Sign in to use this feature.

Years

Between: -

Search Results (585)

Search Parameters:
Keywords = cogeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 798 KiB  
Article
Enhancing the Energy Performance of a Gas Turbine: Component of a High-Efficiency Cogeneration Plant
by Roxana Grigore, Aneta Hazi, Ioan Viorel Banu, Sorin Eugen Popa and Sorin Gabriel Vernica
Energies 2024, 17(19), 4860; https://doi.org/10.3390/en17194860 - 27 Sep 2024
Viewed by 154
Abstract
Cogeneration is widely recognized as one of the most efficient methods of electricity generation, with gas turbine-based systems playing a critical role in ensuring reliability, sustainability, and consistent power output. This paper presents an energy efficiency analysis of a 14 MW high-efficiency cogeneration [...] Read more.
Cogeneration is widely recognized as one of the most efficient methods of electricity generation, with gas turbine-based systems playing a critical role in ensuring reliability, sustainability, and consistent power output. This paper presents an energy efficiency analysis of a 14 MW high-efficiency cogeneration unit, featuring a modernized gas turbine as its core component. Since gas turbines often operate under varying loads due to fluctuating demand, this study examines their performance at 100%, 75%, and 50% load levels. It is observed that the efficiency of the gas turbine declines as the load decreases, primarily due to losses resulting from deviations from the design flow conditions. A detailed energy balance, Sankey diagram, and a comparative analysis of performance metrics against the manufacturer’s guarantees are provided for each load scenario. The results indicate that net thermal efficiency decreases by 10.7% at 75% load and by 30.6% at 50% load compared to nominal performance at full load. The performance at full load closely aligns with the values guaranteed by the gas turbine supplier. The gross electrical power output is 1.33% higher than the guaranteed value, and the thermodynamic circuit’s efficiency is 0.49% higher under real conditions. This study represents the initial phase of transitioning the turbine to operate on a fuel blend of natural gas and up to 20% hydrogen, with the goal of reducing CO2 emissions. As a novel contribution, this paper provides a systematized method for calculating and monitoring the in-service performance of gas turbines. The mathematical model is implemented using the Mathcad Prime 8.0 software, which proves to be beneficial for both operators and researchers. Full article
17 pages, 1735 KiB  
Article
Environmental and Social Life Cycle Assessment of Data Centre Heat Recovery Technologies Combined with Fuel Cells for Energy Generation
by Camila Andrea Puentes Bejarano, Javier Pérez Rodríguez, Juan Manuel de Andrés Almeida, David Hidalgo-Carvajal, Jonas Gustaffson, Jon Summers and Alberto Abánades
Energies 2024, 17(18), 4745; https://doi.org/10.3390/en17184745 - 23 Sep 2024
Viewed by 539
Abstract
The energy sector is essential in the transition to a more sustainable future, and renewable energies will play a key role in achieving this. It is also a sector in which the circular economy presents an opportunity for the utilisation of other resources [...] Read more.
The energy sector is essential in the transition to a more sustainable future, and renewable energies will play a key role in achieving this. It is also a sector in which the circular economy presents an opportunity for the utilisation of other resources and residual energy flows. This study examines the environmental and social performance of innovative energy technologies (which contribute to the circularity of resources) implemented in a demonstrator site in Luleå (Sweden). The demo-site collected excess heat from a data centre to cogenerate energy, combining the waste heat with fuel cells that use biogas derived from waste, meeting part of its electrical demand and supplying thermal energy to an existing district heating network. Following a cradle-to-gate approach, an environmental and a social life cycle assessment were developed to compare two scenarios: a baseline scenario reflecting current energy supply methods and the WEDISTRICT scenario, which considers the application of different renewable and circular technologies. The findings indicate that transitioning to renewable energy sources significantly reduces environmental impacts in seven of the eight assessed impact categories. Specifically, the study showed a 48% reduction in climate change impact per kWh generated. Additionally, the WEDISTRICT scenario, accounting for avoided burdens, prevented 0.21 kg CO2 eq per kWh auto-consumed. From the social perspective, the WEDISTRICT scenario demonstrated improvement in employment conditions within the worker and local community categories, product satisfaction within the society category, and fair competition within the value chain category. Projects like WEDISTRICT demonstrate the circularity options of the energy sector, the utilisation of resources and residual energy flows, and that these lead to environmental and social improvements throughout the entire life cycle, not just during the operation phase. Full article
Show Figures

