Sign in to use this feature.

Years

Between: -

Search Results (2,364)

Search Parameters:
Keywords = forest canopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6748 KiB  
Article
Species Richness, Abundance, and Vertical Distribution of Epiphytic Bromeliads in Primary Forest and Disturbed Forest
by Sugeidi S. Siaz Torres, Edilia de la Rosa-Manzano, Leonardo U. Arellano-Méndez, Karla M. Aguilar-Dorantes, José Guadalupe Martínez Ávalos and María Cruz Juárez Aragón
Plants 2024, 13(19), 2754; https://doi.org/10.3390/plants13192754 - 30 Sep 2024
Abstract
Epiphytes represent a key component in tropical forests. They are affected by anthropogenic and natural disturbances suffered by forests, since they depend on their hosts and the microclimatic conditions they generate. We analyzed differences in abundance, species richness, and vertical distributions of epiphytic [...] Read more.
Epiphytes represent a key component in tropical forests. They are affected by anthropogenic and natural disturbances suffered by forests, since they depend on their hosts and the microclimatic conditions they generate. We analyzed differences in abundance, species richness, and vertical distributions of epiphytic bromeliads in primary and disturbed forests. We found a higher abundance (5316 individuals) and species richness (8 species) of bromeliads in disturbed forest than in primary forest (1360 individuals and 4 species, respectively). Most bromeliads (97%) were found on Taxodium mucronatum, a dominant tree with rough bark in the disturbed forest (gallery forest). Bromeliads were more abundant in the middle of the tree and diminished towards the trunk base and the upper crown. Tillandsia baileyi was the most abundant bromeliad, and the size categories of this species differentially colonize trees in gallery forest according to Johansson zones; seedlings of T. baileyi abundantly colonize the upper canopy, and juveniles colonize the middle canopy or secondary branches. Gallery forest represents an important reservoir for epiphytic bromeliads. Hence, it is important to extend this kind of study to wetland sites to understand the role they play as a habitat for epiphytes, as well as the dynamics and ecological processes that occur in such habitats. Full article
Show Figures

Figure 1

24 pages, 27095 KiB  
Article
Examining the Impact of Topography and Vegetation on Existing Forest Canopy Height Products from ICESat-2 ATLAS/GEDI Data
by Yisa Li, Dengsheng Lu, Yagang Lu and Guiying Li
Remote Sens. 2024, 16(19), 3650; https://doi.org/10.3390/rs16193650 - 30 Sep 2024
Abstract
Forest canopy height (FCH) is an important variable for estimating forest biomass and ecosystem carbon sequestration. Spaceborne LiDAR data have been used to create wall-to-wall FCH maps, such as the forest tree height map of China (FCHChina), Global Forest Canopy Height 2020 (GFCH2020), [...] Read more.
Forest canopy height (FCH) is an important variable for estimating forest biomass and ecosystem carbon sequestration. Spaceborne LiDAR data have been used to create wall-to-wall FCH maps, such as the forest tree height map of China (FCHChina), Global Forest Canopy Height 2020 (GFCH2020), and Global Forest Canopy Height 2019 (GFCH2019). However, these products lack comprehensive assessment. This study used airborne LiDAR data from various topographies (e.g., plain, hill, and mountain) to assess the impacts of different topographical and vegetation characteristics on spaceborne LiDAR-derived FCH products. The results show that GEDI–FCH demonstrates better accuracy in plain and hill regions, while ICESat-2 ATLAS–FCH shows superior accuracy in the mountainous region. The difficulty in accurately capturing photons from sparse tree canopies by ATLAS and the geolocation errors of GEDI has led to partial underestimations of FCH products in plain areas. Spaceborne LiDAR FCH retrievals are more accurate in hilly regions, with a root mean square error (RMSE) of 4.99 m for ATLAS and 3.85 m for GEDI. GEDI–FCH is significantly affected by slope in mountainous regions, with an RMSE of 13.26 m. For wall-to-wall FCH products, the availability of FCH data is limited in plain areas. Optimal accuracy is achieved in hilly regions by FCHChina, GFCH2020, and GFCH2019, with RMSEs of 5.52 m, 5.07 m, and 4.85 m, respectively. In mountainous regions, the accuracy of wall-to-wall FCH products is influenced by factors such as tree canopy coverage, forest cover types, and slope. However, some of these errors may stem from directly using current ATL08 and GEDI L2A FCH products for mountainous FCH estimation. Introducing accurate digital elevation model (DEM) data can improve FCH retrieval from spaceborne LiDAR to some extent. This research improves our understanding of the existing FCH products and provides valuable insights into methods for more effectively extracting accurate FCH from spaceborne LiDAR data. Further research should focus on developing suitable approaches to enhance the FCH retrieval accuracy from spaceborne LiDAR data and integrating multi-source data and modeling algorithms to produce accurate wall-to-wall FCH distribution in a large area. Full article
(This article belongs to the Special Issue Lidar for Forest Parameters Retrieval)
Show Figures

