Sign in to use this feature.

Years

Between: -

Search Results (14,756)

Search Parameters:
Keywords = fishes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1140 KiB  
Article
Local Ecological Knowledge (LEK) Can Guide Decision-Making in Inland Fisheries Management
by Olga Petriki, Athanasios Kouletsos, Chrysoula Ntislidou and Dimitra C. Bobori
Appl. Sci. 2024, 14(19), 8819; https://doi.org/10.3390/app14198819 (registering DOI) - 30 Sep 2024
Abstract
Evaluating and integrating local ecological knowledge held by fishers into decision-making processes has the potential to significantly enhance fisheries management. The present study aimed to collect information on fishery practices and to assess the ecological knowledge of local professional fishers through interviews, evaluating [...] Read more.
Evaluating and integrating local ecological knowledge held by fishers into decision-making processes has the potential to significantly enhance fisheries management. The present study aimed to collect information on fishery practices and to assess the ecological knowledge of local professional fishers through interviews, evaluating its importance in managerial design. As a case study, Polyphytos Reservoir in Greece, which supports substantial fisheries, was selected. During the summer of 2023, thirty-seven interviews were conducted to document fishing efforts, methods, catches, biological information, and fishers’ perspectives on lake management, and economic/demographic details. In addition to gathering data on fishing activities, the study seeks to understand fishers’ perspectives on managerial deficiencies and necessities, thereby revealing their valuable ecological knowledge. The integration of this knowledge into decision-making processes can empower stakeholders and enhance local participation in fishery management. Ultimately, this approach has the potential to address long-standing conflicts, foster inclusive processes, and ensure better collective outcomes. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

16 pages, 1544 KiB  
Article
Preservative Effects of a Gelatin-Based Film, Including Gelidium sp. Flour Extracted from Refrigerated Atlantic Mackerel
by Lucía López, Antonio Gómez, Marcos Trigo, José M. Miranda, Jorge Barros-Velázquez and Santiago P. Aubourg
Appl. Sci. 2024, 14(19), 8817; https://doi.org/10.3390/app14198817 (registering DOI) - 30 Sep 2024
Abstract
This research evaluated the preservative properties of flour from the alga Gelidium sp., which is a waste substrate resulting from commercial phycocolloid extraction. Gelatin-based biofilms, which included two different concentrations of red alga flour, were developed and used as packaging systems during refrigerated [...] Read more.
This research evaluated the preservative properties of flour from the alga Gelidium sp., which is a waste substrate resulting from commercial phycocolloid extraction. Gelatin-based biofilms, which included two different concentrations of red alga flour, were developed and used as packaging systems during refrigerated storage (up to 9 days at 4 °C) of Atlantic mackerel (Scomber scombrus) muscle. In all batches tested, a progressive decrease in quality could be observed in the muscle of the fish as the storage time increased. Compared with the control fish, the Gelidium alga flour extract had an inhibitory effect (p < 0.05) on microbial activity (total aerobes, psychrotrophs, and proteolytic bacteria), lipid oxidation (peroxide, thiobarbituric acid, fluorescence and polyene indices), lipid hydrolysis (formation of free fatty acids) and pH increase in refrigerated mackerel muscle. In contrast, no significant effect (p > 0.05) was observed on trimethylamine formation, Enterobacteriaceae, or lipolytic bacteria counts. A preservative effect resulting from the incorporation of Gelidium alga flour into the gelatin-based biofilm was observed, indicating both quality and safety enhancement. In accordance with current global interest in the search for natural and waste sources, a novel and beneficial use of Gelidium flour for enhancing the quality of refrigerated fish has been proposed. Full article
Show Figures

