Sign in to use this feature.

Years

Between: -

Search Results (5,674)

Search Parameters:
Keywords = advanced sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
61 pages, 4638 KiB  
Review
Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review
by Nargish Parvin, Vineet Kumar, Sang Woo Joo and Tapas Kumar Mandal
Materials 2024, 17(19), 4792; https://doi.org/10.3390/ma17194792 (registering DOI) - 29 Sep 2024
Abstract
Hydrogels, known for their unique ability to retain large amounts of water, have emerged as pivotal materials in both tissue engineering and biosensing applications. This review provides an updated and comprehensive examination of cutting-edge hydrogel technologies and their multifaceted roles in these fields. [...] Read more.
Hydrogels, known for their unique ability to retain large amounts of water, have emerged as pivotal materials in both tissue engineering and biosensing applications. This review provides an updated and comprehensive examination of cutting-edge hydrogel technologies and their multifaceted roles in these fields. Initially, the chemical composition and intrinsic properties of both natural and synthetic hydrogels are discussed, highlighting their biocompatibility and biodegradability. The manuscript then probes into innovative scaffold designs and fabrication techniques such as 3D printing, electrospinning, and self-assembly methods, emphasizing their applications in regenerating bone, cartilage, skin, and neural tissues. In the realm of biosensing, hydrogels’ responsive nature is explored through their integration into optical, electrochemical, and piezoelectric sensors. These sensors are instrumental in medical diagnostics for glucose monitoring, pathogen detection, and biomarker identification, as well as in environmental and industrial applications like pollution and food quality monitoring. Furthermore, the review explores cross-disciplinary innovations, including the use of hydrogels in wearable devices, and hybrid systems, and their potential in personalized medicine. By addressing current challenges and future directions, this review aims to underscore the transformative impact of hydrogel technologies in advancing healthcare and industrial practices, thereby providing a vital resource for researchers and practitioners in the field. Full article
(This article belongs to the Special Issue Advanced Composite Biomaterials for Tissue Regeneration)
Show Figures

Graphical abstract

21 pages, 2822 KiB  
Review
Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis
by Haixia Mei, Jingyi Peng, Dongdong Xu and Tao Wang
Molecules 2024, 29(19), 4625; https://doi.org/10.3390/molecules29194625 (registering DOI) - 29 Sep 2024
Abstract
Dissolved gas analysis (DGA) is considered to be the most convenient and effective approach for transformer fault diagnosis. Due to their excellent performance and development potential, chemiresistive gas sensors are anticipated to supersede the traditional gas chromatography analysis in the dissolved gas analysis [...] Read more.
Dissolved gas analysis (DGA) is considered to be the most convenient and effective approach for transformer fault diagnosis. Due to their excellent performance and development potential, chemiresistive gas sensors are anticipated to supersede the traditional gas chromatography analysis in the dissolved gas analysis of transformers. However, their high operating temperature and high power consumption restrict their deployment in battery-powered devices. This review examines the underlying principles of chemiresistive gas sensors. It comprehensively summarizes recent advances in low-power gas sensors for the detection of dissolved fault characteristic gases (H2, C2H2, CH4, C2H6, C2H4, CO, and CO2). Emphasis is placed on the synthesis methods of sensitive materials and their properties. The investigations have yielded substantial experimental data, indicating that adjusting the particle size and morphology structure of the sensitive materials and combining them with noble metal doping are the principal methods for enhancing the sensitivity performance and reducing the power consumption of chemiresistive gas sensors. Additionally, strategies to overcome the significant challenge of cross-sensitivity encountered in applications are provided. Finally, the future development direction of chemiresistive gas sensors for DGA is envisioned, offering guidance for developing and applying novel gas-sensitive sensors in transformer fault diagnosis. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

