Sign in to use this feature.

Years

Between: -

Search Results (29)

Search Parameters:
Keywords = customized lattice structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 11327 KiB  
Article
An Investigation into Mechanical Properties of 3D Printed Thermoplastic-Thermoset Mixed-Matrix Composites: Synergistic Effects of Thermoplastic Skeletal Lattice Geometries and Thermoset Properties
by Saleh Khanjar, Srimanta Barui, Kunal Kate and Kameswara Pavan Kumar Ajjarapu
Materials 2024, 17(17), 4426; https://doi.org/10.3390/ma17174426 - 9 Sep 2024
Viewed by 438
Abstract
This study aims to develop thermoplastic (TP) and thermoset (TS) based mixed matrix composite using design dependent physical compatibility. Using thermoplastic-based (PLA) skeletal lattices with diverse patterns (gyroid and grid) and different infill densities (10% and 20%) followed by infiltration of two different [...] Read more.
This study aims to develop thermoplastic (TP) and thermoset (TS) based mixed matrix composite using design dependent physical compatibility. Using thermoplastic-based (PLA) skeletal lattices with diverse patterns (gyroid and grid) and different infill densities (10% and 20%) followed by infiltration of two different thermoset resin systems (epoxy and polyurethane-based) using a customized FDM 3D printer equipped with a resin dispensing unit, the optimised design and TP-TS material combination was established for best mechanical performance. Under uniaxial tensile stress, the failure modes of TP gyroid structures with polyurethane-based composites included ‘fiber pull-out’, interfacial debonding and fiber breakage, while epoxy based mixed matrix composites with all design variants demonstrated brittle failure. Higher elongation (higher area under curve) was observed in 20% infilled gyroid patterned composite with polyurethane matrix indicating the capability of operation in mechanical shock absorption application. Electron microscopy-based fractography analysis revealed that thermoset matrix properties governed the fracture modes for the thermoplastic phase. This work focused on the strategic optimisation of both toughness and stiffness of mixed matrix composite components for rapid fabrication of construction materials. Full article
Show Figures

Figure 1

14 pages, 2422 KiB  
Article
Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications
by Ahmed Sherif El-Gizawy, Xuewei Ma, Joshua C. Arnone and Ammar A. Melaibari
BioMed 2024, 4(2), 171-184; https://doi.org/10.3390/biomed4020014 - 13 Jun 2024
Viewed by 507
Abstract
Existing implants used with Total Knee Arthroplasty (TKA), Total Hip Arthroplasty (THA), and other joint reconstruction treatments, have displayed premature failures and frequent needs for revision surgery in recent years, particularly with young active patients who represent more than 55% of all joint [...] Read more.
Existing implants used with Total Knee Arthroplasty (TKA), Total Hip Arthroplasty (THA), and other joint reconstruction treatments, have displayed premature failures and frequent needs for revision surgery in recent years, particularly with young active patients who represent more than 55% of all joint reconstruction patients. Bone cement and stress shielding have been identified as the major reasons for premature joint failures. A breakdown of the cement may happen, and revision surgery may be needed because of the aseptic loosening. The significant mismatch of stiffness properties of patient trabecular bones and metallic implant materials in joint reconstruction surgery results in the stress shielding phenomenon. This could lead to significant bone resorption and increased risk of bone fracture and the aseptic loosening of implants. The present project introduces an approach for development of customized cellular structures to match the mechanical properties and architecture of human trabecular bone. The present work aims at fulfilling the objectives of the introduced approach by exploring new designs of customized lattice structures and texture tailored to mimic closely patients’ bone anisotropic properties and that can incorporate an engineered biological press-fit fixation technique. The effects of various lattice design variables on the mechanical performance of the structure are examined through a systematic experimental plan using the statistical design of experiments technique and analysis of variance method. All tested lattice designs were explored under realistic geometrical, biological, and manufacturing constraints. Of the four design factors examined in this study, strut thickness was found to have the highest percent contribution (41%) regarding the structure stiffness, followed by unit cell type, and cell size. Strut shape was found to have the lowest effect with only 11% contribution. The introduced solution offers lattice structure designs that can be adjusted to match bone stiffness distribution and promote bone ingrowth and hence eliminating the phenomenon of stress shielding while incorporating biological press-fit fixation technique. Full article
Show Figures

Figure 1

20 pages, 11034 KiB  
Article
Experimental Evaluation of Mechanical Compression Properties of Aluminum Alloy Lattice Trusses for Anti-Ice System Applications
by Carlo Giovanni Ferro, Sara Varetti and Paolo Maggiore
Machines 2024, 12(6), 404; https://doi.org/10.3390/machines12060404 - 12 Jun 2024
Viewed by 628
Abstract
Lattice structures have emerged as promising materials for aerospace structure applications due to their high strength-to-weight ratios, customizable properties, and efficient use of materials. These properties make them attractive for use in anti-ice systems, where lightweight and heat exchange are essential. This paper [...] Read more.
Lattice structures have emerged as promising materials for aerospace structure applications due to their high strength-to-weight ratios, customizable properties, and efficient use of materials. These properties make them attractive for use in anti-ice systems, where lightweight and heat exchange are essential. This paper presents an extensive experimental investigation into mechanical compression properties of lattice trusses fabricated from AlSi10Mg powder alloy, a material commonly used in casted aerospace parts. The truss structures were manufactured using the additive manufacturing selective laser melting technique and were subjected to uniaxial compressive loading to assess their performance. The results demonstrate that AlSi10Mg lattice trusses exhibit remarkable compressive strength with strong correlations depending upon both topology and cells’ parameters setup. The findings described highlight the potential of AlSi10Mg alloy as a promising material for custom truss fabrication, offering customizable cost-effective and lightweight solutions for the aerospace market. This study also emphasizes the role of additive manufacturing in producing complex structures with pointwise-tailored mechanical properties. Full article
(This article belongs to the Special Issue Recent Advances in 3D Printing in Industry 4.0)
Show Figures

Figure 1

14 pages, 3787 KiB  
Article
Investigating Influential Parameters for High-Purity Germanium Crystal Growth
by Sanjay Bhattarai, Dongming Mei, Narayan Budhathoki, Kunming Dong and Austin Warren
Crystals 2024, 14(2), 177; https://doi.org/10.3390/cryst14020177 - 10 Feb 2024
Viewed by 1792
Abstract
This paper focuses on the research and development of high-purity germanium (HPGe) crystals for detector fabrication, specifically targeting applications in rare-event physics searches. The primary objective was to produce large-scale germanium crystals weighing >1 kg with a controlled diameter of ∼10 cm and [...] Read more.
This paper focuses on the research and development of high-purity germanium (HPGe) crystals for detector fabrication, specifically targeting applications in rare-event physics searches. The primary objective was to produce large-scale germanium crystals weighing >1 kg with a controlled diameter of ∼10 cm and an impurity range of approximately 1010/cm 3. Ensuring structural integrity and excellent crystalline quality requires a thorough assessment of dislocation density, a critical aspect of the crystal development process. Dislocation density measurements play a crucial role in maximizing the sensitivity of HPGe detectors, and our findings confirmed that the dislocation density fell within acceptable ranges for detector fabrication. Additionally, this paper examines the segregation coefficient of various contaminants during the crystal development process. Comprehensive analysis of impurity segregation is essential for reducing contaminant quantities in the crystal lattice and customizing purification processes. This, in turn, minimizes undesired background noise, enhancing signal-to-noise ratios for rare-event physics searches and overall detector performance. The investigation included the segregation coefficients of three major acceptors and one donor in crystals grown at the University of South Dakota, providing valuable insights for optimizing crystal purity and detector efficiency. Full article
Show Figures

