Sign in to use this feature.

Years

Between: -

Search Results (5,133)

Search Parameters:
Keywords = chemical modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1381 KiB  
Review
Innovative Trends in Modified Membranes: A Mini Review of Applications and Challenges in the Food Sector
by Nicole Novelli do Nascimento, Carolina Moser Paraíso, Luiza C. A. Molina, Yuliya S. Dzyazko, Rosângela Bergamasco and Angélica Marquetotti Salcedo Vieira
Membranes 2024, 14(10), 209; https://doi.org/10.3390/membranes14100209 (registering DOI) - 28 Sep 2024
Abstract
Membrane technologies play a pivotal role in various industrial sectors, including food processing. Membranes act as barriers, selectively allowing the passage of one or other types of species. The separation processes that involve them offer advantages such as continuity, energy efficiency, compactness of [...] Read more.
Membrane technologies play a pivotal role in various industrial sectors, including food processing. Membranes act as barriers, selectively allowing the passage of one or other types of species. The separation processes that involve them offer advantages such as continuity, energy efficiency, compactness of devices, operational simplicity, and minimal consumption of chemical reagents. The efficiency of membrane separation depends on various factors, such as morphology, composition, and process parameters. Fouling, a significant limitation in membrane processes, leads to a decline in performance over time. Anti-fouling strategies involve adjustments to process parameters or direct modifications to the membrane, aiming to enhance efficiency. Recent research has focused on mitigating fouling, particularly in the food industry, where complex organic streams pose challenges. Membrane processes address consumer demands for natural and healthy products, contributing to new formulations with antioxidant properties. These trends align with environmental concerns, emphasizing sustainable practices. Despite numerous works on membrane modification, a research gap exists, especially with regard to the application of modified membranes in the food industry. This review aims to systematize information on modified membranes, providing insights into their practical application. This comprehensive overview covers membrane modification methods, fouling mechanisms, and distinct applications in the food sector. This study highlights the potential of modified membranes for specific tasks in the food industry and encourages further research in this promising field. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
54 pages, 20941 KiB  
Review
Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications
by Xiaoxiao Dong, Chen Wang, Haoxin Song, Jinqiang Shao, Guiyao Lan, Jiaming Zhang, Xiangkun Li and Ming Li
Biomimetics 2024, 9(10), 585; https://doi.org/10.3390/biomimetics9100585 - 27 Sep 2024
Viewed by 358
Abstract
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, [...] Read more.
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, and long-time service life, researchers delve deeper into hydrogel materials, fabrication strategies, and underlying actuation mechanisms. This article provides a systematic overview of hydrogel materials used in soft grippers, focusing on materials composition, chemical functional groups, and characteristics and the strategies for integrating these responsive hydrogel materials into soft grippers, including one-step polymerization, additive manufacturing, and structural modification are reviewed in detail. Moreover, ongoing research about actuating mechanisms (e.g., thermal/electrical/magnetic/chemical) and grasping applications of soft hydrogel grippers is summarized. Some remaining challenges and future perspectives in soft hydrogel grippers are also provided. This work highlights the recent advances of soft hydrogel grippers, which provides useful insights into the development of the new generation of functional soft hydrogel grippers. Full article
(This article belongs to the Special Issue Design, Fabrication and Characterization of Biomimetic Hydrogels)
Show Figures

Figure 1

12 pages, 2449 KiB  
Article
Enhancing Electrospinnability of Chitosan Membranes in Low-Humidity Environments by Sodium Chloride Addition
by Hengjie Su, Xiaoqi Chen, Linna Mao and Ting Li
Mar. Drugs 2024, 22(10), 443; https://doi.org/10.3390/md22100443 - 27 Sep 2024
Viewed by 201
Abstract
The electrospinning of pure chitosan nanofibers is highly sensitive to environmental humidity, which limits their production consistency and applicability. This study investigates the addition of sodium chloride (NaCl) to chitosan solutions to enhance spinnability and mitigate the effigurefects of low humidity. NaCl was [...] Read more.
The electrospinning of pure chitosan nanofibers is highly sensitive to environmental humidity, which limits their production consistency and applicability. This study investigates the addition of sodium chloride (NaCl) to chitosan solutions to enhance spinnability and mitigate the effigurefects of low humidity. NaCl was incorporated into the electrospun chitosan solution, leading to increased conductivity and decreased viscosity. These modifications improved the electrospinning process. Comparative analyses between chitosan membranes (CM) and sodium-chloride-added chitosan membranes (SCM) revealed no significant differences in chemical structure, mechanical strength, or in vitro cell proliferation. This indicates that the addition of 1% (w/v) NaCl does not adversely affect the fundamental properties of the chitosan membranes. The findings demonstrate that NaCl addition is a viable strategy for producing electrospun chitosan nanofibers in low-humidity environments, maintaining their physicochemical properties while enhancing spinnability. Full article
(This article belongs to the Special Issue Application of Marine Chitin and Chitosan, 3rd Edition)
Show Figures

Figure 1

17 pages, 2676 KiB  
Article
Preparation and Characterization of Hydroxylated Recombinant Collagen by Incorporating Proline and Hydroxyproline in Proline-Deficient Escherichia coli
by Zhimin Cheng, Bin Hong, Yanmei Li and Jufang Wang
Bioengineering 2024, 11(10), 975; https://doi.org/10.3390/bioengineering11100975 - 27 Sep 2024
Viewed by 196
Abstract
Collagen possesses distinctive chemical properties and biological functions due to its unique triple helix structure. However, recombinant collagen expressed in Escherichia coli without post-translational modifications such as hydroxylation lacks full function since hydroxylation is considered to be critical to the stability of the [...] Read more.
Collagen possesses distinctive chemical properties and biological functions due to its unique triple helix structure. However, recombinant collagen expressed in Escherichia coli without post-translational modifications such as hydroxylation lacks full function since hydroxylation is considered to be critical to the stability of the collagen triple-helix at body temperature. Here, a proline-deficient E. coli strain was constructed and employed to prepare hydroxylated recombinant collagens by incorporating proline (Pro) and hydroxyproline (Hyp) from the culture medium. By controlling the ratio of Pro to Hyp in the culture medium, collagen with different degrees of hydroxylation (0–88%) can be obtained. When the ratio of Pro and Hyp was adjusted to 12:8 mM, the proline hydroxylation rate of recombinant human collagen (rhCol, 55 kDa) ranged from 40–50%, which was also the degree of natural collagen. After proline hydroxylation, both the thermal stability and cell binding of rhCol were significantly enhanced. Notably, when the hydroxylation rate approached that of native human collagen (40–50%), the improvements were most pronounced. Moreover, the cell binding of rhCol with a hydroxylation rate of 43% increased by 29%, and the melting temperature (Tm) rose by 5 °C compared to the non-hydroxylated rhCol. The system achieved a yield of 1.186 g/L of rhCol by batch-fed in a 7 L fermenter. This innovative technology is expected to drive the development and application of collagen-related biomaterials with significant application value in the fields of tissue engineering, regenerative medicine, and biopharmaceuticals. Full article
(This article belongs to the Special Issue Bio-Applications of Engineered Escherichia coli)
25 pages, 3226 KiB  
Review
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
by Kathalingam Adaikalam, Dhanasekaran Vikraman, K. Karuppasamy and Hyun-Seok Kim
Nanomaterials 2024, 14(19), 1560; https://doi.org/10.3390/nano14191560 - 27 Sep 2024
Viewed by 365
Abstract
Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological [...] Read more.
Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons, hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water, with solar hydrogen production—using solar light to split water—standing out as a cost-effective and environmentally friendly approach. However, the widespread adoption of hydrogen energy is challenged by transportation and storage issues, as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution, providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods, as it uses self-generated power. Similarly, solid storage of hydrogen is also attractive in many ways, including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially, but once the materials and methods are established, they will become more attractive considering rising fuel prices, depletion of fossil fuel resources, and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy, producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions, solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient, safe, and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques, this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage, focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between −40 and 60 °C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage, and discusses current challenges in hydrogen generation and storage. This includes material selection, and the structural and chemical modifications needed for optimal performance and potential applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

23 pages, 2408 KiB  
Review
Chitosan–Clay Mineral Nanocomposites with Antibacterial Activity for Biomedical Application: Advantages and Future Perspectives
by Danina Krajišnik, Snežana Uskoković-Marković and Aleksandra Daković
Int. J. Mol. Sci. 2024, 25(19), 10377; https://doi.org/10.3390/ijms251910377 - 26 Sep 2024
Viewed by 348
Abstract
Polymers of natural origin, such as representatives of various polysaccharides (e.g., cellulose, dextran, hyaluronic acid, gellan gum, etc.), and their derivatives, have a long tradition in biomedical applications. Among them, the use of chitosan as a safe, biocompatible, and environmentally friendly heteropolysaccharide has [...] Read more.
Polymers of natural origin, such as representatives of various polysaccharides (e.g., cellulose, dextran, hyaluronic acid, gellan gum, etc.), and their derivatives, have a long tradition in biomedical applications. Among them, the use of chitosan as a safe, biocompatible, and environmentally friendly heteropolysaccharide has been particularly intensively researched over the last two decades. The potential of using chitosan for medical purposes is reflected in its unique cationic nature, viscosity-increasing and gel-forming ability, non-toxicity in living cells, antimicrobial activity, mucoadhesiveness, biodegradability, as well as the possibility of chemical modification. The intuitive use of clay minerals in the treatment of superficial wounds has been known in traditional medicine for thousands of years. To improve efficacy and overcome the ubiquitous bacterial resistance, the beneficial properties of chitosan have been utilized for the preparation of chitosan–clay mineral bionanocomposites. The focus of this review is on composites containing chitosan with montmorillonite and halloysite as representatives of clay minerals. This review highlights the antibacterial efficacy of chitosan–clay mineral bionanocomposites in drug delivery and in the treatment of topical skin infections and wound healing. Finally, an overview of the preparation, characterization, and possible future perspectives related to the use of these advancing composites for biomedical applications is presented. Full article
Show Figures

Figure 1

25 pages, 5505 KiB  
Review
A Review on Pulsed Laser Preparation of Quantum Dots in Colloids for the Optimization of Perovskite Solar Cells: Advantages, Challenges, and Prospects
by Liang Sun, Yang Li, Jiujiang Yan, Wei Xu, Liangfen Xiao, Zhong Zheng, Ke Liu, Zhijie Huang and Shuhan Li
Nanomaterials 2024, 14(19), 1550; https://doi.org/10.3390/nano14191550 - 25 Sep 2024
Viewed by 446
Abstract
In recent years, academic research on perovskite solar cells (PSCs) has attracted remarkable attention, and one of the most crucial issues is promoting the power conversion efficiency (PCE) and operational stability of PSCs. Generally, modification of the electron or hole transport layers between [...] Read more.
In recent years, academic research on perovskite solar cells (PSCs) has attracted remarkable attention, and one of the most crucial issues is promoting the power conversion efficiency (PCE) and operational stability of PSCs. Generally, modification of the electron or hole transport layers between the perovskite layers and electrodes via surface engineering is considered an effective strategy because the inherent structural defects between charge carrier transport layers and perovskite layers can be reshaped and modified by adopting the functional nanomaterials, and thus the charge recombination rate can be naturally decreased. At present, large amounts of available nanomaterials for surface modification of the perovskite films are extensively investigated, mainly including nanocrystals, nanorods, nanoarrays, and even colloidal quantum dots (QDs). In particular, as unique size-dependent nanomaterials, the diverse quantum properties of colloidal QDs are different from other nanomaterials, such as their quantum confinement effects, quantum-tunable effects, and quantum surface effects, which display great potential in promoting the PCE and operational stability of PSCs as the charge carriers in perovskite layers can be effectively tuned by these quantum effects. However, preparing QDs with a neat and desirable size remains a technical difficulty, even though the present chemical engineering is highly advanced. Fortunately, the rapid advances in laser technology have provided new insight into the precise preparation of QDs. In this review, we introduce a new approach for preparing the QDs, namely pulsed laser irradiation in colloids (PLIC), and briefly highlight the innovative works on PLIC-prepared QDs for the optimization of PSCs. This review not only highlights the advantages of PLIC for QD preparation but also critically points out the challenges and prospects of QD-based PSCs. Full article
Show Figures