28 pages, 2513 KiB  
Article
ROS Gateway: Enhancing ROS Availability across Multiple Network Environments
by Byoung-Youl Song and Hoon Choi
Sensors 2024, 24(19), 6297; https://doi.org/10.3390/s24196297 (registering DOI) - 29 Sep 2024
Abstract
As the adoption of large-scale model-based AI grows, the field of robotics is undergoing significant changes. The emergence of cloud robotics, where advanced tasks are offloaded to fog or cloud servers, is gaining attention. However, the widely used Robot Operating System (ROS) does [...] Read more.
As the adoption of large-scale model-based AI grows, the field of robotics is undergoing significant changes. The emergence of cloud robotics, where advanced tasks are offloaded to fog or cloud servers, is gaining attention. However, the widely used Robot Operating System (ROS) does not support communication between robot software across different networks. This paper introduces ROS Gateway, a middleware designed to improve the usability and extend the communication range of ROS in multi-network environments, which is important for processing sensor data in cloud robotics. We detail its structure, protocols, and algorithms, highlighting improvements over traditional ROS configurations. The ROS Gateway efficiently handles high-volume data from advanced sensors such as depth cameras and LiDAR, ensuring reliable transmission. Based on the rosbridge protocol and implemented in Python 3, ROS Gateway is compatible with rosbridge-based tools and runs on both x86 and ARM-based Linux environments. Our experiments show that the ROS Gateway significantly improves performance metrics such as topic rate and delay compared to standard ROS setups. We also provide predictive formulas for topic receive rates to guide the design and deployment of robotic applications using ROS Gateway, supporting performance estimation and system optimization. These enhancements are essential for developing responsive and intelligent robotic systems in dynamic environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

13 pages, 4821 KiB  
Article
Marking-Based Perpendicular Parking Slot Detection Algorithm Using LiDAR Sensors
by Jing Gong, Amod Raut, Marcel Pelzer and Felix Huening
Vehicles 2024, 6(4), 1717-1729; https://doi.org/10.3390/vehicles6040083 (registering DOI) - 29 Sep 2024
Abstract
The emergence of automotive-grade LiDARs has given rise to new potential methods to develop novel advanced driver assistance systems (ADAS). However, accurate and reliable parking slot detection (PSD) remains a challenge, especially in the low-light conditions typical of indoor car parks. Existing camera-based [...] Read more.
The emergence of automotive-grade LiDARs has given rise to new potential methods to develop novel advanced driver assistance systems (ADAS). However, accurate and reliable parking slot detection (PSD) remains a challenge, especially in the low-light conditions typical of indoor car parks. Existing camera-based approaches struggle with these conditions and require sensor fusion to determine parking slot occupancy. This paper proposes a parking slot detection (PSD) algorithm which utilizes the intensity of a LiDAR point cloud to detect the markings of perpendicular parking slots. LiDAR-based approaches offer robustness in low-light environments and can directly determine occupancy status using 3D information. The proposed PSD algorithm first segments the ground plane from the LiDAR point cloud and detects the main axis along the driving direction using a random sample consensus algorithm (RANSAC). The remaining ground point cloud is filtered by a dynamic Otsu’s threshold, and the markings of parking slots are detected in multiple windows along the driving direction separately. Hypotheses of parking slots are generated between the markings, which are cross-checked with a non-ground point cloud to determine the occupancy status. Test results showed that the proposed algorithm is robust in detecting perpendicular parking slots in well-marked car parks with high precision, low width error, and low variance. The proposed algorithm is designed in such a way that future adoption for parallel parking slots and combination with free-space-based detection approaches is possible. This solution addresses the limitations of camera-based systems and enhances PSD accuracy and reliability in challenging lighting conditions. Full article
Show Figures

