Sign in to use this feature.

Years

Between: -

Search Results (830)

Search Parameters:
Keywords = atmospheric turbulence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1047 KiB  
Article
On a Correlation Model for Laser Scanners: A Large Eddy Simulation Experiment
by Gaël Kermarrec
Remote Sens. 2024, 16(19), 3545; https://doi.org/10.3390/rs16193545 - 24 Sep 2024
Abstract
Large Eddy Simulations (LES) allow the generation of spatio-temporal fields of the refractivity index for various meteorological conditions and provide a unique way to simulate turbulence-distorted phase measurements as those from geodetic sensors. This approach enables a statistical quantification of the von Kármán [...] Read more.
Large Eddy Simulations (LES) allow the generation of spatio-temporal fields of the refractivity index for various meteorological conditions and provide a unique way to simulate turbulence-distorted phase measurements as those from geodetic sensors. This approach enables a statistical quantification of the von Kármán model’s adequacy in describing the phase spectrum and the assessment of the validity of common assumptions such as isotropy or the Taylor frozen hypothesis. This contribution shows that the outer scale length, defined using the Taylor frozen hypothesis as the saturation frequency of the phase spectrum, can be statistically estimated, along with an error fit factor between the model and its estimation. It is found that this parameter strongly varies with height and meteorological conditions (convective or wind-driven boundary layer). The simulations further highlight the linear dependency with the variance of the turbulent phase fluctuations but no dependency on the local outer scale length as defined by Tatarskii. An application of these results within a geodetic context is proposed, where an understanding and solid estimation of the outer scale length is mandatory in avoiding biased decisions during statistical deformation analysis. The LES presented in this contribution support derivations for an improved stochastic model of terrestrial laser scanners. Full article
Show Figures

Figure 1

33 pages, 3669 KiB  
Article
Smoke Emissions and Buoyant Plumes above Prescribed Burns in the Pinelands National Reserve, New Jersey
by Kenneth L. Clark, Michael R. Gallagher, Nicholas Skowronski, Warren E. Heilman, Joseph Charney, Matthew Patterson, Jason Cole, Eric Mueller and Rory Hadden
Fire 2024, 7(9), 330; https://doi.org/10.3390/fire7090330 - 21 Sep 2024
Abstract
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns [...] Read more.
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns influences above-canopy sensible heat flux and turbulent kinetic energy (TKE) in buoyant plumes, affecting the lofting and dispersion of smoke. A more comprehensive understanding of how enhanced energy fluxes and turbulence are related during the passage of flame fronts could improve efforts to mitigate the impacts of smoke emissions. Pre- and post-fire fuel loading measurements taken during 48 operational prescribed burns were used to estimate the combustion completeness factors (CC) and emissions of fine particulates (PM2.5), carbon dioxide (CO2), and carbon monoxide (CO) in pine- and oak-dominated stands in the Pinelands National Reserve of southern New Jersey. During 11 of the prescribed burns, sensible heat flux and turbulence statistics were measured by tower networks above the forest canopy. Fire behavior when fire fronts passed the towers ranged from low-intensity backing fires to high-intensity head fires with some crown torching. Consumption of forest-floor and understory vegetation was a near-linear function of pre-burn loading, and combustion of fine litter on the forest floor was the predominant source of emissions, even during head fires with some crowning activity. Tower measurements indicated that above-canopy sensible heat flux and TKE calculated at 1 min intervals during the passage of fire fronts were strongly influenced by fire behavior. Low-intensity backing fires, regardless of forest type, had weaker enhancement of above-canopy air temperature, vertical and horizontal wind velocities, sensible heat fluxes, and TKE compared to higher-intensity head and flanking fires. Sensible heat flux and TKE in buoyant plumes were unrelated during low-intensity burns but more tightly coupled during higher-intensity burns. The weak coupling during low-intensity backing fires resulted in reduced rates of smoke transport and dispersion, and likely in more prolonged periods of elevated surface concentrations. This research facilitates more accurate estimates of PM2.5, CO, and CO2 emissions from prescribed burns in the Pinelands, and it provides a better understanding of the relationships among fire behavior, sensible heat fluxes and turbulence, and smoke dispersion in pine- and oak-dominated forests. Full article
Show Figures

