Sign in to use this feature.

Years

Between: -

Search Results (249)

Search Parameters:
Keywords = Nix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3521 KiB  
Article
Ni–Doped Pr0.7Ba0.3MnO3−δ Cathodes for Enhancing Electrolysis of CO2 in Solid Oxide Electrolytic Cells
by Fei Shan, Tao Chen, Lingting Ye and Kui Xie
Molecules 2024, 29(18), 4492; https://doi.org/10.3390/molecules29184492 - 21 Sep 2024
Viewed by 484
Abstract
Solid Oxide Electrolysis Cells (SOECs) can electro-reduce carbon dioxide to carbon monoxide, which not only effectively utilizes greenhouse gases, but also converts excess electrical energy into chemical energy. Perovskite-based oxides with exsolved metal nanoparticles are promising cathode materials for direct electrocatalytic reduction of [...] Read more.
Solid Oxide Electrolysis Cells (SOECs) can electro-reduce carbon dioxide to carbon monoxide, which not only effectively utilizes greenhouse gases, but also converts excess electrical energy into chemical energy. Perovskite-based oxides with exsolved metal nanoparticles are promising cathode materials for direct electrocatalytic reduction of CO2 through SOECs, and have thus received increasing attention. In this work, we doped Pr0.7Ba0.3MnO3−δ at the B site, and after reduction treatment, metal nanoparticles exsolved and precipitated on the surface of the cathode material, thereby establishing a stable metal–oxide interface structure and significantly improving the electrocatalytic activity of the SOEC cathode materials. Through research, among the Pr0.7Ba0.3Mn1−xNixO3−δ (PBMNx = 0–1) cathode materials, it has been found that the Pr0.7Ba0.3Mn0.9Ni0.1O3−δ (PBMN0.1) electrode material exhibits greater catalytic activity, with a CO yield of 5.36 mL min−1 cm−2 and a Faraday current efficiency of ~99%. After 100 h of long-term testing, the current can still remain stable and there is no significant change in performance. Therefore, the design of this interface has increasing potential for development. Full article
Show Figures

Figure 1

30 pages, 3287 KiB  
Article
GABA(A) Receptor Activation Drives GABARAP–Nix Mediated Autophagy to Radiation-Sensitize Primary and Brain-Metastatic Lung Adenocarcinoma Tumors
by Debanjan Bhattacharya, Riccardo Barrile, Donatien Kamdem Toukam, Vaibhavkumar S. Gawali, Laura Kallay, Taukir Ahmed, Hawley Brown, Sepideh Rezvanian, Aniruddha Karve, Pankaj B. Desai, Mario Medvedovic, Kyle Wang, Dan Ionascu, Nusrat Harun, Subrahmanya Vallabhapurapu, Chenran Wang, Xiaoyang Qi, Andrew M. Baschnagel, Joshua A. Kritzer, James M. Cook, Daniel A. Pomeranz Krummel and Soma Senguptaadd Show full author list remove Hide full author list
Cancers 2024, 16(18), 3167; https://doi.org/10.3390/cancers16183167 - 15 Sep 2024
Viewed by 1117
Abstract
In non-small cell lung cancer (NSCLC) treatment, radiotherapy responses are not durable and toxicity limits therapy. We find that AM-101, a synthetic benzodiazepine activator of GABA(A) receptor, impairs the viability and clonogenicity of both primary and brain-metastatic NSCLC cells. Employing a human-relevant ex [...] Read more.
In non-small cell lung cancer (NSCLC) treatment, radiotherapy responses are not durable and toxicity limits therapy. We find that AM-101, a synthetic benzodiazepine activator of GABA(A) receptor, impairs the viability and clonogenicity of both primary and brain-metastatic NSCLC cells. Employing a human-relevant ex vivo ‘chip’, AM-101 is as efficacious as docetaxel, a chemotherapeutic used with radiotherapy for advanced-stage NSCLC. In vivo, AM-101 potentiates radiation, including conferring a significant survival benefit to mice bearing NSCLC intracranial tumors generated using a patient-derived metastatic line. GABA(A) receptor activation stimulates a selective-autophagic response via the multimerization of GABA(A) receptor-associated protein, GABARAP, the stabilization of mitochondrial receptor Nix, and the utilization of ubiquitin-binding protein p62. A high-affinity peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP–Nix multimerization axis that triggers autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity. Full article
(This article belongs to the Special Issue The Emerging Role of Ion Channels in Cancer Treatment)
Show Figures