Figure 1

16 pages, 10559 KiB  
Article
Mechanical Characterization of Multifunctional Metal-Coated Polymer Lattice Structures
by Lizhe Wang, Liu He, Fuyuan Liu, Hang Yuan, Ji Li and Min Chen
Materials 2024, 17(3), 741; https://doi.org/10.3390/ma17030741 - 3 Feb 2024
Cited by 2 | Viewed by 1575
Abstract
Metal-coated lattice structures hold significant promise for customizing mechanical properties in diverse industrial applications, including the mechanical arms of unmanned aerial vehicles. However, their intricate geometries pose computational challenges, resulting in time-intensive and costly numerical evaluations. This study introduces a parameterization-based multiscale method [...] Read more.
Metal-coated lattice structures hold significant promise for customizing mechanical properties in diverse industrial applications, including the mechanical arms of unmanned aerial vehicles. However, their intricate geometries pose computational challenges, resulting in time-intensive and costly numerical evaluations. This study introduces a parameterization-based multiscale method to analyze body-centered cubic lattice structures with metal coatings. We establish the validity and precision of our proposed method with a comparative analysis of numerical results at the Representative Volume Element (RVE) scale and experimental findings, specifically addressing both elastic tensile and bending stiffness. Furthermore, we showcase the method’s accuracy in interpreting the bending stiffness of coated lattice structures using a homogenized material-based solid model, underscoring its effectiveness in predicting the elastic properties of such structures. In exploring the mechanical characterization of coated lattice structures, we unveil positive correlations between elastic tensile stiffness and both coating thickness and strut diameter. Additionally, the metal coating significantly enhances the structural elastic bending stiffness multiple times over. The diverse failure patterns observed in coated lattices under tensile and bending loads primarily stem from varied loading-induced stress states rather than external factors. This work not only mitigates computational challenges but also successfully bridges the gap between mesoscale RVE mechanical properties and those at the global structural scale. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

15 pages, 4684 KiB  
Article
Computational Mechanics of Form-Fitting 3D-Printed Lattice-Based Wrist-Hand Orthosis for Motor Neuron Disease
by Silvia Badini, Stefano Regondi, Carmen Lammi, Carlotta Bollati, Giordana Donvito and Raffaele Pugliese
Biomedicines 2023, 11(7), 1787; https://doi.org/10.3390/biomedicines11071787 - 22 Jun 2023
Cited by 4 | Viewed by 2320
Abstract
Motor neuron disease (MND) patients often experience hand-wrist muscle atrophy resulting in severe social consequences and hampering their daily activities. Although hand-wrist orthosis is commonly used to assist weakened muscles, its effectiveness is limited due to the rapid progression of the disease and [...] Read more.
Motor neuron disease (MND) patients often experience hand-wrist muscle atrophy resulting in severe social consequences and hampering their daily activities. Although hand-wrist orthosis is commonly used to assist weakened muscles, its effectiveness is limited due to the rapid progression of the disease and the need for customization to suit individual patient requirements. To address these challenges, this study investigates the application of three-dimensional (3D) printing technology to design and fabricate two lattice structures inspired by silkworm cocoons, using poly-ε-caprolactone as feedstock material. Finite element method (FEM) analysis is employed to study the mechanical behavior, enabling control over the geometric configuration incorporated into the hand-wrist orthosis. Through tensile displacement and three-point bending simulations, the stress distribution is examined for both lattice geometries. Geometry-1 demonstrates anisotropic behavior, while geometry-2 exhibits no strict directional dependence due to its symmetry and uniform node positioning. Moreover, the biocompatibility of lattices with human skin fibroblasts is investigated, confirming excellent biocompatibility. Lastly, the study involves semi-structured interviews with MND patients to gather feedback and develop prototypes of form-fitting 3D-printed lattice-based hand-wrist orthosis. By utilizing 3D printing technology, this study aims to provide customized orthosis that can effectively support weakened muscles and reposition the hand for individuals with MND. Full article
(This article belongs to the Special Issue Materials for Biomedical Engineering and Regenerative Medicine)
Show Figures