Figure 1

14 pages, 3284 KiB  
Article
Low Complexity Parallel Carrier Frequency Offset Estimation Based on Time-Tagged QPSK Partitioning for Coherent Free-Space Optical Communication
by Siqi Zhang, Liqian Wang, Kunfeng Liu and Shuang Ding
Photonics 2024, 11(9), 885; https://doi.org/10.3390/photonics11090885 - 20 Sep 2024
Abstract
To effectively mitigate the effects of atmospheric turbulence in free space optical (FSO) communication, we propose a parallel carrier frequency offset estimation (FOE) scheme based on time-tagged QPSK partitioning (TTQP). This scheme can be applied to spatial diversity polarization multiplexing (PM) coherent FSO [...] Read more.
To effectively mitigate the effects of atmospheric turbulence in free space optical (FSO) communication, we propose a parallel carrier frequency offset estimation (FOE) scheme based on time-tagged QPSK partitioning (TTQP). This scheme can be applied to spatial diversity polarization multiplexing (PM) coherent FSO communication systems. Specifically, the TTQP scheme performs QPSK partitioning by time-tagging signal points, accurately recording the time intervals between signals, and significantly reducing implementation complexity through a modified Mth power algorithm. The simulation results for the PM 16-quadrature amplitude modulation (QAM) validate the effectiveness of the proposed scheme. Compared to traditional QPSK partitioning algorithms, the TTQP algorithm achieves high accuracy, low complexity, and multi-format versatility in high-speed coherent FSO communication. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Free Space Optical Communication)
Show Figures

Figure 1

9 pages, 2402 KiB  
Communication
Study on the Influence of Atmospheric Light Intensity Scintillation Effect on Optical Fiber Coupling Efficiency
by Xiaoying Ding and Xin Zhao
Photonics 2024, 11(9), 884; https://doi.org/10.3390/photonics11090884 - 20 Sep 2024
Abstract
Light intensity flicker is the most basic and important effect of turbulence. Fiber coupling efficiency is the primary parameter that ensures the system’s communication quality. The light intensity flicker effect caused by atmospheric turbulence significantly affects the coupling efficiency of space light in [...] Read more.
Light intensity flicker is the most basic and important effect of turbulence. Fiber coupling efficiency is the primary parameter that ensures the system’s communication quality. The light intensity flicker effect caused by atmospheric turbulence significantly affects the coupling efficiency of space light in a single-mode optical fiber. Based on the principle of fiber coupling efficiency, this paper first establishes the relationship between light intensity flicker and spatial coherence radius, then analyzes the influence of light intensity flicker on fiber coupling efficiency through the spatial coherence radius. A laser communication system was built, and real-time measurement experiments on atmospheric light intensity flicker and optical fiber coupling efficiency at different transmission distances and altitudes above the ground were completed. The experimental results show that the constructed experimental system can simultaneously measure the scintillation index and fiber coupling efficiency. When the communication distance is 12,000 m and the height is 600 m above the ground, the scintillation index is measured to be 0.63, and the coupling efficiency is 0.05. The results of the study provide an experimental and theoretical basis and data support to promote the development of atmospheric laser communications. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

9 pages, 2060 KiB  
Article
Channel Correlation-Based Adaptive Power Transmission for Free-Space Optical Communications
by Bai-Shan Zhao, Peng-Fei Lv and Yan-Qing Hong
Photonics 2024, 11(9), 859; https://doi.org/10.3390/photonics11090859 - 12 Sep 2024
Abstract
Free-space optical (FSO) communication has received widespread attention as a high-bandwidth, low-latency communication technique. However, the scintillation effect caused by atmospheric turbulence leads to intensity fluctuations of the transmission signal, which, in turn, affects the performance of the FSO communication system. This paper [...] Read more.
Free-space optical (FSO) communication has received widespread attention as a high-bandwidth, low-latency communication technique. However, the scintillation effect caused by atmospheric turbulence leads to intensity fluctuations of the transmission signal, which, in turn, affects the performance of the FSO communication system. This paper proposes a channel correlation-based adaptive power transmission for FSO communications. Based on the correlation between uplink and downlink turbulence channels, the power of the reverse transmission signal is adjusted by the fluctuation strength of the received uplink or downlink transmission signal and the channel correlation coefficient to improve the system’s performance. The proposed technique is investigated through a simulation using established uplink and downlink channels with different link distances and turbulence intensities. The simulation results show that the bit error rate (BER) performance of the proposed technique is significantly improved compared to the fixed threshold decision (FTD) technique, and it is close to the adaptive threshold decision (ATD) technique. The proposed technique provides an effective optimization scheme for FSO communications. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