Figure 1

11 pages, 2854 KiB  
Article
Study on the Alloying Elements Competition Mechanism of Nix1Crx2Cox3Al15Ti10 Alloys Based on High-Throughput Computation and Numerical Analysis
by Yu Liu, Lijun Wang, Wenjie He and Yunpeng Liu
Coatings 2024, 14(9), 1138; https://doi.org/10.3390/coatings14091138 - 4 Sep 2024
Viewed by 532
Abstract
Previous studies on the physical properties of alloy materials often focus solely on analyzing the impact of individual alloying element content, overlooking the underlying mechanism behind the synergistic action of multiple alloying elements. Therefore, in this study, we propose a combination of high-throughput [...] Read more.
Previous studies on the physical properties of alloy materials often focus solely on analyzing the impact of individual alloying element content, overlooking the underlying mechanism behind the synergistic action of multiple alloying elements. Therefore, in this study, we propose a combination of high-throughput computation and numerical analysis to conduct single-element (SE) analysis and multi-element (ME) analysis on the internal relationships between alloying element content and physical properties for the multi-component Nix1Crx2Cox3Al15Ti10 alloys, aiming to elucidate the competition mechanism among the Ni, Cr, and Co elements. The analysis of SE reveals how the physical properties of alloys are affected by the content of each individual alloying element, and the ME analysis further unveils the underlying competitive relationships among multiple alloying elements. The order of competitive intensity for the formation of lattice constant is Cr > Co > Ni, whereas for the formation of elastic constants and elastic moduli it is Ni > Co > Cr. At the same time, there are contradictory conclusions, such as the SE analysis showing that the Ni content is positively correlated with elastic constant C11, while the ME analysis demonstrates that the Ni element produces a negative competitive direction. This outcome arises from the omission of considering the combined impacts of various alloying elements in SE analysis. Therefore, the ME analysis can compensate for the limitations of SE analysis, and the integration of these two analytical methods is more conducive to elucidating the competition mechanism among various alloying elements in shaping the physical properties of alloys, which provides a promising avenue for theoretical research. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

24 pages, 37699 KiB  
Article
Synthesis and Redox Properties of Iron and Iron Oxide Nanoparticles Obtained by Exsolution from Perovskite Ferrites Promoted by Auxiliary Reactions
by Dmitrii Filimonov, Marina Rozova, Sergey Maksimov and Denis Pankratov
Inorganics 2024, 12(8), 223; https://doi.org/10.3390/inorganics12080223 - 16 Aug 2024
Viewed by 695
Abstract
Nanoparticles of iron and iron oxides, as well as their composites, are of great scientific and technological interest. However, their properties and sustainability strongly depend on the preparation methods. Here, we present an original approach to synthesizing Fe and FeNix metal nanoparticles [...] Read more.
Nanoparticles of iron and iron oxides, as well as their composites, are of great scientific and technological interest. However, their properties and sustainability strongly depend on the preparation methods. Here, we present an original approach to synthesizing Fe and FeNix metal nanoparticles by exsolution, in a reducing environment at elevated temperatures from perovskite ferrites (La1−xCaxFeO3−γ, CaFeO2.5, etc.). This approach is made possible by the auxiliary reactions of non-reducible A-site cations (in ABO3 notation) with the constituents of reducing compounds (h-BN etc.). The nanoparticles exsolved by our process are embedded in oxide matrices in individual voids formed in situ. They readily undergo redox cycling at moderate temperatures, while maintaining their localization. Fe nanoparticles can be obtained initially and after redox cycling in the high-temperature γ-form at temperatures below equilibrium. Using their redox properties, a new route to producing hollow and layered oxide magnetic nanoparticles (Fe3O4, Fe3O4/La1−xCaxFeO3−γ), by separating the oxidized exsolved particles, was developed. Our approach provides greater flexibility in controlling exsolution reactions and matrix compositions, with a variety of possible starting compounds and exsolution degrees, from minimal up to ~100% (in some cases). The described strategy is highly important for the development of a wide range of new functional materials. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 3049 KiB  
Article
Advancing Lithium-Ion Batteries’ Electrochemical Performance: Ultrathin Alumina Coating on Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials
by Mehdi Ahangari, Fan Xia, Benedek Szalai, Meng Zhou and Hongmei Luo
Micromachines 2024, 15(7), 894; https://doi.org/10.3390/mi15070894 - 9 Jul 2024
Cited by 1 | Viewed by 838
Abstract
Ni-rich Li(NixCoyMnz)O2 (x ≥ 0.8)-layered oxide materials are highly promising as cathode materials for high-energy-density lithium-ion batteries in electric and hybrid vehicles. However, their tendency to undergo side reactions with electrolytes and their structural instability during [...] Read more.
Ni-rich Li(NixCoyMnz)O2 (x ≥ 0.8)-layered oxide materials are highly promising as cathode materials for high-energy-density lithium-ion batteries in electric and hybrid vehicles. However, their tendency to undergo side reactions with electrolytes and their structural instability during cyclic lithiation/delithiation impairs their electrochemical cycling performance, posing challenges for large-scale applications. This paper explores the application of an Al2O3 coating using an atomic layer deposition (ALD) system on Ni-enriched Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode material. Characterization techniques, including X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, were used to assess the impact of alumina coating on the morphology and crystal structure of NCM811. The results confirmed that an ultrathin Al2O3 coating was achieved without altering the microstructure and lattice structure of NCM811. The alumina-coated NCM811 exhibited improved cycling stability and capacity retention in the voltage range of 2.8–4.5 V at a 1 C rate. Specifically, the capacity retention of the modified NCM811 was 5%, 9.11%, and 11.28% higher than the pristine material at operating voltages of 4.3, 4.4, and 4.5 V, respectively. This enhanced performance is attributed to reduced electrode–electrolyte interaction, leading to fewer side reactions and improved structural stability. Thus, NCM811@Al2O3 with this coating process emerges as a highly attractive candidate for high-capacity lithium-ion battery cathode materials. Full article
(This article belongs to the Special Issue Energy Conversion Materials/Devices and Their Applications)
Show Figures