Figure 1

29 pages, 12094 KiB  
Article
Bitemporal Radiative Transfer Modeling Using Bitemporal 3D-Explicit Forest Reconstruction from Terrestrial Laser Scanning
by Chang Liu, Kim Calders, Niall Origo, Louise Terryn, Jennifer Adams, Jean-Philippe Gastellu-Etchegorry, Yingjie Wang, Félicien Meunier, John Armston, Mathias Disney, William Woodgate, Joanne Nightingale and Hans Verbeeck
Remote Sens. 2024, 16(19), 3639; https://doi.org/10.3390/rs16193639 - 29 Sep 2024
Abstract
Radiative transfer models (RTMs) are often used to retrieve biophysical parameters from earth observation data. RTMs with multi-temporal and realistic forest representations enable radiative transfer (RT) modeling for real-world dynamic processes. To achieve more realistic RT modeling for dynamic forest processes, this study [...] Read more.
Radiative transfer models (RTMs) are often used to retrieve biophysical parameters from earth observation data. RTMs with multi-temporal and realistic forest representations enable radiative transfer (RT) modeling for real-world dynamic processes. To achieve more realistic RT modeling for dynamic forest processes, this study presents the 3D-explicit reconstruction of a typical temperate deciduous forest in 2015 and 2022. We demonstrate for the first time the potential use of bitemporal 3D-explicit RT modeling from terrestrial laser scanning on the forward modeling and quantitative interpretation of: (1) remote sensing (RS) observations of leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and canopy light extinction, and (2) the impact of canopy gap dynamics on light availability of explicit locations. Results showed that, compared to the 2015 scene, the hemispherical-directional reflectance factor (HDRF) of the 2022 forest scene relatively decreased by 3.8% and the leaf FAPAR relatively increased by 5.4%. At explicit locations where canopy gaps significantly changed between the 2015 scene and the 2022 scene, only under diffuse light did the branch damage and closing gap significantly impact ground light availability. This study provides the first bitemporal RT comparison based on the 3D RT modeling, which uses one of the most realistic bitemporal forest scenes as the structural input. This bitemporal 3D-explicit forest RT modeling allows spatially explicit modeling over time under fully controlled experimental conditions in one of the most realistic virtual environments, thus delivering a powerful tool for studying canopy light regimes as impacted by dynamics in forest structure and developing RS inversion schemes on forest structural changes. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

