Sign in to use this feature.

Years

Between: -

Search Results (346)

Search Parameters:
Keywords = electric wheel-drive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 16928 KiB  
Article
Comprehensive Analysis and Development of Electric-Drive-Wheel with Idler Gear
by Xiaoyu Ding, Aijing Kong, Jiantao Zhang and Xinbo Chen
Actuators 2024, 13(9), 336; https://doi.org/10.3390/act13090336 - 3 Sep 2024
Viewed by 309
Abstract
This paper provides a comprehensive analysis of the electric-drive-wheel (EDW) with idler gear. From the perspective of automotive engineering, the EDW is an integrated execution unit that combines the function of powertrain and suspension. As a result, the research on EDW involves the [...] Read more.
This paper provides a comprehensive analysis of the electric-drive-wheel (EDW) with idler gear. From the perspective of automotive engineering, the EDW is an integrated execution unit that combines the function of powertrain and suspension. As a result, the research on EDW involves the intersection of multiple disciplines. The evolution of idler gear configuration requires some geometric constraints. Under this premise, the longitudinal and vertical dynamic characteristics of the system were studied, respectively. There are several factors that influence the system performance, such as the gear parameters, the position of the electric motor, and the suspension K&C value. The principles of each parameter on the output indicators were studied, with an optimized plan and simulation comparison to check the correctness of theory. In the end, the prototype was equipped with a test bench, covering a wide range of working operations to examine the expected performance of EDW design. The step response test of the EDW result showed a balanced performance in transmission smoothness and responsiveness agility. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

21 pages, 8868 KiB  
Article
Research on a Chassis Stability Control Method for High-Ground-Clearance Self-Propelled Electric Sprayers
by Lingxi Zhou, Chenwei Hu, Yuxiang Chen, Peijie Guo, Jinyi Liu, Yu Chen and Jiayu Cao
Appl. Sci. 2024, 14(17), 7734; https://doi.org/10.3390/app14177734 - 2 Sep 2024
Viewed by 341
Abstract
In response to the complex working conditions and poor driving stability of high-clearance self-propelled sprayers, a nonlinear model of the chassis power system was established based on the independently controllable torque of each wheel of the developed electric sprayer. A layered-architecture chassis drive [...] Read more.
In response to the complex working conditions and poor driving stability of high-clearance self-propelled sprayers, a nonlinear model of the chassis power system was established based on the independently controllable torque of each wheel of the developed electric sprayer. A layered-architecture chassis drive control strategy was formulated, and a stability control framework comprising an instability judgment module, an upper controller, and a lower controller was constructed based on the analysis of the impact of the centroid slip angle, the yaw rate, and the wheel slip rate on driving stability. An ideal reference model was established based on the seven-degree-of-freedom model of the sprayer, and the current state of the sprayer body was determined using the instability judgment module. A drive anti-slip controller and a yaw moment controller based on fuzzy PID theory and sliding mode control theory were designed. Additionally, an optimal torque distribution algorithm was developed based on tire characteristics to rationally allocate drive torque to each wheel, ensuring the stability of the sprayer during operation. Simulation tests were conducted using MATLAB/Simulink to evaluate the sprayer under four different driving conditions during transport and field operations. The test results showed that the “SMC + optimal distribution” control method in the chassis stability control strategy reduced the maximum deviations of the yaw rate and centroid slip angle by an average of 89.5% and 13.6%, respectively, compared to no control. The wheel slip rate during straight driving was well maintained at around 15%, enhancing the driving stability of the sprayer. Full article
Show Figures

Figure 1

17 pages, 4741 KiB  
Article
An Efficient Regenerative Braking System for Electric Vehicles Based on a Fuzzy Control Strategy
by Nguyen Thi Anh, Chih-Keng Chen and Xuhui Liu
Vehicles 2024, 6(3), 1496-1512; https://doi.org/10.3390/vehicles6030071 - 30 Aug 2024
Viewed by 974
Abstract
Regenerative braking technology is essential for reducing energy consumption in electric vehicles (EVs). This study introduces a method for optimizing the distribution of deceleration forces in front-wheel-drive electric vehicles that complies with the distribution range outlined by ECE-R13 braking regulations and aligns with [...] Read more.
Regenerative braking technology is essential for reducing energy consumption in electric vehicles (EVs). This study introduces a method for optimizing the distribution of deceleration forces in front-wheel-drive electric vehicles that complies with the distribution range outlined by ECE-R13 braking regulations and aligns with an ideal braking distribution curve. In addition, using a fuzzy control strategy to manage the complex variables of the regenerative braking process, a robust and adaptable system is developed on the Simulink platform. Tested across various driving cycles are NEDC (New European Driving Cycle), WLTC (World Light Duty Vehicle Test Cycle), FTP-72 (Federal Test Procedure 72), and FTP-75 (Federal Test Procedure 75). The method significantly improves energy efficiency: 13% for WLTC, 16% for NEDC, and 30% for both FTP-72 and FTP-75. The simulation results were compared to regenerative braking control techniques A and B, showing that the proposed control method achieves a higher brake energy recovery rate. This leads to a considerable improvement in the vehicle’s energy recovery efficiency. These findings confirm the efficacy of the proposed regenerative brake control system, highlighting its potential to significantly enhance the energy efficiency of electric vehicles. Full article
Show Figures

Figure 1

20 pages, 12454 KiB  
Article
Research on Distributed Dual-Wheel Electric-Drive Fuzzy PI Control for Agricultural Tractors
by Qian Zhang, Caiqi Hu and Rui Li
Agriculture 2024, 14(9), 1442; https://doi.org/10.3390/agriculture14091442 - 24 Aug 2024
Viewed by 461
Abstract
In order to solve the problem that, when the vehicle speed of an agricultural distributed dual-wheel electric-drive tractor changes or the system is disturbed by off-load, the traditional PI control cannot be adjusted in time, resulting in the overshoot of steering control or [...] Read more.
In order to solve the problem that, when the vehicle speed of an agricultural distributed dual-wheel electric-drive tractor changes or the system is disturbed by off-load, the traditional PI control cannot be adjusted in time, resulting in the overshoot of steering control or control delay, meaning it then cannot travel along the target trajectory quickly and accurately, a parameter-adaptive dual-dimensional fuzzy PI speed and steering adjustment controller was proposed, which can adjust the PI parameters in real time based on the deviation between vehicle speed, steering, and reference value, as well as the rate of deviation change. Firstly, based on the operational characteristics of agricultural tractors, a dynamic model of a distributed dual-wheel tractor was established, and a hardware-in-the-loop (HIL) test bench was set up. Fuzzy PI controller algorithms for vehicle speed and steering were designed and developed. In addition, simulations and tests were carried out under no-load and off-load tractor operating conditions with MATLAB/Simulink, respectively. The results indicate that, compared with a traditional PI controller, the fuzzy PI controller exhibits a faster control response and better robustness, reducing overshoot by approximately 60% and the steady-state response time by approximately 25%. When subjected to off-load disturbances, the maximum trajectory offset is controlled within 0.08 m, and the maximum trajectory offset is reduced by 45% compared with a traditional PI controller; therefore, the fuzzy PI control algorithm proposed in this paper makes the tractor’s running trajectory more stable and has stronger anti-interference ability towards off-load disturbances. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 7004 KiB  
Article
A Study on the Running of a Joystick-Type Six-Wheeled Electric Wheelchair When Curb Climbing
by Tetsuaki Kawata, Fumihisa Sato, Shiori Tsuji, Toya Suzuki, Takato Suzuki and Takuto Kokuryu
Machines 2024, 12(8), 568; https://doi.org/10.3390/machines12080568 - 19 Aug 2024
Viewed by 381
Abstract
In Japan, the number of power wheelchair users is increasing as the country becomes an aging society. This trend is expected to continue in the future. Electric wheelchairs currently on the market include (1) bar-handle-type power wheelchairs for older users and (2) joystick-type [...] Read more.
In Japan, the number of power wheelchair users is increasing as the country becomes an aging society. This trend is expected to continue in the future. Electric wheelchairs currently on the market include (1) bar-handle-type power wheelchairs for older users and (2) joystick-type power wheelchairs that change direction by operating a joystick. When such electric wheelchairs are used outdoors, the problem is curb-climbing at the boundary between the roadway and the sidewalk. It would be difficult for a wheelchair with a small front wheel diameter of 200 mm to overcome a curb height of 50 mm. Therefore, users are forced to take a detour or drive on the street to avoid the curb step. One of the most effective ways to solve this problem is to increase the wheel diameter. However, larger wheels make it more difficult for users to get in and out of the wheelchair. In addition, there are problems such as an increased footprint when turning, which makes the wheelchairs difficult to use on narrow streets. In this paper, using a joystick-type six-wheel electric wheelchair as an example, we examined the mechanism by which an electric wheelchair can overcome curb climbing and consider improvements to the chassis with a method that does not rely on increasing the wheel diameter. As a result, it became possible to overcome a curb of 96 mm in height with a front-wheel diameter of 200 mm. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

13 pages, 7557 KiB  
Article
Modeling and Control of a Road Wheel Actuation Module in Steer-by-Wire System
by Insu Chung, Jungdai Choi and Kanghyun Nam
Actuators 2024, 13(8), 311; https://doi.org/10.3390/act13080311 - 14 Aug 2024
Viewed by 500
Abstract
Since the steer-by-wire system removes the mechanical connection and uses electrical signals to drive the system, it has the disadvantage of being less stable in the failure of parts or systems. Therefore, in this paper, we present a methodology for developing a digital [...] Read more.
Since the steer-by-wire system removes the mechanical connection and uses electrical signals to drive the system, it has the disadvantage of being less stable in the failure of parts or systems. Therefore, in this paper, we present a methodology for developing a digital model of the road wheel actuator of the steer-by-wire system. First, the detailed dynamics of the road wheel actuator are analyzed and simplified, and the friction model is estimated and compensated to obtain the equilibrium inertia and damping coefficient of the motor and the road wheel actuator. And to verify the accuracy of the digital model developed based on these parameters, the outputs are compared by giving the same inputs under open-loop control. Furthermore, to solve the problem caused by nonlinear disturbance and model uncertainty, a disturbance observer-based position controller is proposed. The validity of the proposed controller and the validity of the digital model development methodology are confirmed by the results of the position control experiment. Full article
(This article belongs to the Special Issue Modeling and Control for Chassis Devices in Electric Vehicles)
Show Figures

Figure 1

20 pages, 11618 KiB  
Article
Acceleration Slip Regulation Control Method for Distributed Electric Drive Vehicles under Icy and Snowy Road Conditions
by Xuemei Sun, Zehui Xiao, Zhou Wang, Xiaojiang Zhang and Jiuchen Fan
Appl. Sci. 2024, 14(15), 6803; https://doi.org/10.3390/app14156803 - 4 Aug 2024
Viewed by 583
Abstract
To achieve a rapid and stable dynamic response of the drive anti-slip system for distributed electric vehicles on low-friction surfaces, this paper proposes an adaptive acceleration slip regulation control strategy based on wheel slip rate. An attachment coefficient fusion estimation algorithm based on [...] Read more.
To achieve a rapid and stable dynamic response of the drive anti-slip system for distributed electric vehicles on low-friction surfaces, this paper proposes an adaptive acceleration slip regulation control strategy based on wheel slip rate. An attachment coefficient fusion estimation algorithm based on an improved singular value decomposition unscented Kalman filter is designed. This algorithm combines Sage–Husa with the unscented Kalman filter for adaptive improvement, allowing for the quick and accurate determination of the road friction coefficient and, subsequently, the optimal slip rate. Additionally, a slip rate control strategy based on dynamic adaptive compensation sliding mode control is designed, which introduces a dynamic weight integral function into the control rate to adaptively adjust the integral effect based on errors, with its stability proven. To verify the performance of the road estimator and slip rate controller, a model is built with vehicle simulation software, and simulations are conducted. The results show that under icy and snowy road conditions, the designed estimator can reduce estimation errors and respond rapidly to sudden changes. Compared to traditional equivalent controllers, the designed controller can effectively reduce chattering, decrease overshoot, and shorten response time. Especially during road transitions, the designed controller demonstrates better dynamic performance and stability. Full article
(This article belongs to the Special Issue Advances in Vehicle System Dynamics and Control)
Show Figures

Figure 1

30 pages, 9332 KiB  
Article
Research on Multi-Mode Braking Energy Recovery Control Strategy for Battery Electric Vehicles
by Boju Liu, Gang Li and Shuang Wang
Appl. Sci. 2024, 14(15), 6505; https://doi.org/10.3390/app14156505 - 25 Jul 2024
Viewed by 539
Abstract
To further improve the braking energy recovery efficiency of battery electric vehicles and increase the range of the cars, this paper proposes a multi-mode switching braking energy recovery control strategy based on fuzzy control. The control strategy is divided into three modes: single-pedal [...] Read more.
To further improve the braking energy recovery efficiency of battery electric vehicles and increase the range of the cars, this paper proposes a multi-mode switching braking energy recovery control strategy based on fuzzy control. The control strategy is divided into three modes: single-pedal energy recovery, coasting energy recovery, and conventional braking energy recovery. It takes the accelerator pedal and brake pedal opening as the switching conditions. It calculates the front and rear wheel braking ratio allocation coefficients and the motor braking ratio through fuzzy control to recover braking energy. The genetic algorithm (GA) is used to update the optimized affiliation function to optimize the motor braking allocation ratio through fuzzy control, and joint simulation is carried out based on the NEDC (New European Driving Cycle) and CLTC-P (China Light-duty Vehicle Test Cycle for Passenger vehicles) cycle conditions. The results show that the multi-mode braking energy recovery control strategy proposed in this paper improves the energy recovery rate and range contribution rate by 4% and 9.6%, respectively, and increases the range by 22.5 km under NEDC cycle conditions. It also improves the energy recovery rate and range contribution rate by 8.7% and 5.5%, respectively, and increases the range by 13 km under CLTC-P cycle conditions, which can effectively improve the energy recovery efficiency of the vehicle and increase the range of battery electric vehicles. Full article
(This article belongs to the Special Issue Advanced, Smart, and Sustainable Transportation)
Show Figures

Figure 1

26 pages, 21888 KiB  
Article
The Control of Handling Stability for Four-Wheel Steering Distributed Drive Electric Vehicles Based on a Phase Plane Analysis
by Guanfeng Wang and Qiang Song
Machines 2024, 12(7), 478; https://doi.org/10.3390/machines12070478 - 16 Jul 2024
Viewed by 582
Abstract
For the sake of enhancing the handling and stability of distributed drive electric vehicles (DDEVs) under four-wheel steering (4WS) conditions, this study proposes a novel hierarchical control strategy based on a phase plane analysis. This approach involves a meticulous comparison of the stable [...] Read more.
For the sake of enhancing the handling and stability of distributed drive electric vehicles (DDEVs) under four-wheel steering (4WS) conditions, this study proposes a novel hierarchical control strategy based on a phase plane analysis. This approach involves a meticulous comparison of the stable region in the phase plane to thoroughly analyze the intricate influence of the front wheel angle, rear wheel angle, road adhesion coefficient, and longitudinal speed on the complex dynamic performances of DDEVs and to accurately determine the critical stable-state parameter. Subsequently, a hierarchical control strategy is presented as an integrated solution to achieve the coordinated control of maneuverability and stability. On the upper control level, a model predictive control (MPC) motion controller is developed, wherein the real-time adjustment of the control weight matrix is ingeniously achieved by incorporating the crucial vehicle stable-state parameter. The lower control level is responsible for the optimal torque allocation among the four wheel motors to minimize the tire load rate, thereby ensuring a sufficient tire grip margin. The optimal torque distribution for the four wheel motors is achieved using a sophisticated two-level allocation algorithm, wherein the friction ellipse is employed as a judgement condition. Finally, this developed control strategy is thoroughly validated through co-simulation utilizing the CarSim 2019 and Simulink 2020b commercial software, demonstrating the validity of the developed control strategy. The comparative results indicate that the presented controller ensures a better tracking capability to the desired vehicle state while exhibiting improved handling stability under both the double lane shifting condition and the serpentine working condition. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

37 pages, 8234 KiB  
Review
Optimal Electric Motor Designs of Light Electric Vehicles: A Review
by Zbigniew Gmyrek
Energies 2024, 17(14), 3462; https://doi.org/10.3390/en17143462 - 14 Jul 2024
Viewed by 642
Abstract
This paper summarizes the results of numerous studies aimed at improving the operating characteristics of electric motors used in light electric vehicles (LEVs). This review focuses on four types of electric motors that can be installed in the drive wheel rims of LEVs. [...] Read more.
This paper summarizes the results of numerous studies aimed at improving the operating characteristics of electric motors used in light electric vehicles (LEVs). This review focuses on four types of electric motors that can be installed in the drive wheel rims of LEVs. Due to the availability of new magnetic materials and the use of advanced techniques for optimizing the design of electric motors, new motor topologies have emerged. The latest generation motors have been shown to be more efficient, have higher torque density, and generate less torque ripple. This paper indicates and discusses current trends in the topology of electric motors designed for LEV drives. In this context, the effectiveness of the proposed design modifications in terms of selected motor operational characteristics was assessed. The proposed new topologies were compared with commercial solutions, also in terms of the possibility of improving their operational parameters. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

19 pages, 3912 KiB  
Article
Simple Method for Determining Loss Parameters of Electric Cars
by Ansgar Wego and Stefan Schubotz
World Electr. Veh. J. 2024, 15(7), 298; https://doi.org/10.3390/wevj15070298 - 3 Jul 2024
Viewed by 580
Abstract
Manufacturers of electric cars provide their vehicles with many technical data that are important for the user. This includes information on dimensions, mass, performance, consumption, battery capacity, range, payload, etc. However, some interesting parameters are usually withheld from the end user. These parameters [...] Read more.
Manufacturers of electric cars provide their vehicles with many technical data that are important for the user. This includes information on dimensions, mass, performance, consumption, battery capacity, range, payload, etc. However, some interesting parameters are usually withheld from the end user. These parameters include, for example, the loss in the energy flow from the battery to the driving wheels or the rolling resistance of the vehicle. However, since these loss parameters have a significant influence on the vehicle’s consumption, it is of interest to know them. This article presents a method for determining these two parameters. The basis for this are simple driving tests that can be carried out by anyone on public roads. Full article
Show Figures

Figure 1

16 pages, 4645 KiB  
Article
Fault-Tolerant Control Study of Four-Wheel Independent Drive Electric Vehicles Based on Drive Actuator Faults
by Mingjie Guo, Chunjiang Bao, Qinghua Cao, Fuxing Xu, Xinhong Miao and Jian Wu
Machines 2024, 12(7), 450; https://doi.org/10.3390/machines12070450 - 30 Jun 2024
Viewed by 633
Abstract
Failure of any of the drive systems in a Four-Wheel Independent Drive (4WID) electric vehicle may affect the control performance and driving safety of the whole vehicle. Therefore, in this paper, a fault-tolerant controller (FTC) for 4WID electric vehicles considering drive actuator failures [...] Read more.
Failure of any of the drive systems in a Four-Wheel Independent Drive (4WID) electric vehicle may affect the control performance and driving safety of the whole vehicle. Therefore, in this paper, a fault-tolerant controller (FTC) for 4WID electric vehicles considering drive actuator failures is proposed. First, a comprehensive characterization of multiple fault types is achieved by establishing a generalized fault model and designing a comprehensive fault factor. Second, based on the comprehensive fault factor, an LPV model with faults is constructed. Further, a fault-tolerant controller based on LPV/H∞ output feedback is designed by combining the weighting function. Finally, the effectiveness of the FTC in this paper is verified by simulation and hardware-in-the-loop (HIL) experiments. The experimental results show that the FTC designed in this paper can improve the stability of the vehicle traveling while ensuring tracking accuracy when the drive system fails. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

30 pages, 31803 KiB  
Article
An NMPC-Based Integrated Longitudinal and Lateral Vehicle Stability Control Based on the Double-Layer Torque Distribution
by Xu Bai, Yinhang Wang, Mingchen Jia, Xinchen Tan, Liqing Zhou, Liang Chu and Di Zhao
Sensors 2024, 24(13), 4137; https://doi.org/10.3390/s24134137 - 26 Jun 2024
Viewed by 959
Abstract
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire [...] Read more.
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire systems, are extensively employed in vehicles. Concurrently, unavoidable issues such as conflicting control system objectives and execution system interference emerge, positioning integrated chassis control as an effective solution to these challenges. This paper proposes a model predictive control-based longitudinal dynamics integrated chassis control system for pure electric commercial vehicles equipped with electro–mechanical brake (EMB) systems, centralized drive, and distributed braking. This system integrates acceleration slip regulation (ASR), a braking force distribution system, an anti-lock braking system (ABS), and a direct yaw moment control system (DYC). This paper first analyzes and models the key components of the vehicle. Then, based on model predictive control (MPC), it develops a controller model for integrated stability with double-layer torque distribution. The required driving and braking torque for each wheel are calculated according to the actual and desired motion states of the vehicle and applied to the corresponding actuators. Finally, the effectiveness of this strategy is verified through simulation results from Matlab/Simulink. The simulation shows that the braking deceleration of the braking condition is increased by 32% on average, and the braking distance is reduced by 15%. The driving condition can enter the smooth driving faster, and the time is reduced by 1.5 s~5 s. The lateral stability parameters are also very much improved compared with the uncontrolled vehicles. Full article
(This article belongs to the Special Issue Integrated Control and Sensing Technology for Electric Vehicles)
Show Figures

Figure 1

14 pages, 8406 KiB  
Article
A Novel Tire and Road Testing Bench for Modern Automotive Needs
by Francesco Favilli, Michele Sgamma, Francesco Bucchi, Francesco Frendo, Pietro Leandri and Massimo Losa
Designs 2024, 8(4), 64; https://doi.org/10.3390/designs8040064 - 24 Jun 2024
Viewed by 746
Abstract
The automotive industry is currently transforming, primarily due to the rise of electric and hybrid vehicle technologies and the need to reduce vehicle mass and energy losses to decrease consumption, pollution, and raw material usage. Additionally, road surface manufacturers emphasize improving pavement durability [...] Read more.
The automotive industry is currently transforming, primarily due to the rise of electric and hybrid vehicle technologies and the need to reduce vehicle mass and energy losses to decrease consumption, pollution, and raw material usage. Additionally, road surface manufacturers emphasize improving pavement durability and reducing rolling noise. This necessitates precise load condition definitions and drives the need for reliable wheel testing benches. Many current benches use abrasive-coated rollers or synthetic tapes, but devices capable of testing on actual road surfaces are rare. In this work, a novel device for testing tire-pavement interaction is proposed. The system features a cart moving along a closed-track platform, ensuring test repeatability and enabling structural durability tests on uneven surfaces with installed obstacles. The cart is equipped with a cantilever arm capable of supporting either a testing wheel with customizable dimensions and kinematic parameters or a tire integrated with a complete suspension system, moving along a customizable pavement surface. The system includes actuators and sensors for applying vertical loads and adjusting the alignment of the testing wheel (slip angle, camber angle, etc.), allowing the characterization of tire behavior such as wear, fatigue, rolling noise, and rolling resistance. Multibody simulations were performed to evaluate the bench’s feasibility in terms of kinematics, power requirements, and structural loads. Results confirmed how this novel test bench represents a promising advancement in tire testing capabilities, enabling comprehensive studies on tire performance, noise reduction, and the structural dynamics of vehicle subsystems. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

22 pages, 8574 KiB  
Article
Study on Mathematical Models for Precise Estimation of Tire–Road Friction Coefficient of Distributed Drive Electric Vehicles Based on Sensorless Control of the Permanent Magnet Synchronous Motor
by Binghao Yu, Yiming Hu and Dequan Zeng
Symmetry 2024, 16(7), 792; https://doi.org/10.3390/sym16070792 - 24 Jun 2024
Viewed by 866
Abstract
In order to reduce the use of wheel angular velocity sensors and improve the estimation accuracy and robustness of the tire–road friction coefficient (TRFC) in non-Gaussian noise environments, this paper proposes a sensorless control-based distributed drive electric vehicle TRFC estimation algorithm using a [...] Read more.
In order to reduce the use of wheel angular velocity sensors and improve the estimation accuracy and robustness of the tire–road friction coefficient (TRFC) in non-Gaussian noise environments, this paper proposes a sensorless control-based distributed drive electric vehicle TRFC estimation algorithm using a permanent magnet synchronous motor (PMSM). The algorithm replaces the wheel angular velocity signal with the rotor speed signal obtained from the sensorless control of the PMSM. Firstly, a seven-degree-of-freedom vehicle dynamics model and a mathematical model of the PMSM are established, and the maximum correntropy singular value decomposition generalized high-degree cubature Kalman filter algorithm (MCSVDGHCKF) is derived. Secondly, a sensorless control system of a PMSM based on the MCSVDGHCKF algorithm is established to estimate the rotor speed and position of the PMSM, and its effectiveness is verified. Finally, the feasibility of the algorithm for TRFC estimation in non-Gaussian noise is demonstrated through simulation experiments, the Root Mean Square Error (RMSE) of TRFC estimates for the right front wheel and the left rear wheel were reduced by at least 41.36% and 40.63%, respectively. The results show that the MCSVDGHCKF has a higher accuracy and stronger robustness compared to the maximum correntropy high-degree cubature Kalman filter (MCHCKF), singular value decomposition generalized high-degree cubature Kalman filter (SVDGHCKF), and high-degree cubature Kalman filter (HCKF). Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop