Sign in to use this feature.

Years

Between: -

Search Results (1,264)

Search Parameters:
Keywords = Land Surface Temperature (LST)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2130 KiB  
Article
Neural Network-Based Estimation of Near-Surface Air Temperature in All-Weather Conditions Using FY-4A AGRI Data over China
by Hai-Lei Liu, Min-Zheng Duan, Xiao-Qing Zhou, Sheng-Lan Zhang, Xiao-Bo Deng and Mao-Lin Zhang
Remote Sens. 2024, 16(19), 3612; https://doi.org/10.3390/rs16193612 - 27 Sep 2024
Viewed by 123
Abstract
Near-surface air temperature (Ta) estimation by geostationary meteorological satellites is mainly carried out under clear-sky conditions. In this study, we propose an all-weather Ta estimation method utilizing FY-4A Advanced Geostationary Radiation Imager (AGRI) and the Global Forecast System (GFS), [...] Read more.
Near-surface air temperature (Ta) estimation by geostationary meteorological satellites is mainly carried out under clear-sky conditions. In this study, we propose an all-weather Ta estimation method utilizing FY-4A Advanced Geostationary Radiation Imager (AGRI) and the Global Forecast System (GFS), along with additional auxiliary data. The method includes two neural-network-based Ta estimation models for clear and cloudy skies, respectively. For clear skies, AGRI LST was utilized to estimate the Ta (Ta,clear), whereas cloud top temperature and cloud top height were employed to estimate the Ta for cloudy skies (Ta,cloudy). The estimated Ta was validated using the 2020 data from 1211 stations in China, and the RMSE values of the Ta,clear and Ta,cloudy were 1.80 °C and 1.72 °C, while the correlation coefficients were 0.99 and 0.986, respectively. The performance of the all-weather Ta estimation model showed clear temporal and spatial variation characteristics, with higher accuracy in summer (RMSE = 1.53 °C) and lower accuracy in winter (RMSE = 1.88 °C). The accuracy in southeastern China was substantially better than in western and northern China. In addition, the dependence of the accuracy of the Ta estimation model for LST, CTT, CTH, elevation, and air temperature were analyzed. The global sensitivity analysis shows that AGRI and GFS data are the most important factors for accurate Ta estimation. The AGRI-estimated Ta showed higher accuracy compared to the ERA5-Land data. The proposed models demonstrated potential for Ta estimation under all-weather conditions and are adaptable to other geostationary satellites. Full article
(This article belongs to the Special Issue Advances in Thermal Infrared Remote Sensing II)
13 pages, 23549 KiB  
Technical Note
Opposing Impacts of Greenspace Fragmentation on Land Surface Temperature in Urban and Surrounding Rural Areas: A Case Study in Changsha, China
by Weiye Wang, Xiaoma Li, Chuchu Li and Dexin Gan
Remote Sens. 2024, 16(19), 3609; https://doi.org/10.3390/rs16193609 - 27 Sep 2024
Viewed by 187
Abstract
Managing the amount of greenspace (i.e., increasing or decreasing greenspace coverage) and optimizing greenspace configuration (i.e., increasing or decreasing greenspace fragmentation) are cost-effective approaches to cooling the environment. The spatial variations in their impacts on the thermal environment, as well as their relative [...] Read more.
Managing the amount of greenspace (i.e., increasing or decreasing greenspace coverage) and optimizing greenspace configuration (i.e., increasing or decreasing greenspace fragmentation) are cost-effective approaches to cooling the environment. The spatial variations in their impacts on the thermal environment, as well as their relative importance, are of great importance for greenspace planning and management but are far from thoroughly understood. Taking Changsha, China as an example, this study investigated the spatial variations of the impacts of greenspace amount (measured as a percent of greenspace) and greenspace fragmentation (measured by edge density of greenspace) on the Landsat-derived land surface temperature (LST) using geographically weighted regression (GWR), and also uncovered the spatial pattern of their relative importance. The results indicated that: (1) Greenspace amount showed significantly negative relationships with LST for 91.29% of the study area. (2) Both significantly positive and negative relationships were obtained between greenspace fragmentation and LST, covering 14.90% and 13.99% of the study area, respectively. (3) The negative relationship between greenspace fragmentation and LST is mainly located in the urban areas, while the positive relationship appeared in the rural areas. (4) Greenspace amount made a larger contribution to regulating LST than greenspace fragmentation in 93% of the study area, but the latter had stronger roles in about 6.95% of the study area, mainly in the city center. These findings suggest that spatially varied greenspace planning and management strategies should be adopted to improve the thermal environment. Full article
Show Figures