16 pages, 5464 KiB  
Article
Estimation of Cotton SPAD Based on Multi-Source Feature Fusion and Voting Regression Ensemble Learning in Intercropping Pattern of Cotton and Soybean
by Xiaoli Wang, Jingqian Li, Junqiang Zhang, Lei Yang, Wenhao Cui, Xiaowei Han, Dulin Qin, Guotao Han, Qi Zhou, Zesheng Wang, Jing Zhao and Yubin Lan
Agronomy 2024, 14(10), 2245; https://doi.org/10.3390/agronomy14102245 - 29 Sep 2024
Abstract
The accurate estimation of soil plant analytical development (SPAD) values in cotton under various intercropping patterns with soybean is crucial for monitoring cotton growth and determining a suitable intercropping pattern. In this study, we utilized an unmanned aerial vehicle (UAV) to capture visible [...] Read more.
The accurate estimation of soil plant analytical development (SPAD) values in cotton under various intercropping patterns with soybean is crucial for monitoring cotton growth and determining a suitable intercropping pattern. In this study, we utilized an unmanned aerial vehicle (UAV) to capture visible (RGB) and multispectral (MS) data of cotton at the bud stage, early flowering stage, and full flowering stage in a cotton–soybean intercropping pattern in the Yellow River Delta region of China, and we used SPAD502 Plus and tapeline to collect SPAD and cotton plant height (CH) data of the cotton canopy, respectively. We analyzed the differences in cotton SPAD and CH under different intercropping ratio patterns. It was conducted using Pearson correlation analysis between the RGB features, MS features, and cotton SPAD, then the recursive feature elimination (RFE) method was employed to select image features. Seven feature sets including MS features (five vegetation indices + five texture features), RGB features (five vegetation indices + cotton cover), and CH, as well as combinations of these three types of features with each other, were established. Voting regression (VR) ensemble learning was proposed for estimating cotton SPAD and compared with the performances of three models: random forest regression (RFR), gradient boosting regression (GBR), and support vector regression (SVR). The optimal model was then used to estimate and visualize cotton SPAD under different intercropping patterns. The results were as follows: (1) There was little difference in the mean value of SPAD or CH under different intercropping patterns; a significant positive correlation existed between CH and SPAD throughout the entire growth period. (2) All VR models were optimal when each of the seven feature sets were used as input. When the features set was MS + RGB, the determination coefficient (R2) of the validation set of the VR model was 0.902, the root mean square error (RMSE) was 1.599, and the relative prediction deviation (RPD) was 3.24. (3) When the features set was CH + MS + RGB, the accuracy of the VR model was further improved, compared with the feature set MS + RGB, the R2 and RPD were increased by 1.55% and 8.95%, respectively, and the RMSE was decreased by 7.38%. (4) In the intercropping of cotton and soybean, cotton growing under 4:6 planting patterns was better. The results can provide a reference for the selection of intercropping patterns and the estimation of cotton SPAD. Full article
(This article belongs to the Special Issue AI, Sensors and Robotics for Smart Agriculture—2nd Edition)
Show Figures

Figure 1

24 pages, 3135 KiB  
Review
Current Status of Remote Sensing for Studying the Impacts of Hurricanes on Mangrove Forests in the Coastal United States
by Abhilash Dutta Roy, Daria Agnieszka Karpowicz, Ian Hendy, Stefanie M. Rog, Michael S. Watt, Ruth Reef, Eben North Broadbent, Emma F. Asbridge, Amare Gebrie, Tarig Ali and Midhun Mohan
Remote Sens. 2024, 16(19), 3596; https://doi.org/10.3390/rs16193596 - 26 Sep 2024
Abstract
Hurricane incidents have become increasingly frequent along the coastal United States and have had a negative impact on the mangrove forests and their ecosystem services across the southeastern region. Mangroves play a key role in providing coastal protection during hurricanes by attenuating storm [...] Read more.
Hurricane incidents have become increasingly frequent along the coastal United States and have had a negative impact on the mangrove forests and their ecosystem services across the southeastern region. Mangroves play a key role in providing coastal protection during hurricanes by attenuating storm surges and reducing erosion. However, their resilience is being increasingly compromised due to climate change through sea level rises and the greater intensity of storms. This article examines the role of remote sensing tools in studying the impacts of hurricanes on mangrove forests in the coastal United States. Our results show that various remote sensing tools including satellite imagery, Light detection and ranging (LiDAR) and unmanned aerial vehicles (UAVs) have been used to detect mangrove damage, monitor their recovery and analyze their 3D structural changes. Landsat 8 OLI (14%) has been particularly useful in long-term assessments, followed by Landsat 5 TM (9%) and NASA G-LiHT LiDAR (8%). Random forest (24%) and linear regression (24%) models were the most common modeling techniques, with the former being the most frequently used method for classifying satellite images. Some studies have shown significant mangrove canopy loss after major hurricanes, and damage was seen to vary spatially based on factors such as proximity to oceans, elevation and canopy structure, with taller mangroves typically experiencing greater damage. Recovery rates after hurricane-induced damage also vary, as some areas were seen to show rapid regrowth within months while others remained impacted after many years. The current challenges include capturing fine-scale changes owing to the dearth of remote sensing data with high temporal and spatial resolution. This review provides insights into the current remote sensing applications used in hurricane-prone mangrove habitats and is intended to guide future research directions, inform coastal management strategies and support conservation efforts. Full article
Show Figures