Figure 1

8 pages, 2938 KiB  
Article
Validating the Concept of Mechanical Circulatory Support with a Rotary Blood Pump in the Inferior Vena Cava in an Ovine Fontan Model
by Yves d’Udekem, Joeri Van Puyvelde, Filip Rega, Christoph Nix, Svenja Barth and Bart Meyns
Bioengineering 2024, 11(6), 594; https://doi.org/10.3390/bioengineering11060594 - 11 Jun 2024
Viewed by 859
Abstract
Right-sided mechanical support of the Fontan circulation by existing devices has been compounded by the cross-sectional design of vena cava anastomosis to both pulmonary arteries. Our purpose was to investigate whether increasing inferior vena cava (IVC) flow with a rotary blood pump in [...] Read more.
Right-sided mechanical support of the Fontan circulation by existing devices has been compounded by the cross-sectional design of vena cava anastomosis to both pulmonary arteries. Our purpose was to investigate whether increasing inferior vena cava (IVC) flow with a rotary blood pump in the IVC only in an ovine animal model of Fontan would lead to acceptable superior vena cava (SVC) pressure. To achieve this, a Fontan circulation was established in four female sheep by anastomosing the SVC to the main pulmonary artery (MPA) and by interposing a Dacron graft between the IVC and the MPA. A rotary blood pump was then introduced in the graft, and the effect of incremental flows was observed at increasing flow regimen. Additionally, to stimulate increased pulmonary resistance, the experience was repeated in each animal with the placement of a restrictive band on the MPA distally to the SVC and Dacron graft anastomosis. Circulatory support of IVC flow alone increased the systemic cardiac output significantly, both with and without banding, indicating the feasibility of mechanical support of the Fontan circulation by increasing the flow only in the inferior vena cava. The increase in SVC pressure remained within acceptable limits, indicating the potential effectiveness of this mode of support. The findings suggest that increasing the flow only in the inferior vena cava is a feasible method for mechanical support of the Fontan circulation, potentially leading to an increase in cardiac output with acceptable increases in superior vena cava pressure. Full article
(This article belongs to the Special Issue Recent Advances in Cardiac Assist Devices)
Show Figures