Figure 1

17 pages, 7726 KiB  
Article
CO2 Electroreduction to Formate—Comparative Study Regarding the Electrocatalytic Performance of SnO2 Nanoparticles
by Henning Weinrich, Bastian Rutjens, Shibabrata Basak, Bernhard Schmid, Osmane Camara, Ansgar Kretzschmar, Hans Kungl, Hermann Tempel and Rüdiger-A. Eichel
Catalysts 2023, 13(5), 903; https://doi.org/10.3390/catal13050903 - 18 May 2023
Cited by 3 | Viewed by 1837
Abstract
SnO2 nanoparticles have frequently been reported as effective electrocatalysts for CO2 electroreduction to formate. However, in the literature, there is little knowledge of SnO2 nanoparticles that guarantee superior electrocatalytic performance. Hence, in this study, several SnO2 nanoparticles are compared [...] Read more.
SnO2 nanoparticles have frequently been reported as effective electrocatalysts for CO2 electroreduction to formate. However, in the literature, there is little knowledge of SnO2 nanoparticles that guarantee superior electrocatalytic performance. Hence, in this study, several SnO2 nanoparticles are compared with respect to their material properties, and correlations to the electrocatalytic performance are established. For comparison, three custom-made SnO2-electrocatalysts were prepared, reproducing frequently cited procedures in literature. Based on the comparison, it is found that hydrothermal, sol-gel, and solid-state synthesis provide quite different electrocatalysts, particularly in terms of the particle size and crystal lattice defect structure. Desirably small nanoparticles with a comparatively high number of lattice defects are found for the nanoparticles prepared by hydrothermal synthesis, which also provide the best electrocatalytic performance in terms of Faradaic efficiency for the electroreduction of CO2 to formate. However, despite the considerably smaller surface area, the commercial reference also provides significant electrocatalytic performance, e.g., in terms of the overall produced amount of formate, which suggests a surprisingly high surface area-specific activity for this material that is low on defects. Thus, defects do not appear to be the preferred reaction site for the CO2 electroreduction to formate on SnO2 in this case. Full article
(This article belongs to the Special Issue CO2 Catalytic Conversion and Utilization)
Show Figures

Figure 1

13 pages, 1821 KiB  
Review
3D Printing in Regenerative Medicine: Technologies and Resources Utilized
by Antreas Kantaros
Int. J. Mol. Sci. 2022, 23(23), 14621; https://doi.org/10.3390/ijms232314621 - 23 Nov 2022
Cited by 49 | Viewed by 4692
Abstract
Over the past ten years, the use of additive manufacturing techniques, also known as “3D printing”, has steadily increased in a variety of scientific fields. There are a number of inherent advantages to these fabrication methods over conventional manufacturing due to the way [...] Read more.
Over the past ten years, the use of additive manufacturing techniques, also known as “3D printing”, has steadily increased in a variety of scientific fields. There are a number of inherent advantages to these fabrication methods over conventional manufacturing due to the way that they work, which is based on the layer-by-layer material-deposition principle. These benefits include the accurate attribution of complex, pre-designed shapes, as well as the use of a variety of innovative raw materials. Its main advantage is the ability to fabricate custom shapes with an interior lattice network connecting them and a porous surface that traditional manufacturing techniques cannot adequately attribute. Such structures are being used for direct implantation into the human body in the biomedical field in areas such as bio-printing, where this potential is being heavily utilized. The fabricated items must be made of biomaterials with the proper mechanical properties, as well as biomaterials that exhibit characteristics such as biocompatibility, bioresorbability, and biodegradability, in order to meet the strict requirements that such procedures impose. The most significant biomaterials used in these techniques are listed in this work, but their advantages and disadvantages are also discussed in relation to the aforementioned properties that are crucial to their use. Full article
Show Figures