Figure 1

21 pages, 6212 KiB  
Article
Validation and Error Minimization of Global Ecosystem Dynamics Investigation (GEDI) Relative Height Metrics in the Amazon
by Alyson East, Andrew Hansen, Patrick Jantz, Bryce Currey, David W. Roberts and Dolors Armenteras
Remote Sens. 2024, 16(19), 3550; https://doi.org/10.3390/rs16193550 - 24 Sep 2024
Abstract
Global Ecosystem Dynamics Investigation (GEDI) is a relatively new technology for global forest research, acquiring LiDAR measurements of vertical vegetation structure across Earth’s tropical, sub-tropical, and temperate forests. Previous GEDI validation efforts have largely focused on top of canopy accuracy, and findings vary [...] Read more.
Global Ecosystem Dynamics Investigation (GEDI) is a relatively new technology for global forest research, acquiring LiDAR measurements of vertical vegetation structure across Earth’s tropical, sub-tropical, and temperate forests. Previous GEDI validation efforts have largely focused on top of canopy accuracy, and findings vary by geographic region and forest type. Despite this, many applications utilize measurements of vertical vegetation distribution from the lower canopy, with a wide diversity of uses for GEDI data appearing in the literature. Given the variability in data requirements across research applications and ecosystems, and the regional variability in GEDI data quality, it is imperative to understand GEDI error to draw strong inferences. Here, we quantify the accuracy of GEDI relative height metrics through canopy layers for the Brazilian Amazon. To assess the accuracy of on-orbit GEDI L2A relative height metrics, we utilize the GEDI waveform simulator to compare detailed airborne laser scanning (ALS) data from the Sustainable Landscapes Brazil project to GEDI data collected by the International Space Station. We also assess the impacts of data filtering based on biophysical and GEDI sensor conditions and geolocation correction on GEDI error metrics (RMSE, MAE, and Bias) through canopy levels. GEDI data accuracy attenuates through the lower percentiles in the relative height (RH) curve. While top of canopy (RH98) measurements have relatively high accuracy (R2 = 0.76, RMSE = 5.33 m), the accuracy of data decreases lower in the canopy (RH50: R2 = 0.54, RMSE = 5.59 m). While simulated geolocation correction yielded marginal improvements, this decrease in accuracy remained constant despite all error reduction measures. Some error rates for the Amazon are double those reported in studies from other regions. These findings have broad implications for the application of GEDI data, especially in studies where forest understory measurements are particularly challenging to acquire (e.g., dense tropical forests) and where understory accuracy is highly important. Full article
Show Figures