Figure 1

23 pages, 1422 KiB  
Article
The Integral Management of the Wastewater Treatment Sector in Mexico Using a Circular Economy Approach
by Jesús Adrián Ochoa Garza, Miranda Gómez Urquijo and María Guadalupe Paredes Figueroa
Recycling 2024, 9(5), 84; https://doi.org/10.3390/recycling9050084 - 22 Sep 2024
Viewed by 346
Abstract
Wastewater treatment must be proactive and sustainable to facilitate an increase in the circularity of water. Therefore, the current approach, based on a linear cycle, must be replaced with a circular economy concept that implements strategies to address the different byproducts in the [...] Read more.
Wastewater treatment must be proactive and sustainable to facilitate an increase in the circularity of water. Therefore, the current approach, based on a linear cycle, must be replaced with a circular economy concept that implements strategies to address the different byproducts in the wastewater treatment sector. In recent years, Nuevo León, Mexico, has encountered high water stress levels, with its main water bodies presenting their lowest levels ever recorded. This study was focused on the wastewater treatment plant Monterrey, which treats the largest volume at the state level. Throughout its operation process, it generates different potential byproducts that are yet to be harnessed to fully. This study developed three proposals using a circular economy approach: the treatment of water for the industrial sector, the use of residual sludge as an organic fertilizer, and the cogeneration of energy from biogas. These proposals can potentially generate benefits regarding the three pillars of sustainability, yielding a closed cycle in the wastewater treatment sector at the national level. Full article
(This article belongs to the Special Issue Sustainability of the Circular Economy)
Show Figures

Figure 1

18 pages, 16293 KiB  
Article
Siting Analysis of a Solar-Nuclear-Desalination Integrated Energy System
by Christopher Raymond, Olufemi A. Omitaomu, Kenneth Franzese, Michael J. Wagner and Ben Lindley
J. Nucl. Eng. 2024, 5(3), 402-419; https://doi.org/10.3390/jne5030025 - 19 Sep 2024
Viewed by 438
Abstract
Nuclear power is typically deployed as a baseload generator. Increased penetration of variable renewables motivates combining nuclear and renewable technologies into Integrated Energy Systems (IES) to improve dispatchability, component synergies and, through cogeneration, address multiple markets. However, combining multiple energy resources heavily depends [...] Read more.
Nuclear power is typically deployed as a baseload generator. Increased penetration of variable renewables motivates combining nuclear and renewable technologies into Integrated Energy Systems (IES) to improve dispatchability, component synergies and, through cogeneration, address multiple markets. However, combining multiple energy resources heavily depends on the proper selection of each system’s location and design limitations. In this paper, co-siting options for IES that couple nuclear and concentrating solar power (CSP) with thermal desalination are investigated. A comprehensive siting analysis is performed that utilizes global information survey data to determine possible co-siting options for nuclear and solar thermal generation in the United States. Viable co-siting options are distributed across the Southwestern U.S., with the greatest concentration of siting options in the southern Great Plains, although siting with higher solar direct normal irradiance is possible in other states such as Arizona and New Mexico. Brackish water desalination is also attractive across the southwest U.S. due to high water stress, but for brackish water desalination reverse osmosis (an electricity driven process) is most cost- and energy-efficient, which does not require co-siting with the thermal generator. The most attractive state for nuclear and thermal desalination (which is more attractive when using seawater) is Texas, although other areas may become attractive as water stress increases over the coming decades. Co-siting of all CSP and thermal desalination is challenging as attractive CSP sites are not coastal. Full article
Show Figures

