Sign in to use this feature.

Years

Between: -

Search Results (479)

Search Parameters:
Keywords = SHapley Additive exPlanations (SHAP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 19409 KiB  
Article
Decoding Jakarta Women’s Non-Working Travel-Mode Choice: Insights from Interpretable Machine-Learning Models
by Roosmayri Lovina Hermaputi and Chen Hua
Sustainability 2024, 16(19), 8454; https://doi.org/10.3390/su16198454 (registering DOI) - 28 Sep 2024
Abstract
Using survey data from three dwelling types in Jakarta, we examine how dwelling type, socioeconomic identity, and commuting distance affect women’s travel-mode choices and motivations behind women’s choices for nearby and distant non-working trips. We compared the performance of the multinomial logit (MNL) [...] Read more.
Using survey data from three dwelling types in Jakarta, we examine how dwelling type, socioeconomic identity, and commuting distance affect women’s travel-mode choices and motivations behind women’s choices for nearby and distant non-working trips. We compared the performance of the multinomial logit (MNL) model with two machine-learning classifiers, random forest (RF) and XGBoost, using Shapley additive explanations (SHAP) for interpretation. The models’ efficacy varies across different datasets, with XGBoost mostly outperforming other models. The women’s preferred commuting modes varied by dwelling type and trip purpose, but their motives for choosing the nearest activity were similar. Over half of the women rely on private motorized vehicles, with women living in the gated community heavily relying on private cars. For nearby shopping trips, low income and young age discourage women in urban villages (kampungs) and apartment complexes from walking. Women living in gated communities often choose private cars to fulfill household responsibilities, enabling them to access distant options. For nearby leisure, longer commutes discourage walking except for residents of apartment complexes. Car ownership and household responsibilities increase private car use for distant options. SHAP analysis offers practitioners insights into identifying key variables affecting travel-mode choice to design effective targeted interventions that address women’s mobility needs. Full article
(This article belongs to the Special Issue Sustainable Traffic and Mobility)
21 pages, 5948 KiB  
Article
Predicting the Compressive Strength of Sustainable Portland Cement–Fly Ash Mortar Using Explainable Boosting Machine Learning Techniques
by Hongwei Wang, Yuanbo Ding, Yu Kong, Daoyuan Sun, Ying Shi and Xin Cai
Materials 2024, 17(19), 4744; https://doi.org/10.3390/ma17194744 - 27 Sep 2024
Viewed by 199
Abstract
Unconfined compressive strength (UCS) is a critical property for assessing the engineering performances of sustainable materials, such as cement–fly ash mortar (CFAM), in the design of construction engineering projects. The experimental determination of UCS is time-consuming and expensive. Therefore, the present study aims [...] Read more.
Unconfined compressive strength (UCS) is a critical property for assessing the engineering performances of sustainable materials, such as cement–fly ash mortar (CFAM), in the design of construction engineering projects. The experimental determination of UCS is time-consuming and expensive. Therefore, the present study aims to model the UCS of CFAM with boosting machine learning methods. First, an extensive database consisting of 395 experimental data points derived from the literature was developed. Then, three typical boosting machine learning models were employed to model the UCS based on the database, including gradient boosting regressor (GBR), light gradient boosting machine (LGBM), and Ada-Boost regressor (ABR). Additionally, the importance of different input parameters was quantitatively analyzed using the SHapley Additive exPlanations (SHAP) approach. Finally, the best boosting machine learning model’s prediction accuracy was compared to ten other commonly used machine learning models. The results indicate that the GBR model outperformed the LGBM and ABR models in predicting the UCS of the CFAM. The GBR model demonstrated significant accuracy, with no significant difference between the measured and predicted UCS values. The SHAP interpretations revealed that the curing time (T) was the most critical feature influencing the UCS values. At the same time, the chemical composition of the fly ash, particularly Al2O3, was more influential than the fly-ash dosage (FAD) or water-to-binder ratio (W/B) in determining the UCS values. Overall, this study demonstrates that SHAP boosting machine learning technology can be a useful tool for modeling and predicting UCS values of CFAM with good accuracy. It could also be helpful for CFAM design by saving time and costs on experimental tests. Full article
Show Figures