Figure 1

19 pages, 12139 KiB  
Article
Inversion Modeling of Chlorophyll Fluorescence Parameters in Cotton Canopy via Moisture Data and Spectral Analysis
by Fuqing Li, Caiyun Yin, Zhen Li, Jiaqiang Wang, Long Jiang, Buping Hou and Jing Shi
Agronomy 2024, 14(10), 2190; https://doi.org/10.3390/agronomy14102190 - 24 Sep 2024
Abstract
The study of chlorophyll fluorescence parameters is very important for understanding plant photosynthesis. Monitoring cotton chlorophyll fluorescence parameters via spectral technology can aid in understanding the photosynthesis, growth, and stress of cotton fields in real time and provide support for cotton growth regulation [...] Read more.
The study of chlorophyll fluorescence parameters is very important for understanding plant photosynthesis. Monitoring cotton chlorophyll fluorescence parameters via spectral technology can aid in understanding the photosynthesis, growth, and stress of cotton fields in real time and provide support for cotton growth regulation and planting management. In this study, cotton plot experiments with different water treatments were set up to obtain the spectral reflectance of the cotton canopy, the maximum photochemical quantum yield (Fv/Fm), and the photochemical quenching coefficient (qP) of leaves at different growth stages. Support vector machine regression (SVR), random forest regression (RFR), and artificial neural network regression (ANNR) were used to establish a fluorescence parameter inversion model of the cotton canopy leaves. The results show that the original spectrum was transformed by multivariate scattering correction (MSC), the standard normal variable (SNV), and continuous wavelet transform (CWT), and the model constructed with Fv/Fm passed accuracy verification. The SNV-SVR model at the budding stage, the MSC-SVR model at the early flowering stage, the SNV-SVR model at the full flowering stage, the MSC-SVR model at the flowering stage, and the CWT-SVR model at the full boll stage had the highest estimation accuracy. The accuracies of the three spectral preprocessing and qP models were verified, and the MSC-SVR model at the budding stage, SNV-SVR model at the early flowering stage, MSC-SVR model at the full flowering stage, SNV-SVR model at the flowering stage, and CWT-SVR model at the full boll stage presented the highest estimation accuracies. Full article
Show Figures

Figure 1

15 pages, 2773 KiB  
Article
Monitoring Eastern White Pine Health by Using Field-Measured Foliar Traits and Hyperspectral Data
by Sudan Timalsina, Parinaz Rahimzadeh-Bajgiran, Pulakesh Das, José Eduardo Meireles and Rajeev Bhattarai
Sensors 2024, 24(18), 6129; https://doi.org/10.3390/s24186129 - 23 Sep 2024
Abstract
Canopy foliar traits serve as crucial indicators of plant health and productivity, forming a vital link between plant conditions and ecosystem dynamics. In this study, the use of hyperspectral data and foliar traits for white pine needle damage (WPND) detection was investigated for [...] Read more.
Canopy foliar traits serve as crucial indicators of plant health and productivity, forming a vital link between plant conditions and ecosystem dynamics. In this study, the use of hyperspectral data and foliar traits for white pine needle damage (WPND) detection was investigated for the first time. Eastern White Pine (Pinus strobus L., EWP), a species of ecological and economic significance in the Northeastern USA, faces a growing threat from WPND. We used field-measured leaf traits and hyperspectral remote sensing data using parametric and non-parametric methods for WPND detection in the green stage. Results indicated that the random forest (RF) model based solely on remotely sensed spectral vegetation indices (SVIs) demonstrated the highest accuracy of nearly 87% and Kappa coefficient (K) of 0.68 for disease classification into asymptomatic and symptomatic classes. The combination of field-measured traits and remote sensing data indicated an overall accuracy of 77% with a Kappa coefficient (K) of 0.46. These findings contribute valuable insights and highlight the potential of both field-derived foliar and remote sensing data for WPND detection in EWP. With an exponential rise in forest pests and pathogens in recent years, remote sensing techniques can prove beneficial for the timely and accurate detection of disease and improved forest management practices. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 8374 KiB  
Article
Response of Fuel Characteristics, Potential Fire Behavior, and Understory Vegetation Diversity to Thinning in Platycladus orientalis Forest in Beijing, China
by Min Gao, Sifan Chen, Aoli Suo, Feng Chen and Xiaodong Liu
Forests 2024, 15(9), 1667; https://doi.org/10.3390/f15091667 - 22 Sep 2024
Abstract
Objective: Active fuel management operations, such as thinning, can minimize extreme wildfire conditions while preserving ecosystem services, including maintaining understory vegetation diversity. However, the appropriate thinning intensity for balancing the above two objectives has not been sufficiently studied. Methods: This study was conducted [...] Read more.
Objective: Active fuel management operations, such as thinning, can minimize extreme wildfire conditions while preserving ecosystem services, including maintaining understory vegetation diversity. However, the appropriate thinning intensity for balancing the above two objectives has not been sufficiently studied. Methods: This study was conducted to assess the impact of various thinning intensities (light thinning, LT, 15%; moderate thinning, MT, 35%; heavy thinning, HT, 50%; and control treatment, CK) on fuel characteristics, potential fire behavior, and understory vegetation biodiversity in Platycladus orientalis forest in Beijing using a combination of field measurements and fire behavior simulations (BehavePlus 6.0.0). Results: A significant reduction in surface and canopy fuel loads with increasing thinning intensity, notably reducing CBD to below 0.1 kg/m3 under moderate thinning, effectively prevented the occurrence of active crown fires, even under extreme weather conditions. Additionally, moderate thinning enhanced understory species diversity, yielding the highest species diversity index compared to other treatments. Conclusions: These findings suggest that moderate thinning (35%) offers an optimal balance, substantially reducing the occurrence of active crown fires while promoting biodiversity. Therefore, it is recommended to carry out moderate thinning in the study area. Forest managers can leverage this information to devise technical strategies that simultaneously meet fire prevention objectives and enhance understory vegetation species diversity in areas suitable for thinning-only treatments. Full article
(This article belongs to the Special Issue Fire Ecology and Management in Forest—2nd Edition)
Show Figures

Figure 1

33 pages, 3669 KiB  
Article
Smoke Emissions and Buoyant Plumes above Prescribed Burns in the Pinelands National Reserve, New Jersey
by Kenneth L. Clark, Michael R. Gallagher, Nicholas Skowronski, Warren E. Heilman, Joseph Charney, Matthew Patterson, Jason Cole, Eric Mueller and Rory Hadden
Fire 2024, 7(9), 330; https://doi.org/10.3390/fire7090330 - 21 Sep 2024
Abstract
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns [...] Read more.
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns influences above-canopy sensible heat flux and turbulent kinetic energy (TKE) in buoyant plumes, affecting the lofting and dispersion of smoke. A more comprehensive understanding of how enhanced energy fluxes and turbulence are related during the passage of flame fronts could improve efforts to mitigate the impacts of smoke emissions. Pre- and post-fire fuel loading measurements taken during 48 operational prescribed burns were used to estimate the combustion completeness factors (CC) and emissions of fine particulates (PM2.5), carbon dioxide (CO2), and carbon monoxide (CO) in pine- and oak-dominated stands in the Pinelands National Reserve of southern New Jersey. During 11 of the prescribed burns, sensible heat flux and turbulence statistics were measured by tower networks above the forest canopy. Fire behavior when fire fronts passed the towers ranged from low-intensity backing fires to high-intensity head fires with some crown torching. Consumption of forest-floor and understory vegetation was a near-linear function of pre-burn loading, and combustion of fine litter on the forest floor was the predominant source of emissions, even during head fires with some crowning activity. Tower measurements indicated that above-canopy sensible heat flux and TKE calculated at 1 min intervals during the passage of fire fronts were strongly influenced by fire behavior. Low-intensity backing fires, regardless of forest type, had weaker enhancement of above-canopy air temperature, vertical and horizontal wind velocities, sensible heat fluxes, and TKE compared to higher-intensity head and flanking fires. Sensible heat flux and TKE in buoyant plumes were unrelated during low-intensity burns but more tightly coupled during higher-intensity burns. The weak coupling during low-intensity backing fires resulted in reduced rates of smoke transport and dispersion, and likely in more prolonged periods of elevated surface concentrations. This research facilitates more accurate estimates of PM2.5, CO, and CO2 emissions from prescribed burns in the Pinelands, and it provides a better understanding of the relationships among fire behavior, sensible heat fluxes and turbulence, and smoke dispersion in pine- and oak-dominated forests. Full article
Show Figures

Figure 1

21 pages, 9876 KiB  
Article
Estimation of Leaf Area Index across Biomes and Growth Stages Combining Multiple Vegetation Indices
by Fangyi Lv, Kaimin Sun, Wenzhuo Li, Shunxia Miao and Xiuqing Hu
Sensors 2024, 24(18), 6106; https://doi.org/10.3390/s24186106 - 21 Sep 2024
Abstract
The leaf area index (LAI) is a key indicator of vegetation canopy structure and growth status, crucial for global ecological environment research. The Moderate Resolution Spectral Imager-II (MERSI-II) aboard Fengyun-3D (FY-3D) covers the globe twice daily, providing a reliable data source for large-scale [...] Read more.
The leaf area index (LAI) is a key indicator of vegetation canopy structure and growth status, crucial for global ecological environment research. The Moderate Resolution Spectral Imager-II (MERSI-II) aboard Fengyun-3D (FY-3D) covers the globe twice daily, providing a reliable data source for large-scale and high-frequency LAI estimation. VI-based LAI estimation is effective, but species and growth status impacts on the sensitivity of the VI–LAI relationship are rarely considered, especially for MERSI-II. This study analyzed the VI–LAI relationship for eight biomes in China with contrasting leaf structures and canopy architectures. The LAI was estimated by adaptively combining multiple VIs and validated using MODIS, GLASS, and ground measurements. Results show that (1) species and growth stages significantly affect VI–LAI sensitivity. For example, the EVI is optimal for broadleaf crops in winter, while the RDVI is best for evergreen needleleaf forests in summer. (2) Combining vegetation indices can significantly optimize sensitivity. The accuracy of multi-VI-based LAI retrieval is notably higher than using a single VI for the entire year. (3) MERSI-II shows good spatial–temporal consistency with MODIS and GLASS and is more sensitive to vegetation growth fluctuation. Direct validation with ground-truth data also demonstrates that the uncertainty of retrievals is acceptable (R2 = 0.808, RMSE = 0.642). Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 8120 KiB  
Article
The Impacts of Phenological Stages within the Annual Cycle on Mapping Forest Stock Volume Using Multi-Band Dual-Polarization SAR Images in Boreal Forests
by Jiangping Long, Huanna Zheng, Zilin Ye, Tingchen Zhang and Xunwei Li
Forests 2024, 15(9), 1660; https://doi.org/10.3390/f15091660 - 20 Sep 2024
Abstract
SAR images with two polarizations show strong potential for mapping forest stock volume (FSV) combined with limited samples. However, accurately mapping FSV still presents challenges in selecting the optimal acquisition date to obtain the SAR images during specific phenological stages within the annual [...] Read more.
SAR images with two polarizations show strong potential for mapping forest stock volume (FSV) combined with limited samples. However, accurately mapping FSV still presents challenges in selecting the optimal acquisition date to obtain the SAR images during specific phenological stages within the annual forest cycle (growth and dormant stages). To clarify the impacts of phenological stages within the annual cycle on FSV mapping, SAR images with various polarization models and bands (Sentinel-1(S), GaoFen-3(GF-3 (G)) and ALOS-2(A)) were acquired within the growth and dormant stages of an annual cycle in a boreal evergreen coniferous forest (Chinese pine) and a deciduous coniferous forest (Larch). Subsequently, single-band (G, S, and A) and multi-band combined alternative variable sets (A + G, A + S, S + G, and A + S + G) were extracted within the same stage, respectively. Finally, the forward selection approach was utilized in conjunction with four different models (MLR, KNN, RF, and SVR) to obtain the most suitable variable sets and generate FSV mapping. The results demonstrated a strong correlation between the intensity of backscattering coefficients and the phenological stages of the forest. Within the dormant stage, there was a significant decrease in the gaps of backscattering coefficients obtained from the same polarization compared to those within the growth stage. Furthermore, the results also revealed that more signals from inside the canopy could be detected during the dormant stage in both evergreen coniferous forests and deciduous coniferous forests. Subsequently, the accuracy in mapping FSV obtained from single-band SAR images within the dormant stage are slightly higher than that within the growth stage, and the accuracy was still significantly affected by both overestimation and underestimation. Moreover, the combined effects of different bands significantly improve the reliability of mapped FSV. The rRMSE values in four multi-band combinations ranged from 22.37% to 29.40% for Chinese pine forests and from 21.27% to 34.38% for Larch forests, and the optimal result was observed from combinations of A + S + G acquired within the dormant stage. It is confirmed that SAR signal and their sensitivity to FSV depends on the stages of forest annual growth cycle. In comparison to the growth period, dual-polarization SAR data acquired during the dormant stage is more suitable for estimating FSV in boreal forests. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