Figure 1

23 pages, 16947 KiB  
Article
Research on Summer Hourly Climate-Influencing Factors in Suburban Areas of Cities in CFA Zone—Taking Chengdu, China as an Example
by Lei Sima, Yisha Liu, Jian Zhang and Xiaowei Shang
Buildings 2024, 14(10), 3083; https://doi.org/10.3390/buildings14103083 - 26 Sep 2024
Viewed by 203
Abstract
Elevated temperatures in urban centers have become a common problem in cities around the world. However, the climate problems in suburban areas are equally severe; there is an urgent need to find zero-carbon ways to mitigate this problem. Recent studies have revealed the [...] Read more.
Elevated temperatures in urban centers have become a common problem in cities around the world. However, the climate problems in suburban areas are equally severe; there is an urgent need to find zero-carbon ways to mitigate this problem. Recent studies have revealed the thermal performance of vegetation, buildings, and water surfaces. They functioned differently regarding the climate at different periods of the day. Accordingly, this study synthesizes remote sensing technology and meteorology station observation data to deeply explore the differences in the role of each climate-influencing factor in the suburban areas of Chengdu. The land surface temperature (LST) and air temperature (Ta) were used as thermal environmental indicators, while the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), normalized difference built-up index (NDBI), and altitude were used as environmental factors. The results showed that the relevant influences of the environmental factors on the climate in the sample areas were significantly affected by the time of the day. The NDVI (R2 = 0.5884), NDBI (R2 = 0.3012), and altitude (R2 = 0.5638) all showed strong correlations with Ta during the night (20:00–7:00), which gradually weakened after sunrise, yet the NDWI showed a poorer cooling effect during the night, which gradually strengthened after sunrise, reaching a maximum at 15:00 (R2 = 0.5012). One reason for this phenomenon was the daily weather changes. These findings facilitate the advancement of the understanding of the climate in suburban areas and provide clear directions for further thermal services targeted towards people in different urban areas. Full article
(This article belongs to the Special Issue Urban Sustainability: Sustainable Housing and Communities)
Show Figures

Figure 1

25 pages, 8146 KiB  
Article
Thermal Behaviour of Different Land Uses and Covers in the Urban Environment of the Spanish Mediterranean Based on Landsat Land Surface Temperature
by Enrique Montón Chiva and José Quereda Sala
Urban Sci. 2024, 8(3), 147; https://doi.org/10.3390/urbansci8030147 - 23 Sep 2024
Viewed by 440
Abstract
Previous research has found higher temperature trends at urban observatories. This study examines in depth the features of the urban environment, the thermal behaviour of land use and land cover, and the changes that have taken place in five urban areas of the [...] Read more.
Previous research has found higher temperature trends at urban observatories. This study examines in depth the features of the urban environment, the thermal behaviour of land use and land cover, and the changes that have taken place in five urban areas of the Spanish Mediterranean. The CORINE Land Cover database was used to delimit the primary land use land cover (LULC) and its changes between 1990 and 2018. Once this had been established, land surface temperatures (LSTs) between 1985 and 2023 were retrieved from the Landsat database available on the Climate Engine website. There has been a significant advance in artificial land uses, which have become the main uses in the urban areas in Valencia and Alicante. An analysis of the primary land cover showed the greatest thermal increase in artificial surfaces, especially in the industrial, commercial, and transport units that are common on their outskirts, without exception in any urban area. The results are less clear for urban fabrics and agricultural areas due to their diversity and complexity. The density of vegetation is a key factor in the magnitude of the UHI, which is higher in the urban areas with more vegetated agriculture areas, therefore showing lower LST than both industrial units and urban fabrics. Another important conclusion is the role of breezes in limiting or eliminating the strength of the UHI. Sea breezes help to explain the monthly variation of UHIs. Both bodies of water and areas of dense tree vegetation provided the lowest LST, a fact of special interest for mitigating the effects of heat waves in increasingly large urban areas. This study also concludes the different effect of each LULC on the temperatures recorded by urban observatories and enables better decision-making when setting up weather stations for a more detailed time study of the urban heat island (UHI). Full article
Show Figures