24 pages, 8539 KiB  
Article
A Nonlinear Wind Turbine Wake Expansion Model Considering Atmospheric Stability and Ground Effects
by Xingxing Han, Tongguang Wang, Xiandong Ma, Chang Xu, Shifeng Fu, Jinmeng Zhang, Feifei Xue and Zhe Cheng
Energies 2024, 17(17), 4503; https://doi.org/10.3390/en17174503 - 8 Sep 2024
Abstract
This study investigates the influence of atmospheric stability and ground effects on wind turbine wake recovery, challenging the conventional linear relationship between turbulence intensity and wake expansion coefficient. Through comprehensive field measurements and numerical simulations, we demonstrate that the linear wake expansion assumption [...] Read more.
This study investigates the influence of atmospheric stability and ground effects on wind turbine wake recovery, challenging the conventional linear relationship between turbulence intensity and wake expansion coefficient. Through comprehensive field measurements and numerical simulations, we demonstrate that the linear wake expansion assumption is invalid at far-wake locations under high turbulence conditions, primarily due to ground effects. We propose a novel nonlinear wake expansion model that incorporates both atmospheric stability and ground effects by introducing a logarithmic relationship between the wake expansion coefficient and turbulence intensity. Validation results reveal the superior prediction accuracy of the proposed model compared to typical engineering wake models, with root mean square errors of wake wind speed predictions ranging from 0.04 to 0.063. The proposed model offers significant potential for optimizing wind farm layouts and enhancing overall wind energy production efficiency. Full article
(This article belongs to the Special Issue Advances in Wind Turbines)
Show Figures

Figure 1

24 pages, 10714 KiB  
Article
A Potential Link between Space Weather and Atmospheric Parameters Variations: A Case Study of November 2021 Geomagnetic Storm
by Mauro Regi, Alessandro Piscini, Patrizia Francia, Marcello De Lauretis, Gianluca Redaelli and Giuseppina Carnevale
Remote Sens. 2024, 16(17), 3318; https://doi.org/10.3390/rs16173318 - 7 Sep 2024
Abstract
On 4 November 2021, during the rising phase of solar cycle 25, an intense geomagnetic storm (Kp = 8−) occurred. The effects of this storm on the outer magnetospheric region up to the ionospheric heights have already been examined in previous investigations. This [...] Read more.
On 4 November 2021, during the rising phase of solar cycle 25, an intense geomagnetic storm (Kp = 8−) occurred. The effects of this storm on the outer magnetospheric region up to the ionospheric heights have already been examined in previous investigations. This work is focused on the analysis of the solar wind conditions before and during the geomagnetic storm, the high-latitude electrodynamics conditions, estimated through empirical models, and the response of the atmosphere in both hemispheres, based on parameters from the ECMWF ERA5 atmospheric reanalysis dataset. Our investigations are also supported by counter-test analysis and Monte Carlo tests. We find, for both hemispheres, a significant correspondence, within 1–2 days, between high-latitude electrodynamics variations and changes in the temperature, specific humidity, and meridional and zonal winds, in both the troposphere and stratosphere. The results indicate that, in the complex solar wind–atmosphere relationship, a significant role might be played by the intensification of the polar cap potential. We also study the reciprocal relation between the ionospheric Joule heating, calculated from a model, and two adiabatic invariants used in the analysis of solar wind turbulence. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

12 pages, 2853 KiB  
Article
Research on Mitigating Atmosphere Turbulence Fading by Relay Selections in Free-Space Optical Communication Systems with Multi-Transceivers
by Xiaogang San, Zuoyu Liu and Ying Wang
Photonics 2024, 11(9), 847; https://doi.org/10.3390/photonics11090847 - 6 Sep 2024
Abstract
In free-space optical communication (FSOC) systems, atmospheric turbulence can bring about power fluctuations in receiver ends, restricting channel capacity. Relay techniques can divide a long FSOC link into several short links to mitigate the fading events caused by atmospheric turbulence. This paper proposes [...] Read more.
In free-space optical communication (FSOC) systems, atmospheric turbulence can bring about power fluctuations in receiver ends, restricting channel capacity. Relay techniques can divide a long FSOC link into several short links to mitigate the fading events caused by atmospheric turbulence. This paper proposes a Reinforcement Learning-based Relay Selection (RLRS) method based on Deep Q-Network (DQN) in a FSOC system with multiple transceivers, whose aim is to enhance the average channel capacity of the system. Malaga turbulence is studied in this paper. The presence of handover loss is also considered. The relay nodes serve in decode-and-forward (DF). Simulation results demonstrate that the RLRS algorithm outperforms the conventional greedy algorithm, which implies that the RLRS algorithm may be utilized in practical FSOC systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Turbulence)
Show Figures