Figure 1

14 pages, 5482 KiB  
Article
Superhydrophobic Corrosion-Resistant Coating of AZ91D Magnesium Alloy: Preparation and Performance
by Shucheng Qi, Xiang Liu, Lei Cheng and Jiyuan Zhu
Coatings 2024, 14(10), 1237; https://doi.org/10.3390/coatings14101237 - 25 Sep 2024
Viewed by 431
Abstract
This research presents the development of a surface treatment for AZ91D magnesium alloy that exhibits both superhydrophobic and anticorrosive properties. Initially, a zinc-based phosphate film was deposited on the magnesium alloy surface. Subsequently, a composite coating with superhydrophobic properties was produced by surface [...] Read more.
This research presents the development of a surface treatment for AZ91D magnesium alloy that exhibits both superhydrophobic and anticorrosive properties. Initially, a zinc-based phosphate film was deposited on the magnesium alloy surface. Subsequently, a composite coating with superhydrophobic properties was produced by surface modification using a fluorosilane-ethanol solution. The composite coating’s microstructure, chemical composition, wettability, self-cleaning, and anti-corrosion properties were evaluated using scanning electron microscopy, a contact angle measurement instrument, and an electrochemical workstation. The results demonstrated that the main components of the composite coating were P, O, Zn, F, and C. The static contact angle reached 158°, providing superior self-cleaning and acid and alkali corrosion resistance. Additionally, the charge transfer resistance and coating resistance of the composite coating were significantly higher than those of the magnesium alloy substrate, effectively preventing corrosion and preserving the surface from fouling. Full article
(This article belongs to the Special Issue Advances in Corrosion Behaviors and Protection of Coatings)
Show Figures

Figure 1

23 pages, 1045 KiB  
Review
Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants
by Janaína Oliveira Gonçalves, Bruna Silva de Farias, Estéfani Cardillo Rios, Débora Pez Jaeschke, Anelise Christ Ribeiro, Mariele Dalmolin da Silva, Mery Luiza Garcia Vieira, Valéria Vieira de Lima Carvalho, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Sustainability 2024, 16(19), 8321; https://doi.org/10.3390/su16198321 - 25 Sep 2024
Viewed by 544
Abstract
The increasing disposal of emerging contaminants in the environment is a worldwide concern due to environmental impacts, such as toxicity, hormonal disorders, and bioaccumulation. The persistence of these pollutants in water bodies makes conventional pollutant removal techniques inefficient or partial, thus requiring the [...] Read more.
The increasing disposal of emerging contaminants in the environment is a worldwide concern due to environmental impacts, such as toxicity, hormonal disorders, and bioaccumulation. The persistence of these pollutants in water bodies makes conventional pollutant removal techniques inefficient or partial, thus requiring the development of new, more effective, sustainable remediation technologies. Therefore, chitosan-based materials have emerged as a promising alternative for application in catalysis and contaminant removal. The biopolymer has functional properties that make it an excellent adsorbent capable of removing more specific pollutants, such as pharmaceuticals, microplastics, agricultural pesticides, and perfluoroalkyl and poly-fluoroalkyl substances, which are increasingly in evidence today. Therefore, this review of recent and advanced research into using chitosan to manufacture catalytic and adsorption materials offers an innovative approach to treating contaminants in aqueous environments, significantly reducing their presence and impact. It discusses the advantages of using chitosan as an adsorbent and catalyst and its role as a support for catalysts and biocatalysts. In addition, the review highlights the diversity of the physical forms of chitosan, such as particles, membranes, and hydrogels, and its possible chemical modifications, highlighting its effectiveness in catalytic applications and the removal of a wide range of emerging contaminants. Full article
(This article belongs to the Special Issue Heterogeneous Catalytic Technology in Pollutant Degradation)
Show Figures