Figure 1

27 pages, 13823 KiB  
Article
Application of Remote Sensing and Explainable Artificial Intelligence (XAI) for Wildfire Occurrence Mapping in the Mountainous Region of Southwest China
by Jia Liu, Yukuan Wang, Yafeng Lu, Pengguo Zhao, Shunjiu Wang, Yu Sun and Yu Luo
Remote Sens. 2024, 16(19), 3602; https://doi.org/10.3390/rs16193602 - 27 Sep 2024
Viewed by 272
Abstract
The ecosystems in the mountainous region of Southwest China are exceptionally fragile and constitute one of the global hotspots for wildfire occurrences. Understanding the complex interactions between wildfires and their environmental and anthropogenic factors is crucial for effective wildfire modeling and management. Despite [...] Read more.
The ecosystems in the mountainous region of Southwest China are exceptionally fragile and constitute one of the global hotspots for wildfire occurrences. Understanding the complex interactions between wildfires and their environmental and anthropogenic factors is crucial for effective wildfire modeling and management. Despite significant advancements in wildfire modeling using machine learning (ML) methods, their limited explainability remains a barrier to utilizing them for in-depth wildfire analysis. This paper employs Logistic Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) models along with the MODIS global fire atlas dataset (2004–2020) to study the influence of meteorological, topographic, vegetation, and human factors on wildfire occurrences in the mountainous region of Southwest China. It also utilizes Shapley Additive exPlanations (SHAP) values, a method within explainable artificial intelligence (XAI), to demonstrate the influence of key controlling factors on the frequency of fire occurrences. The results indicate that wildfires in this region are primarily influenced by meteorological conditions, particularly sunshine duration, relative humidity (seasonal and daily), seasonal precipitation, and daily land surface temperature. Among local variables, altitude, proximity to roads, railways, residential areas, and population density are significant factors. All models demonstrate strong predictive capabilities with AUC values over 0.8 and prediction accuracies ranging from 76.0% to 95.0%. XGBoost outperforms LR and RF in predictive accuracy across all factor groups (climatic, local, and combinations thereof). The inclusion of topographic factors and human activities enhances model optimization to some extent. SHAP results reveal critical features that significantly influence wildfire occurrences, and the thresholds of positive or negative changes, highlighting that relative humidity, rain-free days, and land use land cover changes (LULC) are primary contributors to frequent wildfires in this region. Based on regional differences in wildfire drivers, a wildfire-risk zoning map for the mountainous region of Southwest China is created. Areas identified as high risk are predominantly located in the Northwestern and Southern parts of the study area, particularly in Yanyuan and Miyi, while areas assessed as low risk are mainly distributed in the Northeastern region. Full article
Show Figures

Figure 1

18 pages, 9353 KiB  
Article
Sky-Scanning for Energy: Unveiling Rural Electricity Consumption Patterns through Satellite Imagery’s Convolutional Features
by Yaofu Huang, Weipan Xu, Dongsheng Chen, Qiumeng Li, Weihuan Deng and Xun Li
ISPRS Int. J. Geo-Inf. 2024, 13(10), 345; https://doi.org/10.3390/ijgi13100345 - 26 Sep 2024
Viewed by 259
Abstract
The pursuit of the Sustainable Development Goals has highlighted rural electricity consumption patterns, necessitating innovative analytical approaches. This paper introduces a novel method for predicting rural electricity consumption by leveraging deep convolutional features extracted from satellite imagery. The study employs a pretrained remote [...] Read more.
The pursuit of the Sustainable Development Goals has highlighted rural electricity consumption patterns, necessitating innovative analytical approaches. This paper introduces a novel method for predicting rural electricity consumption by leveraging deep convolutional features extracted from satellite imagery. The study employs a pretrained remote sensing interpretation model for feature extraction, streamlining the training process and enhancing the prediction efficiency. A random forest model is then used for electricity consumption prediction, while the SHapley Additive exPlanations (SHAP) model assesses the feature importance. To explain the human geography implications of feature maps, this research develops a feature visualization method grounded in expert knowledge. By selecting feature maps with higher interpretability, the “black-box” model based on remote sensing images is further analyzed and reveals the geographical features that affect electricity consumption. The methodology is applied to villages in Xinxing County, Guangdong Province, China, achieving high prediction accuracy with a correlation coefficient of 0.797. The study reveals a significant positive correlations between the characteristics and spatial distribution of houses and roads in the rural built environment and electricity demand. Conversely, natural landscape elements, such as farmland and forests, exhibit significant negative correlations with electricity demand predictions. These findings offer new insights into rural electricity consumption patterns and provide theoretical support for electricity planning and decision making in line with the Sustainable Development Goals. Full article
Show Figures

