Sign in to use this feature.

Years

Between: -

Search Results (3,871)

Search Parameters:
Keywords = TB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 954 KiB  
Article
Differential Diagnosis of Tuberculosis and Sarcoidosis by Immunological Features Using Machine Learning
by Nikolay Osipov, Igor Kudryavtsev, Dmitry Spelnikov, Artem Rubinstein, Ekaterina Belyaeva, Anastasia Kulpina, Dmitry Kudlay and Anna Starshinova
Diagnostics 2024, 14(19), 2188; https://doi.org/10.3390/diagnostics14192188 - 30 Sep 2024
Abstract
Despite the achievements of modern medicine, tuberculosis remains one of the leading causes of mortality globally. The difficulties in differential diagnosis have particular relevance in the case of suspicion of tuberculosis with other granulomatous diseases. The most similar clinical and radiologic changes are [...] Read more.
Despite the achievements of modern medicine, tuberculosis remains one of the leading causes of mortality globally. The difficulties in differential diagnosis have particular relevance in the case of suspicion of tuberculosis with other granulomatous diseases. The most similar clinical and radiologic changes are sarcoidosis. The aim of this study is to apply mathematical modeling to determine diagnostically significant immunological parameters and an algorithm for the differential diagnosis of tuberculosis and sarcoidosis. Materials and methods: The serum samples of patients with sarcoidosis (SD) (n = 29), patients with pulmonary tuberculosis (TB) (n = 32) and the control group (n = 31) (healthy subjects) collected from 2017 to 2022 (the average age 43.4 ± 5.3 years) were examined. Circulating ‘polarized’ T-helper cell subsets were analyzed by multicolor flow cytometry. A symbolic regression method was used to find general mathematical relations between cell concentrations and diagnosis. The parameters of the selected model were finally fitted through multi-objective optimization applied to two conflicting indices: sensitivity to sarcoidosis and sensitivity to tuberculosis. Results: The difference in Bm2 and CD5−CD27− concentrations was found to be more significant for the differential diagnosis of sarcoidosis and tuberculosis than any individual concentrations: the combined feature Bm2 − [CD5−CD27−] differentiates sarcoidosis and tuberculosis with p < 0.00001 and AUC = 0.823. An algorithm for differential diagnosis was developed. It is based on the linear model with two variables: the first variable is the difference Bm2 − [CD5−CD27−] mentioned above, and the second is the naïve-Tregs concentration. The algorithm uses the model twice and returns “dubious” in 26.7% of cases for patients with sarcoidosis and in 16.1% of cases for patients with tuberculosis. For the remaining patients with one of these two diagnoses, its sensitivity to sarcoidosis is 90.5%, and its sensitivity to tuberculosis is 88.5%. Conclusions: A simple algorithm was developed that can distinguish, by certain immunological features, the cases in which sarcoidosis is likely to be present instead of tuberculosis. Such cases may be further investigated to rule out tuberculosis conclusively. The mathematical model underlying the algorithm is based on the analysis of “naive” T-regulatory cells and “naive” B-cells. This may be a promising approach for differential diagnosis between pulmonary sarcoidosis and pulmonary tuberculosis. The findings may be useful in the absence of clear differential diagnostic criteria between pulmonary tuberculosis and sarcoidosis. Full article
Show Figures

Figure 1

15 pages, 3823 KiB  
Article
Polyester Adhesives via One-Pot, One-Step Copolymerization of Cyclic Anhydride, Epoxide, and Lactide
by Ryota Suzuki, Toshiki Miwa, Ryosuke Nunokawa, Ayaka Sumi, Masaru Ando, Katsuaki Takahashi, Akira Takagi, Takuya Yamamoto, Kenji Tajima, Feng Li, Takuya Isono and Toshifumi Satoh
Polymers 2024, 16(19), 2767; https://doi.org/10.3390/polym16192767 - 30 Sep 2024
Abstract
Polyesters (PEs) are sustainable alternatives for conventional polymers owing to their potential degradability, recyclability, and the wide availability of bio-based monomers for their synthesis. Herein, we used a one-pot, one-step self-switchable polymerization linking the ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides with the [...] Read more.
Polyesters (PEs) are sustainable alternatives for conventional polymers owing to their potential degradability, recyclability, and the wide availability of bio-based monomers for their synthesis. Herein, we used a one-pot, one-step self-switchable polymerization linking the ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides with the ring-opening polymerization (ROP) of L-lactide (LLA) to synthesize PE-based hot-melt adhesives with a high bio-based content. In the cesium pivalate-catalyzed self-switchable polymerization of glutaric anhydride (GA), butylene oxide (BO), and LLA using a diol initiator, the ROAC of GA and BO proceeded whereas the ROP of LLA simultaneously proceeded very slowly, resulting in a copolyester consisting of poly(GA-alt-BO) and poly(L-lactide) (PLLA) segments with tapered regions, that is, PLLA-tapered block-poly(GA-alt-BO)-tapered block-PLLA (PLLA-tb-poly(GA-alt-BO)-tb-PLLA). Additionally, a series of tapered-block or real-block copolyesters consisting of poly(anhydride-alt-epoxide) (A segment) and PLLA (B segment) with AB-, BAB-, (AB)3-, and (AB)4-type architectures of different compositions and molecular weights were synthesized by varying the monomer combinations, alcohol initiators, and initial feed ratios. The lap shear tests of these copolyesters revealed an excellent relationship between the adhesive strength and polymer structural parameters. The (AB)4-type star-block copolyester (poly(GA-alt-BO)-tb-PLLA)4 exhibited the best adhesive strength (6.74 ± 0.64 MPa), comparable to that of commercial products, such as PE-based and poly(vinyl acetate)-based hot-melt adhesives. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 2150 KiB  
Review
Liquid and Tissue Biopsies for Lung Cancer: Algorithms and Perspectives
by Paul Hofman
Cancers 2024, 16(19), 3340; https://doi.org/10.3390/cancers16193340 - 29 Sep 2024
Abstract
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or [...] Read more.
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or are evaluated during clinical trials. Since the molecular targets to be identified are more and more complex and numerous, it is now mandatory to use NGS. NGS can be developed from both tissue and fluid (mainly blood). The blood tests in oncology, so-called “liquid biopsies” (LB), are performed with plasmatic circulating free DNA (cf-DNA) and are complementary to the molecular testing performed with a TB. LB use in lung cancer is associated with international guidelines, but additional algorithms could be set up. However, even if useful for better care of patients, notably with advanced and metastatic NS-NSCLC, until now LB are not often integrated into daily practice, at least in Europe and notably in France. The purpose of this review is to describe the different opportunities and algorithms leading to the identification of the molecular signature of NS-NSCLC, using both tissue and liquid biopsies, and to introduce the principle limitations but also some perspectives in this field. Full article
Show Figures

Figure 1

10 pages, 580 KiB  
Article
Treatment Outcomes of Tuberculosis Among Artisanal and Small-Scale Miners in Zimbabwe: A Follow-Up Observational Study Using Secondary Data
by Dingani Moyo, Fungai Kavenga, Ronald Thulani Ncube, Florence Moyo, Nathan Chiboyiwa, Andrew Nyambo, Godknows Madziva, Mpokiseng Ncube, Orippa Muzvidziwa, Tafadzwa Mperi, Blessings Chigaraza, Victoria Varaidzo Chizana, Plassey Ropafadzo Chinove, Frank Mudzingwa, Kudzaishe Mutungamiri and Collins Timire
Int. J. Environ. Res. Public Health 2024, 21(10), 1282; https://doi.org/10.3390/ijerph21101282 - 26 Sep 2024
Abstract
In Zimbabwe, artisanal and small-scale miners (ASMs) are a key vulnerable group with high risk for tuberculosis (TB), HIV, and silicosis. The main purpose of this study was to investigate treatment outcomes of TB among ASMs. We conducted a follow-up observational study using [...] Read more.
In Zimbabwe, artisanal and small-scale miners (ASMs) are a key vulnerable group with high risk for tuberculosis (TB), HIV, and silicosis. The main purpose of this study was to investigate treatment outcomes of TB among ASMs. We conducted a follow-up observational study using secondary data. We analyzed data from 208 ASMs treated for TB at two occupational health clinics. We found a high treatment success rate of 87%, comparable to the national average for drug-sensitive TB. Unsuccessful outcomes were due to death (5%) and loss to follow-up (7%). Over a quarter of ASMs had unknown HIV status. Our study is the first to document treatment outcomes of TB among ASMs in Zimbabwe. Encouragingly, this study demonstrates the possibility of achieving good TB treatment outcomes even among highly mobile populations like ASMs. Further research is needed to analyze leakages across the whole TB patient pathway among ASMs. Additionally, addressing the high rate of unknown HIV statuses among ASMs is crucial to further improve overall TB treatment outcomes in this population. Full article
Show Figures