Figure 1

19 pages, 5129 KiB  
Article
Supportless Lattice Structure for Additive Manufacturing of Functional Products and the Evaluation of Its Mechanical Property at Variable Strain Rates
by Mayur Jiyalal Prajapati, Chinmai Bhat, Ajeet Kumar, Saurav Verma, Shang-Chih Lin and Jeng-Ywan Jeng
Materials 2022, 15(22), 7954; https://doi.org/10.3390/ma15227954 - 10 Nov 2022
Cited by 13 | Viewed by 3279
Abstract
This study proposes an innovative design solution based on the design for additive manufacturing (DfAM) and post-process for manufacturing industrial-grade products by reducing additive manufacturing (AM) time and improving production agility. The design of the supportless open cell Sea Urchin lattice structure is [...] Read more.
This study proposes an innovative design solution based on the design for additive manufacturing (DfAM) and post-process for manufacturing industrial-grade products by reducing additive manufacturing (AM) time and improving production agility. The design of the supportless open cell Sea Urchin lattice structure is analyzed using DfAM for material extrusion (MEX) process to print support free in any direction. The open cell is converted into a global closed cell to entrap secondary foam material. The lattice structure is 3D printed with Polyethylene terephthalate glycol (PETG) material and is filled with foam using the Hybrid MEX process. Foam-filling improves the lattice structure’s energy absorption and crash force efficiency when tested at different strain rates. An industrial case study demonstrates the importance and application of this lightweight and tough design to meet the challenging current and future mass customization market. A consumer-based industrial scenario is chosen wherein an innovative 3D-printed universal puck accommodates different shapes of products across the supply line. The pucks are prone to collisions on the supply line, generating shock loads and hazardous noise. The results show that support-free global closed-cell lattice structures filled with foam improve energy absorption at a high strain rate and enhance the functional requirement of noise reduction during the collision. Full article
Show Figures

Graphical abstract

19 pages, 6299 KiB  
Article
Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing
by Shelbie A. Legett, Xavier Torres, Andrew M. Schmalzer, Adam Pacheco, John R. Stockdale, Samantha Talley, Tom Robison and Andrea Labouriau
Polymers 2022, 14(21), 4661; https://doi.org/10.3390/polym14214661 - 1 Nov 2022
Cited by 8 | Viewed by 2750
Abstract
Although direct ink writing (DIW) allows the rapid fabrication of unique 3D printed objects, the resins—or “inks”—available for this technique are in short supply and often offer little functionality, leading to the development of new, custom inks. However, when creating new inks, the [...] Read more.
Although direct ink writing (DIW) allows the rapid fabrication of unique 3D printed objects, the resins—or “inks”—available for this technique are in short supply and often offer little functionality, leading to the development of new, custom inks. However, when creating new inks, the ability of the ink to lead to a successful print, or the “printability,” must be considered. Thus, this work examined the effect of filler composition/concentration, printing parameters, and lattice structure on the printability of new polysiloxane inks incorporating high concentrations (50–70 wt%) of metallic and ceramic fillers as well as emulsions. Results suggest that strut diameter and spacing ratio have the most influence on the printability of DIW materials and that the printability of silica- and metal-filled inks is more predictable than ceramic-filled inks. Additionally, higher filler loadings and SC geometries led to stiffer printed parts than lower loadings and FCT geometries, and metal-filled inks were more thermally stable than ceramic-filled inks. The findings in this work provide important insights into the tradeoffs associated with the development of unique and/or multifunctional DIW inks, printability, and the final material’s performance. Full article
(This article belongs to the Special Issue Progress in 3D Printing)
Show Figures

Figure 1

15 pages, 3669 KiB  
Article
In Situ Measurements of Strain Evolution in Graphene/Boron Nitride Heterostructures Using a Non-Destructive Raman Spectroscopy Approach
by Marc Mezzacappa, Dheyaa Alameri, Brian Thomas, Yoosuk Kim, Chi-Hou Lei and Irma Kuljanishvili
Nanomaterials 2022, 12(17), 3060; https://doi.org/10.3390/nano12173060 - 3 Sep 2022
Cited by 1 | Viewed by 2065
Abstract
The mechanical properties of engineered van der Waals (vdW) 2D materials and heterostructures are critically important for their implementation into practical applications. Using a non-destructive Raman spectroscopy approach, this study investigates the strain evolution of single-layer graphene (SLGr) and few-layered boron nitride/graphene (FLBN/SLGr) [...] Read more.
The mechanical properties of engineered van der Waals (vdW) 2D materials and heterostructures are critically important for their implementation into practical applications. Using a non-destructive Raman spectroscopy approach, this study investigates the strain evolution of single-layer graphene (SLGr) and few-layered boron nitride/graphene (FLBN/SLGr) heterostructures. The prepared 2D materials are synthesized via chemical vapor deposition (CVD) method and then transferred onto flexible polyethylene terephthalate (PET) substrates for subsequent strain measurements. For this study, a custom-built mechanical device-jig is designed and manufactured in-house to be used as an insert for the 3D piezoelectric stage of the Raman system. In situ investigation of the effects of applied strain in graphene detectable via Raman spectral data in characteristic bonds within SLGr and FLBN/SLGr heterostructures is carried out. The in situ strain evolution of the FLBN/SLGr heterostructures is obtained in the range of (0–0.5%) strain. It is found that, under the same strain, SLG exhibits a higher Raman shift in the 2D band as compared with FLBN/SLGr heterostructures. This research leads to a better understanding of strain dissipation in vertical 2D heterostacks, which could help improve the design and engineering of custom interfaces and, subsequently, control lattice structure and electronic properties. Moreover, this study can provide a new systematic approach for precise in situ strain assessment and measurements of other CVD-grown 2D materials and their heterostructures on a large scale for manufacturing a variety of future micro- and nano-scale devices on flexible substrates. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