Figure 1

24 pages, 10071 KiB  
Article
Applying Machine Learning and SHAP Method to Identify Key Influences on Middle-School Students’ Mathematics Literacy Performance
by Ying Huang, Ying Zhou, Jihe Chen and Danyan Wu
J. Intell. 2024, 12(10), 93; https://doi.org/10.3390/jintelligence12100093 - 26 Sep 2024
Viewed by 486
Abstract
The PISA 2022 literacy assessment highlights a significant decline in math performance among most OECD countries, with the magnitude of this decline being approximately three times that of the previous round. Remarkably, Hong Kong, Macao, Taipei, Singapore, Japan, and Korea ranked in the [...] Read more.
The PISA 2022 literacy assessment highlights a significant decline in math performance among most OECD countries, with the magnitude of this decline being approximately three times that of the previous round. Remarkably, Hong Kong, Macao, Taipei, Singapore, Japan, and Korea ranked in the top six among all participating countries or economies, with Taipei, Singapore, Japan, and Korea also demonstrating improved performance. Given the widespread concern about the factors influencing secondary-school students’ mathematical literacy, this paper adopts machine learning and the SHapley Additive exPlanations (SHAP) method to analyze 34,968 samples and 151 features from six East Asian education systems within the PISA 2022 dataset, aiming to pinpoint the crucial factors that affect middle-school students’ mathematical literacy. First, the XGBoost model has the highest prediction accuracy for math literacy performance. Second, 15 variables were identified as significant predictors of mathematical literacy across the student population, particularly variables such as mathematics self-efficacy (MATHEFF) and expected occupational status (BSMJ). Third, mathematics self-efficacy was determined to be the most influential factor. Fourth, the factors influencing mathematical literacy vary among individual students, including the key influencing factors, the direction (positive or negative) of their impact, and the extent of this influence. Finally, based on our findings, four recommendations are proffered to enhance the mathematical literacy performance of secondary-school students. Full article
Show Figures