Graphical abstract

12 pages, 2479 KiB  
Article
Study on the Influence of Host–Guest Structure and Polymer Introduction on the Afterglow Properties of Doped Crystals
by Wenhui Feng, Zongyong Lou, Xiaoqiang Zhao, Mingming Zhao, Yaqin Xu and Yide Gao
Molecules 2024, 29(19), 4537; https://doi.org/10.3390/molecules29194537 - 24 Sep 2024
Viewed by 254
Abstract
Due to their low cost, good biocompatibility, and ease of structural modification, organic long-persistent luminescence (LPL) materials have garnered significant attention in organic light-emitting diodes, biological imaging, information encryption, and chemical sensing. Efficient charge separation and carrier migration by the host–guest structure or [...] Read more.
Due to their low cost, good biocompatibility, and ease of structural modification, organic long-persistent luminescence (LPL) materials have garnered significant attention in organic light-emitting diodes, biological imaging, information encryption, and chemical sensing. Efficient charge separation and carrier migration by the host–guest structure or using polymers and crystal to build rigid environments are effective ways of preparing high-performance materials with long-lasting afterglow. In this study, four types of crystalline materials (MODPA: DDF-O, MODPA: DDF-CHO, MODPA: DDF-Br, and MODPA: DDF-TRC) were prepared by a convenient host–guest doping method at room temperature under ambient conditions, i.e., in the presence of oxygen. The first three types exhibited long-lived charge-separated (CS) states and achieved visible LPL emissions with durations over 7, 4, and 2 s, respectively. More surprisingly, for the DDF-O material prepared with PMMA as the polymer substrate, the afterglow time of DDF-O: PMMA was longer than 10 s. The persistent room-temperature phosphorescence effect caused by different CS state generation efficiencies and rigid environment were the main reason for the difference in LPL duration. The fourth crystalline material was without charge separation and exhibited no LPL because it was not a D-A system. The research results indicate that the CS state generation efficiency and a rigid environment are the key factors affecting the LPL properties. This work provides new understandings in designing organic LPL materials. Full article
Show Figures

Figure 1

11 pages, 376 KiB  
Article
Synthesis and Porous Structure Characteristics of Allyl Methacrylate/Divinylbenzene Polymers
by Dilek Duranoglu and Andrzej W. Trochimczuk
Polymers 2024, 16(19), 2688; https://doi.org/10.3390/polym16192688 - 24 Sep 2024
Viewed by 295
Abstract
A set of six porous copolymers of allyl methacrylate (AllMeth) and divinylbenzene (DVB), containing 5 to 50 wt% of the latter crosslinker, are synthesized by suspension polymerization method in the presence of inert diluents. Obtained polymers have various specific surface areas—those with 20 [...] Read more.
A set of six porous copolymers of allyl methacrylate (AllMeth) and divinylbenzene (DVB), containing 5 to 50 wt% of the latter crosslinker, are synthesized by suspension polymerization method in the presence of inert diluents. Obtained polymers have various specific surface areas—those with 20 to 50 wt% of DVB have a high surface area in the range of 410–480 m2/g, depending only slightly on the amount of the aromatic crosslinker. Specific surface area decreases strongly only when DVB content is 15 and 5 wt%. That is the feature that is unusual for crosslinked polymers and indicates the participation of allyl groups in making a novel polymeric network of high porosity. All polymers contain polar carbonyl groups, with an electron pair able to interact with polar sorbates. Polymers are characterized using elemental analysis, FTIR, and their porous structure is characterized by nitrogen adsorption at 77 K. All polymers contain residual allyl groups, which possibly can serve as convenient points for chemical modification, allowing for the future synthesis of specialty polymers (such as ion-exchangers and coordinating resins). Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 2486 KiB  
Article
Inhibitory Effects of Aqueous Ethanol Extracts of Poplar-Type Propolis on Advanced Glycation End Products and Protein Oxidation
by Guangxin Wang, Yu Zhang, Jiangtao Qiao, Hesham R. El-Seedi, Lingjie Kong and Hongcheng Zhang
Foods 2024, 13(19), 3022; https://doi.org/10.3390/foods13193022 - 24 Sep 2024
Viewed by 395
Abstract
(1) Background: The non-enzymatic glycation of proteins is a significant contributor to the formation of advanced glycation end products (AGEs) and intermediates that are responsible for diabetic complications. It is imperative to explore effective inhibitors to prevent protein glycation. (2) Methods: This study [...] Read more.
(1) Background: The non-enzymatic glycation of proteins is a significant contributor to the formation of advanced glycation end products (AGEs) and intermediates that are responsible for diabetic complications. It is imperative to explore effective inhibitors to prevent protein glycation. (2) Methods: This study aimed to investigate the inhibitory potential of various aqueous ethanol extracts of poplar-type propolis on AGEs and oxidative modifications in bovine serum albumin (BSA)-glucose and BSA-methylglyoxal models. (3) Results: The results revealed that these propolis extracts exhibited significant effectiveness in inhibiting the formation of total AGEs, pentosidine, and Nε-carboxymethyllysine (CML). Furthermore, the investigation discovered that these propolis extracts can effectively inhibit oxidative modification, based on measuring the levels of carbonyl and thiol groups and analyzing tryptophan fluorescence quenching. Notably, 75% ethanol extracts of propolis (EEP) exhibited the highest inhibitory activity, surpassing the chemical inhibitor aminoguanidine (AG). (4) Conclusions: The remarkable anti-glycation potency of aqueous ethanol extracts of poplar-type propolis can be attributed to their elevated contents of phenolic compounds, especially abundant flavonoids, which inhibit the formation of AGEs by scavenging free radicals, decreasing the levels of reactive oxygen species (ROS), and capturing reactive carbonyl species (RCS) in the protein glycation process. Our results indicate that poplar-type propolis may be a potential AGE inhibitor and could be used to develop functional foods and nutraceuticals to prevent diabetic complications. Full article
Show Figures