Figure 1

13 pages, 10026 KiB  
Case Report
Novel Treatment for Pre-XDR Tuberculosis Linked to a Lethal Case of Acute Myocarditis
by Serafeim-Chrysovalantis Kotoulas, Pavlos Poulios, Georgia Chasapidou, Elena Angeloudi, Triantafyllenia Bargiota, Maria Stougianni, Katerina Manika and Eleni Mouloudi
Diagnostics 2024, 14(19), 2139; https://doi.org/10.3390/diagnostics14192139 - 26 Sep 2024
Abstract
The management of resistant tuberculosis (tb) can be extremely difficult, especially in case of novel unpredicted complications. In this report, we present a case of a 48-year-old patient with pre-extensively drug-resistant (XDR) tb who received a treatment regimen including pretomanid, bedaquiline, linezolid, cycloserine, [...] Read more.
The management of resistant tuberculosis (tb) can be extremely difficult, especially in case of novel unpredicted complications. In this report, we present a case of a 48-year-old patient with pre-extensively drug-resistant (XDR) tb who received a treatment regimen including pretomanid, bedaquiline, linezolid, cycloserine, and amikacin and died due to myocarditis. Acquired resistance to first- and second-line drugs developed due to previous poor adherence to medication. The clinical presentation of the patient, along with her initial ultrasonographical, electrocardiogram (ECG), and laboratory examinations, were typical for acute myocarditis; however, the patient was considered unstable, and further investigations, including magnetic resonance imaging (MRI), pericardiocentesis, and endomyocardial biopsy were not performed. To our knowledge, this is the first case of myocarditis in such a patient, the clinical features of which raised a high suspicion of drug induction that could be attributed to the treatment regimen that was administered. Clinicians who manage cases of drug-resistant tb should be aware of this newly reported, potentially lethal, adverse event. Full article
(This article belongs to the Special Issue Pulmonary Disease: Diagnosis and Management)
Show Figures

Figure 1

24 pages, 1353 KiB  
Review
Quantum Dot-Based Nanosensors for In Vitro Detection of Mycobacterium tuberculosis
by Viktor V. Nikolaev, Tatiana B. Lepekhina, Alexander S. Alliluev, Elham Bidram, Pavel M. Sokolov, Igor R. Nabiev and Yury V. Kistenev
Nanomaterials 2024, 14(19), 1553; https://doi.org/10.3390/nano14191553 - 26 Sep 2024
Abstract
Despite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is [...] Read more.
Despite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is regular population screening aimed at diagnosing the latent form of TB and taking preventive and curative measures. Numerous methods allow diagnosing TB by directly detecting Mycobacterium tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites or antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluorescence and immunochemical analyses, flow cytometry, and other methods allow the detection of M.tb biomarkers or the host immune response to M.tb by recording the optical signal from fluorescent or colorimetric dyes that are components of the diagnostic systems. Current research in biosensors is aimed at increasing the sensitivity of detection, a promising approach being the use of fluorescent quantum dots as brighter and more photostable optical tags. Here, we review current methods for the detection of M.tb biomarkers using quantum dot-based nanosensors and summarize data on the M.tb biomarkers whose detection can be made considerably more sensitive by using these sensors. Full article
Show Figures

Figure 1

15 pages, 3797 KiB  
Technical Note
Estimation of IFOV Inter-Channel Deviation for Microwave Radiation Imager Onboard FY-3G Satellite
by Pengjuan Yao, Shengli Wu, Yang Guo, Jian Shang, Kesong Dong, Weiwei Xu and Jiachen Wang
Remote Sens. 2024, 16(19), 3571; https://doi.org/10.3390/rs16193571 - 25 Sep 2024
Abstract
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which [...] Read more.
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which is mainly caused by the structure mounting error and measurement error of feedhorns, is less studied. In this present study, we constructed a general theoretical model to automatically estimate the IFOV inter-channel deviations suitable for conical-scanning instruments. The model can automatically detect the along-track and across-track vectors that pass through the land–sea boundary points and are perpendicular to the actual coastlines. Regarding the midpoints of the vectors as the brightness temperature (Tb) inflection points, the IFOV inter-channel deviation is the pixel offset or distance of the maximum gradients of the Tb near the inflection points for each channel relative to the 89-GHz V-pol channel. We tested the model’s operational performance using the FY-3G/MWRI-Rainfall Mission (MWRI-RM) observations. Considering that parameter uploading adjusted the IFOV inter-channel deviations, the model’s validity was verified by comparing the adjustments calculated by the model with the theoretical changes caused by parameter uploading. The result shows that the differences between them for all window channels are less than 100 m, indicating the model’s effectiveness in evaluating the IFOV inter-channel deviation for the MWRI-RM. Furthermore, the estimated on-orbit IFOV inter-channel deviations for the MWRI-RM show that all channel deviations are less than 1 km, meeting the instrument’s design requirement of 2 km. We believe this study will provide a foundation for IFOV inter-channel registration of passive microwave payloads and spatial matching of multiple payloads. Full article
Show Figures

Graphical abstract

11 pages, 241 KiB  
Article
Evaluation of Diagnostic Performance of Three Commercial Interferon-Gamma Release Assays for Mycobacterium tuberculosis
by Richard Kutame, Gifty Boateng, Yaw Adusi-Poku, Felix Sorvor, Lorreta Antwi, Florence Agyemang-Bioh, Bright Ayensu, Vincent Gyau-Boateng and Franklin Asiedu-Bekoe
Diagnostics 2024, 14(19), 2130; https://doi.org/10.3390/diagnostics14192130 - 25 Sep 2024
Abstract
Interferon-gamma release assays (IGRAs) have gained attention for the diagnosis of latent tuberculosis infection (LTBI) due to their higher specificity compared to the tuberculin skin test (TST). However, the IGRA’s performance varies across different populations. This study evaluated the diagnostic performance of three [...] Read more.
Interferon-gamma release assays (IGRAs) have gained attention for the diagnosis of latent tuberculosis infection (LTBI) due to their higher specificity compared to the tuberculin skin test (TST). However, the IGRA’s performance varies across different populations. This study evaluated the diagnostic performance of three IGRAs (TBF-FIA, TBF-ELISA, and QFT-Plus) in Ghana, comparing them among individuals exposed and unexposed to MTB infection. Conducted in TB clinics across three regions, this prospective and cross-sectional study included healthy individuals with no known TB exposure (unexposed group) and patients with confirmed active TB (exposed group). Blood samples were tested using all three assays as per the manufacturers’ guidelines. The TBF-ELISA showed 3.4% higher sensitivity but 4.6% lower specificity compared to QFT-Plus. The TBF-FIA had sensitivity of 78.5–87.3% and specificity of 82.9–90.0%. These findings indicate that while the three IGRAs offer similar diagnostic accuracy, the variations in specificity and limited data on assays like TBF-FIA require further investigation. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
17 pages, 4989 KiB  
Article
Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations
by Mieko Seki, Masahiro Hori, Kazuhiro Naoki, Misako Kachi and Keiji Imaoka
Remote Sens. 2024, 16(19), 3549; https://doi.org/10.3390/rs16193549 - 24 Sep 2024
Abstract
Sea ice monitoring is key to analyzing the Earth’s climate system. Long-term sea ice extent (SIE) has been continuously monitored using various spaceborne passive microwave radiometers (PMRs) since November 1978. As the lifetime of a satellite is usually approximately 5 years, bias caused [...] Read more.
Sea ice monitoring is key to analyzing the Earth’s climate system. Long-term sea ice extent (SIE) has been continuously monitored using various spaceborne passive microwave radiometers (PMRs) since November 1978. As the lifetime of a satellite is usually approximately 5 years, bias caused by differences in PMRs should be eliminated to obtain objective SIE trends. Most sea ice products have been analyzed for long-term trends with a bias adjustment based on the coarse resolution special sensor microwave imager (SSM/I) in operation for the longest period. However, since 2002, Japanese microwave radiometers of the Advanced Microwave Scanning Radiometer (AMSR) series, which have the highest spatial resolution in PMR, have been available. In this study, we developed standardization techniques for processing SIE including calibration of the brightness temperature (TB), tuning the sea ice concentration (SIC) algorithm, and adjusting the SIC threshold to retrieve a consistent SIE trend based on the AMSR for the Earth Observing System (AMSR-E, one of the AMSR that operated from May 2002 to October 2011). Analysis results showed that the root-mean-square error between AMSR-E SICs and those of moderate resolution imaging spectroradiometer (MODIS) was 15%. In this study, SIE was defined as the sum of the areas where the AMSR-E SIC was >15%. When retrieving SIE, we adjusted the SIC threshold for each PMR to be consistent with the SIE calculated based on the 15% SIC threshold for AMSR-E. We then calculated a time-series of the SIE trends over approximately 45 years using the adjusted SIE data. Therefore, we revealed the dramatic decrease in global sea ice extent since 1978. This technique enables retrieval of more accurate long-term sea ice trends for more than half a century in the future. Full article
(This article belongs to the Special Issue Monitoring Sea Ice Loss with Remote Sensing Techniques)
Show Figures