Figure 1

14 pages, 315 KiB  
Article
Investigating the Turbulent Vertical Dispersion in a Strong Shear Dominated Neutral Atmospheric Boundary Layer
by Gervásio Annes Degrazia, Felipe Denardin Costa, Luís Gustavo Nogueira Martins, Luis Fernando Camponogara, Michel Stefanello, Cinara Ewerling da Rosa and Tiziano Tirabassi
Atmosphere 2024, 15(9), 1068; https://doi.org/10.3390/atmos15091068 - 4 Sep 2024
Viewed by 186
Abstract
The primary focus of this article is to derive a solution to obtain the asymptotic turbulent dispersion parameter provided by the spectral Taylor statistical diffusion model. Unlike previous articles, which employed the Dirac delta function to solve the eddy diffusivity formula, in this [...] Read more.
The primary focus of this article is to derive a solution to obtain the asymptotic turbulent dispersion parameter provided by the spectral Taylor statistical diffusion model. Unlike previous articles, which employed the Dirac delta function to solve the eddy diffusivity formula, in this study, we used the Dirac delta function properties to obtain directly the asymptotic turbulent dispersion parameter from the particles’ spatial dispersion variance described in terms of the Eulerian turbulence spectrum and of the scale factor defined formally as the ratio between Lagrangian and Eulerian timescales. From the Kolmogorov 1941 theory, a detailed derivation for this scale factor is presented. Furthermore, using high mean wind speed data generated by local topographic features, a magnitude for the Kolmogorov constant for the neutral atmospheric boundary layer is evaluated. Thus, this magnitude when added to other values obtained from the selected studies found in the literature provides an average value for the Kolmogorov constant that agrees with large eddy simulation data results. Therefore, this average value allows to obtain a more reliable description of this scale factor. Finally, employing analytical formulations for the observed neutral turbulent spectra and for the velocity variances as well as turbulent statistical quantities measured in a surface neutral atmospheric boundary layer, a vertical dispersion parameter is derived. This vertical dispersion parameter when utilized in a simple Gaussian diffusion model is able to reproduce well contaminant observed concentrations.The Gaussian simulated concentrations also compare well with those simulated by a Lagrangian stochastic particle dispersion model that uses observed vertical spectral peak frequency values at distinct levels of the neutral surface boundary layer. Therefore, the present study shows that the observational determination of a single vertical spectral peak frequency is sufficient to obtain a realistic vertical dispersion parameter characterizing the dispersive effect in the turbulent environment of the surface neutral atmospheric boundary layer. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

25 pages, 648 KiB  
Article
Generalized 3D Model of Crosswind Concentrations and Deposition in the Atmospheric Boundary Layer
by Mehdi Farhane and Otmane Souhar
Atmosphere 2024, 15(9), 1054; https://doi.org/10.3390/atmos15091054 - 31 Aug 2024
Viewed by 280
Abstract
In this paper, we introduce a comprehensive solution aimed at enhancing our understanding of three-dimensional atmospheric pollutant dispersion. This innovative solution involves the development of a generalized model that extends previous research and is applicable to all parameterization schemes of these equations, including [...] Read more.
In this paper, we introduce a comprehensive solution aimed at enhancing our understanding of three-dimensional atmospheric pollutant dispersion. This innovative solution involves the development of a generalized model that extends previous research and is applicable to all parameterization schemes of these equations, including wind speed profiles and turbulent diffusion coefficients, while incorporating the dry deposition criterion. Our methodology involves subdividing the atmospheric boundary layer into distinct sub-layers, which facilitates a detailed examination of pollutant dispersion dynamics. Extensive validation with data from the Hanford experiment has demonstrated the accuracy of this solution in simulating pollutant concentrations. The results demonstrate that there is a strong correlation between the projected and observed concentrations, underscoring the statistical reliability of our approach. This validation situates the statistical indices of our solution within an acceptable range, confirming its accuracy in predicting atmospheric pollutant dispersion. These findings thus establish our solution as a valid and effective method for studying complex environmental phenomena. Full article
Show Figures