Figure 1

5 pages, 150 KiB  
Editorial
Editorial to the Special Issue “Acoustic Sensing and Monitoring in Urban and Natural Environments”
by Hector Eduardo Roman
Sensors 2024, 24(19), 6295; https://doi.org/10.3390/s24196295 (registering DOI) - 29 Sep 2024
Abstract
During the last decades, the great advances achieved in sensor technology and monitoring strategies have been instrumental to accurately quantify anthropogenic noise pollution in both urban and natural environments [...] Full article
(This article belongs to the Special Issue Acoustic Sensing and Monitoring in Urban and Natural Environments)
12 pages, 545 KiB  
Review
Wearable Sensors for Healthcare of Industrial Workers: A Scoping Review
by Juhyun Moon and Byeong-Kwon Ju
Electronics 2024, 13(19), 3849; https://doi.org/10.3390/electronics13193849 (registering DOI) - 28 Sep 2024
Abstract
Background and Objectives: This scoping review evaluates the use of wearable sensor technologies for workplace safety and health monitoring in industrial settings. The aim is to synthesize evidence on the impact of these sensors and their application in high-risk environments. Materials and Methods: [...] Read more.
Background and Objectives: This scoping review evaluates the use of wearable sensor technologies for workplace safety and health monitoring in industrial settings. The aim is to synthesize evidence on the impact of these sensors and their application in high-risk environments. Materials and Methods: Following the PRISMA guidelines, a systematic search across four international electronic databases yielded 59 studies, of which 17 were included in the final review. The selection criteria involved studies that specifically utilized wearable sensors to monitor various health and environmental parameters relevant to industrial workers. Results: The analysis categorizes wearable technologies into five distinct groups based on their function: gas monitoring technologies, heart rate and physiological data collection, fatigue and activity monitoring, comprehensive environmental and physiological monitoring, and advanced sensing and data collection systems. These devices demonstrated substantial benefits in terms of early detection of health risks and enhancement of safety protocols. Conclusions: The review concludes that wearable sensor technologies significantly contribute to workplace safety by providing real-time, data-driven insights into environmental hazards and workers’ physiological status, thus supporting proactive health management practices in industrial settings. Further research is recommended to address the challenges of data privacy, sensor reliability, and cost-effective integration to maximize their potential in occupational health safety. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

29 pages, 5641 KiB  
Review
ML-Based Maintenance and Control Process Analysis, Simulation, and Automation—A Review
by Izabela Rojek, Dariusz Mikołajewski, Ewa Dostatni, Adrianna Piszcz and Krzysztof Galas
Appl. Sci. 2024, 14(19), 8774; https://doi.org/10.3390/app14198774 (registering DOI) - 28 Sep 2024
Abstract
Automation and digitalization in various industries towards the Industry 4.0/5.0 paradigms are rapidly progressing thanks to the use of sensors, Industrial Internet of Things (IIoT), and advanced fifth generation (5G) and sixth generation (6G) mobile networks supported by simulation and automation of processes [...] Read more.
Automation and digitalization in various industries towards the Industry 4.0/5.0 paradigms are rapidly progressing thanks to the use of sensors, Industrial Internet of Things (IIoT), and advanced fifth generation (5G) and sixth generation (6G) mobile networks supported by simulation and automation of processes using artificial intelligence (AI) and machine learning (ML). Ensuring the continuity of operations under different conditions is becoming a key factor. One of the most frequently requested solutions is currently predictive maintenance, i.e., the simulation and automation of maintenance processes based on ML. This article aims to extract the main trends in the area of ML-based predictive maintenance present in studies and publications, critically evaluate and compare them, and define priorities for their research and development based on our own experience and a literature review. We provide examples of how BCI-controlled predictive maintenance due to brain–computer interfaces (BCIs) play a transformative role in AI-based predictive maintenance, enabling direct human interaction with complex systems. Full article
(This article belongs to the Special Issue Automation and Digitization in Industry: Advances and Applications)
Show Figures

Figure 1

24 pages, 3966 KiB  
Review
Complementary Metal–Oxide–Semiconductor-Based Magnetic and Optical Sensors for Life Science Applications
by Tayebeh Azadmousavi and Ebrahim Ghafar-Zadeh
Sensors 2024, 24(19), 6264; https://doi.org/10.3390/s24196264 - 27 Sep 2024
Abstract
Optical and magnetic sensing methods are integral to both research and clinical applications in biological laboratories. The ongoing miniaturization of these sensors has paved the way for the development of point-of-care (PoC) diagnostics and handheld sensing devices, which are crucial for timely and [...] Read more.
Optical and magnetic sensing methods are integral to both research and clinical applications in biological laboratories. The ongoing miniaturization of these sensors has paved the way for the development of point-of-care (PoC) diagnostics and handheld sensing devices, which are crucial for timely and efficient healthcare delivery. Among the various competing sensing and circuit technologies, CMOS (complementary metal–oxide–semiconductor) stands out due to its distinct cost-effectiveness, scalability, and high precision. By leveraging the inherent advantages of CMOS technology, recent developments in optical and magnetic biosensors have significantly advanced their application in life sciences, offering improved sensitivity, integration capabilities, and reduced power consumption. This paper provides a comprehensive review of recent advancements, focusing on innovations in CMOS-based optical and magnetic sensors and their transformative impact on biomedical research and diagnostics. Full article
Show Figures