Figure 1

19 pages, 12489 KiB  
Article
Assessing the Potential of UAV for Large-Scale Fractional Vegetation Cover Mapping with Satellite Data and Machine Learning
by Xunlong Chen, Yiming Sun, Xinyue Qin, Jianwei Cai, Minghui Cai, Xiaolong Hou, Kaijie Yang and Houxi Zhang
Remote Sens. 2024, 16(19), 3587; https://doi.org/10.3390/rs16193587 - 26 Sep 2024
Viewed by 305
Abstract
Fractional vegetation cover (FVC) is an essential metric forvaluating ecosystem health and soil erosion. Traditional ground-measuring methods are inadequate for large-scale FVC monitoring, while remote sensing-based estimation approaches face issues such as spatial scale discrepancies between ground truth data and image pixels, as [...] Read more.
Fractional vegetation cover (FVC) is an essential metric forvaluating ecosystem health and soil erosion. Traditional ground-measuring methods are inadequate for large-scale FVC monitoring, while remote sensing-based estimation approaches face issues such as spatial scale discrepancies between ground truth data and image pixels, as well as limited sample representativeness. This study proposes a method for FVC estimation integrating uncrewed aerial vehicle (UAV) and satellite imagery using machine learning (ML) models. First, we assess the vegetation extraction performance of three classification methods (OBIA-RF, threshold, and K-means) under UAV imagery. The optimal method is then selected for binary classification and aggregated to generate high-accuracy FVC reference data matching the spatial resolutions of different satellite images. Subsequently, we construct FVC estimation models using four ML algorithms (KNN, MLP, RF, and XGBoost) and utilize the SHapley Additive exPlanation (SHAP) method to assess the impact of spectral features and vegetation indices (VIs) on model predictions. Finally, the best model is used to map FVC in the study region. Our results indicate that the OBIA-RF method effectively extract vegetation information from UAV images, achieving an average precision and recall of 0.906 and 0.929, respectively. This method effectively generates high-accuracy FVC reference data. With the improvement in the spatial resolution of satellite images, the variability of FVC data decreases and spatial continuity increases. The RF model outperforms others in FVC estimation at 10 m and 20 m resolutions, with R2 values of 0.827 and 0.929, respectively. Conversely, the XGBoost model achieves the highest accuracy at a 30 m resolution, with an R2 of 0.847. This study also found that FVC was significantly related to a number of satellite image VIs (including red edge and near-infrared bands), and this correlation was enhanced in coarser resolution images. The method proposed in this study effectively addresses the shortcomings of conventional FVC estimation methods, improves the accuracy of FVC monitoring in soil erosion areas, and serves as a reference for large-scale ecological environment monitoring using UAV technology. Full article
Show Figures

Figure 1

13 pages, 1175 KiB  
Article
Explainable Ensemble Learning Approaches for Predicting the Compression Index of Clays
by Qi Ge, Yijie Xia, Junwei Shu, Jin Li and Hongyue Sun
J. Mar. Sci. Eng. 2024, 12(10), 1701; https://doi.org/10.3390/jmse12101701 - 25 Sep 2024
Viewed by 352
Abstract
Accurate prediction of the compression index (cc) is essential for geotechnical infrastructure design, especially in clay-rich coastal regions. Traditional methods for determining cc are often time-consuming and inconsistent due to regional variability. This study presents an explainable ensemble learning [...] Read more.
Accurate prediction of the compression index (cc) is essential for geotechnical infrastructure design, especially in clay-rich coastal regions. Traditional methods for determining cc are often time-consuming and inconsistent due to regional variability. This study presents an explainable ensemble learning framework for predicting the cc of clays. Using a comprehensive dataset of 1080 global samples, four key geotechnical input variables—liquid limit (LL), plasticity index (PI), initial void ratio (e0), and natural water content w—were leveraged for accurate cc prediction. Missing data were addressed with K-Nearest Neighbors (KNN) imputation, effectively filling data gaps while preserving the dataset’s distribution characteristics. Ensemble learning techniques, including Random Forest (RF), Gradient Boosting Decision Trees (GBDT), Extreme Gradient Boosting (XGBoost), and a Stacking model, were applied. Among these, the Stacking model demonstrated the highest predictive performance with a Root Mean Squared Error (RMSE) of 0.061, a Mean Absolute Error (MAE) of 0.043, and a Coefficient of Determination (R2) value of 0.848 on the test set. Model interpretability was ensured through SHapley Additive exPlanations (SHAP), with e0 identified as the most influential predictor. The proposed framework significantly improves both prediction accuracy and interpretability, offering a valuable tool to enhance geotechnical design efficiency in coastal and clay-rich environments. Full article
Show Figures