Graphical abstract

27 pages, 1199 KiB  
Systematic Review
Antimicrobial Effects of Metal Coatings or Physical, Chemical Modifications of Titanium Dental Implant Surfaces for Prevention of Peri-Implantitis: A Systematic Review of In Vivo Studies
by Maria Gkioka and Xiaohui Rausch-Fan
Antibiotics 2024, 13(9), 908; https://doi.org/10.3390/antibiotics13090908 - 23 Sep 2024
Viewed by 818
Abstract
Introduction: Peri-implantitis poses a significant challenge for implant dentistry due to its association with bacterial colonization on implant surfaces and the complexity of its management. This systematic review aims to assess evidence from in vivo studies regarding the antimicrobial efficacy of titanium (Ti) [...] Read more.
Introduction: Peri-implantitis poses a significant challenge for implant dentistry due to its association with bacterial colonization on implant surfaces and the complexity of its management. This systematic review aims to assess evidence from in vivo studies regarding the antimicrobial efficacy of titanium (Ti) dental implant surfaces following physical/chemical modifications or the application of various metal element coatings in preventing bacterial growth associated with peri-implantitis. Materials and Methods: A literature review was conducted across four scientific databases (PubMed, Embase, Scopus, Web of Science), encompassing in vivo studies published between 2013 and 2024, and 18 reports were included in the systematic review. Results: The findings suggest that titanium dental implant surfaces, following physical/chemical modifications and metal element coatings, exhibit antimicrobial effects against bacteria associated with peri-implantitis in humans and various animal models. Conclusions: The reviewed studies indicated a reduction in bacterial colonization, diminished biofilm formation, and decreased signs of inflammation in the peri-implant tissues, which provides evidence that physical/chemical alterations on titanium dental implant surfaces or metal element coatings, like silver (Ag), zinc (Zn), magnesium (Mg), and copper (Cu), demonstrate antimicrobial properties in in vivo studies. However, caution is warranted when translating findings to clinical practice due to methodological disparities and high bias risks. Further larger-scale clinical trials are imperative to assess their long-term efficacy and validate their clinical applicability. Full article
(This article belongs to the Special Issue Anti-microbial Coating Innovations to Prevent Infectious Diseases)
Show Figures