Figure 1

21 pages, 7873 KiB  
Article
Stress Evolution and Rock Burst Prevention in Triangle Coal Pillars under the Influence of Penetrating Faults: A Case Study
by Wenhao Guo, Xuezhou Ma, Yingyuan Wen and Xiaojie Cao
Appl. Sci. 2024, 14(19), 8585; https://doi.org/10.3390/app14198585 - 24 Sep 2024
Abstract
The occurrence of rock bursts due to penetrating faults are frequent in China, thereby limiting the safe production of coal mines. Based on the engineering background of a 501 working face in a TB coal mine, this paper investigates stress and energy evolution [...] Read more.
The occurrence of rock bursts due to penetrating faults are frequent in China, thereby limiting the safe production of coal mines. Based on the engineering background of a 501 working face in a TB coal mine, this paper investigates stress and energy evolution during the excavation of this working face due to multiple penetrating faults. Utilizing both theoretical analysis and numerical simulations, this study reveals the rock burst mechanism within the triangular coal pillar influenced by the penetrating faults. Based on the evolution of stress within the triangular coal pillar, a stress index has been devised to categorize both the rock burst danger regions and the levels of rock burst risks associated with the triangular coal pillar. Furthermore, targeted stress relief measures are proposed for various energy accumulation areas within the triangular coal pillar. The results demonstrate that: (1) the superimposed tectonic stress resulting from the T6 and T5 penetrating faults exhibits asymmetric distribution and has an influence range of about 90 m in the triangular coal pillar, reaching a peak value of 11.21 MPa at a distance of 13 m from the fault plane; (2) affected by the barrier effect of penetrating faults, the abutment stress of the working face is concentrated in the triangular coal pillar, and the magnitude of the abutment stress is positively and negatively correlated with the fault plane barrier effect and the width of the triangular coal pillar, respectively; (3) the exponential increase in abutment stress and tectonic stress as the width of the triangular coal pillar decreases leads to a high concentration of static stress, which induces pillar burst under the disturbance of dynamic stress from fault activation; (4) the numerical simulation shows that when the working face is 150 m away from the fault, the static stress and accumulated energy in the triangle coal pillar begins to rise, reaching the peak at 50 m away from the fault, which is consistent with the theoretical analysis; (5) the constructed stress index indicates that the triangular coal pillar exhibits moderate rock burst risks when its width is between 73 to 200 m, and exhibits high rock burst risks when the width is within 0 to 73 m. The energy accumulation pattern of the triangular coal pillar reveals that separate stress relief measures should be implemented within the ranges of 50 to 150 m and 0 to 50 m, respectively, in order to enhance the effectiveness of stress relief. Blasting stress relief measures for the roof and coal are proposed, and the effectiveness of these measures is subsequently verified. Full article
Show Figures