Figure 1

22 pages, 6833 KiB  
Article
Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China
by Zhiguo Tai, Xiaokun Su, Wenjuan Shen, Tongyu Wang, Chenfeng Gu, Jiaying He and Chengquan Huang
Remote Sens. 2024, 16(18), 3528; https://doi.org/10.3390/rs16183528 - 23 Sep 2024
Viewed by 430
Abstract
Forest change affects local and global climate by altering the physical properties of the land surface. Accurately assessing urban forest changes in local land surface temperature (LST) is a scientific and crucial strategy for mitigating regional climate change. Despite this, few studies have [...] Read more.
Forest change affects local and global climate by altering the physical properties of the land surface. Accurately assessing urban forest changes in local land surface temperature (LST) is a scientific and crucial strategy for mitigating regional climate change. Despite this, few studies have attempted to accurately characterize the spatial and temporal pattern of afforestation, reforestation, and deforestation to optimize their effects on surface temperature. We used the China Land Cover Dataset and knowledge criterion-based spatial analysis model to map urban forestation (e.g., afforestation and reforestation) and deforestation. We then analyzed the impacts of these activities on LST from 2010 to 2020 based on the moving window strategy and the spatial–temporal pattern change analysis method in the urban agglomerations of the Yangtze River Delta (YRD) and Pearl River Delta (PRD), China. The results showed that forest areas declined in both regions. Most years, the annual deforestation area is greater than the yearly afforestation areas. Afforestation and reforestation had cooling effects of −0.24 ± 0.19 °C and −0.47 ± 0.15 °C in YRD and −0.46 ± 0.10 °C and −0.86 ± 0.11 °C in PRD. Deforestation and conversion of afforestation to non-forests led to cooling effects in YRD and warming effects of 1.08 ± 0.08 °C and 0.43 ± 0.19 °C in PRD. The cooling effect of forests is more evident in PRD than in YRD, and it is predominantly caused by reforestation. Moreover, forests demonstrated a significant seasonal cooling effect, except for December in YRD. Two deforestation activities exhibited seasonal warming impacts in PRD, mainly induced by deforestation, while there were inconsistent effects in YRD. Overall, this study provides practical data and decision-making support for rational urban forest management and climate benefit maximization, empowering policymakers and urban planners to make informed decisions for the benefit of their communities. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

26 pages, 6130 KiB  
Article
Comprehensive Spatial-Temporal and Risk Factor Insights for Optimizing Livestock Anthrax Vaccination Strategies in Karnataka, India
by Jayashree Anandakumar, Kuralayanapalya Puttahonnappa Suresh, Archana Veeranagouda Patil, Chethan A. Jagadeesh, Sushma Bylaiah, Sharanagouda S. Patil and Divakar Hemadri
Vaccines 2024, 12(9), 1081; https://doi.org/10.3390/vaccines12091081 - 22 Sep 2024
Viewed by 533
Abstract
Anthrax, a zoonotic disease affecting both livestock and humans globally, is caused by Bacillus anthracis. The objectives of this study were the following: (1) to identify environmental risk factors for anthrax and use this information to develop an improved predictive risk map, and [...] Read more.
Anthrax, a zoonotic disease affecting both livestock and humans globally, is caused by Bacillus anthracis. The objectives of this study were the following: (1) to identify environmental risk factors for anthrax and use this information to develop an improved predictive risk map, and (2) to estimate spatial variation in basic reproduction number (Ro) and herd immunity threshold at the village level, which can be used to optimize vaccination policies within high-risk regions. Based on the anthrax incidences from 2000–2023 and vaccine administration figures between 2008 and 2022 in Karnataka, this study depicted spatiotemporal pattern analysis to derive a risk map employing machine learning algorithms and estimate Ro and herd immunity threshold for better vaccination coverage. Risk factors considered were key meteorological, remote sensing, soil, and geographical parameters. Spatial autocorrelation and SaTScan analysis revealed the presence of hotspots and clusters predominantly in the southern, central, and uppermost northern districts of Karnataka and temporal cluster distribution between June and September. Factors significantly associated with anthrax were air temperature, surface pressure, land surface temperature (LST), enhanced vegetation index (EVI), potential evapotranspiration (PET), soil temperature, soil moisture, pH, available potassium, sulphur, and boron, elevation, and proximity to waterbodies and waterways. Ensemble technique with random forest and classification tree models were used to improve the prediction accuracy of anthrax. High-risk areas are expected in villages in the southern, central, and extreme northern districts of Karnataka. The estimated Ro revealed 11 high-risk districts with Ro > 1.50 and respective herd immunity thresholds ranging from 11.24% to 55.47%, and the assessment of vaccination coverage at the 70%, 80%, and 90% vaccine efficacy levels, all serving for need-based strategic vaccine allocation. A comparison analysis of vaccinations administered and vaccination coverage estimated in this study is used to illustrate difference in the supply and vaccine force. The findings from the present study may support in planning preventive interventions, resource allocation, especially of vaccines, and other control strategies against anthrax across Karnataka, specifically focusing on predicted high-risk regions. Full article
Show Figures