Figure 1

12 pages, 601 KiB  
Review
Detection of Porcine Circovirus (PCV) Using CRISPR-Cas12a/13a Coupled with Isothermal Amplification
by Huijuan Wang, Gang Zhou, Huiming Liu, Ruqun Peng, Tingli Sun, Sujuan Li, Mingjie Chen, Yingsi Wang, Qingshan Shi and Xiaobao Xie
Viruses 2024, 16(10), 1548; https://doi.org/10.3390/v16101548 - 30 Sep 2024
Abstract
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed [...] Read more.
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed and primarily divided into two categories focusing on nucleic acid or serum antibody identification. The methodologies encompass conventional polymerase chain reaction (PCR), real-time fluorescence quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), loop-mediated isothermal amplification (LAMP), immunofluorescence assay (IFA), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). Despite their efficacy, these techniques are often impeded by the necessity for substantial investment in equipment, specialized knowledge, and intricate procedural steps, which complicate their application in real-time field detections. To surmount these challenges, a sensitive, rapid, and specific PCV detection method using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a/13a coupled with isothermal amplification, such as enzymatic recombinase amplification (ERA), recombinase polymerase amplification (RPA), and loop-mediated isothermal amplification (LAMP), has been developed. This novel method has undergone meticulous optimization for detecting PCV types 2, 3, and 4, boasting a remarkable sensitivity to identify a single copy per microliter. The specificity of this technique is exemplary, with no observable interaction with other porcine viruses such as PEDV, PRRSV, PRV, and CSFV. Its reliability has been validated with clinical samples, where it produced a perfect alignment with qPCR findings, showcasing a 100% coincidence rate. The elegance of merging CRISPR-Cas technology with isothermal amplification assays lies in its on-site testing without the need for expensive tools or trained personnel, rendering it exceptionally suitable for on-site applications, especially in resource-constrained swine farming environments. This review assesses and compares the process and characteristics inherent in the utilization of ERA/LAMP/RPA-CRISPR-Cas12a/Cas13a methodologies for the detection of PCV, providing critical insights into their practicality and effectiveness. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

30 pages, 2108 KiB  
Review
Microplastics in Farmed Animals—A Review
by Maximilian Lackner and Manuela Branka
Microplastics 2024, 3(4), 559-588; https://doi.org/10.3390/microplastics3040035 (registering DOI) - 30 Sep 2024
Abstract
Environmental pollution from plastics has become one of the biggest concerns globally. Microplastics (MPs) are plastic materials less than 5 mm in size. They remain in the environment for hundreds to thousands of years without degrading, only breaking down further to nanoplastics (NPs). [...] Read more.
Environmental pollution from plastics has become one of the biggest concerns globally. Microplastics (MPs) are plastic materials less than 5 mm in size. They remain in the environment for hundreds to thousands of years without degrading, only breaking down further to nanoplastics (NPs). Micro- and nanoplastics can be the origin of many diseases and can carry various pathogenic substances on their surface and spread them throughout the biosphere, starting with contained additives and ending with adsorbed toxins from the environment and potentially pathogenic microorganisms. Exposure routes for humans and animals are through air, water and food/feed. Due to the placement of livestock—including ruminants, fish and poultry—and humans at the top of the food web, any pollution in water, air or soil can eventually be transferred to livestock and from livestock to humans. The presence of microplastics in the intestines of aquaculture species, ruminants and poultry, for instance, was found to cause a change in the intestinal microbial population and, as a result, the occurrence of diseases. These particles have also been observed in other organs such as liver, kidneys, lung, spleen, heart, ovaries, and testicles of animals, which causes biochemical changes, structural destruction, and malfunction. While the complete extent of the negative health impacts of microplastics remains still largely unknown, their ubiquitous presence and the transmission of chemicals from microplastics to organisms is a notable issue, underscoring the importance of gaining a more comprehensive understanding of the potential threats posed by microplastics to animal and ultimately human health, coupled with a need for drastic reduction of the plastic freight into the environment. This review article summarizes recent findings on the effect of micro- and nanoplastics on farmed animals and, ultimately, on humans. Action is needed to reduce the number of microplastics to which farmed animals, and thereby humans, are exposed. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