Figure 1

15 pages, 3049 KiB  
Article
Multimodal Ultrasound Radiomic Technology for Diagnosing Benign and Malignant Thyroid Nodules of Ti-Rads 4-5: A Multicenter Study
by Luyao Wang, Chengjie Wang, Xuefei Deng, Yan Li, Wang Zhou, Yilv Huang, Xuan Chu, Tengfei Wang, Hai Li and Yongchao Chen
Sensors 2024, 24(19), 6203; https://doi.org/10.3390/s24196203 - 25 Sep 2024
Viewed by 245
Abstract
This study included 468 patients and aimed to use multimodal ultrasound radiomic technology to predict the malignancy of TI-RADS 4-5 thyroid nodules. First, radiomic features are extracted from conventional two-dimensional ultrasound (transverse ultrasound and longitudinal ultrasound), strain elastography (SE), and shear-wave-imaging (SWE) images. [...] Read more.
This study included 468 patients and aimed to use multimodal ultrasound radiomic technology to predict the malignancy of TI-RADS 4-5 thyroid nodules. First, radiomic features are extracted from conventional two-dimensional ultrasound (transverse ultrasound and longitudinal ultrasound), strain elastography (SE), and shear-wave-imaging (SWE) images. Next, the least absolute shrinkage and selection operator (LASSO) is used to screen out features related to malignant tumors. Finally, a support vector machine (SVM) is used to predict the malignancy of thyroid nodules. The Shapley additive explanation (SHAP) method was used to intuitively analyze the specific contributions of radiomic features to the model’s prediction. Our proposed model has AUCs of 0.971 and 0.856 in the training and testing sets, respectively. Our proposed model has a higher prediction accuracy compared to those of models with other modal combinations. In the external validation set, the AUC of the model is 0.779, which proves that the model has good generalization ability. Moreover, SHAP analysis was used to examine the overall impacts of various radiomic features on model predictions and local explanations for individual patient evaluations. Our proposed multimodal ultrasound radiomic model can effectively integrate different data collected using multiple ultrasound sensors and has good diagnostic performance for TI-RADS 4-5 thyroid nodules. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 1353 KiB  
Article
Application of Deep Learning for Heart Attack Prediction with Explainable Artificial Intelligence
by Elias Dritsas and Maria Trigka
Computers 2024, 13(10), 244; https://doi.org/10.3390/computers13100244 - 25 Sep 2024
Viewed by 467
Abstract
Heart disease remains a leading cause of mortality worldwide, and the timely and accurate prediction of heart attack is crucial yet challenging due to the complexity of the condition and the limitations of traditional diagnostic methods. These challenges include the need for resource-intensive [...] Read more.
Heart disease remains a leading cause of mortality worldwide, and the timely and accurate prediction of heart attack is crucial yet challenging due to the complexity of the condition and the limitations of traditional diagnostic methods. These challenges include the need for resource-intensive diagnostics and the difficulty in interpreting complex predictive models in clinical settings. In this study, we apply and compare the performance of five well-known Deep Learning (DL) models, namely Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a Hybrid model, to a heart attack prediction dataset. Each model was properly tuned and evaluated using accuracy, precision, recall, F1-score, and Area Under the Receiver Operating Characteristic Curve (AUC) as performance metrics. Additionally, by integrating an Explainable Artificial intelligence (XAI) technique, specifically Shapley Additive Explanations (SHAP), we enhance the interpretability of the predictions, making them actionable for healthcare professionals and thereby enhancing clinical applicability. The experimental results revealed that the Hybrid model prevailed, achieving the highest performance across all metrics. Specifically, the Hybrid model attained an accuracy of 91%, precision of 89%, recall of 90%, F1-score of 89%, and an AUC of 0.95. These results highlighted the Hybrid model’s superior ability to predict heart attacks, attributed to its efficient handling of sequential data and long-term dependencies. Full article
Show Figures