15 pages, 6817 KiB  
Article
Solution-Mediated Inversion of SnSe to Sb2Se3 Thin-Films
by Svetlana Polivtseva, Julia Kois, Tatiana Kruzhilina, Reelika Kaupmees, Mihhail Klopov, Palanivel Molaiyan, Heleen van Gog, Marijn A. van Huis and Olga Volobujeva
Nanomaterials 2022, 12(17), 2898; https://doi.org/10.3390/nano12172898 - 23 Aug 2022
Viewed by 2124
Abstract
New facile and controllable approaches to fabricating metal chalcogenide thin films with adjustable properties can significantly expand the scope of these materials in numerous optoelectronic and photovoltaic devices. Most traditional and especially wet-chemical synthetic pathways suffer from a sluggish ability to regulate the [...] Read more.
New facile and controllable approaches to fabricating metal chalcogenide thin films with adjustable properties can significantly expand the scope of these materials in numerous optoelectronic and photovoltaic devices. Most traditional and especially wet-chemical synthetic pathways suffer from a sluggish ability to regulate the composition and have difficulty achieving the high-quality structural properties of the sought-after metal chalcogenides, especially at large 2D length scales. In this effort, and for the first time, we illustrated the fast and complete inversion of continuous SnSe thin-films to Sb2Se3 using a scalable top-down ion-exchange approach. Processing in dense solution systems yielded the formation of Sb2Se3 films with favorable structural characteristics, while oxide phases, which are typically present in most Sb2Se3 films regardless of the synthetic protocols used, were eliminated. Density functional theory (DFT) calculations performed on intermediate phases show strong relaxations of the atomic lattice due to the presence of substitutional and vacancy defects, which likely enhances the mobility of cationic species during cation exchange. Our concept can be applied to customize the properties of other metal chalcogenides or manufacture layered structures. Full article
(This article belongs to the Special Issue Nanowires and Quantum Dots)
Show Figures

Figure 1

11 pages, 1585 KiB  
Article
A New Look at the Spin Glass Problem from a Deep Learning Perspective
by Petr Andriushchenko, Dmitrii Kapitan and Vitalii Kapitan
Entropy 2022, 24(5), 697; https://doi.org/10.3390/e24050697 - 14 May 2022
Cited by 4 | Viewed by 2696
Abstract
Spin glass is the simplest disordered system that preserves the full range of complex collective behavior of interacting frustrating elements. In the paper, we propose a novel approach for calculating the values of thermodynamic averages of the frustrated spin glass model using custom [...] Read more.
Spin glass is the simplest disordered system that preserves the full range of complex collective behavior of interacting frustrating elements. In the paper, we propose a novel approach for calculating the values of thermodynamic averages of the frustrated spin glass model using custom deep neural networks. The spin glass system was considered as a specific weighted graph whose spatial distribution of the edges values determines the fundamental characteristics of the system. Special neural network architectures that mimic the structure of spin lattices have been proposed, which has increased the speed of learning and the accuracy of the predictions compared to the basic solution of fully connected neural networks. At the same time, the use of trained neural networks can reduce simulation time by orders of magnitude compared to other classical methods. The validity of the results is confirmed by comparison with numerical simulation with the replica-exchange Monte Carlo method. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Graphical abstract