Figure 1

8 pages, 2953 KiB  
Case Report
Tuberculosis-Induced Immune-Mediated Necrotizing Myopathy: A Challenging Case Scenario in a Non-Endemic Country
by Agnese Colpani, Davide Astorri, Andrea De Vito, Giordano Madeddu, Sandro Panese and Nicholas Geremia
Reports 2024, 7(4), 82; https://doi.org/10.3390/reports7040082 - 24 Sep 2024
Abstract
Background: Tuberculosis (TB) poses a significant global health challenge; although low–middle income countries carry the heaviest burden, its diagnosis and treatment can be challenging in any country. The clinical picture can be complex and vary from person to person, with autoimmune complications [...] Read more.
Background: Tuberculosis (TB) poses a significant global health challenge; although low–middle income countries carry the heaviest burden, its diagnosis and treatment can be challenging in any country. The clinical picture can be complex and vary from person to person, with autoimmune complications that can hinder TB diagnosis and treatment. Case Presentation: We report the case of a 38-year-old man from Bangladesh who had recently arrived in Italy through the Balkan route. He presented with TB in the cervical lymph nodes and long-standing chronic myalgias. While a wide range of TB-triggered autoimmune entities can be found in the literature, this case is the first to describe immune-mediated necrotizing myopathy (IMNM) triggered by active TB. Conclusions: IMNM has been previously associated only with other infections like SARS-CoV-2 and Dengue. The successful diagnosis and management of TB-induced IMNM was achieved through a collaborative, multidisciplinary approach involving rheumatologists, immunologists, and infectious diseases specialists, showcasing an innovative treatment strategy and adding new insights into the complexities of TB and IMNM. Full article
Show Figures

Figure 1

21 pages, 3719 KiB  
Article
Cyclin-Dependent Kinase 8 Represents a Positive Regulator of Cytomegalovirus Replication and a Novel Host Target for Antiviral Strategies
by Debora Obergfäll, Markus Wild, Mona Sommerer, Malena Barillas Dahm, Jintawee Kicuntod, Julia Tillmanns, Melanie Kögler, Josephine Lösing, Kishore Dhotre, Regina Müller, Christina Wangen, Sabrina Wagner, Quang V. Phan, Lüder Wiebusch, Katarína Briestenská, Jela Mistríková, Lauren Kerr-Jones, Richard J. Stanton, Sebastian Voigt, Friedrich Hahn and Manfred Marschalladd Show full author list remove Hide full author list
Pharmaceutics 2024, 16(9), 1238; https://doi.org/10.3390/pharmaceutics16091238 - 23 Sep 2024
Abstract
Background. Cyclin-dependent kinase 8 (CDK8) is a multifaceted regulator and represents a catalytic component of the transcriptional Mediator complex. CDK8 activity, on the one hand, increases transcriptional elongation by the recruitment of Mediator/super elongation complexes, but, on the other hand, negatively regulates [...] Read more.
Background. Cyclin-dependent kinase 8 (CDK8) is a multifaceted regulator and represents a catalytic component of the transcriptional Mediator complex. CDK8 activity, on the one hand, increases transcriptional elongation by the recruitment of Mediator/super elongation complexes, but, on the other hand, negatively regulates CDK7-controlled transcriptional initiation through inactivating cyclin H phosphorylation. Recently, these combined properties of CDK8 have also suggested its rate-limiting importance for herpesviral replication. Objectives. In this paper, we focused on human cytomegalovirus (HCMV) and addressed the question of whether the pharmacological inhibition or knock-down of CDK8 may affect viral replication efficiency in cell culture models. Methods. A number of human and animal herpesviruses, as well as non-herpesviruses, were used to analyze the importance of CDK8 for viral replication in cell culture models, and to assess the antiviral efficacy of CDK8 inhibitors. Results. Using clinically relevant CDK8 inhibitors (CCT-251921, MSC-2530818, and BI-1347), HCMV replication was found strongly reduced even at nanomolar drug concentrations. The EC50 values were consistent for three different HCMV strains (i.e., AD169, TB40, and Merlin) analyzed in two human cell types (i.e., primary fibroblasts and astrocytoma cells), and the drugs comprised a low level of cytotoxicity. The findings highlighted the following: (i) the pronounced in vitro SI values of anti-HCMV activity obtained with CDK8 inhibitors; (ii) a confirmation of the anti-HCMV efficacy by CDK8–siRNA knock-down; (iii) a CDK8-dependent reduction in viral immediate early, early, and late protein levels; (iv) a main importance of CDK8 for viral late-stage replication; (v) several mechanistic aspects, which point to a strong impact on viral progeny production and release, but a lack of CDK8 relevance for viral entry or nuclear egress; (vi) a significant anti-HCMV drug synergy for combinations of inhibitors against host CDK8 and the viral kinase vCDK/pUL97 (maribavir); (vii) finally, a broad-spectrum antiviral activity, as seen for the comparison of selected α-, β-, γ-, and non-herpesviruses. Conclusions. In summary, these novel data provide evidence for the importance of CDK8 as a positive regulator of herpesviral replication efficiency, and moreover, suggest its exploitability as an antiviral target for novel strategies of host-directed drug development. Full article
Show Figures