Figure 1

17 pages, 34075 KiB  
Article
Modelling Future Land Surface Temperature: A Comparative Analysis between Parametric and Non-Parametric Methods
by Yukun Gao, Nan Li, Minyi Gao, Ming Hao and Xue Liu
Sustainability 2024, 16(18), 8195; https://doi.org/10.3390/su16188195 - 20 Sep 2024
Viewed by 581
Abstract
As urban expansion continues, the intensifying land surface temperature (LST) underscores the critical need for accurate predictions of future thermal environments. However, no study has investigated which method can most effectively and consistently predict the future LST. To address these gaps, our study [...] Read more.
As urban expansion continues, the intensifying land surface temperature (LST) underscores the critical need for accurate predictions of future thermal environments. However, no study has investigated which method can most effectively and consistently predict the future LST. To address these gaps, our study employed four methods—the multiple linear regression (MLR), geographically weighted regression (GWR), random forest (RF), and artificial neural network (ANN) approach—to establish relationships between land use/cover and LST. Subsequently, we utilized these relationships established in 2006 to predict the LST for the years 2012 and 2018, validating these predictions against the observed data. Our results indicate that, in terms of fitting performance (R2 and RMSE), the methods rank as follows: RF > GWR > ANN > MLR. However, in terms of temporal stability, we observed a significant variation in predictive accuracy, with MLR > GWR > RF > ANN for the years 2012 and 2018. The predictions using MLR indicate that the future LST in 2050, under the SSP2 and SSP5 scenarios, is expected to increase by 1.8 ± 1.4 K and 2.1 ± 1.6 K, respectively, compared to 2018. This study emphasizes the importance of the MLR method in predicting the future LST and provides potential instructions for future heat mitigation. Full article
Show Figures

Figure 1

21 pages, 5562 KiB  
Article
Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa
by Phumelelani Mbuqwa, Hezekiel Bheki Magagula, Ahmed Mukalazi Kalumba and Gbenga Abayomi Afuye
Sustainability 2024, 16(18), 8125; https://doi.org/10.3390/su16188125 - 18 Sep 2024
Viewed by 1264
Abstract
Agricultural droughts in South Africa, particularly in the Amahlathi Local Municipality (ALM), significantly impact socioeconomic activities, sustainable livelihoods, and ecosystem services, necessitating urgent attention to improved resilience and food security. The study assessed the interdecadal drought severity and duration in Amahlathi’s agricultural potential [...] Read more.
Agricultural droughts in South Africa, particularly in the Amahlathi Local Municipality (ALM), significantly impact socioeconomic activities, sustainable livelihoods, and ecosystem services, necessitating urgent attention to improved resilience and food security. The study assessed the interdecadal drought severity and duration in Amahlathi’s agricultural potential zone from 1989 to 2019 using various vegetation indicators. Landsat time series data were used to analyse the land surface temperature (LST), soil-adjusted vegetation index (SAVI), normalized difference vegetation index (NDVI), and standardized precipitation index (SPI). The study utilised GIS-based weighted overlay, multiple linear regression models, and Pearson’s correlation analysis to assess the correlations between LST, NDVI, SAVI, and SPI in response to the agricultural drought extent. The results reveal a consistent negative correlation between LST and NDVI in the ALM, with an increase in vegetation (R2 = 0.9889) and surface temperature. LST accuracy in dry areas increased to 55.8% in 2019, despite dense vegetation and a high average temperature of 40.12 °C, impacting water availability, agricultural land, and local ecosystems. The regression analysis shows a consistent negative correlation between LST and NDVI in the ALM from 1989 to 2019, with the correlation between vegetation and surface temperature increasing since 2019. The SAVI indicates a slight improvement in overall average vegetation health from 0.18 in 1989 to 0.25 in 2009, but a slight decrease to 0.21 in 2019. The SPI at 12 and 24 months indicates that drought severely impacted vegetation cover from 2014 to 2019, with notable recovery during improved wet periods in 1993, 2000, 2003, 2006, 2008, and 2013, possibly due to temporary drought relief. The findings can guide provincial drought monitoring and early warning programs, enhancing drought resilience, productivity, and sustainable livelihoods, especially in farming communities. Full article
Show Figures