12 pages, 2597 KiB  
Article
Identification and Characterization of Germ Cell Genes Vasa and Nanos-2 in the Ovary and Testis of White Crappie (Pomoxis annularis) and the Ovary of Black Crappie (P. nigromaculatus)
by Sujan Bhattarai, Nilima N. Renukdas, Anita M. Kelly, Amit Kumar Sinha, Sanjay Joshi and Dayan A. Perera
Fishes 2024, 9(10), 394; https://doi.org/10.3390/fishes9100394 - 30 Sep 2024
Abstract
The vasa gene, encoding an ATP-dependent RNA helicase, and the nanos-2 gene, an RNA-binding protein, are essential for germ cell origination, migration, maintenance, and development in vertebrates and invertebrates. The expression levels of the vasa and nanos-2 genes have not yet been investigated [...] Read more.
The vasa gene, encoding an ATP-dependent RNA helicase, and the nanos-2 gene, an RNA-binding protein, are essential for germ cell origination, migration, maintenance, and development in vertebrates and invertebrates. The expression levels of the vasa and nanos-2 genes have not yet been investigated or reported in crappie species. These two genes were partially sequenced and characterized, and their expression patterns were analyzed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) according to age and sex. The vasa sequences of white crappie (WC) females and males showed significant similarity with the vasa homologs of largemouth bass (Micropterus salmoides; 93.1–93.98%) and smallmouth bass (M. dolomieu; 91.95–92.77%), indicating its conserved nature within the Family Centrarchidae. The vasa sequence of black crappie (BC) females showed significant similarity with the vasa homologs of white crappie (91.67%), largemouth bass (96.10%), smallmouth bass (96.10%), spotted scat (Scatophagus argus; 97.37%), mandarin fish (Siniperca chutasi; 96.15%), Japanese sea bass (Lateolabrax japonicus; 94.87%), lumpfish (Cyclopterus lumpus; 91.95%), southern bluefin tuna (Thunnus maccoyii; 94.74%), large yellow croaker (Larimichthys crocea; 92.21%), and Nile tilapia (Oreochromis niloticus; 92.21%). The nanos-2 sequences of WC females, WC males, and BC females showed significant similarity with the nanos-2 of largemouth bass (92.92–96.36%), smallmouth bass (92.92–96.36%), and mandarin fish (92.66–94.34%). The expression of vasa in BC females was significantly higher at age-2 than at age-1, while WC males and females presented no significant age-related differences. Neither species had a significant difference in nanos-2 gene expression with age. The expression levels of vasa and nanos-2 were significantly higher in WC males than females. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

15 pages, 7072 KiB  
Article
Correlation Analysis of the Transcriptome and Gut Microbiota in Salmo trutta Resistance to Aeromonas salmonicida
by Shuaijie Sun, Jun Lv, Kuankuan Lei, Zhuangzhuang Wang, Wanliang Wang, Zhichao Li, Ming Li and Jianshe Zhou
Microorganisms 2024, 12(10), 1983; https://doi.org/10.3390/microorganisms12101983 - 30 Sep 2024
Abstract
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) [...] Read more.
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) has led to substantial economic losses for S. trutta farmers. Our prior research identified A. salmonicida as one of the primary culprits behind BGD. To mitigate the impact of A. salmonicida on S. trutta, we conducted a comprehensive study aimed at identifying genes associated with resistance to A. salmonicida. This involved transcriptome sequencing and 16S rRNA sequencing of intestinal flora, providing valuable insights for the study of disease resistance in S. trutta. In this study, we identified 324 genera with 5171 ASVs in the susceptible group and 293 genera with 5669 ASVs in the resistant group. Notably, Methylobacterium and Sphingomonas were common bacteria present in the salmon’s gut, and their proportions remained relatively stable before and after infection. Shewanella, with its antagonistic relationship with Aeromonas, may play a crucial role in the salmon’s defense against A. salmonicida. Several related genes were identified, including angptl4, cipcb, grasp, ccr9a, sulf1, mtmr11, B3GNT3, mt2, PLXDC1, and ank1b. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

14 pages, 3217 KiB  
Article
Effects of Feeding Frequency on Liver Transcriptome: Unveiling Appetite-Regulating Peptides in Mexican Pike Silverside (Chirostoma estor)
by Mitzi Ernestina Juárez-Gutiérrez, Carlos Cristian Martínez-Chávez, Claudia Yaneth Godoy-Figueroa, Verónica Jiménez-Jacinto, María Gisela Ríos-Durán, Carlos Antonio Martínez-Palacios and Pamela Navarrete-Ramírez
Fishes 2024, 9(10), 393; https://doi.org/10.3390/fishes9100393 - 30 Sep 2024
Abstract
The Mexican pike silverside (Chirostoma estor) is a zooplanktivorous, agastric short-intestined species, and it has been found that increased-frequency feeding (twelve feedings a day) improved feed efficiency and promoted growth by 70%. This work determined the effect of different juvenile feeding [...] Read more.
The Mexican pike silverside (Chirostoma estor) is a zooplanktivorous, agastric short-intestined species, and it has been found that increased-frequency feeding (twelve feedings a day) improved feed efficiency and promoted growth by 70%. This work determined the effect of different juvenile feeding frequencies upon the C. estor liver transcriptome. The level of the expression of appetite-regulating peptides was analyzed in silico to understand the mechanisms involved in appetite control in this species. Differential expression analysis showed that up-regulated genes between treatments were related to metabolism, digestive processes, immune system response, apoptosis, growth, and oxidative stress. This information explains the better performance of pike silverside fed 12 times daily. Appetite regulatory peptides were identified for the first time in the liver of C. estor in response to high feeding frequencies, contributing to the general knowledge of the roles of each family of neuropeptides in this agastric, short-intestined fish. The information presented here emphasizes the need to explore further the complex physiological processes involved in appetite regulation in C. estor. Additionally, it will serve as a basis for more specific targeted studies of appetite control to elucidate the mechanisms behind this process. Full article
(This article belongs to the Special Issue Advances in Fish Genome and Transcriptomes)
Show Figures

Figure 1

18 pages, 2511 KiB  
Article
Smart City Aquaculture: AI-Driven Fry Sorting and Identification Model
by Chang-Yi Kao and I-Chih Chen
Appl. Sci. 2024, 14(19), 8803; https://doi.org/10.3390/app14198803 (registering DOI) - 30 Sep 2024
Abstract
The development of smart agriculture has become a critical issue for the future of smart cities, with large-scale management of aquaculture posing numerous challenges. Particularly in the fish farming industry, producing single-sex fingerlings (especially male fingerlings) is crucial for enhancing rearing efficiency and [...] Read more.
The development of smart agriculture has become a critical issue for the future of smart cities, with large-scale management of aquaculture posing numerous challenges. Particularly in the fish farming industry, producing single-sex fingerlings (especially male fingerlings) is crucial for enhancing rearing efficiency and could even provide key support in addressing future global food demands. However, traditional methods of manually selecting the gender of broodfish rely heavily on experienced technicians, are labor-intensive and time-consuming, and present significant bottlenecks in improving production efficiency, thus limiting the capacity and sustainable development potential of fish farms. In response to this situation, this study has developed an intelligent identification system based on the You Only Look Once (YOLO) artificial intelligence (AI) model, specifically designed for analyzing secondary sexual characteristics and gender screening in farmed fish. Through this system, farmers can quickly photograph the fish’s cloaca using a mobile phone, and AI technology is then used to perform real-time gender identification. The study involved two phases of training with different sample sets: in the first phase, the AI model was trained on a single batch of images with varying parameter conditions. In the second phase, additional sample data were introduced to improve generalization. The results of the study show that the system achieved an identification accuracy of over 95% even in complex farming environments, significantly reducing the labor costs and physical strain associated with traditional screening operations and greatly improving the production efficiency of breeding facilities. This research not only has the potential to overcome existing technological bottlenecks but also may become an essential tool for smart aquaculture. As the system continues to be refined, it is expected to be applicable across the entire life cycle management of fish, including gender screening during the growth phase, thereby enabling a more efficient production and management model. This not only provides an opportunity for technological upgrades in the aquaculture industry but also promotes the sustainable development of aquaculture. The smart aquaculture solution proposed in this study demonstrates the immense potential of applying AI technology to the aquaculture industry and offers strong support for global food security and the construction of smart cities. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

13 pages, 2724 KiB  
Article
Unraveling the Mitogenomic Characteristics and Phylogenetic Implications of Leuciscus merzbacheri (Zugmayer, 1912), an Endangered Fish in the Junggar Basin of Xinjiang, Northwest China
by Yan Sun and Tianyan Yang
Genes 2024, 15(10), 1284; https://doi.org/10.3390/genes15101284 - 30 Sep 2024
Abstract
Background: Leuciscus merzbacheri is a rare and endangered fish in Xinjiang, China. As a representative species of the fauna in the Junggar Basin, it is of high economic and scientific value. The genetic data are still limited, and the mitochondrial genomic characteristics remain [...] Read more.
Background: Leuciscus merzbacheri is a rare and endangered fish in Xinjiang, China. As a representative species of the fauna in the Junggar Basin, it is of high economic and scientific value. The genetic data are still limited, and the mitochondrial genomic characteristics remain unexplored. Methods: A high-throughput sequencing method was used to obtain the complete mitogenome of L. merzbacheri. Results: The full length of the circular DNA was 16,609 bp, and it consisted of 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs and 2 non-coding regions. The overall nucleotide compositions of both the mitogenome and PCGs showed an obvious AT preference with percentages of 54.20% and 53.60%, respectively. Three commonly used amino acids were Leu (16.43%), Ala (8.95%) and Thr (7.85%) in turn. All tRNAs could form the typical clover structures excluding tRNA-Ser AGY. The presumed secondary structures of two rRNAs contained several stem-loop domains, and the structure of 12S rRNA seemed to be more stable than that of 16S rRNA. Extended termination sequence regions (ETASs), central conserved regions (CSB-F, CSB-E and CSB-D), and conserved sequence regions (CSB-1, CSB-2 and CSB-3) were identified in the control region. The phylogenetic tree showed that L. merzbacheri was recovered with strong supports as a sister to the other members of the genus. The location in the outermost branch implied that it might be a relatively ancient species among its congeners. Conclusions: This study would complement the genetic data on L. merzbacheri and contribute to a better understanding of molecular evolution in Leuciscus as well. Full article
Show Figures

Figure 1

13 pages, 1475 KiB  
Article
Nongenetic and Genetic Factors Associated with White Matter Brain Aging: Exposome-Wide and Genome-Wide Association Study
by Li Feng, Halley S. Milleson, Zhenyao Ye, Travis Canida, Hongjie Ke, Menglu Liang, Si Gao, Shuo Chen, L. Elliot Hong, Peter Kochunov, David K. Y. Lei and Tianzhou Ma
Genes 2024, 15(10), 1285; https://doi.org/10.3390/genes15101285 - 30 Sep 2024
Abstract
Background/Objectives: Human brain aging is a complex process that affects various aspects of brain function and structure, increasing susceptibility to neurological and psychiatric disorders. A number of nongenetic (e.g., environmental and lifestyle) and genetic risk factors are found to contribute to the varying [...] Read more.
Background/Objectives: Human brain aging is a complex process that affects various aspects of brain function and structure, increasing susceptibility to neurological and psychiatric disorders. A number of nongenetic (e.g., environmental and lifestyle) and genetic risk factors are found to contribute to the varying rates at which the brain ages among individuals. Methods: In this paper, we conducted both an exposome-wide association study (XWAS) and a genome-wide association study (GWAS) on white matter brain aging in the UK Biobank, revealing the multifactorial nature of brain aging. We applied a machine learning algorithm and leveraged fractional anisotropy tract measurements from diffusion tensor imaging data to predict the white matter brain age gap (BAG) and treated it as the marker of brain aging. For XWAS, we included 107 variables encompassing five major categories of modifiable exposures that potentially impact brain aging and performed both univariate and multivariate analysis to select the final set of nongenetic risk factors. Results: We found current tobacco smoking, dietary habits including oily fish, beef, lamb, cereal, and coffee intake, length of mobile phone use, use of UV protection, and frequency of solarium/sunlamp use were associated with the BAG. In genetic analysis, we identified several SNPs on chromosome 3 mapped to genes IP6K1, GMNC, OSTN, and SLC25A20 significantly associated with the BAG, showing the high heritability and polygenic architecture of human brain aging. Conclusions: The critical nongenetic and genetic risk factors identified in our study provide insights into the causal relationship between white matter brain aging and neurodegenerative diseases. Full article
(This article belongs to the Special Issue Advances in Bioinformatics and Environmental Health)
Show Figures

Figure 1

15 pages, 3734 KiB  
Article
Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout (Plectropomus leopardus)
by Xiaoqi Hao, Heizhao Lin, Ziyang Lin, Keng Yang, Jing Hu, Zhenhua Ma and Wei Yu
Microorganisms 2024, 12(10), 1980; https://doi.org/10.3390/microorganisms12101980 - 30 Sep 2024
Abstract
The potential effects of Astragalus polysaccharides (APS) were evaluated in coral trout (Plectropomus leopardus). Five APS levels (0%, 0.05%, 0.10%, 0.15%, and 0.20%) were added to the diet of coral trout, and a 56-day growth trial (initial weight 18.62 ± 0.05 [...] Read more.
The potential effects of Astragalus polysaccharides (APS) were evaluated in coral trout (Plectropomus leopardus). Five APS levels (0%, 0.05%, 0.10%, 0.15%, and 0.20%) were added to the diet of coral trout, and a 56-day growth trial (initial weight 18.62 ± 0.05 g) was conducted. Dietary APS enhanced growth performance, with the highest improvement observed in fish fed the 0.15% APS diet. This concentration also enhanced the antioxidant capacity and immunomodulation of the fish by regulating the expression of genes associated with antioxidant enzymes and immune responses. Intestinal microbiota analysis revealed that APS supplementation significantly increased the Chao1 index and relative abundance of beneficial bacteria (Firmicutes and Bacillus). A high level of APS (0.20%) did not provide additional benefits for growth and health compared to a moderate level (0.15%). These findings indicate that an optimal APS dose promotes growth, enhances antioxidant activity, supports immune function, and improves intestinal microbiota in coral trout. Based on a cubic regression analysis of the specific growth rate, the optimal APS level for the maximal growth of coral trout was determined to be 0.1455%. Full article
(This article belongs to the Special Issue Aquatic Microorganisms and Their Application in Aquaculture)
Show Figures

Figure 1

16 pages, 2383 KiB  
Article
Risk Identification and Safety Evaluation of Offshore Wind Power Submarine Cable Construction
by Hui Huang, Qiang Zhang, Hao Xu, Zhenming Li, Xinjiao Tian, Shuhao Fang, Juan Zheng, Enna Zhang and Dingding Yang
J. Mar. Sci. Eng. 2024, 12(10), 1718; https://doi.org/10.3390/jmse12101718 - 30 Sep 2024
Abstract
To mitigate accidents in submarine cable construction within the rapidly expanding offshore wind power sector, this study employed the analytic hierarchy process (AHP) and risk matrix method (LS) to assess the risks associated with identified factors. Based on project research and expert consultations, [...] Read more.
To mitigate accidents in submarine cable construction within the rapidly expanding offshore wind power sector, this study employed the analytic hierarchy process (AHP) and risk matrix method (LS) to assess the risks associated with identified factors. Based on project research and expert consultations, five primary and twenty-two secondary risk factors were identified. AHP was utilized to rank the primary risk factors by severity, probability, and detection difficulty, with the highest risk being the environmental impact, followed by third-party destruction and worker error. LS was applied to rank the secondary risk factors by likelihood and severity, with the highest risks being complex submarine topography, low underwater visibility, and fishing operations. The study proposes risk reduction measures based on these evaluations and offers methodological guidance for improving construction safety in similar enterprises. Full article
Show Figures

Figure 1

8 pages, 941 KiB  
Article
Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition
by Francisco Les, Veronica Galiffa, Guillermo Cásedas, Cristina Moliner, Filippo Maggi, Víctor López and Carlota Gómez-Rincón
Molecules 2024, 29(19), 4640; https://doi.org/10.3390/molecules29194640 - 29 Sep 2024
Abstract
The increasing presence of Anisakis spp. in fish is having significant implications for public health due to a rise in cases of anisakiasis. Given this situation, there is a critical need to develop new strategies to fight this parasite. Satureja montana L., commonly [...] Read more.
The increasing presence of Anisakis spp. in fish is having significant implications for public health due to a rise in cases of anisakiasis. Given this situation, there is a critical need to develop new strategies to fight this parasite. Satureja montana L., commonly known as savory, is a plant recognized in folk medicine for its therapeutic activity, such as being antispasmodic and digestive, among other properties. The aim of this study was to assess the nematicide activity against A. simplex larvae of the essential oil from two varieties of S. montana (subsp. montana (SMM) and variegata (SMV)). The essential oils were obtained via hydro-distillation of the flowering aerial parts. In vitro assays demonstrated the complete inactivation of anisakis larvae after 24 h when exposed to both essential oils, along with a significant reduction in their penetration capacity. Moreover, both essential oils showed an inhibitory effect on acetylcholinesterase (AChE). No differences between the subspecies were observed in any of the assays. Hence, the nematicidal activity of essential oils could be attributed to their capacity to inhibit AChE. These findings suggest the potential of S. montana essential oil for therapeutic and food industry applications. Full article
(This article belongs to the Special Issue Essential Oils in Human Health)
Show Figures

Figure 1

25 pages, 1481 KiB  
Review
From Waste to Value: Fish Protein Hydrolysates as a Technological and Functional Ingredient in Human Nutrition
by Adrián Honrado, Marta Miguel, Paula Ardila, José Antonio Beltrán and Juan B. Calanche
Foods 2024, 13(19), 3120; https://doi.org/10.3390/foods13193120 - 29 Sep 2024
Abstract
Fish provides a low-caloric content, polyunsaturated fatty acids, many essential trace elements and is also a rich source of protein, ranging from 10% to 25%. Therefore, the production of FPH (fish protein hydrolysates) is of great interest, as the resulting products exhibit a [...] Read more.
Fish provides a low-caloric content, polyunsaturated fatty acids, many essential trace elements and is also a rich source of protein, ranging from 10% to 25%. Therefore, the production of FPH (fish protein hydrolysates) is of great interest, as the resulting products exhibit a variety of important bioactive and technological properties, making them potential ingredients for new functional foods and supplements. The aim of this review was to compile and analyze information on enzymatic hydrolysates, with particular emphasis on those derived from fish by-products, as a potential ingredient in human nutrition. Their nutritional characteristics, food safety aspects, bioactive properties, technological attributes, key influencing factors, and applications in food products were evaluated. The findings revealed that these properties are influenced by several factors, such as the raw material, enzymes used, degree of hydrolysis, and the molecular weight of the peptides, which need to be considered as a whole. In conclusion, the gathered information suggests that it is possible to obtain high-value products through enzymatic hydrolysis, even when using fish by-products. However, although numerous studies focused on FPH derived from fish muscle, research on by-products remains limited. Further investigation is needed to determine whether the behavior of FPH from by-products differs from that of muscle-derived FPH. Full article
Show Figures

Figure 1

18 pages, 1197 KiB  
Article
Effect of Rice–Carp Coculture on Phytoplankton and Microzooplankton Community Composition in Paddy Water during Different Rice Growth Stages
by Geleta Tiko Welde, Bing Li, Yiran Hou, Gelana Urgesa Ayana, Linjun Zhou, Rui Jia and Jian Zhu
Water 2024, 16(19), 2775; https://doi.org/10.3390/w16192775 - 29 Sep 2024
Abstract
Integrated rice–fish farming, an agricultural practice that combines cultivating rice and breeding fish in the same field, has attracted widespread attention. However, there is limited research on how the rice–carp coculture impacts the community structure of phytoplankton and microzooplankton in paddy water. This [...] Read more.
Integrated rice–fish farming, an agricultural practice that combines cultivating rice and breeding fish in the same field, has attracted widespread attention. However, there is limited research on how the rice–carp coculture impacts the community structure of phytoplankton and microzooplankton in paddy water. This study employed eDNA metabarcoding sequencing to analyze the composition of phytoplankton and microzooplankton in a rice monoculture system (RM) and a rice–carp coculture system (RF). Following annotation, we identified 9 phyla, 89 families, 275 genera, and 249 species of phytoplankton, along with 20 phyla (or subphylum and class), 85 families, 222 genera, and 179 species of microzooplankton. The alpha diversity indices revealed significantly higher richness, diversity, and evenness in the RF group compared to the RM group during grain-filling stage. Principal coordinates analysis (PCoA) demonstrated notable differences in the phytoplankton and microzooplankton compositions between the two groups across various rice growth stages. Composition analysis showed that rice–carp coculture increased the relative abundance of dominant phytoplankton phyla such as Bacillariophyta, Chrysophyta, and Euglenophyta while decreasing that of Cryptophyta. In microzooplankton, the coculture resulted in an increased abundance of Intramacronucleata (subphylum) and a decrease in Conoidasida (class). In conclusion, the rice–carp coculture enhances the diversity of plankton, particularly during the grain-filling stage, and simultaneously alters the composition and abundance of dominant plankton species in the paddy water. These findings enhance understanding of the broader impacts of integrated rice–carp farming on agricultural ecosystems, emphasizing alterations in the diversity and composition of aquatic microorganisms Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Back to TopTop