Figure 1

13 pages, 1853 KiB  
Article
Integrating Electroencephalography Source Localization and Residual Convolutional Neural Network for Advanced Stroke Rehabilitation
by Sina Makhdoomi Kaviri and Ramana Vinjamuri
Bioengineering 2024, 11(10), 967; https://doi.org/10.3390/bioengineering11100967 - 27 Sep 2024
Abstract
Motor impairments caused by stroke significantly affect daily activities and reduce quality of life, highlighting the need for effective rehabilitation strategies. This study presents a novel approach to classifying motor tasks using EEG data from acute stroke patients, focusing on left-hand motor imagery, [...] Read more.
Motor impairments caused by stroke significantly affect daily activities and reduce quality of life, highlighting the need for effective rehabilitation strategies. This study presents a novel approach to classifying motor tasks using EEG data from acute stroke patients, focusing on left-hand motor imagery, right-hand motor imagery, and rest states. By using advanced source localization techniques, such as Minimum Norm Estimation (MNE), dipole fitting, and beamforming, integrated with a customized Residual Convolutional Neural Network (ResNetCNN) architecture, we achieved superior spatial pattern recognition in EEG data. Our approach yielded classification accuracies of 91.03% with dipole fitting, 89.07% with MNE, and 87.17% with beamforming, markedly surpassing the 55.57% to 72.21% range of traditional sensor domain methods. These results highlight the efficacy of transitioning from sensor to source domain in capturing precise brain activity. The enhanced accuracy and reliability of our method hold significant potential for advancing brain–computer interfaces (BCIs) in neurorehabilitation. This study emphasizes the importance of using advanced EEG classification techniques to provide clinicians with precise tools for developing individualized therapy plans, potentially leading to substantial improvements in motor function recovery and overall patient outcomes. Future work will focus on integrating these techniques into practical BCI systems and assessing their long-term impact on stroke rehabilitation. Full article
(This article belongs to the Special Issue Artificial Intelligence for Biomedical Signal Processing)
Show Figures

Figure 1

23 pages, 2063 KiB  
Article
The Role of Environments and Sensing Strategies in Unmanned Aerial Vehicle Crowdsensing
by Yaqiong Zhou, Cong Hu, Yong Zhao, Zhengqiu Zhu, Rusheng Ju and Sihang Qiu
Drones 2024, 8(10), 526; https://doi.org/10.3390/drones8100526 - 26 Sep 2024
Abstract
Crowdsensing has gained popularity across various domains such as urban transportation, environmental monitoring, and public safety. Unmanned aerial vehicle (UAV) crowdsensing is a novel approach that collects extensive data from targeted environments using UAVs equipped with built-in sensors. Unlike conventional methods that rely [...] Read more.
Crowdsensing has gained popularity across various domains such as urban transportation, environmental monitoring, and public safety. Unmanned aerial vehicle (UAV) crowdsensing is a novel approach that collects extensive data from targeted environments using UAVs equipped with built-in sensors. Unlike conventional methods that rely on fixed sensor networks or the mobility of humans, UAV crowdsensing offers high flexibility and scalability. With the rapid advancement of artificial intelligence techniques, UAV crowdsensing is becoming increasingly intelligent and autonomous. Previous studies on UAV crowdsensing have predominantly focused on algorithmic sensing strategies without considering the impact of different sensing environments. Thus, there is a research gap regarding the influence of environmental factors and sensing strategies in this field. To this end, we designed a 4×3 empirical study, classifying sensing environments into four major categories: open, urban, natural, and indoor. We conducted experiments to understand how these environments influence three typical crowdsensing strategies: opportunistic, algorithmic, and collaborative. The statistical results reveal significant differences in both environments and sensing strategies. We found that an algorithmic strategy (machine-only) is suitable for open and natural environments, while a collaborative strategy (human and machine) is ideal for urban and indoor environments. This study has crucial implications for adopting appropriate sensing strategies for different environments of UAV crowdsensing tasks. Full article
Show Figures