Figure 1

35 pages, 6364 KiB  
Article
Mapping the Influence of Olympic Games’ Urban Planning on the Land Surface Temperatures: An Estimation Using Landsat Series and Google Earth Engine
by Joan-Cristian Padró, Valerio Della Sala, Marc Castelló-Bueno and Rafael Vicente-Salar
Remote Sens. 2024, 16(18), 3405; https://doi.org/10.3390/rs16183405 - 13 Sep 2024
Viewed by 786
Abstract
The Olympic Games are a sporting event and a catalyst for urban development in their host city. In this study, we utilized remote sensing and GIS techniques to examine the impact of the Olympic infrastructure on the surface temperature of urban areas. Using [...] Read more.
The Olympic Games are a sporting event and a catalyst for urban development in their host city. In this study, we utilized remote sensing and GIS techniques to examine the impact of the Olympic infrastructure on the surface temperature of urban areas. Using Landsat Series Collection 2 Tier 1 Level 2 data and cloud computing provided by Google Earth Engine (GEE), this study examines the effects of various forms of Olympic Games facility urban planning in different historical moments and location typologies, as follows: monocentric, polycentric, peripheric and clustered Olympic ring. The GEE code applies to the Olympic Games that occurred from Paris 2024 to Montreal 1976. However, this paper focuses specifically on the representative cases of Paris 2024, Tokyo 2020, Rio 2016, Beijing 2008, Sydney 2000, Barcelona 1992, Seoul 1988, and Montreal 1976. The study is not only concerned with obtaining absolute land surface temperatures (LST), but rather the relative influence of mega-event infrastructures on mitigating or increasing the urban heat. As such, the locally normalized land surface temperature (NLST) was utilized for this purpose. In some cities (Paris, Tokyo, Beijing, and Barcelona), it has been determined that Olympic planning has resulted in the development of green spaces, creating “green spots” that contribute to lower-than-average temperatures. However, it should be noted that there is a significant variation in temperature within intensely built-up areas, such as Olympic villages and the surrounding areas of the Olympic stadium, which can become “hotspots.” Therefore, it is important to acknowledge that different planning typologies of Olympic infrastructure can have varying impacts on city heat islands, with the polycentric and clustered Olympic ring typologies displaying a mitigating effect. This research contributes to a cloud computing method that can be updated for future Olympic Games or adapted for other mega-events and utilizes a widely available remote sensing data source to study a specific urban planning context. Full article
(This article belongs to the Special Issue Urban Planning Supported by Remote Sensing Technology II)
Show Figures

Figure 1

26 pages, 6509 KiB  
Article
The Operational and Climate Land Surface Temperature Products from the Sea and Land Surface Temperature Radiometers on Sentinel-3A and 3B
by Darren Ghent, Jasdeep Singh Anand, Karen Veal and John Remedios
Remote Sens. 2024, 16(18), 3403; https://doi.org/10.3390/rs16183403 - 13 Sep 2024
Viewed by 545
Abstract
Land Surface Temperature (LST) is integral to our understanding of the radiative energy budget of the Earth’s surface since it provides the best approximation to the thermodynamic temperature that drives the outgoing longwave flux from surface to atmosphere. Since 5 July 2017, an [...] Read more.
Land Surface Temperature (LST) is integral to our understanding of the radiative energy budget of the Earth’s surface since it provides the best approximation to the thermodynamic temperature that drives the outgoing longwave flux from surface to atmosphere. Since 5 July 2017, an operational LST product has been available from the Sentinel-3A mission, with the corresponding product being available from Sentinel-3B since 17 November 2018. Here, we present the first paper describing formal products, including algorithms, for the Sea and Land Surface Temperature Radiometer (SLSTR) instruments onboard Sentinel-3A and 3B (SLSTR-A and SLSTR-B, respectively). We evaluate the quality of both the Land Surface Temperature Climate Change Initiative (LST_cci) product and the Copernicus operational LST product (SL_2_LST) for the years 2018 to 2021. The evaluation takes the form of a validation against ground-based observations of LST across eleven well-established in situ stations. For the validation, the mean absolute daytime and night-time difference against the in situ measurements for the LST_cci product is 0.77 K and 0.50 K, respectively, for SLSTR-A, and 0.91 K and 0.54 K, respectively, for SLSTR-B. These are an improvement on the corresponding statistics for the SL_2_LST product, which are 1.45 K (daytime) and 0.76 (night-time) for SLSTR-A, and 1.29 K (daytime) and 0.77 (night-time) for SLSTR-B. The key influencing factors in this improvement include an upgraded database of reference states for the generation of retrieval coefficients, higher stratification of the auxiliary data for the biome and fractional vegetation, and enhanced cloud masking. Full article
Show Figures