Graphical abstract

13 pages, 6866 KiB  
Article
Highly Efficient and Selective Hydrogenation of Biomass-Derived Furfural Using Interface-Active Rice Husk-Based Porous Carbon-Supported NiCu Alloy Catalysts
by Zhiyao Ding, Yujun Gao, Lianghai Hu and Xiaomin Yang
Molecules 2024, 29(11), 2638; https://doi.org/10.3390/molecules29112638 - 3 Jun 2024
Cited by 1 | Viewed by 422
Abstract
A series of bimetallic NixCuy catalysts with different metal molar ratios, supported on nitric acid modified rice husk-based porous carbon (RHPC), were prepared using a simple impregnation method for the liquid-phase hydrogenation of furfural (FFA) to tetrahydrofurfuryl alcohol (THFA). The [...] Read more.
A series of bimetallic NixCuy catalysts with different metal molar ratios, supported on nitric acid modified rice husk-based porous carbon (RHPC), were prepared using a simple impregnation method for the liquid-phase hydrogenation of furfural (FFA) to tetrahydrofurfuryl alcohol (THFA). The Ni2Cu1/RHPC catalyst, with an average metal particle size of 9.3 nm, exhibits excellent catalytic performance for the selective hydrogenation of FFA to THFA. The 100% conversion of FFA and the 99% selectivity to THFA were obtained under mild reaction conditions (50 °C, 1 MPa, 1 h), using water as a green reaction solvent. The synergistic effect of NiCu alloy ensures the high catalytic activity. The acid sites and oxygen-containing functional groups on the surface of the modified RHPC can enhance the selectivity of THFA. The Ni2Cu1/RHPC catalyst offers good cyclability and regenerability. The current work proposes a simple method for preparing an NiCu bimetallic catalyst. The catalyst exhibits excellent performance in the catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol, which broadens the application of non-noble metal bimetallic nanocatalysts in the catalytic hydrogenation of furfural. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

14 pages, 6742 KiB  
Article
Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments
by Cássio Siqueira, Aline B. Schons, Patricia Appelt, Weslei D. Silva, Nayara Balaba, Mário A. A. Cunha and Fauze J. Anaissi
Colorants 2024, 3(2), 138-151; https://doi.org/10.3390/colorants3020011 - 20 May 2024
Viewed by 534
Abstract
Magnesium oxide is typically white and can be colorized with transition metal insertion by doping. We present the preparation of a green-colored hydroxide by the exchange of Mg2+ on the crystalline lattice with Ni2+ in MgO, using three nickel salts. MgO [...] Read more.
Magnesium oxide is typically white and can be colorized with transition metal insertion by doping. We present the preparation of a green-colored hydroxide by the exchange of Mg2+ on the crystalline lattice with Ni2+ in MgO, using three nickel salts. MgOst was prepared by the colloidal starch suspension method, using cassava starch. The oxides and hydroxides, before and after, were characterized by X-ray diffraction (XRD), and show that a phase change occurs: a transition from periclase (MgO) to brucite (Mg(OH)2) due to the incorporation of nickel ions from different salts (acetate, chloride, and nitrate), resulting in the solid solution [NixMg1−x(OH)2]. The FTIR spectrum corroborates the crystallographic structure identified through XRD patterns, confirming the formation of a crystal structure resembling brucite. The new samples present a green color, indicative of the incorporation of the Ni2+ ions. The antimicrobial activity of products resulting from the doping of magnesium oxide with nickel and the precursor MgOst was assessed through the minimum inhibitory concentration (MIC) test. The evaluation included three bacterial strains: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Salmonella gallinarum (ATCC 9184), and a yeast strain, Candida albicans (ATCC 10231). The obtained results were promising; the tested samples exhibited antimicrobial activity, with a MIC ranging from 0.312 to 0.625 μg.μL−1. The nickel compound, derived from the precursor chloride salt, demonstrated superior MIC activity. Notably, all tested samples displayed bactericidal activity against the S. aureus strain and exhibited a broad spectrum of inhibition, encompassing both Gram-positive and Gram-negative strains. Only the nickel compounds derived from precursors with acetate and nitrate anions demonstrated antimicrobial activity against C. albicans, exhibiting a fungistatic behavior. Based on the conducted studies, [NixMg1−x(OH)2] has emerged as a promising antimicrobial agent, suitable for applications requiring the delay or inhibition of bacterial growth. Full article
Show Figures

