Sign in to use this feature.

Years

Between: -

Search Results (766)

Search Parameters:
Keywords = erosion monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10997 KiB  
Article
Non-Intrusive Water Surface Velocity Measurement Based on Deep Learning
by Guocheng An, Tiantian Du, Jin He and Yanwei Zhang
Water 2024, 16(19), 2784; https://doi.org/10.3390/w16192784 - 30 Sep 2024
Abstract
Accurate assessment of water surface velocity (WSV) is essential for flood prevention, disaster mitigation, and erosion control within hydrological monitoring. Existing image-based velocimetry techniques largely depend on correlation principles, requiring users to input and adjust parameters to achieve reliable results, which poses challenges [...] Read more.
Accurate assessment of water surface velocity (WSV) is essential for flood prevention, disaster mitigation, and erosion control within hydrological monitoring. Existing image-based velocimetry techniques largely depend on correlation principles, requiring users to input and adjust parameters to achieve reliable results, which poses challenges for users lacking relevant expertise. This study presents RivVideoFlow, a user-friendly, rapid, and precise method for WSV. RivVideoFlow combines two-dimensional and three-dimensional orthorectification based on Ground Control Points (GCPs) with a deep learning-based multi-frame optical flow estimation algorithm named VideoFlow, which integrates temporal cues. The orthorectification process employs a homography matrix to convert images from various angles into a top-down view, aligning the image coordinates with actual geographical coordinates. VideoFlow achieves superior accuracy and strong dataset generalization compared to two-frame RAFT models due to its more effective capture of flow velocity continuity over time, leading to enhanced stability in velocity measurements. The algorithm has been validated on a flood simulation experimental platform, in outdoor settings, and with synthetic river videos. Results demonstrate that RivVideoFlow can robustly estimate surface velocity under various camera perspectives, enabling continuous real-time dynamic measurement of the entire flow field. Moreover, RivVideoFlow has demonstrated superior performance in low, medium, and high flow velocity scenarios, especially in high-velocity conditions where it achieves high measurement precision. This method provides a more effective solution for hydrological monitoring. Full article
Show Figures

Figure 1

30 pages, 15310 KiB  
Article
Characterization of Seismic Signal Patterns and Dynamic Pore Pressure Fluctuations Due to Wave-Induced Erosion on Non-Cohesive Slopes
by Zheng-Yi Feng, Wei-Ting Wu and Su-Chin Chen
Appl. Sci. 2024, 14(19), 8776; https://doi.org/10.3390/app14198776 - 28 Sep 2024
Abstract
Wave erosion of slopes can easily trigger landslides into marine environments and pose severe threats to both the ecological environment and human activities. Therefore, near-shore slope monitoring becomes crucial for preventing and alerting people to these potential disasters. To achieve a comprehensive understanding, [...] Read more.
Wave erosion of slopes can easily trigger landslides into marine environments and pose severe threats to both the ecological environment and human activities. Therefore, near-shore slope monitoring becomes crucial for preventing and alerting people to these potential disasters. To achieve a comprehensive understanding, it is imperative to conduct a detailed investigation into the dynamics of wave erosion processes acting on slopes. This research is conducted through flume tests, using a wave maker to create waves of various heights and frequencies to erode the slope models. During the tests, seismic signals, acoustic signals, and pore pressure generated by wave erosion and slope failure are recorded. Seismic and acoustic signals are analyzed, and time-frequency spectra are calculated using the Hilbert–Huang Transform to identify the erosion events and signal frequency ranges. Arias Intensity is used to assess seismic energy and explore the relationship between the amount of erosion and energy. The results show that wave height has a more decisive influence on erosion behavior and retreat than wave frequency. Rapid drawdown may potentially cause the slope to slide during cyclic swash and backwash wave action. As wave erosion changes from swash to impact, there is a significant increase in the spectral magnitude and Power Spectral Density (PSD) of both seismic and acoustic signals. An increase in pore pressure is observed due to the rise in the run-up height of waves. The amplitude of pore pressure will increase as the slope undergoes further erosion. Understanding the results of this study can aid in predicting erosion and in planning effective management strategies for slopes subject to wave action. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