Figure 1

13 pages, 3779 KiB  
Article
Construction of Carbon Dioxide Responsive Graphene Point Imbibition and Drainage Fluid and Simulation of Imbibition Experiments
by Peng Yin, Fang Shi, Mingjian Luo, Jingchun Wu, Yanan Yu, Chunlong Zhang and Bo Zhao
Processes 2024, 12(9), 2052; https://doi.org/10.3390/pr12092052 - 23 Sep 2024
Viewed by 476
Abstract
The global oil and gas exploration targets are gradually moving towards a new field of oil and gas accumulation with nanopore throats, ranging from millimeter scale to micro-nano pore throats. The development method of tight oil reservoirs is different from that of conventional [...] Read more.
The global oil and gas exploration targets are gradually moving towards a new field of oil and gas accumulation with nanopore throats, ranging from millimeter scale to micro-nano pore throats. The development method of tight oil reservoirs is different from that of conventional oil reservoirs, and the development efficiency is constrained. Therefore, it is necessary to construct a nanoscale fluid with strong diffusion and dispersion and improve its permeability, suction, and displacement capabilities. Under the background of CCUS, carbon dioxide flooding is a better way to develop tight reservoirs. However, in order to solve the problem of gas channeling, this paper developed a carbon dioxide-responsive graphene point type surfactant, which has a good gas–liquid synergistic effect. At the same time, graphene nanomaterials are carbon-based and create no environmental damage in oil reservoirs. In this study, graphene quantum dots (GQDs) were prepared using the hydrothermal method, and functional graphene quantum dots (F-GQDs) responsive to carbon dioxide stimulation were synthesized by covalent grafting of amidine functional groups. By characterizing its structure and physical and chemical properties, and by conducting imbibition simulation experiments, its imbibition and drainage ability in nanopore throats is elucidated. Infrared spectrum measurement shows that after functional modification, the quantum dots exhibited new characteristic peaks at 1600 cm−1 to 1300 cm−1, considering the N-H plane-stretching characteristic peak. The fluorescence spectra showed that the fluorescence intensity of F-GQDs was increased after functional modification, which indicated that F-GQDs were successfully synthesized. Through measurements of interfacial activity and adhesion work calculations, the oil–water interfacial tension can achieve ultra-low values within the range of 10−2 to 10−3 mN/m. Oil sand cleaning experiments and indoor simulations of spontaneous imbibition in tight cores demonstrate that F-GQDs exhibit effective oil-washing capabilities and a strong response to carbon dioxide. When combined with carbon dioxide, the system enhances both the rate and efficiency of oil washing. Imbibition recovery can reach more than 50%. The research results provide a certain theoretical basis and data reference for the efficient development of tight reservoirs. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 6656 KiB  
Article
Genome-Wide Analysis of Aquaporins Gene Family in Populus euphratica and Its Expression Patterns in Response to Drought, Salt Stress, and Phytohormones
by Boniface Ndayambaza, Jianhua Si, Dongmeng Zhou, Xue Bai, Bing Jia, Xiaohui He, Chunlin Wang, Jie Qin, Xinglin Zhu, Zijin Liu and Boyang Wang
Int. J. Mol. Sci. 2024, 25(18), 10185; https://doi.org/10.3390/ijms251810185 - 23 Sep 2024
Viewed by 453
Abstract
Aquaporins (AQPs) play an essential role in membrane water transport during plant responses to water stresses centered on conventional upstream signals. Phytohormones (PHs) regulate plant growth and yield, working with transcription factors to help plants withstand environmental challenges and regulate physiological and chemical [...] Read more.
Aquaporins (AQPs) play an essential role in membrane water transport during plant responses to water stresses centered on conventional upstream signals. Phytohormones (PHs) regulate plant growth and yield, working with transcription factors to help plants withstand environmental challenges and regulate physiological and chemical processes. The AQP gene family is important, so researchers have studied its function and regulatory system in numerous species. Yet, there is a critical gap the understanding of many of their molecular features, thus our full knowledge of AQPs is far-off. In this study, we undertook a broad examination of the AQP family gene in Populus euphratica via bioinformatics tools and analyzed the expression patterns of certain members in response to drought, salt, and hormone stress. A total of 22 AQP genes were examined in P. euphratica, and were categorized into four main groups, including TIPs, PIPs, SIPs, and NIPs based on phylogenetic analysis. Comparable exon–intron gene structures were found by gene structure examination, and similarities in motif number and pattern within the same subgroup was determined by motif analysis. The PeuAQP gene family has numerous duplications, and there is a distinct disparity in how the members of the PeuAQP family react to post-translational modifications. Abiotic stress and hormone responses may be mediated by AQPs, as indicated by the abundance of stress response elements found in 22 AQP genes, as revealed by the promoter’s cis-elements prediction. Expression pattern analysis reveals that selected six AQP genes from the PIP subgroup were all expressed in the leaves, stem, and roots with varying expression levels. Moreover, qRT-PCR analysis discovered that the majority of the selected AQP members were up- or down-regulated in response to hormone treatment and abiotic stress. Remarkably, PeuAQP14 and PeuAQP15 appeared to be highly responsive to drought stress and PeuAQP15 exhibited a high response to salt stress. The foliar application of the phytohormones (SA, IAA, GA3, MeJA, and ABA) were found to either activate or inhibit PeuAQP, suggesting that they may mitigate the effects of water shortage of poplar water stress. The present work enhances our knowledge of the practical roles of AQPs in stress reactions and offers fundamental information for the AQP genes in poplar species. It also highlights a direction for producing new varieties of poplar species with drought, salt, and hormone tolerance and holds substantial scientific and ecological importance, offering a potential contribution to the conservation of poplar species in arid regions. Full article
(This article belongs to the Special Issue New Insights in Plant Abiotic Stress)
Show Figures

Figure 1

Back to TopTop