Figure 1

23 pages, 4106 KiB  
Article
Machine Learning-Based Beam Pointing Error Reduction for Satellite–Ground FSO Links
by Nilesh Maharjan and Byung Wook Kim
Electronics 2024, 13(17), 3466; https://doi.org/10.3390/electronics13173466 - 31 Aug 2024
Viewed by 265
Abstract
Free space optical (FSO) communication, which has the potential to meet the demand for high-data-rate communications between satellites and ground stations, requires accurate alignment between the transmitter and receiver to establish a line-of-sight channel link. In this paper, we propose a machine learning [...] Read more.
Free space optical (FSO) communication, which has the potential to meet the demand for high-data-rate communications between satellites and ground stations, requires accurate alignment between the transmitter and receiver to establish a line-of-sight channel link. In this paper, we propose a machine learning (ML)-based approach to reduce beam pointing errors in FSO satellite-to-ground communications subjected to satellite vibration and weak atmospheric turbulence. ML models are utilized to find the optimal gain, which plays a crucial role in reducing pointing error displacement in a closed-loop FSO system. In designing the FSO environment, we employ several system model parameters, including control and system matrix components of the transmitter and receiver, noise parameters for the optical channel, irradiance, and the scintillation index of the signal. To predict the gain matrix of the closed-loop system, ML methods, such as tree-based algorithms, and a 1D convolutional neural network (Conv1D) are applied. Experimental results show that the Conv1D model outperforms other ML methods in gain value prediction, helping to maintain the beam position centered on the receiver aperture, minimizing beam pointing errors. When constructing a closed-loop system based on the Conv1D model, the error variance of the pointing error displacement was obtained as 0.012 and 0.015 in clear weather and light fog conditions, respectively. In addition, this research analyzes the impact of input features in a closed-loop FSO system, and compares the pointing error performance of the closed-loop setup to the conventional open-loop setup under weak turbulence. Full article
(This article belongs to the Special Issue New Advances in Machine Learning and Its Applications)
Show Figures

Figure 1

33 pages, 6532 KiB  
Article
A Framework for Iterative Phase Retrieval Technique Integration into Atmospheric Adaptive Optics—Part I: Wavefront Sensing in Strong Scintillations
by Mikhail A. Vorontsov and Ernst Polnau
Photonics 2024, 11(9), 786; https://doi.org/10.3390/photonics11090786 - 23 Aug 2024
Viewed by 294
Abstract
The objective of this study, which is divided into two parts, is twofold: to address long-standing challenges in the sensing of atmospheric turbulence-induced wavefront aberrations under strong scintillation conditions via a comparative analysis of several basic scintillation-resistant wavefront sensing (SR-WFS) architectures and iterative [...] Read more.
The objective of this study, which is divided into two parts, is twofold: to address long-standing challenges in the sensing of atmospheric turbulence-induced wavefront aberrations under strong scintillation conditions via a comparative analysis of several basic scintillation-resistant wavefront sensing (SR-WFS) architectures and iterative phase retrieval (IPR) techniques (Part I, this paper), and to develop a framework for the potential integration of SR-WFS techniques into practical closed-loop non-astronomical atmospheric adaptive optics (AO) systems (Part II). In this paper, we consider basic SR-WFS mathematical models and phase retrieval algorithms, tradeoffs in sensor design and phase retrieval technique implementation, and methodologies for WFS parameter optimization and performance assessment. The analysis is based on wave-optics numerical simulations imitating realistic turbulence-induced phase aberrations and intensity scintillations, as well as optical field propagation inside the SR-WFSs. Several potential issues important for the practical implementation of SR-WFS and IPR techniques, such as the requirements for phase retrieval computational grid resolution, tolerance with respect to optical element misalignments, and the impact of camera noise and input light non-monochromaticity, are also considered. The results demonstrate that major wavefront sensing requirements desirable for AO operation under strong intensity scintillations can potentially be achieved by transitioning to novel SR-WFS architectures, based on iterative phase retrieval techniques. Full article
(This article belongs to the Special Issue Challenges and Future Directions in Adaptive Optics Technology)
Show Figures