Figure 1

27 pages, 2051 KiB  
Article
A Transparent Pipeline for Identifying Sexism in Social Media: Combining Explainability with Model Prediction
by Hadi Mohammadi, Anastasia Giachanou and Ayoub Bagheri
Appl. Sci. 2024, 14(19), 8620; https://doi.org/10.3390/app14198620 - 24 Sep 2024
Viewed by 386
Abstract
In this study, we present a new approach that combines multiple Bidirectional Encoder Representations from Transformers (BERT) architectures with a Convolutional Neural Network (CNN) framework designed for sexism detection in text at a granular level. Our method relies on the analysis and identification [...] Read more.
In this study, we present a new approach that combines multiple Bidirectional Encoder Representations from Transformers (BERT) architectures with a Convolutional Neural Network (CNN) framework designed for sexism detection in text at a granular level. Our method relies on the analysis and identification of the most important terms contributing to sexist content using Shapley Additive Explanations (SHAP) values. This approach involves defining a range of Sexism Scores based on both model predictions and explainability, moving beyond binary classification to provide a deeper understanding of the sexism-detection process. Additionally, it enables us to identify specific parts of a sentence and their respective contributions to this range, which can be valuable for decision makers and future research. In conclusion, this study introduces an innovative method for enhancing the clarity of large language models (LLMs), which is particularly relevant in sensitive domains such as sexism detection. The incorporation of explainability into the model represents a significant advancement in this field. The objective of our study is to bridge the gap between advanced technology and human comprehension by providing a framework for creating AI models that are both efficient and transparent. This approach could serve as a pipeline for future studies to incorporate explainability into language models. Full article
(This article belongs to the Special Issue Data and Text Mining: New Approaches, Achievements and Applications)
Show Figures

Figure 1

25 pages, 10498 KiB  
Article
Experimental and Transformer-Based Study on Seismic Behavior and Plastic Hinge Length of RC Columns Reinforced with End-Fixed Ultra-High Strength Rebars
by Yue Wen, Gaochuang Cai and Prafulla Malla
Buildings 2024, 14(10), 3046; https://doi.org/10.3390/buildings14103046 - 24 Sep 2024
Viewed by 571
Abstract
The application of machine learning (ML) in structural engineering is receiving increasing attention recently. This paper experimentally studies three self-restoring reinforced concrete (SRRC) columns reinforced with low-bond ultra-high strength rebars, to first discuss the reliability and evaluation of the SRRC columns under multiple [...] Read more.
The application of machine learning (ML) in structural engineering is receiving increasing attention recently. This paper experimentally studies three self-restoring reinforced concrete (SRRC) columns reinforced with low-bond ultra-high strength rebars, to first discuss the reliability and evaluation of the SRRC columns under multiple reversed cyclic (MRC) loads induced by strong earthquakes, and to also first introduce the Transformer method into the analysis and discussion of structural tests. The tests confirmed the superior seismic behavior and high self-centering performance of the columns and presented how MRC loads affect the seismic performance of SRRC columns in terms of the lateral load-carrying capacity and energy dissipation capacity. Superior to conventional methods, a high-accuracy Transformer-based model is proposed to evaluate the plastic hinge height (PHL) of the tested SRRC columns compared with the other three algorithms (MLP, KNN, and XGBoost). Furthermore, the Shapley Additive exPlanations (SHAP) approach is adopted to explain the insight relationship between the structural parameters and PHL of the columns. Full article
Show Figures