Figure 1

25 pages, 9415 KiB  
Article
Spatial and Seasonal Variation and the Driving Mechanism of the Thermal Effects of Urban Park Green Spaces in Zhengzhou, China
by Yuan Feng, Kaihua Zhang, Ang Li, Yangyang Zhang, Kun Wang, Nan Guo, Ho Yi Wan, Xiaoyang Tan, Nalin Dong, Xin Xu, Ruizhen He, Bing Wang, Long Fan, Shidong Ge and Peihao Song
Land 2024, 13(9), 1474; https://doi.org/10.3390/land13091474 - 11 Sep 2024
Viewed by 648
Abstract
Greenscaping, a key sustainable practice, helps cities combat rising temperatures and climate change. Urban parks, a pivotal greenscaping element, mitigate the urban heat island (UHI) effect. In this study, we utilized high-resolution remote sensing imagery (GF-2 and Landsat 8, 9) and in situ [...] Read more.
Greenscaping, a key sustainable practice, helps cities combat rising temperatures and climate change. Urban parks, a pivotal greenscaping element, mitigate the urban heat island (UHI) effect. In this study, we utilized high-resolution remote sensing imagery (GF-2 and Landsat 8, 9) and in situ measurements to analyze the seasonal thermal regulation of different park types in Zhengzhou, China. We calculated vegetation characteristic indices (VCIs) and landscape patterns (LMs) and employed boosted regression tree models to explore their relative contributions to land surface temperature (LST) across different seasons. Our findings revealed that urban parks lowered temperatures by 0.65 °C, 1.41 °C, and 2.84 °C in spring, summer, and autumn, respectively, but raised them by 1.92 °C in winter. Amusement parks, comprehensive parks, large parks, and water-themed parks had significantly lower LSTs. The VCI significantly influenced LST in autumn, with trees having a stronger cooling effect than shrubs. LMs showed a more prominent effect than VCIs on LST during spring, summer, and winter. Parks with longer perimeters, larger and more dispersed green patches, higher plant species richness, higher vegetation heights, and larger canopies were associated with more efficient thermal reduction in an urban setting. The novelty of this study lies in its detailed analysis of the seasonal thermal regulation effects of different types of urban parks, providing new insights for more effective urban greenspace planning and management. Our findings assist urban managers in mitigating the urban surface heat effect through more effective urban greenspace planning, vegetation community design, and maintenance, thereby enhancing cities’ potential resilience to climate change. Full article
Show Figures