Figure 1

0 pages, 2270 KiB  
Article
Competitive Mechanism of Alloying Elements on the Physical Properties of Al10Ti15Nix1Crx2Cox3 Alloys through Single-Element and Multi-Element Analysis Methods
by Yu Liu, Lijun Wang, Juangang Zhao, Zhipeng Wang, Ruizhi Zhang, Yuanzhi Wu, Touwen Fan and Pingying Tang
Coatings 2024, 14(5), 639; https://doi.org/10.3390/coatings14050639 - 18 May 2024
Cited by 1 | Viewed by 683
Abstract
Altering the content of an alloying element in alloy materials will inevitably affect the content of other elements, while the effect is frequently disregarded, leading to subsequent negligence of the common influence on the physical properties of alloys. Therefore, the correlation between alloying [...] Read more.
Altering the content of an alloying element in alloy materials will inevitably affect the content of other elements, while the effect is frequently disregarded, leading to subsequent negligence of the common influence on the physical properties of alloys. Therefore, the correlation between alloying elements and physical properties has not been adequately addressed in the existing studies. In response to this problem, the present study focuses on the Al10Ti15Nix1Crx2Cox3 alloys and investigates the competitive interplay among Ni, Cr, and Co elements in the formation of physical properties through a single-element (SE) analysis and a multi-element (ME) analysis based on the first principles calculations and the partial least squares (PLS) regression. The values of C11 and C44 generally increase with the incorporation of Ni or Cr content in light of SE analysis, which is contrary to the inclination of ME analysis in predicting the impact of Ni and Cr elements, and the Ni element demonstrates a pronounced negative competitive ability. The overall competitive relationship among the three alloying elements suggests that increasing the content of Ni and Cr does not contribute to enhancing the elastic constants of alloys, and the phenomenon is also observed in the analysis of elastic moduli. The reason is that the SE analysis fails to account for the aforementioned common influence of multiple alloying elements on the physical properties of alloys. Therefore, the integration of SE analysis and ME analysis is more advantageous in elucidating the hidden competitive mechanism among multiple alloying elements, and offering a more robust theoretical framework for the design of alloy materials. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

17 pages, 13187 KiB  
Article
Microhardness Variation with Indentation Depth for Body-Centered Cubic Steels Pertinent to Grain Size and Ferrite Content
by Anye Xu, Xuding Song, Min Ye, Yipin Wan and Chunguo Zhang
Materials 2024, 17(10), 2371; https://doi.org/10.3390/ma17102371 - 15 May 2024
Viewed by 667
Abstract
For a micro-indentation hardness test with non-destructivity, the Nix–Gao model is widely used to describe tested hardness or microhardness variation with an indentation depth induced by indentation size effect, in which tested hardness approaches the macrohardness when the indentation depth is large enough. [...] Read more.
For a micro-indentation hardness test with non-destructivity, the Nix–Gao model is widely used to describe tested hardness or microhardness variation with an indentation depth induced by indentation size effect, in which tested hardness approaches the macrohardness when the indentation depth is large enough. Based on an analysis of hardness measurements on 10 body-centered cubic steels with diverse microstructure, this paper proposes an analytical relation between microhardness to macrohardness ratio and the indentation depth by explicitly linking characteristic indentation depth (a data-fitting parameter) to grain size and ferrite volume fraction using two different methods. In addition, the normal distribution theory is incorporated to consider the inevitable scatter of identical measurements resulting from material heterogeneity and machining/testing errors. Results show that the proposed model, with 96% reliability, can effectively predict microhardness variation with the indentation depth and its scatter. Full article
Show Figures

Figure 1

14 pages, 4452 KiB  
Article
High-Throughput Multi-Principal Element Alloy Exploration Using a Novel Composition Gradient Sintering Technique
by Brady L. Bresnahan and David L. Poerschke
Metals 2024, 14(5), 558; https://doi.org/10.3390/met14050558 - 9 May 2024
Viewed by 1185
Abstract
This work demonstrates the capabilities and advantages of a novel sintering technique to fabricate bulk composition gradient materials. Pressure distribution calculations were used to compare several tooling geometries for use with current-activated, pressure-assisted densification or spark plasma sintering to densify a gradient along [...] Read more.
This work demonstrates the capabilities and advantages of a novel sintering technique to fabricate bulk composition gradient materials. Pressure distribution calculations were used to compare several tooling geometries for use with current-activated, pressure-assisted densification or spark plasma sintering to densify a gradient along the long dimension of the specimen. The selected rectangular tooling design retains a low aspect ratio to ensure a uniform pressure distribution during consolidation by using a side loading configuration to form the gradient along the longest dimension. Composition gradients of NixCu1−x, MoxNb1−x, and MoNbTaWHfx (x from 0 to 1) were fabricated with the tooling. The microstructure, composition, and crystal structure were characterized along the gradient in the as-sintered condition and after annealing to partially homogenize the layers. The successful fabrication of a composition gradient in a difficult-to-process material like the refractory multi-principal element alloy system MoNbTaWHfx shows the utility of this approach for high-throughput screening of large material composition spaces. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Graphical abstract