15 pages, 31887 KiB  
Article
Design Data and Finite Element Analysis of 3D Printed Poly(ε-Caprolactone)-Based Lattice Scaffolds: Influence of Type of Unit Cell, Porosity, and Nozzle Diameter on the Mechanical Behavior
by Riccardo Sala, Stefano Regondi and Raffaele Pugliese
Eng 2022, 3(1), 9-23; https://doi.org/10.3390/eng3010002 - 25 Dec 2021
Cited by 20 | Viewed by 7314
Abstract
Material extrusion additive manufacturing (MEAM) is an advanced manufacturing method that produces parts via layer-wise addition of material. The potential of MEAM to prototype lattice structures is remarkable, but restrictions imposed by manufacturing processes lead to practical limits on the form and dimension [...] Read more.
Material extrusion additive manufacturing (MEAM) is an advanced manufacturing method that produces parts via layer-wise addition of material. The potential of MEAM to prototype lattice structures is remarkable, but restrictions imposed by manufacturing processes lead to practical limits on the form and dimension of structures that can be produced. For this reason, such structures are mainly manufactured by selective laser melting. Here, the capabilities of fused filament fabrication (FFF) to produce custom-made lattice structures are explored by combining the 3D printing process, including computer-aided design (CAD), with the finite element method (FEM). First, we generated four types of 3D CAD scaffold models with different geometries (reticular, triangular, hexagonal, and wavy microstructures) and tunable unit cell sizes (1–5 mm), and then, we printed them using two nozzle diameters (i.e., 0.4 and 0.8 mm) in order to assess the printability limitation. The mechanical behavior of the above-mentioned lattice scaffolds was studied using FEM, combining compressive modulus (linear and nonlinear) and shear modulus. Using this approach, it was possible to print functional 3D polymer lattice structures with some discrepancies between nozzle diameters, which allowed us to elucidate critical parameters of printing in order to obtain printed that lattices (1) fully comply with FFF guidelines, (2) are capable of bearing different compressive loads, (3) possess tunable porosity, and (3) overcome surface quality and accuracy issues. In addition, these findings allowed us to develop 3D printed wrist brace orthosis made up of lattice structures, minimally invasive (4 mm of thick), lightweight (<20 g), and breathable (porosity >80%), to be used for the rehabilitation of patients with neuromuscular disease, rheumatoid arthritis, and beyond. Altogether, our findings addressed multiple challenges associated with the development of polymeric lattice scaffolds with FFF, offering a new tool for designing specific devices with tunable mechanical behavior and porosity. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

27 pages, 17369 KiB  
Article
Design of Customized TPU Lattice Structures for Additive Manufacturing: Influence on the Functional Properties in Elastic Products
by Sergio de la Rosa, Pedro F. Mayuet, José Ramón Méndez Salgueiro and Lucía Rodríguez-Parada
Polymers 2021, 13(24), 4341; https://doi.org/10.3390/polym13244341 - 11 Dec 2021
Cited by 5 | Viewed by 3600
Abstract
This work focuses on evaluating and establishing the relationship of the influence of geometrical and manufacturing parameters in stiffness of additively manufactured TPU lattice structures. The contribution of this work resides in the creation of a methodology that focuses on characterizing the behavior [...] Read more.
This work focuses on evaluating and establishing the relationship of the influence of geometrical and manufacturing parameters in stiffness of additively manufactured TPU lattice structures. The contribution of this work resides in the creation of a methodology that focuses on characterizing the behavior of elastic lattice structures. Likewise, resides in the possibility of using the statistical treatment of results as a guide to find favorable possibilities within the range of parameters studied and to predict the behavior of the structures. In order to characterize their behavior, different types of specimens were designed and tested by finite element simulation of a compression process using Computer Aided Engineering (CAE) tools. The tests showed that the stiffness depends on the topology of the cells of the lattice structure. For structures with different cell topologies, it has been possible to obtain an increase in the reaction force against compression from 24.7 N to 397 N for the same manufacturing conditions. It was shown that other parameters with a defined influence on the stiffness of the structure were the temperature and the unit size of the cells, all due to the development of fusion mechanisms and the variation in the volume of material used, respectively. Full article
Show Figures

Figure 1

Back to TopTop