Figure 1

19 pages, 2228 KiB  
Article
Thermodynamic Analysis of a Marine Diesel Engine Waste Heat-Assisted Cogeneration Power Plant Modified with Regeneration Onboard a Ship
by Haydar Kepekci and Cuneyt Ezgi
J. Mar. Sci. Eng. 2024, 12(9), 1667; https://doi.org/10.3390/jmse12091667 - 18 Sep 2024
Viewed by 505
Abstract
The objective of this study is to perform a thermodynamic analysis on a marine diesel engine waste heat-assisted cogeneration power plant modified with regeneration onboard a ship. The proposed system utilizes the waste heat from the main engine jacket water and exhaust gases [...] Read more.
The objective of this study is to perform a thermodynamic analysis on a marine diesel engine waste heat-assisted cogeneration power plant modified with regeneration onboard a ship. The proposed system utilizes the waste heat from the main engine jacket water and exhaust gases to generate electricity and heat, thereby reducing the fuel consumption and CO2 emissions. The methodology includes varying different turbine inlet pressures, extraction pressures, and fractions of steam extracted from the turbine to evaluate their effects on the efficiency, utilization factor, transformation energy equivalent factor, process heat rate, electrical power output, saved fuel flow rate, saved fuel cost, and reduced CO2 emissions. The analysis demonstrates that the proposed system can achieve an efficiency of 48.18% and utilization factor of 86.36%, savings of up to 57.325 kg/h in fuel, 65.606 USD/h in fuel costs, and 180.576 kg/h in CO2 emissions per unit mass flow rate through a steam turbine onboard a ship. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 1813 KiB  
Perspective
The Potential Relationship between Biomass, Biorefineries, and Bitcoin
by Georgeio Semaan, Guizhou Wang, Quoc Si Vo and Gopalakrishnan Kumar
Sustainability 2024, 16(18), 7919; https://doi.org/10.3390/su16187919 - 11 Sep 2024
Viewed by 625
Abstract
Despite advances in biofuel production and biomass processing technologies, biorefineries still experience commercialization issues. When costs exceed revenues, their long-term economic sustainability is threatened. Although integrated biorefineries have significant global potential due to process integration and product co-generation, it is crucial that they [...] Read more.
Despite advances in biofuel production and biomass processing technologies, biorefineries still experience commercialization issues. When costs exceed revenues, their long-term economic sustainability is threatened. Although integrated biorefineries have significant global potential due to process integration and product co-generation, it is crucial that they generate a positive net return, thereby incentivizing their continual operation. Nonetheless, research and development into new system designs and process integration are required to address current biorefinery inefficiencies. The integration of Bitcoin mining into biorefineries represents an innovative approach to diversify revenue streams and potentially offset costs, ensuring the economic viability and commercial success of biorefineries. When using bio-H2, a total of 3904 sats/kg fuel can be obtained as opposed to 537 sats/kg fuel when using syngas. Bitcoin, whether produced onsite or not, is an accretive asset that can offset the sales price of other produced biochemicals and biomaterials, thereby making biorefineries more competitive at offering their products. Collaborations with policy makers and industry stakeholders will be essential to address regulatory challenges and develop supportive frameworks for widespread implementation. Over time, the integration of Bitcoin mining in biorefineries could transform the financial dynamics of the bio-based products market, making them more affordable and accessible whilst pushing towards sustainable development and energy transition. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Graphical abstract