24 pages, 3135 KiB  
Review
Current Status of Remote Sensing for Studying the Impacts of Hurricanes on Mangrove Forests in the Coastal United States
by Abhilash Dutta Roy, Daria Agnieszka Karpowicz, Ian Hendy, Stefanie M. Rog, Michael S. Watt, Ruth Reef, Eben North Broadbent, Emma F. Asbridge, Amare Gebrie, Tarig Ali and Midhun Mohan
Remote Sens. 2024, 16(19), 3596; https://doi.org/10.3390/rs16193596 - 26 Sep 2024
Abstract
Hurricane incidents have become increasingly frequent along the coastal United States and have had a negative impact on the mangrove forests and their ecosystem services across the southeastern region. Mangroves play a key role in providing coastal protection during hurricanes by attenuating storm [...] Read more.
Hurricane incidents have become increasingly frequent along the coastal United States and have had a negative impact on the mangrove forests and their ecosystem services across the southeastern region. Mangroves play a key role in providing coastal protection during hurricanes by attenuating storm surges and reducing erosion. However, their resilience is being increasingly compromised due to climate change through sea level rises and the greater intensity of storms. This article examines the role of remote sensing tools in studying the impacts of hurricanes on mangrove forests in the coastal United States. Our results show that various remote sensing tools including satellite imagery, Light detection and ranging (LiDAR) and unmanned aerial vehicles (UAVs) have been used to detect mangrove damage, monitor their recovery and analyze their 3D structural changes. Landsat 8 OLI (14%) has been particularly useful in long-term assessments, followed by Landsat 5 TM (9%) and NASA G-LiHT LiDAR (8%). Random forest (24%) and linear regression (24%) models were the most common modeling techniques, with the former being the most frequently used method for classifying satellite images. Some studies have shown significant mangrove canopy loss after major hurricanes, and damage was seen to vary spatially based on factors such as proximity to oceans, elevation and canopy structure, with taller mangroves typically experiencing greater damage. Recovery rates after hurricane-induced damage also vary, as some areas were seen to show rapid regrowth within months while others remained impacted after many years. The current challenges include capturing fine-scale changes owing to the dearth of remote sensing data with high temporal and spatial resolution. This review provides insights into the current remote sensing applications used in hurricane-prone mangrove habitats and is intended to guide future research directions, inform coastal management strategies and support conservation efforts. Full article
Show Figures

Figure 1

19 pages, 12489 KiB  
Article
Assessing the Potential of UAV for Large-Scale Fractional Vegetation Cover Mapping with Satellite Data and Machine Learning
by Xunlong Chen, Yiming Sun, Xinyue Qin, Jianwei Cai, Minghui Cai, Xiaolong Hou, Kaijie Yang and Houxi Zhang
Remote Sens. 2024, 16(19), 3587; https://doi.org/10.3390/rs16193587 - 26 Sep 2024
Abstract
Fractional vegetation cover (FVC) is an essential metric forvaluating ecosystem health and soil erosion. Traditional ground-measuring methods are inadequate for large-scale FVC monitoring, while remote sensing-based estimation approaches face issues such as spatial scale discrepancies between ground truth data and image pixels, as [...] Read more.
Fractional vegetation cover (FVC) is an essential metric forvaluating ecosystem health and soil erosion. Traditional ground-measuring methods are inadequate for large-scale FVC monitoring, while remote sensing-based estimation approaches face issues such as spatial scale discrepancies between ground truth data and image pixels, as well as limited sample representativeness. This study proposes a method for FVC estimation integrating uncrewed aerial vehicle (UAV) and satellite imagery using machine learning (ML) models. First, we assess the vegetation extraction performance of three classification methods (OBIA-RF, threshold, and K-means) under UAV imagery. The optimal method is then selected for binary classification and aggregated to generate high-accuracy FVC reference data matching the spatial resolutions of different satellite images. Subsequently, we construct FVC estimation models using four ML algorithms (KNN, MLP, RF, and XGBoost) and utilize the SHapley Additive exPlanation (SHAP) method to assess the impact of spectral features and vegetation indices (VIs) on model predictions. Finally, the best model is used to map FVC in the study region. Our results indicate that the OBIA-RF method effectively extract vegetation information from UAV images, achieving an average precision and recall of 0.906 and 0.929, respectively. This method effectively generates high-accuracy FVC reference data. With the improvement in the spatial resolution of satellite images, the variability of FVC data decreases and spatial continuity increases. The RF model outperforms others in FVC estimation at 10 m and 20 m resolutions, with R2 values of 0.827 and 0.929, respectively. Conversely, the XGBoost model achieves the highest accuracy at a 30 m resolution, with an R2 of 0.847. This study also found that FVC was significantly related to a number of satellite image VIs (including red edge and near-infrared bands), and this correlation was enhanced in coarser resolution images. The method proposed in this study effectively addresses the shortcomings of conventional FVC estimation methods, improves the accuracy of FVC monitoring in soil erosion areas, and serves as a reference for large-scale ecological environment monitoring using UAV technology. Full article
Show Figures

Figure 1

12 pages, 1261 KiB  
Article
Valorization of Cynara cardunculus L. var. scolymus Processing By-Products of Typical Landrace “Carciofo Di Montelupone” from Marche Region (Italy)
by Laura Alessandroni, Lorenzo Bellabarba, Samanta Corsetti and Gianni Sagratini
Gastronomy 2024, 2(4), 129-140; https://doi.org/10.3390/gastronomy2040010 - 26 Sep 2024
Abstract
Food waste is a growing global problem that originates from a variety of sources, with about 38% of it coming from food processing. In recent years, the European Union has encouraged investigations into by-products for their exploitation in several fields. In this study, [...] Read more.
Food waste is a growing global problem that originates from a variety of sources, with about 38% of it coming from food processing. In recent years, the European Union has encouraged investigations into by-products for their exploitation in several fields. In this study, the main processing by-products of artichoke (Cynara cardunculus L. var. scolymus), being leaves, stems, and external bracts, were analyzed. This study aims to valorize the by-product in order to promote its cultivation and help producers to create a new supply chain of this cultivar, typical of the Marche region in Italy, which is subject to the potential risk of genetic erosion. Several bioactive substances were monitored and quantified, including inulin, an important D-fructose polymer widely used for its physical–chemical and functional properties and prebiotic activity. Inulin extraction was optimized through an experimental design in terms of time and temperature. Moreover, the total content of polyphenols, flavonoids, and tannins was investigated in each artichoke by-product, revealing the stems as the richest fraction in all the monitored bioactive compounds. Full article
(This article belongs to the Special Issue Feature Papers in Gastronomic Sciences and Studies)
Show Figures

Figure 1

17 pages, 10452 KiB  
Article
Experimental Study of Sinkhole Propagation Induced by a Leaking Pipe Using Fibre Bragg Grating Sensors
by Josué Yumba, Maria Ferentinou and Michael Grobler
Sensors 2024, 24(19), 6215; https://doi.org/10.3390/s24196215 - 25 Sep 2024
Abstract
Sinkhole formation caused by leaking pipes in karst soluble rocks is a significant concern, leading to infrastructure damage and safety risks. In this paper, an experiment was conducted to investigate sinkhole formation in dense sand induced by a leaking pipe. Fibre Bragg grating [...] Read more.
Sinkhole formation caused by leaking pipes in karst soluble rocks is a significant concern, leading to infrastructure damage and safety risks. In this paper, an experiment was conducted to investigate sinkhole formation in dense sand induced by a leaking pipe. Fibre Bragg grating (FBG) sensors were used to record the strain. A balloon was gradually deflated within a bed of wet silica sand to create an underground cavity. Eighteen FBG sensors, with a wavelength range between 1550 nm and 1560 nm, were embedded horizontally and vertically in the physical model at different levels to monitor deformation at various locations. A leaking pipe was installed to induce the collapse of the formed arch above the cavity. The strain measurements suggested the following four phases in the sinkhole formation process: (1) cavity formation, (2) progressive weathering and erosion, (3) catastrophic collapse, and (4) subsequent equilibrium conditions. The results showed differences in the strain signatures and distributions between the horizontal and vertical measurements. During the critical phase of the sinkhole collapse, the horizontal measurements primarily showed tension, while the vertical measurements indicated compression. This investigation demonstrates the effectiveness of FBGs as advanced monitoring tools for sinkhole precursor identification. The study also suggests using FBGs in geotechnical monitoring applications to improve the understanding and mitigation of sinkholes and related geohazards. Full article
(This article belongs to the Special Issue Optical Fiber Sensors Used for Civil Engineering)
Show Figures

Graphical abstract

14 pages, 24709 KiB  
Article
Monitoring Temporal Sandbar and Shoreline Changes at Saint Louis, Senegal: Using Sentinel-2 Imagery (2015–2022)
by Adélaïde Taveneau, Rafael Almar, Erwin W. J. Bergsma, Cheikh Omar Tidjani Cissé, Boubou Aldiouma Sy and Abdoulaye Ndour
Remote Sens. 2024, 16(19), 3551; https://doi.org/10.3390/rs16193551 - 24 Sep 2024
Abstract
Understanding beach dynamics, both in time and in space, is paramount to better understand how and when to intervene to improve coastal management strategies. Beach morphodynamics is expressed in a variety of ways. As indicators of beach change, we can measure the shoreline, [...] Read more.
Understanding beach dynamics, both in time and in space, is paramount to better understand how and when to intervene to improve coastal management strategies. Beach morphodynamics is expressed in a variety of ways. As indicators of beach change, we can measure the shoreline, the beach topography, and the bathymetry; e.g., in situ measurements rarely cover large extents, are often collected on a local scale (beach), and rarely cover a sufficient time span with a sufficient surveying frequency or a simultaneous measurement of the beach and bar system. Regular-revisit satellites, such as the ESA’s Sentinel-2 mission, provide the opportunity to regularly monitor both shoreline and sandbar dynamics, and the time span is increasing and likely to continue for the decades to come. Using the satellite-derived shoreline and bar position, here, we show that the shoreline and bar are intrinsically coupled. Using Sentinel-2 satellite imagery, we show that the actual erosion/accretion status of the beach at Saint Louis (Senegal) is strongly influenced by the sandbar dynamics. There is a coupled behavior in their seasonal evolution and trend. Our results show that a very large accretive wave of about 50 m observed on the beach is driven by a local welding of the inner sandbar to the beach. Finally, we conclude that this type of event could be anticipated by an analysis of the sandbar. Full article
Show Figures

Graphical abstract

30 pages, 10615 KiB  
Article
Machine Learning Modelling for Soil Moisture Retrieval from Simulated NASA-ISRO SAR (NISAR) L-Band Data
by Dev Dinesh, Shashi Kumar and Sameer Saran
Remote Sens. 2024, 16(18), 3539; https://doi.org/10.3390/rs16183539 - 23 Sep 2024
Abstract
Soil moisture is a critical factor that supports plant growth, improves crop yields, and reduces erosion. Therefore, obtaining accurate and timely information about soil moisture across large regions is crucial. Remote sensing techniques, such as microwave remote sensing, have emerged as powerful tools [...] Read more.
Soil moisture is a critical factor that supports plant growth, improves crop yields, and reduces erosion. Therefore, obtaining accurate and timely information about soil moisture across large regions is crucial. Remote sensing techniques, such as microwave remote sensing, have emerged as powerful tools for monitoring and mapping soil moisture. Synthetic aperture radar (SAR) is beneficial for estimating soil moisture at both global and local levels. This study aimed to assess soil moisture and dielectric constant retrieval over agricultural land using machine learning (ML) algorithms and decomposition techniques. Three polarimetric decomposition models were used to extract features from simulated NASA-ISRO SAR (NISAR) L-Band radar images. Machine learning techniques such as random forest regression, decision tree regression, stochastic gradient descent (SGD), XGBoost, K-nearest neighbors (KNN) regression, neural network regression, and multilinear regression were used to retrieve soil moisture from three different crop fields: wheat, soybean, and corn. The study found that the random forest regression technique produced the most precise soil moisture estimations for soybean fields, with an R2 of 0.89 and RMSE of 0.050 without considering vegetation effects and an R2 of 0.92 and RMSE of 0.042 considering vegetation effects. The results for real dielectric constant retrieval for the soybean field were an R2 of 0.89 and RMSE of 6.79 without considering vegetation effects and an R2 of 0.89 and RMSE of 6.78 with considering vegetation effects. These findings suggest that machine learning algorithms and decomposition techniques, along with a semi-empirical technique like Water Cloud Model (WCM), can be effective tools for estimating soil moisture and dielectric constant values precisely. The methodology applied in the current research contributes essential insights that could benefit upcoming missions, such as the Radar Observing System for Europe in L-band (ROSE-L) and the collaborative NASA-ISRO SAR (NISAR) mission, for future data analysis in soil moisture applications. Full article
Show Figures

Figure 1

23 pages, 7137 KiB  
Review
Fire Impacts on Soil Properties and Implications for Sustainability in Rotational Shifting Cultivation: A Review
by Noppol Arunrat, Praeploy Kongsurakan, Lemlem Wondwossen Solomon and Sukanya Sereenonchai
Agriculture 2024, 14(9), 1660; https://doi.org/10.3390/agriculture14091660 - 23 Sep 2024
Abstract
Fire, a prevalent land management tool in rotational shifting cultivation (RSC), has long been debated for its immediate disruption of surface soil, vegetation, and microbial communities. While low-intensity and short-duration slash-and-burn techniques are considered beneficial for overall soil function, the dual nature of [...] Read more.
Fire, a prevalent land management tool in rotational shifting cultivation (RSC), has long been debated for its immediate disruption of surface soil, vegetation, and microbial communities. While low-intensity and short-duration slash-and-burn techniques are considered beneficial for overall soil function, the dual nature of fire’s impact warrants a comprehensive exploration. This review examines both the beneficial and detrimental effects of fire on soil properties within the context of RSC. We highlight that research on soil microbial composition, carbon, and nitrogen dynamics following fire events in RSC is gaining momentum. After fires, soil typically shows decreases in porosity, clay content, aggregation, and cation exchange capacity, while sand content, pH, available phosphorus, and organic nitrogen tend to increase. There remains ongoing debate regarding the effects on bulk density, silt content, electrical conductivity, organic carbon, total nitrogen, and exchangeable ions (K+, Ca2+, Mg2+). Certain bacterial diversity often increases, while fungal communities tend to decline during post-fire recovery, influenced by the soil chemical properties. Soil erosion is a major concern because fire-altered soil structures heighten erosion risks, underscoring the need for sustainable post-fire soil management strategies. Future research directions are proposed, including the use of advanced technologies like remote sensing, UAVs, and soil sensors to monitor fire impacts, as well as socio-economic studies to balance traditional practices with modern sustainability goals. This review aims to inform sustainable land management practices that balance agricultural productivity with ecological health in RSC systems. Full article
(This article belongs to the Special Issue Feature Review in Agricultural Soils—Intensification of Soil Health)
Show Figures

Figure 1

14 pages, 23117 KiB  
Article
Is It Reliable to Extract Gully Morphology Parameters Based on High-Resolution Stereo Images? A Case of Gully in a “Soil-Rock Dual Structure Area”
by Tingting Yan, Weijun Zhao, Fujin Xu, Shengxiang Shi, Wei Qin, Guanghe Zhang and Ningning Fang
Remote Sens. 2024, 16(18), 3500; https://doi.org/10.3390/rs16183500 - 21 Sep 2024
Abstract
The gully morphology parameter is an important quantitative index for monitoring gully erosion development. Its extraction method and accuracy evaluation in the “soil-rock dual structure area” are of great significance to the evaluation of gully erosion in this type of area. In this [...] Read more.
The gully morphology parameter is an important quantitative index for monitoring gully erosion development. Its extraction method and accuracy evaluation in the “soil-rock dual structure area” are of great significance to the evaluation of gully erosion in this type of area. In this study, unmanned aerial vehicle (UAV) tilt photography data were used to evaluate the accuracy of extracting gully morphology parameters from high-resolution remote sensing stereoscopic images. The images data (0.03 m) were taken as the reference in Zhangmazhuang and Jinzhongyu small river valleys in Yishui County, Shandong Province, China. The accuracy of gully morphology parameters were extracted from simultaneous high-resolution remote sensing stereo images data (0.5 m) was evaluated, and the parameter correction model was constructed. The results showed that (1) the average relative errors of circumference (P), area (A), linear length of bottom (L1), and curve length of bottom (L2) are mainly concentrated within 10%, and the average relative errors of top width (TW) are mainly within 20%. (2) The average relative error of three-dimensional (3D) parameters such as gully volume (V) and gully depth (D) is mainly less than 50%. (3) The larger the size of the gully, the smaller the 3D parameters extracted by visual interpreters, especially the absolute value of the mean relative error (Rmean) of V and D. (4) A relationship model was built between the V and D values obtained by the two methods. When V and D were extracted from high-resolution remote sensing stereo images, the relationship model was used to correct the measured parameter values. These findings showed that high-resolution remote sensing stereo images represents an efficient and convenient data source for monitoring gully erosion in a small watershed in a “soil-rock dual structure area”. Full article
(This article belongs to the Special Issue Remote Sensing of Soil Erosion in Forest Area)
Show Figures

Figure 1

22 pages, 4084 KiB  
Review
Airport Runoff Water: State-of-the-Art and Future Perspectives
by Anna Maria Sulej-Suchomska, Danuta Szumińska, Miguel de la Guardia, Piotr Przybyłowski and Żaneta Polkowska
Sustainability 2024, 16(18), 8176; https://doi.org/10.3390/su16188176 - 19 Sep 2024
Abstract
The increase in the quantity and variety of contaminants generated during routine airport infrastructure maintenance operations leads to a wider range of pollutants entering soil and surface waters through runoff, causing soil erosion and groundwater pollution. A significant developmental challenge is ensuring that [...] Read more.
The increase in the quantity and variety of contaminants generated during routine airport infrastructure maintenance operations leads to a wider range of pollutants entering soil and surface waters through runoff, causing soil erosion and groundwater pollution. A significant developmental challenge is ensuring that airport infrastructure meets high-quality environmental management standards. It is crucial to have effective tools for monitoring and managing the volume and quality of stormwater produced within airports and nearby coastal areas. It is necessary to develop methodologies for determining a wide range of contaminants in airport stormwater samples and assessing their toxicity to improve the accuracy of environmental status assessments. This manuscript aims to showcase the latest advancements (2010–2024 update) in developing methodologies, including green analytical techniques, for detecting a wide range of pollutants in airport runoff waters and directly assessing the toxicity levels of airport stormwater effluent. An integrated chemical and ecotoxicological approach to assessing environmental pollution in airport areas can lead to precise environmental risk assessments and well-informed management decisions for sustainable airport operations. Furthermore, this critical review highlights the latest innovations in remediation techniques and various strategies to minimize airport waste. It shifts the paradigm of soil and water pollution management towards nature-based solutions, aligning with the sustainable development goals of the 2030 Agenda. Full article
(This article belongs to the Special Issue Geological Environment Monitoring and Early Warning Systems)
Show Figures

Figure 1

17 pages, 10516 KiB  
Article
Numerical Simulation Analysis of Dock Bank Slopes’ Soil–Water Interface Recognition and Monitoring Device Models Based on Heat Transfer Principles
by Jilong Yin, Huaqing Zhang, Mengmeng Liu, Xiaotao Yang, Pengrui Zhu and Yamin Wang
Appl. Sci. 2024, 14(18), 8444; https://doi.org/10.3390/app14188444 - 19 Sep 2024
Abstract
The erosion and sedimentation of bank slopes are important factors affecting the safety of wharf operations. The essence of bank slope monitoring is to identify the water–soil interface. This paper proposes a model for soil-and-water interface identification and monitoring equipment buried on the [...] Read more.
The erosion and sedimentation of bank slopes are important factors affecting the safety of wharf operations. The essence of bank slope monitoring is to identify the water–soil interface. This paper proposes a model for soil-and-water interface identification and monitoring equipment buried on the bank slope of the wharf, based on the difference in thermodynamic heat transfer between water and soil media, and presents the results of multi-condition numerical simulation. The comparison between numerical simulation results and indoor experimental results shows that the overall patterns are consistent, with an error of less than 11.4%, which is lower than the deviation between theoretical calculation results and indoor experiments. Based on the accuracy of the numerical calculation results, the temperature rise and propagation characteristics of linear heat sources made of iron and PVC in eight types of cohesive soils and six types of non-cohesive soils were studied. The results indicate that there are significant differences in the temperature distribution of linear heat sources made of iron and PVC in both water and soil media. The monitoring equipment model based on the difference in heat transfer between water and soil can be applied in practical engineering. This provides a foundation for the design and application of subsequent monitoring equipment. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

27 pages, 17193 KiB  
Article
A Cost–Benefit Analysis for the Economic Evaluation of Ecosystem Services Lost Due to Erosion in a Mediterranean River Basin
by Giuliano Rocco Romanazzi, Giovanni Ottomano Palmisano, Marilisa Cioffi, Vincenzo Leronni, Ervin Toromani, Romina Koto, Annalisa De Boni, Claudio Acciani and Rocco Roma
Land 2024, 13(9), 1512; https://doi.org/10.3390/land13091512 - 18 Sep 2024
Abstract
Soil degradation in Europe is mostly represented by soil erosion that, as a sediment production mechanism, is the main environmental threat to many watersheds, including the Bovilla watershed (Tirana), useful for the supply of drinking water to the city, and therefore, the care [...] Read more.
Soil degradation in Europe is mostly represented by soil erosion that, as a sediment production mechanism, is the main environmental threat to many watersheds, including the Bovilla watershed (Tirana), useful for the supply of drinking water to the city, and therefore, the care of water quality is of particular interest. The soil erosion of the Bovilla watershed was monitored in a work set up in June 2017. Following this work, this research updates the previous data on soil loss at the Bovilla watershed in t/ha/year to September 2019 and focuses on the identification and monetary evaluation of the ecosystem services (ESs) linked to soil erosion (loss of carbon, loss of mineral elements, habitat quality, crop productivity, and sustainable tourism suitability). Then, we applied the replacement cost analysis to test the economic convenience and suggest the adoption of sustainable land management practices (e.g., reforestation) able to improve the quality water in this watershed. The study carried out demonstrates that the values of soil lost due to erosion vary depending on the type of land use (ranging from average values of 120.32 t/ha for bare land to values of 8.16 t/ha for wooded areas). Furthermore, from the application of monetary methods for the evaluation of some ecosystem services linked to erosion (loss of carbonaceous and mineral elements, habitat quality, productivity, suitability for sustainable tourism), it clearly emerges that the value of the productivity of agricultural crops varies from EUR 0 to 35,320.50/ha and that the service represents a more incisive service than the previous ones, so much so as to make the conversion of some agricultural land with high productivity values into wooded areas economically disadvantageous. The data from this study may help to develop Bovilla watershed management strategies for erosion and pollution control and sediment remediation mainly in agricultural lands. A program of measures can be effective for controlling soil erosion, but it must be implemented over long time frames, and it requires relevant investments from the public and private sectors, also with a view to increase the allocation of economic values of monetary compensation aimed at those who decide to start forestation projects on highly productive soils. Full article
Show Figures

Figure 1

18 pages, 6688 KiB  
Article
Investigation of the Reduction in Distributed Acoustic Sensing Signal Due to Perforation Erosion by Using CFD Acoustic Simulation and Lighthill’s Acoustic Power Law
by Yasuyuki Hamanaka, Ding Zhu and A. D. Hill
Sensors 2024, 24(18), 5996; https://doi.org/10.3390/s24185996 - 16 Sep 2024
Abstract
Distributed Acoustic Sensing (DAS), widely adopted in hydraulic fracturing monitoring, continuously measures sound from perforation holes due to fluid flow through the perforation holes during fracturing treatment. DAS has the potential to monitor perforation Tulsa, OK 74136erosion, a phenomenon of increasing perforation size [...] Read more.
Distributed Acoustic Sensing (DAS), widely adopted in hydraulic fracturing monitoring, continuously measures sound from perforation holes due to fluid flow through the perforation holes during fracturing treatment. DAS has the potential to monitor perforation Tulsa, OK 74136erosion, a phenomenon of increasing perforation size due to sand (referred to as proppant) injection during treatment. Because the sound generated by fluid flow at a perforation hole is negatively related to the perforation diameter, by detecting the decay of the DAS signal, the perforation erosion level can be estimated, which is critical information for fracture design. We used a Computation Fluid Dynamics (CFD) acoustic simulator to calculate the acoustic pressure induced by turbulence inside a wellbore and investigated the relationship between the acoustic response from fluid flow through a perforation and the perforation size by running the simulator for various perforation diameters and flow rates. The results show that if the perforation size is constant, the plot between the calculated sound pressure level and the logarithm of flow rate follows a straight line relationship. However, with different perforation sizes, the intercept of the linear relationship changes, reducing the sound pressure level. Lighthill’s power law indicates that the change in intercept corresponds to the logarithm of the ratio of the increased diameter to the original diameter. The reduction in sound pressure level observed in the CFD simulation correlates with the reduction in the DAS signal in field data. The findings of this study help to evaluate perforation diameter growth using DAS and interpret fluid distribution in fracture stimulation. Full article
(This article belongs to the Special Issue Advanced Acoustic Sensing Technology)
Show Figures

Figure 1

16 pages, 2147 KiB  
Article
Effects of Grazing and Shrub Management on Species Composition and Soil Properties in Patagonian Grasslands
by Braian Vogel, Lucia Molina, César M. Rostagno and Ludmila La Manna
Grasses 2024, 3(3), 205-220; https://doi.org/10.3390/grasses3030015 - 11 Sep 2024
Abstract
Historical sheep farming in the Patagonian drylands has led to reduced grass cover, soil erosion, and shrub encroachment, compromising ecosystem function. Effective restoration requires managing shrub cover, bare soil, and patch connectivity through various strategies. This study evaluates rehabilitation interventions in a grass-steppe [...] Read more.
Historical sheep farming in the Patagonian drylands has led to reduced grass cover, soil erosion, and shrub encroachment, compromising ecosystem function. Effective restoration requires managing shrub cover, bare soil, and patch connectivity through various strategies. This study evaluates rehabilitation interventions in a grass-steppe ecosystem, comparing grazed and ungrazed areas. Over three years, we tested the following: (a) mechanical shrub cutting with biomass redistribution, and (b) enhancing patch connectivity with Pinus spp. branch piles, alongside controls, in eighteen 5 m × 5 m plots invaded by Mulinum spinosum. Half of the plots were fenced to exclude grazing, resulting in six treatment combinations. We monitored soil properties, vegetation cover, and species composition. The treatments explained twice as much of the variation in community composition as the annual climatic variations (0.26 vs. 0.13). Livestock exclusion increased perennial grass cover more than the grazed plots did (2.14 vs. 1.42 times the initial measure). All treatments reduced the amount of bare soil except the grazed controls. Shrub cutting, especially with grazing, increased the lasting litter coverage by 5–10% and decreased the bare soil equivalently. Organic matter increased except in the non-intervened interpatches (0.95 times). The enclosures with cut shrubs trapped erodible particles, showing a 5% increase. Our study highlights that grazing destabilizes communities, while enclosures stabilize them, with interventions improving soil fertility and mitigating erosion. Full article
Show Figures

Figure 1

Back to TopTop