11 pages, 1534 KiB  
Article
The Self-Expandable Impella CP (ECP) as a Mechanical Resuscitation Device
by Sebastian Billig, Rachad Zayat, Siarhei Yelenski, Christoph Nix, Eveline Bennek-Schoepping, Nadine Hochhausen and Matthias Derwall
Bioengineering 2024, 11(5), 456; https://doi.org/10.3390/bioengineering11050456 - 3 May 2024
Viewed by 1396
Abstract
The survival rate of cardiac arrest (CA) can be improved by utilizing percutaneous left ventricular assist devices (pLVADs) instead of conventional chest compressions. However, existing pLVADs require complex fluoroscopy-guided placement along a guidewire and suffer from limited blood flow due to their cross-sectional [...] Read more.
The survival rate of cardiac arrest (CA) can be improved by utilizing percutaneous left ventricular assist devices (pLVADs) instead of conventional chest compressions. However, existing pLVADs require complex fluoroscopy-guided placement along a guidewire and suffer from limited blood flow due to their cross-sectional area. The recently developed self-expandable Impella CP (ECP) pLVAD addresses these limitations by enabling guidewire-free placement and increasing the pump cross-sectional area. This study evaluates the feasibility of resuscitation using the Impella ECP in a swine CA model. Eleven anesthetized pigs (73.8 ± 1.7 kg) underwent electrically induced CA, were left untreated for 5 min and then received pLVAD insertion and activation. Vasopressors were administered and defibrillations were attempted. Five hours after the return of spontaneous circulation (ROSC), the pLVAD was removed, and animals were monitored for an additional hour. Hemodynamics were assessed and myocardial function was evaluated using echocardiography. Successful guidewire-free pLVAD placement was achieved in all animals. Resuscitation was successful in 75% of cases, with 3.5 ± 2.0 defibrillations and 1.8 ± 0.4 mg norepinephrine used per ROSC. Hemodynamics remained stable post-device removal, with no adverse effects or aortic valve damage observed. The Impella ECP facilitated rapid guidewire-free pLVAD placement in fibrillating hearts, enabling successful resuscitation. These findings support a broader clinical adoption of pLVADs, particularly the Impella ECP, for CA. Full article
(This article belongs to the Special Issue Recent Advances in Cardiac Assist Devices)
Show Figures

Figure 1

13 pages, 3015 KiB  
Article
Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates
by Yu Liu, Lijun Wang, Juangang Zhao, Zhipeng Wang, Touwen Fan, Ruizhi Zhang, Yuanzhi Wu, Xiangjun Zhou, Jie Zhou and Pingying Tang
Coatings 2024, 14(5), 536; https://doi.org/10.3390/coatings14050536 - 26 Apr 2024
Cited by 1 | Viewed by 747
Abstract
The impact of variations in the content of single alloying element on the properties of alloy materials has been extensively discussed, but the influence of this change on the content of multiple alloying elements in the alloy materials has been disregarded, as the [...] Read more.
The impact of variations in the content of single alloying element on the properties of alloy materials has been extensively discussed, but the influence of this change on the content of multiple alloying elements in the alloy materials has been disregarded, as the performances of alloy materials should be determined by the collective influence of multiple alloying elements. To address the aforementioned issue, the present study conducted a comprehensive investigation into the impact of variations in the content of alloying elements, namely Ni, Cr, and Co, on the structural and mechanical properties of L12-(Nix1Crx2Cox3)3Al precipitates using the high-throughput first-principles calculations and the partial least squares (PLS) regression, and the competitive mechanism among these three elements was elucidated. The findings demonstrate that the same alloying element may exhibit opposite effects in both single element analysis and comprehensive multi-element analysis, for example, the effect of Ni element on elastic constant C11, and the influence of Cr element on Vickers hardness and yield strength. The reason for this is that the impact of the content of other two alloying elements is ignored in the single element analysis. Meanwhile, the Co element demonstrates a significant competitive advantage in the comparative analysis of three alloying elements for different physical properties. Therefore, the methodology proposed in this study will facilitate the elucidation of competition mechanisms among different alloy elements and offer a more robust guidance for experimental preparation. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