21 pages, 6353 KiB  
Article
Optimization of Residential Hydrogen Facilities with Waste Heat Recovery: Economic Feasibility across Various European Cities
by Evangelos E. Pompodakis, Arif Ahmed, Georgios I. Orfanoudakis and Emmanuel S. Karapidakis
Processes 2024, 12(9), 1933; https://doi.org/10.3390/pr12091933 - 9 Sep 2024
Viewed by 457
Abstract
The European Union has established ambitious targets for lowering carbon dioxide emissions in the residential sector, aiming for all new buildings to be “zero-emission” by 2030. Integrating solar generators with hydrogen storage systems is emerging as a viable solution for achieving these goals [...] Read more.
The European Union has established ambitious targets for lowering carbon dioxide emissions in the residential sector, aiming for all new buildings to be “zero-emission” by 2030. Integrating solar generators with hydrogen storage systems is emerging as a viable solution for achieving these goals in homes. This paper introduces a linear programming optimization algorithm aimed at improving the installation capacity of residential solar–hydrogen systems, which also utilize waste heat recovery from electrolyzers and fuel cells to increase the overall efficiency of the system. Analyzing six European cities with diverse climate conditions, our techno-economic assessments show that optimized configurations of these systems can lead to significant net present cost savings for electricity and heat over a 20-year period, with potential savings up to EUR 63,000, which amounts to a 26% cost reduction, especially in Southern Europe due to its abundant solar resources. Furthermore, these systems enhance sustainability and viability in the residential sector by significantly reducing carbon emissions. Our study does not account for the potential economic benefits from EU subsidies. Instead, we propose a novel incentive policy that allows owners of solar–hydrogen systems to inject up to 20% of their total solar power output directly into the grid, bypassing hydrogen storage. This strategy provides two key advantages: first, it enables owners to profit by selling the excess photovoltaic power during peak midday hours, rather than curtailing production; second, it facilitates a reduction in the size—and therefore cost—of the electrolyzer. Full article
(This article belongs to the Special Issue Energy Storage Systems and Thermal Management)
Show Figures

Figure 1

16 pages, 3119 KiB  
Article
Investigation and Sensitivity Analysis of Economic Parameters on the Operation of Cogeneration Systems to Supply Required Energies for Residential Buildings
by Yaser Ebazadeh, Reza Alayi and Eskandar Jamali
Eng 2024, 5(3), 2092-2107; https://doi.org/10.3390/eng5030111 - 2 Sep 2024
Viewed by 284
Abstract
The Combined Cooling, Heat, and Power (CCHP) System is an efficient technology that reduces primary energy consumption and carbon dioxide emissions by generating heat, cold, and electricity simultaneously from the same fuel source. This study developed an economic optimization model using linear mathematical [...] Read more.
The Combined Cooling, Heat, and Power (CCHP) System is an efficient technology that reduces primary energy consumption and carbon dioxide emissions by generating heat, cold, and electricity simultaneously from the same fuel source. This study developed an economic optimization model using linear mathematical program theory to determine the optimal sizes of different components in a CCHP system. The study found that CCHP systems with internal combustion engines have the largest optimal size due to lower capital expenditure and improved hourly changes in combined energy production by considering electrical and absorption chillers simultaneously. The analysis compared the size determination of CCHP systems with internal combustion engine (ICE), sterling engine (SE), and proton exchange membrane fuel cell (PEMFC) technologies. PEMFC had the highest annual overall cost among the technologies studied. The results of determining the size of the CCHP system are compared with ICE, SE, and PEMFC technologies. It has been noted that PEMFC has the highest annual overall cost among the studied technologies. The usefulness index of the CCHP system increased from 23% to almost 40% when electricity was sold to the grid using internal combustion engine technology. Full article
Show Figures