Figure 1

18 pages, 7017 KiB  
Article
A Universal Model for Ultrasonic Energy Transmission in Various Media
by Yufei Ma, Yunan Jiang and Chong Li
Sensors 2024, 24(19), 6230; https://doi.org/10.3390/s24196230 - 26 Sep 2024
Abstract
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. [...] Read more.
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. Existing models focus on feasibility and numerical analysis but lack an effective link between input and output power in different media applications. The proposed model fills this gap by incorporating key factors of link loss, including resonant frequency, impedance matching, acoustic coupling, and boundary conditions, to predict energy transfer efficiency more accurately. The model is validated through numerical simulations and experimental tests in air, metal, and underwater environments. An error analysis has shown that the maximum error between theoretical and experimental responses is 3.11% (air), 27.37% (water), and 1.76% (aluminum). This research provides valuable insights into UET dynamics and offers practical guidelines for developing efficient wireless powering solutions for sensors in difficult-to-access or electromagnetically shielded conditions. Full article
(This article belongs to the Topic Advanced Wireless Charging Technology)
Show Figures

Figure 1

26 pages, 2242 KiB  
Review
Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems
by Alan Portal D’Almeida and Tiago Lima de Albuquerque
Processes 2024, 12(10), 2085; https://doi.org/10.3390/pr12102085 - 26 Sep 2024
Abstract
This review highlights recent innovations in food packaging, emphasizing the shift from conventional petroleum-based materials to bio-based alternatives and smart packaging systems. Bio-based materials, such as starch, cellulose, and polyhydroxyalkanoates (PHA), offer sustainable solutions due to their biodegradability and reduced environmental impact. These [...] Read more.
This review highlights recent innovations in food packaging, emphasizing the shift from conventional petroleum-based materials to bio-based alternatives and smart packaging systems. Bio-based materials, such as starch, cellulose, and polyhydroxyalkanoates (PHA), offer sustainable solutions due to their biodegradability and reduced environmental impact. These materials are positioned as eco-friendly alternatives to traditional plastics but face challenges related to production costs and scalability. Additionally, advancements in smart packaging technologies, including sensor and indicator systems, provide real-time food quality monitoring, enhancing food safety and reducing waste. Active packaging technologies, incorporating natural antioxidants and moisture control, extend product shelf life and improve food preservation. Furthermore, these biopolymers typically present a lower CO2 footprint, energy costs, and water consumption during production, compared to traditionally used synthetic plastics. The review identifies challenges, such as regulatory barriers and technological limitations, but also outlines significant opportunities for future research and innovation in the food packaging sector, aiming for more efficient, safer, and environmentally sustainable packaging solutions. Full article
Show Figures

Figure 1

17 pages, 10452 KiB  
Article
Experimental Study of Sinkhole Propagation Induced by a Leaking Pipe Using Fibre Bragg Grating Sensors
by Josué Yumba, Maria Ferentinou and Michael Grobler
Sensors 2024, 24(19), 6215; https://doi.org/10.3390/s24196215 - 25 Sep 2024
Abstract
Sinkhole formation caused by leaking pipes in karst soluble rocks is a significant concern, leading to infrastructure damage and safety risks. In this paper, an experiment was conducted to investigate sinkhole formation in dense sand induced by a leaking pipe. Fibre Bragg grating [...] Read more.
Sinkhole formation caused by leaking pipes in karst soluble rocks is a significant concern, leading to infrastructure damage and safety risks. In this paper, an experiment was conducted to investigate sinkhole formation in dense sand induced by a leaking pipe. Fibre Bragg grating (FBG) sensors were used to record the strain. A balloon was gradually deflated within a bed of wet silica sand to create an underground cavity. Eighteen FBG sensors, with a wavelength range between 1550 nm and 1560 nm, were embedded horizontally and vertically in the physical model at different levels to monitor deformation at various locations. A leaking pipe was installed to induce the collapse of the formed arch above the cavity. The strain measurements suggested the following four phases in the sinkhole formation process: (1) cavity formation, (2) progressive weathering and erosion, (3) catastrophic collapse, and (4) subsequent equilibrium conditions. The results showed differences in the strain signatures and distributions between the horizontal and vertical measurements. During the critical phase of the sinkhole collapse, the horizontal measurements primarily showed tension, while the vertical measurements indicated compression. This investigation demonstrates the effectiveness of FBGs as advanced monitoring tools for sinkhole precursor identification. The study also suggests using FBGs in geotechnical monitoring applications to improve the understanding and mitigation of sinkholes and related geohazards. Full article
(This article belongs to the Special Issue Optical Fiber Sensors Used for Civil Engineering)
Show Figures