Figure 1

23 pages, 3534 KiB  
Article
Global Incidence of Diarrheal Diseases—An Update Using an Interpretable Predictive Model Based on XGBoost and SHAP: A Systematic Analysis
by Dan Liang, Li Wang, Shuang Liu, Shanglin Li, Xing Zhou, Yun Xiao, Panpan Zhong, Yanxi Chen, Changyi Wang, Shan Xu, Juan Su, Zhen Luo, Changwen Ke and Yingsi Lai
Nutrients 2024, 16(18), 3217; https://doi.org/10.3390/nu16183217 - 23 Sep 2024
Viewed by 475
Abstract
Background: Diarrheal disease remains a significant public health issue, particularly affecting young children and older adults. Despite efforts to control and prevent these diseases, their incidence continues to be a global concern. Understanding the trends in diarrhea incidence and the factors influencing these [...] Read more.
Background: Diarrheal disease remains a significant public health issue, particularly affecting young children and older adults. Despite efforts to control and prevent these diseases, their incidence continues to be a global concern. Understanding the trends in diarrhea incidence and the factors influencing these trends is crucial for developing effective public health strategies. Objective: This study aimed to explore the temporal trends in diarrhea incidence and associated factors from 1990 to 2019 and to project the incidence for the period 2020–2040 at global, regional, and national levels. We aimed to identify key factors influencing these trends to inform future prevention and control strategies. Methods: The eXtreme Gradient Boosting (XGBoost) model was used to predict the incidence from 2020 to 2040 based on demographic, meteorological, water sanitation, and sanitation and hygiene indicators. SHapley Additive exPlanations (SHAP) value was performed to explain the impact of variables in the model on the incidence. Estimated annual percentage change (EAPC) was calculated to assess the temporal trends of age-standardized incidence rates (ASIRs) from 1990 to 2019 and from 2020 to 2040. Results: Globally, both incident cases and ASIRs of diarrhea increased between 2010 and 2019. The incident cases are expected to rise from 2020 to 2040, while the ASIRs and incidence rates are predicted to slightly decrease. During the observed (1990–2019) and predicted (2020–2040) periods, adults aged 60 years and above exhibited an upward trend in incidence rate as age increased, while children aged < 5 years consistently had the highest incident cases. The SHAP framework was applied to explain the model predictions. We identified several risk factors associated with an increased incidence of diarrhea, including age over 60 years, yearly precipitation exceeding 3000 mm, temperature above 20 °C for both maximum and minimum values, and vapor pressure deficit over 1500 Pa. A decreased incidence rate was associated with relative humidity over 60%, wind speed over 4 m/s, and populations with above 80% using safely managed drinking water services and over 40% using safely managed sanitation services. Conclusions: Diarrheal diseases are still serious public health concerns, with predicted increases in the incident cases despite decreasing ASIRs globally. Children aged < 5 years remain highly susceptible to diarrheal diseases, yet the incidence rate in the older adults aged 60 plus years still warrants additional attention. Additionally, more targeted efforts to improve access to safe drinking water and sanitation services are crucial for reducing the incidence of diarrheal diseases globally. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

17 pages, 2243 KiB  
Article
Interpretable Machine Learning-Based Influence Factor Identification for 3D Printing Process–Structure Linkages
by Fuguo Liu, Ziru Chen, Jun Xu, Yanyan Zheng, Wenyi Su, Maozai Tian and Guodong Li
Polymers 2024, 16(18), 2680; https://doi.org/10.3390/polym16182680 - 23 Sep 2024
Viewed by 609
Abstract
Three-dimensional printing technology is a rapid prototyping technology that has been widely used in manufacturing. However, the printing parameters in the 3D printing process have an important impact on the printing effect, so these parameters need to be optimized to obtain the best [...] Read more.
Three-dimensional printing technology is a rapid prototyping technology that has been widely used in manufacturing. However, the printing parameters in the 3D printing process have an important impact on the printing effect, so these parameters need to be optimized to obtain the best printing effect. In order to further understand the impact of 3D printing parameters on the printing effect, make theoretical explanations from the dimensions of mathematical models, and clarify the rationality of certain important parameters in previous experience, the purpose of this study is to predict the impact of 3D printing parameters on the printing effect by using machine learning methods. Specifically, we used four machine learning algorithms: SVR (support vector regression): A regression method that uses the principle of structural risk minimization to find a hyperplane in a high-dimensional space that best fits the data, with the goal of minimizing the generalization error bound. Random forest: An ensemble learning method that constructs a multitude of decision trees and outputs the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. GBDT (gradient boosting decision tree): An iterative ensemble technique that combines multiple weak prediction models (decision trees) into a strong one by sequentially minimizing the loss function. Each subsequent tree is built to correct the errors of the previous tree. XGB (extreme gradient boosting): An optimized and efficient implementation of gradient boosting that incorporates various techniques to improve the performance of gradient boosting frameworks, such as regularization and sparsity-aware splitting algorithms. The influence of the print parameters on the results under the feature importance and SHAP (Shapley additive explanation) values is compared to determine which parameters have the greatest impact on the print effect. We also used feature importance and SHAP values to compare the importance impact of print parameters on results. In the experiment, we used a dataset with multiple parameters and divided it into a training set and a test set. Through Bayesian optimization and grid search, we determined the best hyperparameters for each algorithm and used the best model to make predictions for the test set. We compare the predictive performance of each model and confirm that the extrusion expansion ratio, elastic modulus, and elongation at break have the greatest influence on the printing effect, which is consistent with the experience. In future, we will continue to delve into methods for optimizing 3D printing parameters and explore how interpretive machine learning can be applied to the 3D printing process to achieve more efficient and reliable printing results. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