Figure 1

44 pages, 25979 KiB  
Article
Economic and Environmental Analyses of an Integrated Power and Hydrogen Production Systems Based on Solar Thermal Energy
by Zarif Aminov, Khusniddin Alikulov and Tran-Dang Xuan
Energies 2024, 17(17), 4264; https://doi.org/10.3390/en17174264 - 26 Aug 2024
Viewed by 398
Abstract
This study introduces a novel hybrid solar–biomass cogeneration power plant that efficiently produces heat, electricity, carbon dioxide, and hydrogen using concentrated solar power and syngas from cotton stalk biomass. Detailed exergy-based thermodynamic, economic, and environmental analyses demonstrate that the optimized system achieves an [...] Read more.
This study introduces a novel hybrid solar–biomass cogeneration power plant that efficiently produces heat, electricity, carbon dioxide, and hydrogen using concentrated solar power and syngas from cotton stalk biomass. Detailed exergy-based thermodynamic, economic, and environmental analyses demonstrate that the optimized system achieves an exergy efficiency of 48.67% and an exergoeconomic factor of 80.65% and produces 51.5 MW of electricity, 23.3 MW of heat, and 8334.4 kg/h of hydrogen from 87,156.4 kg/h of biomass. The study explores four scenarios for green hydrogen production pathways, including chemical looping reforming and supercritical water gasification, highlighting significant improvements in levelized costs and the environmental impact compared with other solar-based hybrid systems. Systems 2 and 3 exhibit superior performance, with levelized costs of electricity (LCOE) of 49.2 USD/MWh and 55.4 USD/MWh and levelized costs of hydrogen (LCOH) of between 10.7 and 19.5 USD/MWh. The exergoenvironmental impact factor ranges from 66.2% to 73.9%, with an environmental impact rate of 5.4–7.1 Pts/MWh. Despite high irreversibility challenges, the integration of solar energy significantly enhances the system’s exergoeconomic and exergoenvironmental performance, making it a promising alternative as fossil fuel reserves decline. To improve competitiveness, addressing process efficiency and cost reduction in solar concentrators and receivers is crucial. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 4301 KiB  
Article
Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network
by Yuwen You, Zhonghua Wang, Zhihao Liu, Chunmei Guo and Bin Yang
Energies 2024, 17(16), 4190; https://doi.org/10.3390/en17164190 - 22 Aug 2024
Viewed by 412
Abstract
Cogeneration is an important means for heat supply enterprises to obtain heat, and accurate load prediction is particularly crucial. The heat load of a centralized heat supply system is influenced by various factors such as outdoor meteorological parameters, the building envelope structure, and [...] Read more.
Cogeneration is an important means for heat supply enterprises to obtain heat, and accurate load prediction is particularly crucial. The heat load of a centralized heat supply system is influenced by various factors such as outdoor meteorological parameters, the building envelope structure, and regulation control, which exhibit a strong coupling and nonlinearity. It is essential to identify the key variables affecting the heat load at different heating stages through data mining techniques and to use deep learning algorithms to precisely regulate the heating system based on load predictions. In this study, a heat station in a northern Chinese city is taken as the subject of research. We apply the Fuzzy Clustering based on Fourier distance (FCBD-FCM) algorithm to transform the factors influencing the long and short-term load prediction of heat supply from the time domain to the frequency domain. This transformation is used to analyze the degree of their impact on load changes and to extract factors with significant influence as the multifeatured input variables for the prediction model. Five neural network models for load prediction are established, namely, Backpropagation (BP), convolutional neural network (CNN), Long Short-Term Memory (LSTM), CNN-LSTM, and CNN-BiLSTM. These models are compared and analyzed for their performance in long-term, short-term, and ultrashort-term heating load prediction. The findings indicate that the load prediction accuracy is high when multifeatured input variables are based on fuzzy clustering. Furthermore, the CNN-BiLSTM model notably enhances the prediction accuracy and generalization ability compared to other models, with the Mean Absolute Percentage Error (MAPE) averaging within 3%. Full article
Show Figures

Figure 1

21 pages, 2072 KiB  
Article
Optimization and Tradeoff Analysis for Multiple Configurations of Bio-Energy with Carbon Capture and Storage Systems in Brazilian Sugarcane Ethanol Sector
by Bruno Bunya, César A. R. Sotomonte, Alisson Aparecido Vitoriano Julio, João Luiz Junho Pereira, Túlio Augusto Zucareli de Souza, Matheus Brendon Francisco and Christian J. R. Coronado
Entropy 2024, 26(8), 698; https://doi.org/10.3390/e26080698 - 17 Aug 2024
Viewed by 766
Abstract
Bio-energy systems with carbon capture and storage (BECCS) will be essential if countries are to meet the gas emission reduction targets established in the 2015 Paris Agreement. This study seeks to carry out a thermodynamic optimization and analysis of a BECCS technology for [...] Read more.
Bio-energy systems with carbon capture and storage (BECCS) will be essential if countries are to meet the gas emission reduction targets established in the 2015 Paris Agreement. This study seeks to carry out a thermodynamic optimization and analysis of a BECCS technology for a typical Brazilian cogeneration plant. To maximize generated net electrical energy (MWe) and carbon dioxide CO2 capture (Mt/year), this study evaluated six cogeneration systems integrated with a chemical absorption process using MEA. A key performance indicator (gCO2/kWh) was also evaluated. The set of optimal solutions shows that the single regenerator configuration (REG1) resulted in more CO2 capture (51.9% of all CO2 emissions generated by the plant), penalized by 14.9% in the electrical plant’s efficiency. On the other hand, the reheated configuration with three regenerators (Reheat3) was less power-penalized (7.41%) but had a lower CO2 capture rate (36.3%). Results showed that if the CO2 capture rates would be higher than 51.9%, the cogeneration system would reach a higher specific emission (gCO2/kWh) than the cogeneration base plant without a carbon capture system, which implies that low capture rates (<51%) in the CCS system guarantee an overall net reduction in greenhouse gas emissions in sugarcane plants for power and ethanol production. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Industrial Energy Systems)
Show Figures