Graphical abstract

13 pages, 24253 KiB  
Article
A Multimodal Bracelet to Acquire Muscular Activity and Gyroscopic Data to Study Sensor Fusion for Intent Detection
by Daniel Andreas, Zhongshi Hou, Mohamad Obada Tabak, Anany Dwivedi and Philipp Beckerle
Sensors 2024, 24(19), 6214; https://doi.org/10.3390/s24196214 - 25 Sep 2024
Abstract
Researchers have attempted to control robotic hands and prostheses through biosignals but could not match the human hand. Surface electromyography records electrical muscle activity using non-invasive electrodes and has been the primary method in most studies. While surface electromyography-based hand motion decoding shows [...] Read more.
Researchers have attempted to control robotic hands and prostheses through biosignals but could not match the human hand. Surface electromyography records electrical muscle activity using non-invasive electrodes and has been the primary method in most studies. While surface electromyography-based hand motion decoding shows promise, it has not yet met the requirements for reliable use. Combining different sensing modalities has been shown to improve hand gesture classification accuracy. This work introduces a multimodal bracelet that integrates a 24-channel force myography system with six commercial surface electromyography sensors, each containing a six-axis inertial measurement unit. The device’s functionality was tested by acquiring muscular activity with the proposed device from five participants performing five different gestures in a random order. A random forest model was then used to classify the performed gestures from the acquired signal. The results confirmed the device’s functionality, making it suitable to study sensor fusion for intent detection in future studies. The results showed that combining all modalities yielded the highest classification accuracies across all participants, reaching 92.3±2.6% on average, effectively reducing misclassifications by 37% and 22% compared to using surface electromyography and force myography individually as input signals, respectively. This demonstrates the potential benefits of sensor fusion for more robust and accurate hand gesture classification and paves the way for advanced control of robotic and prosthetic hands. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

20 pages, 15185 KiB  
Review
Comprehensive Review of FinFET Technology: History, Structure, Challenges, Innovations, and Emerging Sensing Applications
by Koosha Karimi, Ali Fardoost and Mehdi Javanmard
Micromachines 2024, 15(10), 1187; https://doi.org/10.3390/mi15101187 - 25 Sep 2024
Abstract
The surge in demand for 3D MOSFETs, such as FinFETs, driven by recent technological advances, is explored in this review. FinFETs, positioned as promising alternatives to bulk CMOS, exhibit favorable electrostatic characteristics and offer power/performance benefits, scalability, and control over short-channel effects. Simulations [...] Read more.
The surge in demand for 3D MOSFETs, such as FinFETs, driven by recent technological advances, is explored in this review. FinFETs, positioned as promising alternatives to bulk CMOS, exhibit favorable electrostatic characteristics and offer power/performance benefits, scalability, and control over short-channel effects. Simulations provide insights into functionality and leakage, addressing off-current issues common in narrow band-gap materials within a CMOS-compatible process. Multiple structures have been introduced for FinFETs. Moreover, some studies on the fabrication of FinFETs using different materials have been discussed. Despite their potential, challenges like corner effects, quantum effects, width quantization, layout dependencies, and parasitics have been acknowledged. In the post-planar CMOS landscape, FinFETs show potential for scalability in nanoscale CMOS, which leads to novel structures for them. Finally, recent developments in FinFET-based sensors are discussed. In a general view, this comprehensive review delves into the intricacies of FinFET fabrication, exploring historical development, classifications, and cutting-edge ideas for the used materials and FinFET application, i.e., sensing. Full article
Show Figures

Figure 1

Back to TopTop