Figure 1

18 pages, 4515 KiB  
Article
Historical Blurry Video-Based Face Recognition
by Lujun Zhai, Suxia Cui, Yonghui Wang, Song Wang, Jun Zhou and Greg Wilsbacher
J. Imaging 2024, 10(9), 236; https://doi.org/10.3390/jimaging10090236 - 20 Sep 2024
Abstract
Face recognition is a widely used computer vision, which plays an increasingly important role in user authentication systems, security systems, and consumer electronics. The models for most current applications are based on high-definition digital cameras. In this paper, we focus on digital images [...] Read more.
Face recognition is a widely used computer vision, which plays an increasingly important role in user authentication systems, security systems, and consumer electronics. The models for most current applications are based on high-definition digital cameras. In this paper, we focus on digital images derived from historical motion picture films. Historical motion picture films often have poorer resolution than modern digital imagery, making face detection a more challenging task. To approach this problem, we first propose a trunk–branch concatenated multi-task cascaded convolutional neural network (TB-MTCNN), which efficiently extracts facial features from blurry historical films by combining the trunk with branch networks and employing various sizes of kernels to enrich the multi-scale receptive field. Next, we build a deep neural network-integrated object-tracking algorithm to compensate for failed recognition over one or more video frames. The framework combines simple online and real-time tracking with deep data association (Deep SORT), and TB-MTCNN with the residual neural network (ResNet) model. Finally, a state-of-the-art image restoration method is employed to reduce the effect of noise and blurriness. The experimental results show that our proposed joint face recognition and tracking network can significantly reduce missed recognition in historical motion picture film frames. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

22 pages, 5992 KiB  
Article
Improving YOLOv7 for Large Target Classroom Behavior Recognition of Teachers in Smart Classroom Scenarios
by Long Ma, Tao Zhou, Baohua Yu, Zhigang Li, Rencheng Fang and Xinqi Liu
Electronics 2024, 13(18), 3726; https://doi.org/10.3390/electronics13183726 - 20 Sep 2024
Abstract
Deep learning technology has recently become increasingly prevalent in the field of education due to the rapid growth of artificial intelligence. Teachers’ teaching behavior is a crucial component of classroom teaching activities, and identifying and examining teachers’ classroom teaching behavior is an important [...] Read more.
Deep learning technology has recently become increasingly prevalent in the field of education due to the rapid growth of artificial intelligence. Teachers’ teaching behavior is a crucial component of classroom teaching activities, and identifying and examining teachers’ classroom teaching behavior is an important way to assess teaching. However, the traditional teaching evaluation method involves evaluating by either listening to the class on-site or playing back the teaching video afterward, which is a time-consuming and inefficient manual method. Therefore, this paper obtained teaching behavior data from a real smart classroom scenario and observed and analyzed the teacher behavior characteristics in this scenario. Aiming at the problems of complex classroom environments and the high similarity between teaching behavior classes, a method to improve YOLOv7 for large target classroom behavior recognition in smart classroom scenarios is proposed. First, we constructed the Teacher Classroom Behavior Data Set (TCBDS), which contains 6660 images covering six types of teaching behaviors: facing the board (to_blackboard, tb), facing the students (to_student, ts), writing on the board (writing, w), teaching while facing the board (black_teach, bt), teaching while facing the students (student_teach, st), and interactive (interact, i). This research adds a large target detection layer to the backbone network so that teachers’ instructional behaviors can be efficiently identified in complex classroom circumstances. Second, the original model’s backbone was extended with an effective multiscale attention module (EMA) to construct cross-scale feature dependencies under various branches. Finally, the bounding box loss function of the original model was replaced with MPDIoU, and a bounding box scaling factor was introduced to propose the Inner_MPDIoU loss function. Experiments were conducted using the TCBDS dataset. The method proposed in this study achieved [email protected], [email protected]:.95, and recall values of 96.2%, 82.5%, and 92.9%, respectively—improvements of 1.1%, 2.0%, and 2.3% over the original model. This method outperformed other mainstream models compared to the current state of the art. The experimental results demonstrate the method’s excellent performance, its ability to identify various classroom behaviors of teachers in realistic scenarios, and its potential to facilitate the analysis and visualization of teacher classroom behaviors. Full article
Show Figures