Figure 1

20 pages, 5328 KiB  
Article
Holistic Analysis of the Impact of Power Generation Plants in Mexico during Their Life Cycle
by Diana L. Ovalle Flores, Rafael Peña Gallardo, Elvia R. Palacios Hernández, Carlos Soubervielle Montalvo and Adalberto Ospino Castro
Sustainability 2024, 16(16), 7041; https://doi.org/10.3390/su16167041 - 16 Aug 2024
Viewed by 699
Abstract
This paper assesses the environmental, technical, economic, and social impacts of the main energy generation technologies currently used in Mexico. The study used a life-cycle assessment and a multi-criteria decision-making method. The Analytical Hierarchy Process was employed to assess the social, technical, and [...] Read more.
This paper assesses the environmental, technical, economic, and social impacts of the main energy generation technologies currently used in Mexico. The study used a life-cycle assessment and a multi-criteria decision-making method. The Analytical Hierarchy Process was employed to assess the social, technical, and economic impacts, while the life-cycle assessment examined the environmental effects. This study innovates the way of analyzing power plants since it provides a classification of these technologies considering different aspects, and the rankings can be obtained for each criterion and in a holistic way. According to the study’s findings, photovoltaics and nuclear power plants are the most environmentally friendly options for Mexico. Considering the economic aspects, solar and wind energy are classified as the best technologies for the country. From a technical point of view, the best power plants are combined cycle and thermoelectric plants. The power plants most accepted by society are efficient cogeneration and turbo gas. Finally, the overall ranking from the experts’ perspective for the development of Mexico shows that the best technologies are combined cycle and hydroelectric, with 14% and 12% acceptance, respectively. Full article
Show Figures

Figure 1

52 pages, 8354 KiB  
Review
A Comprehensive Study on Hydrogen Production via Waste Heat Recovery of a Natural Gas-Fueled Internal Combustion Engine in Cogeneration Power-Hydrogen Layouts: 4E Study and Optimization
by Mohammad Zoghi, Nasser Hosseinzadeh, Saleh Gharaie and Ali Zare
Sustainability 2024, 16(16), 6860; https://doi.org/10.3390/su16166860 - 9 Aug 2024
Viewed by 545
Abstract
Internal combustion engines (ICEs) are one of the significant sources of wasted energy, with approximately 65% of their input energy being wasted and dissipated into the environment. Given their wide usage globally, it is necessary to find ways to recover their waste energies, [...] Read more.
Internal combustion engines (ICEs) are one of the significant sources of wasted energy, with approximately 65% of their input energy being wasted and dissipated into the environment. Given their wide usage globally, it is necessary to find ways to recover their waste energies, addressing this inefficiency and reducing environmental pollution. While previous studies have explored various aspects of waste energy recovery, a comparative analysis of different bottoming configurations has been lacking. In this research, an extensive review of the existing literature was conducted by an exploration of four key bottoming cycles: the steam Rankine cycle (SRC), CO2 supercritical Brayton cycle, inverse Brayton cycle (IBC), and air bottoming cycle. In addition, these four main bottoming systems are utilized for the waste energy recovery of natural gas-fired ICE with a capacity of 584 kW and an exhausted gas temperature of 493 °C. For the efficient waste heat recovery of residual exhausted gas and heat rejection stage of the main bottoming system, two thermoelectric generators are utilized. Then, the produced power in bottoming systems is sent to a proton exchange membrane electrolyzer for hydrogen production. A comprehensive 4E (energy, exergy, exergy-economic, and environmental) optimization is conducted to find the best main bottoming system for hydrogen production. Results showed that the SRC-based system has the highest exergy efficiency (21.93%), while the IBC-based system results in the lowest efficiency (13.72%), total cost rate (25.58 $/h), and unit cost of hydrogen production (59.91 $/GJ). This combined literature review and research article underscore the importance of finding an economically efficient bottoming cycle in the context of waste energy recovery and hydrogen production. Full article
Show Figures

Figure 1

19 pages, 10565 KiB  
Article
Assessment of the Optimal Energy Generation and Storage Systems to Feed a Districting Heating Network
by Laura Pompei, Fabio Nardecchia, Adio Miliozzi, Daniele Groppi, Davide Astiaso Garcia and Livio De Santoli
Buildings 2024, 14(8), 2370; https://doi.org/10.3390/buildings14082370 - 1 Aug 2024
Viewed by 495
Abstract
Employing sustainable energy systems is a must fact of the current years. Urban districts can lead the decarbonization process of cities to allow the development of decentralization energy systems such as district heating. On the other hand, the exergy analysis combined with energy [...] Read more.
Employing sustainable energy systems is a must fact of the current years. Urban districts can lead the decarbonization process of cities to allow the development of decentralization energy systems such as district heating. On the other hand, the exergy analysis combined with energy evaluation can be a suitable way to investigate the efficiency and flexibility of an energy system. In this framework, this study investigates the optimal energy and storage systems to feed a district heating network. Four types of energy systems were analyzed, such as boilers, cogeneration plants, solar systems and the combination of them. The size of the thermal energy storage of the network is investigated in terms of volume and temperature. In parallel, the exergy efficiency of all the systems was calculated. The optimal heating system configuration to feed the studied district heating is the cogeneration plant with solar collectors, according to both the temperature trend fluctuation and exergy efficiency of the system. Moreover, the employment of thermal energy storage is crucial to face the renewable energy source’s variability. As a further investigation, additional exergy indicators can be studied to underline the performances of such an decentralized energy system to increase the quality of the built environment. Full article
(This article belongs to the Special Issue Sustainable and Smart Energy Systems in the Built Environment)
Show Figures

Figure 1

14 pages, 4391 KiB  
Article
Use of Dielectric Heating in Greenhouses
by Francesco Cepolina, Leonardo Cirillo and Matteo Zoppi
AgriEngineering 2024, 6(3), 2352-2365; https://doi.org/10.3390/agriengineering6030137 - 20 Jul 2024
Viewed by 427
Abstract
Cogeneration helps to optimise the energy consumption in modern greenhouse systems. A cogeneration plant produces electrical and thermal energy close to the greenhouse. Thermal energy is used for heating the plants, while electric energy powers the lights. A patent from the University of [...] Read more.
Cogeneration helps to optimise the energy consumption in modern greenhouse systems. A cogeneration plant produces electrical and thermal energy close to the greenhouse. Thermal energy is used for heating the plants, while electric energy powers the lights. A patent from the University of Genoa proposes to use part of the electricity produced by the cogeneration system to power a low-power microwave heating system that provides additional thermal energy input to the plants. This innovative approach showcases the integration of diverse energy sources for enhanced efficiency. The project aims to create a cost-effective dielectric heating system with feasible installation expenses, underpinned by a comprehensive analysis of power requirements and electric field dynamics that are essential for optimal plant heating. Four microstrip antennas for microwave generation have been designed. Their performance has been compared. A laboratory and an industrial prototype of microwave heaters have been created. The results are discussed. The successful testing of a prototype heater in a small greenhouse environment is a significant step towards the feasibility of this heating solution. The modular heater proposed makes the product suitable for different greenhouse sizes. Full article
Show Figures

Figure 1

Back to TopTop