Figure 1

15 pages, 22230 KiB  
Article
Meteorological Modulation of Atmospheric Boundary Layer Height over a Caribbean Island
by Alejandro Álvarez-Valencia, Juan L. Colón-Perez, Mark R. Jury and Héctor J. Jiménez
Atmosphere 2024, 15(8), 1007; https://doi.org/10.3390/atmos15081007 - 20 Aug 2024
Viewed by 402
Abstract
This study analyzes fluctuations in the atmospheric boundary layer height (aBLH) over a Caribbean island using hourly measured and model-interpolated data from the 2019–2023 period. Our focus is the mean structure, diurnal cycle, and aBLH correlation with meteorological parameters on the leeward coast [...] Read more.
This study analyzes fluctuations in the atmospheric boundary layer height (aBLH) over a Caribbean island using hourly measured and model-interpolated data from the 2019–2023 period. Our focus is the mean structure, diurnal cycle, and aBLH correlation with meteorological parameters on the leeward coast at Mayaguez (18.2 N, 67.1 W). The mean diurnal cycle of the aBLH increases from 300 m near sunrise (07:00) to 1200 m by 13:00 because of turbulent heating. Summer-time thermal circulations lead to a 3 °C increase in near-surface dewpoint temperature (Td) that propagates upward to 3000 m by 16:00. A case study demonstrates how mid-day trade winds turn onshore and generate significant rainfall and river discharge across the island. The context for this study is provided by a 24 yr cluster analysis that identifies rainfall over the island’s northwest interior driven by upstream heating. Analysis of linear trends from 1979 to 2023 shows that Td declined by −0.02 °C/yr above 1500 m because of large-scale subsidence. However, cool interior forests transpire humidity and instill contrasting trends that may amplify climate extremes. A better understanding of entrainment at the top of the atmospheric boundary layer could be critical for managing future water resources in Caribbean islands. Full article
(This article belongs to the Special Issue Atmospheric Boundary Layer Observation and Meteorology)
Show Figures

Figure 1

14 pages, 475 KiB  
Article
Precise Error Performance of BPSK Modulated Coherent Terahertz Wireless LOS Links with Pointing Errors
by Mingbo Niu, Ruihang Ji, Hucheng Wang and Huan Liu
Entropy 2024, 26(8), 706; https://doi.org/10.3390/e26080706 - 20 Aug 2024
Viewed by 329
Abstract
One of the key advantages of terahertz (THz) communication is its potential for energy efficiency, making it an attractive option for green communication systems. Coherent THz transmission technology has recently been explored in the literature. However, there exist few error performance results for [...] Read more.
One of the key advantages of terahertz (THz) communication is its potential for energy efficiency, making it an attractive option for green communication systems. Coherent THz transmission technology has recently been explored in the literature. However, there exist few error performance results for such a wireless link employing coherent THz technology. In this paper, we explore a comprehensive terrestrial channel model designed for wireless line-of-sight communication using THz frequencies. The performance of coherent THz links is analyzed, and it is found to be notably affected by two significant factors, atmospheric turbulence and pointing errors. These could occur between the terahertz transmitter and receiver in terrestrial links. The exact and asymptotic solutions are derived for bit error rate and interrupt probability for binary phase-shift keying coherent THz systems, respectively, over log-normal and Gamma–Gamma turbulent channels. The asymptotic outage probability analysis is also performed. It is shown that the presented results offer a precise estimation of coherent THz transmission performance and its link budget. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives)
Show Figures

Figure 1

22 pages, 8850 KiB  
Article
Analysis of Fractal Properties of Atmospheric Turbulence and the Practical Applications
by Zihan Liu, Hongsheng Zhang, Zuntao Fu, Xuhui Cai and Yu Song
Fractal Fract. 2024, 8(8), 483; https://doi.org/10.3390/fractalfract8080483 - 19 Aug 2024
Viewed by 434
Abstract
Atmospheric turbulence, recognized as a quintessential space–time chaotic system, can be characterized by its fractal properties. The characteristics of the time series of multiple orders of fractal dimensions, together with their relationships with stability parameters, are examined using the data from an observational [...] Read more.
Atmospheric turbulence, recognized as a quintessential space–time chaotic system, can be characterized by its fractal properties. The characteristics of the time series of multiple orders of fractal dimensions, together with their relationships with stability parameters, are examined using the data from an observational station in Horqin Sandy Land to explore how the diurnal variation, synoptic process, and stratification conditions can affect the fractal characteristics. The findings reveal that different stratification conditions can disrupt the quasi-three-dimensional state of atmospheric turbulence in different manners within different scales of motion. Two aspects of practical applications of fractal dimensions are explored. Firstly, fractal properties can be employed to refine similarity relationships, thereby offering prospects for revealing more information and expanding the scope of application of similarity theories. Secondly, utilizing different orders of fractal dimensions, a systematic algorithm is developed. This algorithm distinguishes and eliminates non-turbulent motions from observational data, which are shown to exhibit slow-changing features and result in a universal overestimation of turbulent fluxes. This overestimation correlates positively with the boundary frequency between turbulent and non-turbulent motions. The evaluation of these two aspects of applications confirms that fractal properties hold promise for practical studies on atmospheric turbulence. Full article
Show Figures

Figure 1

Back to TopTop