14 pages, 9188 KiB  
Article
Effect of Ni Doping on the Thermoelectric Properties of YbCo2Zn20
by Jorge R. Galeano-Cabral, Benny Schundelmier, Olatunde Oladehin, Keke Feng, Juan C. Ordonez, Ryan E. Baumbach and Kaya Wei
Materials 2024, 17(8), 1906; https://doi.org/10.3390/ma17081906 - 19 Apr 2024
Viewed by 770
Abstract
Thermoelectric devices are both solid-state heat pumps and energy generators. Having a reversible process without moving parts is of high importance for applications in remote locations or under extreme conditions. Yet, most thermoelectric devices have a rather limited energy conversion efficiency due to [...] Read more.
Thermoelectric devices are both solid-state heat pumps and energy generators. Having a reversible process without moving parts is of high importance for applications in remote locations or under extreme conditions. Yet, most thermoelectric devices have a rather limited energy conversion efficiency due to the natural competition between high electrical conductivity and low thermal conductivity, both being essential conditions for achieving a high energy conversion efficiency. Heavy-fermion compounds YbT2Zn20 (T = Co, Rh, Ir) have been reported to be potential candidate materials for thermoelectric applications at low temperatures. Motivated by this result, we applied chemical substitution studies on the transition metal site in order to optimize the charge carrier concentration as well as promote more efficient phonon scatterings. Here, we present the latest investigation on the Ni-doped specimens YbCo2−xNixZn20, where enhanced thermoelectric figure of merit values have been obtained. Full article
Show Figures

Figure 1

14 pages, 5354 KiB  
Article
Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors
by Olena Yurchenko, Patrick Diehle, Frank Altmann, Katrin Schmitt and Jürgen Wöllenstein
Sensors 2024, 24(8), 2599; https://doi.org/10.3390/s24082599 - 18 Apr 2024
Cited by 2 | Viewed by 901
Abstract
The present work deals with the development of Co3O4-based catalysts for potential application in catalytic gas sensors for methane (CH4) detection. Among the transition-metal oxide catalysts, Co3O4 exhibits the highest activity in catalytic combustion. [...] Read more.
The present work deals with the development of Co3O4-based catalysts for potential application in catalytic gas sensors for methane (CH4) detection. Among the transition-metal oxide catalysts, Co3O4 exhibits the highest activity in catalytic combustion. Doping Co3O4 with another metal can further improve its catalytic performance. Despite their promising properties, Co3O4 materials have rarely been tested for use in catalytic gas sensors. In our study, the influence of catalyst morphology and Ni doping on the catalytic activity and thermal stability of Co3O4-based catalysts was analyzed by differential calorimetry by measuring the thermal response to 1% CH4. The morphology of two Co3O4 catalysts and two NixCo3−xO4 with a Ni:Co molar ratio of 1:2 and 1:5 was studied using scanning transmission electron microscopy and energy dispersive X-ray analysis. The catalysts were synthesized by (co)precipitation with KOH solution. The investigations showed that Ni doping can improve the catalytic activity of Co3O4 catalysts. The thermal response of Ni-doped catalysts was increased by more than 20% at 400 °C and 450 °C compared to one of the studied Co3O4 oxides. However, the thermal response of the other Co3O4 was even higher than that of NixCo3−xO4 catalysts (8% at 400 °C). Furthermore, the modification of Co3O4 with Ni simultaneously brings stability problems at higher operating temperatures (≥400 °C) due to the observed inhomogeneous Ni distribution in the structure of NixCo3−xO4. In particular, the NixCo3−xO4 with high Ni content (Ni:Co ratio 1:2) showed apparent NiO separation and thus a strong decrease in thermal response of 8% after 24 h of heat treatment at 400 °C. The reaction of the Co3O4 catalysts remained quite stable. Therefore, controlling the structure and morphology of Co3O4 achieved more promising results, demonstrating its applicability as a catalyst for gas sensing. Full article
(This article belongs to the Special Issue Eurosensors 2023 Selected Papers)
Show Figures

Figure 1

Back to TopTop