17 pages, 5338 KiB  
Article
The Application of Machine Learning Algorithms to Bond Strength between Steel Rebars and Concrete Using Bayesian Optimization
by Huajun Yan, Nan Xie and Dandan Shen
Materials 2024, 17(18), 4641; https://doi.org/10.3390/ma17184641 - 21 Sep 2024
Viewed by 735
Abstract
The purpose of this study is to estimate the bond strength between steel rebars and concrete using machine learning (ML) algorithms with Bayesian optimization (BO). It is important to conduct beam tests to determine the bond strength since it is affected by stress [...] Read more.
The purpose of this study is to estimate the bond strength between steel rebars and concrete using machine learning (ML) algorithms with Bayesian optimization (BO). It is important to conduct beam tests to determine the bond strength since it is affected by stress fields. A machine learning approach for bond strength based on 401 beam tests with six impact factors is presented in this paper. The model is composed of three standard algorithms, including random forest (RF), support vector regression (SVR), and extreme gradient boosting (XGBoost), combined with the BO technique. Compared to empirical models, BO-XGB`oost was found to be the most accurate method, with values of R2, MAE, and RMSE of 0.87, 0.897 MPa, and 1.516 MPa for the test set. The development of a simplified model that contains three input variables (diameter of the rebar, yield strength of reinforcement, concrete compressive strength) has been proposed to make it more convenient to apply. According to this prediction, the Shapley additive explanation (SHAP) can help explain why the ML-based model predicts the particular outcome it does. By utilizing machine learning algorithms to predict complex interfacial mechanical behavior, it is possible to improve the accuracy of the model. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 1206 KiB  
Article
Electricity Consumption Forecasting: An Approach Using Cooperative Ensemble Learning with SHapley Additive exPlanations
by Eduardo Luiz Alba, Gilson Adamczuk Oliveira, Matheus Henrique Dal Molin Ribeiro and Érick Oliveira Rodrigues
Forecasting 2024, 6(3), 839-863; https://doi.org/10.3390/forecast6030042 - 20 Sep 2024
Viewed by 364
Abstract
Electricity expense management presents significant challenges, as this resource is susceptible to various influencing factors. In universities, the demand for this resource is rapidly growing with institutional expansion and has a significant environmental impact. In this study, the machine learning models long short-term [...] Read more.
Electricity expense management presents significant challenges, as this resource is susceptible to various influencing factors. In universities, the demand for this resource is rapidly growing with institutional expansion and has a significant environmental impact. In this study, the machine learning models long short-term memory (LSTM), random forest (RF), support vector regression (SVR), and extreme gradient boosting (XGBoost) were trained with historical consumption data from the Federal Institute of Paraná (IFPR) over the last seven years and climatic variables to forecast electricity consumption 12 months ahead. Datasets from two campuses were adopted. To improve model performance, feature selection was performed using Shapley additive explanations (SHAP), and hyperparameter optimization was carried out using genetic algorithm (GA) and particle swarm optimization (PSO). The results indicate that the proposed cooperative ensemble learning approach named Weaker Separator Booster (WSB) exhibited the best performance for datasets. Specifically, it achieved an sMAPE of 13.90% and MAE of 1990.87 kWh for the IFPR–Palmas Campus and an sMAPE of 18.72% and MAE of 465.02 kWh for the Coronel Vivida Campus. The SHAP analysis revealed distinct feature importance patterns across the two IFPR campuses. A commonality that emerged was the strong influence of lagged time-series values and a minimal influence of climatic variables. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

Back to TopTop