Figure 1

17 pages, 3721 KiB  
Article
Cellular and Molecular Network Characteristics of TARM1-Related Genes in Mycobacterium tuberculosis Infections
by Li Peng, Hanxin Wu, Liangyu Zhu, Jieqin Song, Weijiang Ma, Lei Zhong, Weijie Ma, Rui Yang, Xun Huang, Bingxue Li, Suyi Luo, Fukai Bao and Aihua Liu
Int. J. Mol. Sci. 2024, 25(18), 10100; https://doi.org/10.3390/ijms251810100 - 20 Sep 2024
Abstract
Tuberculosis (TB) is a global infectious threat, and the emergence of multidrug-resistant TB has become a major challenge in eradicating the disease that requires the discovery of new treatment strategies. This study aimed to elucidate the immune infiltration and molecular regulatory network of [...] Read more.
Tuberculosis (TB) is a global infectious threat, and the emergence of multidrug-resistant TB has become a major challenge in eradicating the disease that requires the discovery of new treatment strategies. This study aimed to elucidate the immune infiltration and molecular regulatory network of T cell-interacting activating receptors on myeloid cell 1 (TARM1)-related genes based on a bioinformatics analysis. The GSE114911 dataset was obtained from the Gene Expression Omnibus (GEO) and screened to identify 17 TARM1-related differentially expressed genes (TRDEGs). Genes interacting with the TRDEGs were analyzed using a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A gene set enrichment analysis (GSEA) was used to identify the biological pathways significantly associated with a Mycobacterium tuberculosis (Mtb) infection. The key genes were obtained based on Cytoscape’s cytoHubba plug-in. Furthermore, protein–protein interaction (PPI) networks were analyzed through STRING, while mRNA–RNA-binding protein (RBP) and mRNA–transcription factor (TF) interaction networks were developed utilizing the StarBase v3.0 and ChIPBase databases. In addition, the diagnostic significance of key genes was evaluated via receiver operating characteristic (ROC) curves, and the immune infiltration was analyzed using an ssGSEA and MCPCounter. The key genes identified in the GSE114911 dataset were confirmed in an independent GSE139825 dataset. A total of seventeen TRDEGs and eight key genes were obtained in a differential expression analysis using the cytoHubba plug-in. Through the GO and KEGG analysis, it was found that these were involved in the NF-κB, PI3K/Akt, MAPK, and other pathways related to inflammation and energy metabolism. Furthermore, the ssGSEA and MCPCounter analysis revealed a significant rise in activated T cells and T helper cells within the Mtb infection group, which were markedly associated with these key genes. This implies their potential significance in the anti-Mtb response. In summary, our results show that TRDEGs are linked to inflammation, energy metabolism, and immune cells, offering fresh insights into the mechanisms underlying TB pathogenesis and supporting further investigation into the possible molecular roles of TARM1 in TB, as well as assisting in the identification of prospective diagnostic biomarkers. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop