuracy and outcomes of spinal surgery. Adopting this new technology requires an examination of its learning curve and influencing factors. This study analyzes the learning curve associated with using the Mazor X Stealth [...] Read more.
Background: Robotic systems have the potential to significantly enhance the accuracy and outcomes of spinal surgery. Adopting this new technology requires an examination of its learning curve and influencing factors. This study analyzes the learning curve associated with using the Mazor X Stealth Edition system for pedicle screw placement and performs a matched-pair analysis to compare operative durations between robot-assisted and navigation-based surgeries, evaluating the efficiency of the robotic system. Methods: We collected retrospective operative data from patients who underwent robot-assisted pedicle screw placements between December 2020 and June 2024 and conducted a cumulative sum (CuSUM) analysis to assess the learning curve, focusing on the robotic system’s setup duration. Additionally, we compared a group of patients who underwent robot-assisted pedicle screw placements with a pair-matched group who underwent O-arm-based navigation-assisted pedicle screw placements. Results: There was a notable decrease in the robotic setup duration, with a significant shift in trend observed after the first 20 cases. While the initial setup time was 24 minutes, it reduced to 17 minutes in later cases, reflecting a marked improvement in efficiency as the surgeon gained more experience with the robot. Conclusion: Our findings indicate there were no added difficulties using the robotic system compared to the navigation system. Moreover, the learning curve for the robotic system can be quickly surmounted, and it offers clear advantages over previous systems, making it a valuable tool for pedicle screw application. Full article
Show Figures

Graphical abstract

18 pages, 2581 KiB  
Review
Recycling Technologies for Biopolymers: Current Challenges and Future Directions
by Adenike A. Akinsemolu, Adetola M. Idowu and Helen N. Onyeaka
Polymers 2024, 16(19), 2770; https://doi.org/10.3390/polym16192770 - 30 Sep 2024
Abstract
Plastic pollution is a major driver of climate change that is associated with biodiversity loss, greenhouse gas emissions, and negative soil, plant, animal, and human health. One of the solutions that has been proposed and is currently reducing the adverse effects of plastic [...] Read more.
Plastic pollution is a major driver of climate change that is associated with biodiversity loss, greenhouse gas emissions, and negative soil, plant, animal, and human health. One of the solutions that has been proposed and is currently reducing the adverse effects of plastic on the planet is the replacement of synthetic plastics with biopolymers. The biodegradable polymers have been adapted for most of the applications of synthetic plastic. However, their use and disposal present some sustainability challenges. Recycling emerges as an effective way of promoting the sustainability of biopolymer use. In this article, we review recycling as a viable solution to improve the sustainability of biopolymers, emphasizing the current types and technologies employed in biopolymer recycling and the challenges faced in their adoption. Our exploration of the future directions in the conversion of biopolymers into new polymers for reuse establishes a connection between established continuous technological innovation, integration into circular economy models, and the establishment and strengthening of collaborations among key stakeholders in relevant industries as necessary steps for the adoption, full utilization, and improvement of recycling technologies for biopolymers. By connecting these factors, this study lays a foundation for the establishment of a roadmap for improved biopolymer recycling technologies and processes that promote the sustainability of synthetic plastic alternatives. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 10707 KiB  
Article
Critical Evaluation and Thermodynamic Optimization of the Cr–P and Cr–Fe–P Systems
by Zhimin You, Zhijie Lai, Senlin Cui, Zhouhua Jiang and In-Ho Jung
Metals 2024, 14(10), 1116; https://doi.org/10.3390/met14101116 - 30 Sep 2024
Abstract
Existing thermodynamic descriptions of the whole Cr–Fe–P system are insufficiently accurate for understanding the thermodynamic behavior of the Cr–Fe–P materials during the manufacturing process. To construct a more precise and consistent thermodynamic database of the Cr–Fe–P system, thermodynamic modeling of the Cr–P and [...] Read more.
Existing thermodynamic descriptions of the whole Cr–Fe–P system are insufficiently accurate for understanding the thermodynamic behavior of the Cr–Fe–P materials during the manufacturing process. To construct a more precise and consistent thermodynamic database of the Cr–Fe–P system, thermodynamic modeling of the Cr–P and Cr–Fe–P systems was conducted using the CALculation of PHAse Diagrams (CALPHAD) approach based on critical evaluation of the experimental data. The modified quasichemical model and compound energy formalism were employed to describe the liquid and solid solutions, respectively. The Gibbs energies of stoichiometric compounds Cr3P(s), Cr2P(s), CrP(s), and CrP2(s) were carefully determined based on reliable experimental data. The ternary (Cr,Fe)3P, (Cr,Fe)2P, and (Cr,Fe)P phosphides were modeled as solid solutions considering mutual substitution between Cr and Fe atoms. In addition, the phase equilibria of BCC_A2 and FCC_A1 solutions and the liquid phase of the ternary Cr–Fe–P system were also optimized for more accurate descriptions of existing phase equilibria and thermodynamic properties data. As an application of the present database, the experimentally unexplored thermodynamic properties and phase diagrams of the Cr–Fe–P system are predicted. Full article
(This article belongs to the Special Issue Modeling Thermodynamic Systems and Optimizing Metallurgical Processes)
Show Figures

Figure 1

17 pages, 2094 KiB  
Article
Identification of Candidate Genes for Cold Tolerance at Seedling Stage by GWAS in Rice (Oryza sativa L.)
by Huimin Shi, Wenyu Zhang, Huimin Cao, Laiyuan Zhai, Qingxin Song and Jianlong Xu
Biology 2024, 13(10), 784; https://doi.org/10.3390/biology13100784 - 30 Sep 2024
Abstract
Due to global climate change, cold temperatures have significantly impacted rice production, resulting in reduced yield and quality. In this study, we investigated two traits related to the cold tolerance (CT) of 1992 diverse rice accessions at the seedling stage. Geng accessions exhibited [...] Read more.
Due to global climate change, cold temperatures have significantly impacted rice production, resulting in reduced yield and quality. In this study, we investigated two traits related to the cold tolerance (CT) of 1992 diverse rice accessions at the seedling stage. Geng accessions exhibited higher levels of CT compared to xian accessions, with the GJ-tmp subgroup displaying the strongest CT. However, extreme CT accessions were also identified within the xian subspecies. Through GWAS analysis based on the survival rate (SR) and leaf score of cold tolerance (SCT), a total of 29 QTLs associated with CT at the seedling stage were identified, among which four QTLs (qSR3.1a, qSR4.1a, qSR11.1x, and qSR12.1a) were found to be important. Furthermore, five candidate genes (LOC_Os03g44760, LOC_Os04g06900, LOC_Os04g07260, LOC_Os11g40610, and LOC_Os12g10710) along with their favorable haplotypes were identified through gene function annotation and haplotype analysis. Pyramiding multiple favorable haplotypes resulted in a significant improvement in CT performance. Subsequently, three selected accessions (CX534, B236, and IRIS_313-8565), carrying different superior alleles for CT, were selected and recommended for molecular breeding for CT using marker-assisted selection (MAS). The findings from this study provide valuable resources for enhancing rice’s ability for CT while laying a foundation for the future cloning of novel genes involved in conferring CT. Full article
Show Figures

Figure 1

13 pages, 2003 KiB  
Article
Investigating Causal Associations between the Gut Microbiota and Dementia: A Mendelian Randomization Study
by Zhi-Yuan Xiong, Hong-Min Li, Cheng-Shen Qiu, Xu-Lian Tang, Dan-Qing Liao, Li-Ying Du, Shu-Min Lai, Hong-Xuan Huang, Bing-Yun Zhang, Ling Kuang and Zhi-Hao Li
Nutrients 2024, 16(19), 3312; https://doi.org/10.3390/nu16193312 - 30 Sep 2024
Abstract
Background: The causal association of specific gut microbiota with dementia remains incompletely understood. We aimed to access the causal relationships in which one or more gut microbiota account for dementia. Method: Using data from the MiBioGen and FinnGen consortia, we employed [...] Read more.
Background: The causal association of specific gut microbiota with dementia remains incompletely understood. We aimed to access the causal relationships in which one or more gut microbiota account for dementia. Method: Using data from the MiBioGen and FinnGen consortia, we employed multiple Mendelian randomization (MR) approaches including two-sample MR (TSMR), multivariable MR (MVMR), and Bayesian model averaging MR to comprehensively evaluate the causal associations between 119 genera and dementia, and to prioritize the predominant bacterium. Result: We identified 21 genera that had causal effects on dementia and suggested Barnesiella (OR = 0.827, 95%CI = 0.722–0.948, marginal inclusion probability [MIP] = 0.464; model-averaged causal estimate [MACE] = −0.068) and Allisonella (OR = 0.770, 95%CI = 0.693–0.855, MIP = 0.898, MACE = −0.204) as the predominant genera for AD and all-cause dementia. Conclusions: These findings confirm the causal relationships between specific gut microbiota and dementia, highlighting the necessity of multiple MR approaches in gut microbiota analysis, and provides promising genera as potential novel biomarkers for dementia risk. Full article
Show Figures

Figure 1

14 pages, 724 KiB  
Review
Effects of LED Light on Aromatic Medicinal Plants from Lavandula, Salvia, and Thymus Genera: A Systematic Review
by Gustavo J. Cáceres-Cevallos and María J. Jordán
Stresses 2024, 4(4), 627-640; https://doi.org/10.3390/stresses4040040 - 30 Sep 2024
Abstract
LED light technology has been used in recent years in plant breeding due to its proven energy efficiency, low cost, and high quality for the enhancement of crops, including some aromatic medicinal plants (AMPs). Nonetheless, although several studies have shown that specific wavelengths [...] Read more.
LED light technology has been used in recent years in plant breeding due to its proven energy efficiency, low cost, and high quality for the enhancement of crops, including some aromatic medicinal plants (AMPs). Nonetheless, although several studies have shown that specific wavelengths can increase the content of bioactive compounds used by pharmaceutical, medical, and perfumery industries, there is limited information on this topic and the possible implications for plant stress in AMPs. The current systematic review focused on the effects of LED light on the physiological response, metabolite synthesis, and flowering induction in three important AMP genera: Lavandula, Salvia, and Thymus, belonging to the Lamiaceae family. A literature search was performed in the Web of Science and Scopus databases. This review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The bibliographic analysis highlights the significant variation in physiological responses to different light spectra between species, even within the same genera, implying a need to optimize light conditions in each species to achieve the best results. Finally, this review provides essential information for laying the groundwork for future research focused on enhancing AMPs using LED light to overcome various types of stress. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

Back to TopTop