Graphical abstract

28 pages, 10631 KiB  
Article
Optimizing Local Climate Zones through Clustering for Surface Urban Heat Island Analysis in Building Height-Scarce Cities: A Cape Town Case Study
by Tshilidzi Manyanya, Nthaduleni Samuel Nethengwe, Bruno Verbist and Ben Somers
Climate 2024, 12(9), 142; https://doi.org/10.3390/cli12090142 - 10 Sep 2024
Viewed by 493
Abstract
Studying air Urban Heat Islands (AUHI) in African cities is limited by building height data scarcity and sparse air temperature (Tair) networks, leading to classification confusion and gaps in Tair data. Satellite imagery used in surface UHI (SUHI) applications overcomes [...] Read more.
Studying air Urban Heat Islands (AUHI) in African cities is limited by building height data scarcity and sparse air temperature (Tair) networks, leading to classification confusion and gaps in Tair data. Satellite imagery used in surface UHI (SUHI) applications overcomes the gaps which befall AUHI, thus making it the primary focus of UHI studies in areas with limited Tair stations. Consequently, we used Landsat 30 m imagery to analyse SUHI patterns using Land Surface Temperature (LST) data. Local climate zones (LCZ) as a UHI study tool have been documented to not result in distinct thermal environments at the surface level per LCZ class. The goal in this study was thus to explore relationships between LCZs and LST patterns, aiming to create a building height (BH)-independent LCZ framework capable of creating distinct thermal environments to study SUHI in African cities where LiDAR data are scarce. Random forests (RF) classified LCZ in R, and the Single Channel Algorithm (SCA) extracted LST via the Google Earth Engine. Statistical analyses, including ANOVA and Tukey’s HSD, assessed thermal distinctiveness, using a 95% confidence interval and 1 °C threshold for practical significance. Semi-Automated Agglomerative Clustering (SAAC) and Automated Divisive Clustering (ADC) grouped LCZs into thermally distinct clusters based on physical characteristics and LST data internal patterns. Built LCZs (1–9) had higher mean LSTs; LCZ 8 reached 37.6 °C in Spring, with a smaller interquartile range (IQR) (34–36 °C) and standard deviation (SD) (1.85 °C), compared to natural classes (A–G) with LCZ 11 (A–B) at 14.9 °C/LST, 17–25 °C/IQR, and 4.2 °C SD. Compact LCZs (2, 3) and open LCZs (5, 6), as well as similar LCZs in composition and density, did not show distinct thermal environments even with building height included. The SAAC and ADC clustered the 14 LCZs into six thermally distinct clusters, with the smallest LST difference being 1.19 °C, above the 1 °C threshold. This clustering approach provides an optimal LCZ framework for SUHI studies, transferable to different urban areas without relying on BH, making it more suitable than the full LCZ typology, particularly for the African context. This clustered framework ensures a thermal distinction between clusters large enough to have practical significance, which is more useful in urban planning than statistical significance. Full article
Show Figures

Figure 1

17 pages, 6013 KiB  
Article
Remote Sensing Monitoring and Multidimensional Impact Factor Analysis of Urban Heat Island Effect in Zhengzhou City
by Xiangjun Zhang, Guoqing Li, Haikun Yu, Guangxu Gao and Zhengfang Lou
Atmosphere 2024, 15(9), 1097; https://doi.org/10.3390/atmos15091097 - 9 Sep 2024
Viewed by 432
Abstract
In the 21st century, the rapid urbanization process has led to increasingly severe urban heat island effects and other urban thermal environment issues, posing significant challenges to urban planning and environmental management. This study focuses on Zhengzhou, China, utilizing Landsat remote sensing imagery [...] Read more.
In the 21st century, the rapid urbanization process has led to increasingly severe urban heat island effects and other urban thermal environment issues, posing significant challenges to urban planning and environmental management. This study focuses on Zhengzhou, China, utilizing Landsat remote sensing imagery data from five key years between 2000 and 2020. By applying atmospheric correction methods, we accurately retrieved the land surface temperature (LST). The study employed a gravity center migration model to track the spatial changes of heat island patches and used the geographical detector method to quantitatively analyze the combined impact of surface characteristics, meteorological conditions, and socio-economic factors on the urban heat island effect. Results show that the LST in Zhengzhou exhibits a fluctuating growth trend, closely related to the expansion of built-up areas and urban planning. High-temperature zones are mainly concentrated in built-up areas, while low-temperature zones are primarily found in areas covered by water bodies and vegetation. Notably, the Normalized Difference Built-up Index (NDBI) and the Normalized Difference Vegetation Index (NDVI) are the two most significant factors influencing the spatial distribution of land surface temperature, with explanatory power reaching 42.7% and 41.3%, respectively. As urban development enters a stable stage, government environmental management measures have played a positive role in mitigating the urban heat island effect. This study not only provides a scientific basis for understanding the spatiotemporal changes in land surface temperature in Zhengzhou but also offers new technical support for urban planning and management, helping to alleviate the urban heat island effect and improve the living environment quality for urban residents. Full article
(This article belongs to the Special Issue UHI Analysis and Evaluation with Remote Sensing Data)
Show Figures

Figure 1

20 pages, 39129 KiB  
Article
Cold and Wet Island Effect in Mountainous Areas: A Case Study of the Maxian Mountains, Northwest China
by Beibei He, Donghui Shangguan, Rongjun Wang, Changwei Xie, Da Li and Xiaoqiang Cheng
Forests 2024, 15(9), 1578; https://doi.org/10.3390/f15091578 - 9 Sep 2024
Viewed by 468
Abstract
The Maxian Mountains, characterized by high altitudes and abundant vegetation, create a cooler and more humid environment compared to the surrounding areas, and are highly susceptible to climate change. In order to study the cold and wet island effects in the Maxian Mountains, [...] Read more.
The Maxian Mountains, characterized by high altitudes and abundant vegetation, create a cooler and more humid environment compared to the surrounding areas, and are highly susceptible to climate change. In order to study the cold and wet island effects in the Maxian Mountains, air temperature and relative humidity (RH) were analyzed using meteorological station data. Additionally, spatial variations were examined by retrieving Land Surface Temperature (LST) and the Temperature Vegetation Dryness Index (TVDI) from 2001 to 2021. The most pronounced cold island effect was observed in the mountainous area during summer, mainly in May and July. The most significant wet island effect was observed from March to May, with an average relative humidity difference of 24.72%. The cold island area index, as an indicator of the cold island effect, revealed an increasing trend in the summer cold island effect in recent years. The cooling intensity ranged from 5 to 10 °C, with variations observed between 500 and 1000 m. A 30% increase in wet island effects in summer was observed, with a humidification intensity within a range of 500 m. Geodetector analysis identified vegetation cover as the primary factor affecting the thermal environment in mountainous areas. The increase in vegetation in mountainous areas was identified as the main reason for enhancing the cold and wet island effects. The findings emphasize the role of vegetation in enhancing cold and wet island effects, which is crucial for understanding and preserving mountainous regions. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Vegetation Dynamic and Ecology)
Show Figures

Figure 1

21 pages, 7794 KiB  
Article
Spatial–Temporal Variations and Driving Factors of the Albedo of the Qilian Mountains from 2001 to 2022
by Huazhu Xue, Haojie Zhang, Zhanliang Yuan, Qianqian Ma, Hao Wang and Zhi Li
Atmosphere 2024, 15(9), 1081; https://doi.org/10.3390/atmos15091081 - 6 Sep 2024
Viewed by 331
Abstract
Surface albedo plays a pivotal role in the Earth’s energy balance and climate. This study conducted an analysis of the spatial distribution patterns and temporal evolution of albedo, normalized difference vegetation index (NDVI), normalized difference snow index snow cover (NSC), and land surface [...] Read more.
Surface albedo plays a pivotal role in the Earth’s energy balance and climate. This study conducted an analysis of the spatial distribution patterns and temporal evolution of albedo, normalized difference vegetation index (NDVI), normalized difference snow index snow cover (NSC), and land surface temperature (LST) within the Qilian Mountains (QLMs) from 2001 to 2022. This study evaluated the spatiotemporal correlations of albedo with NSC, NDVI, and LST at various temporal scales. Additionally, the study quantified the driving forces and relative contributions of topographic and natural factors to the albedo variation of the QLMs using geographic detectors. The findings revealed the following insights: (1) Approximately 22.8% of the QLMs exhibited significant changes in albedo. The annual average albedo and NSC exhibited a minor decline with rates of −0.00037 and −0.05083 (Sen’s slope), respectively. Conversely, LST displayed a marginal increase at a rate of 0.00564, while NDVI experienced a notable increase at a rate of 0.00178. (2) The seasonal fluctuations of NSC, LST, and vegetation collectively influenced the overall albedo changes in the Qilian Mountains. Notably, the highly similar trends and significant correlations between albedo and NSC, whether in intra-annual monthly variations, multi-year monthly anomalies, or regional multi-year mean trends, indicate that the changes in snow albedo reflected by NSC played a major role. Additionally, the area proportion and corresponding average elevation of PSI (permanent snow and ice regions) slightly increased, potentially suggesting a slow upward shift of the high mountain snowline in the QLMs. (3) NDVI, land cover type (LCT), and the Digital Elevation Model (DEM, which means elevation) played key roles in shaping the spatial pattern of albedo. Additionally, the spatial distribution of albedo was most significantly influenced by the interaction between slope and NDVI. Full article
(This article belongs to the Special Issue Vegetation and Climate Relationships (3rd Edition))
Show Figures

Figure 1

Back to TopTop