15 pages, 6660 KiB  
Article
Forest Canopy Height Estimation Combining Dual-Polarization PolSAR and Spaceborne LiDAR Data
by Yao Tong, Zhiwei Liu, Haiqiang Fu, Jianjun Zhu, Rong Zhao, Yanzhou Xie, Huacan Hu, Nan Li and Shujuan Fu
Forests 2024, 15(9), 1654; https://doi.org/10.3390/f15091654 - 19 Sep 2024
Abstract
Forest canopy height data are fundamental parameters of forest structure and are critical for understanding terrestrial carbon stock, global carbon cycle dynamics and forest productivity. To address the limitations of retrieving forest canopy height using conventional PolInSAR-based methods, we proposed a method to [...] Read more.
Forest canopy height data are fundamental parameters of forest structure and are critical for understanding terrestrial carbon stock, global carbon cycle dynamics and forest productivity. To address the limitations of retrieving forest canopy height using conventional PolInSAR-based methods, we proposed a method to estimate forest height by combining single-temporal polarimetric synthetic aperture radar (PolSAR) images with sparse spaceborne LiDAR (forest height) measurements. The core idea of our method is that volume scattering energy variations which are linked to forest canopy height occur during radar acquisition. Specifically, our methodology begins by employing a semi-empirical inversion model directly derived from the random volume over ground (RVoG) formulation to establish the relationship between forest canopy height, volume scattering energy and wave extinction. Subsequently, PolSAR decomposition techniques are used to extract canopy volume scattering energy. Additionally, machine learning is employed to generate a spatially continuous extinction coefficient product, utilizing sparse LiDAR samples for assistance. Finally, with the derived inversion model and the resulting model parameters (i.e., volume scattering power and extinction coefficient), forest canopy height can be estimated. The performance of the proposed forest height inversion method is illustrated with L-band NASA/JPL UAVSAR from AfriSAR data conducted over the Gabon Lope National Park and airborne LiDAR data. Compared to high-accuracy airborne LiDAR data, the obtained forest canopy height from the proposed approach exhibited higher accuracy (R2 = 0.92, RMSE = 6.09 m). The results demonstrate the potential and merit of the synergistic combination of PolSAR (volume scattering power) and sparse LiDAR (forest height) measurements for forest height estimation. Additionally, our approach achieves good performance in forest height estimation, with accuracy comparable to that of the multi-baseline PolInSAR-based inversion method (RMSE = 5.80 m), surpassing traditional PolSAR-based methods with an accuracy of 10.86 m. Given the simplicity and efficiency of the proposed method, it has the potential for large-scale forest height estimation applications when only single-temporal dual-polarization acquisitions are available. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

23 pages, 21594 KiB  
Article
Remote Sensing Detection of Growing Season Freeze-Induced Defoliation of Montane Quaking Aspen (Populus tremuloides) in Southern Utah, USA
by Timothy E. Wright, Yoshimitsu Chikamoto, Joseph D. Birch and James A. Lutz
Remote Sens. 2024, 16(18), 3477; https://doi.org/10.3390/rs16183477 - 19 Sep 2024
Abstract
Growing season freeze events pose a threat to quaking aspen (Populus tremuloides Michx.), leading to canopy defoliation, reduced vigor, and increased mortality, especially for declining montane populations western North America. Detecting the spatial distribution and progression of this damage is challenging due [...] Read more.
Growing season freeze events pose a threat to quaking aspen (Populus tremuloides Michx.), leading to canopy defoliation, reduced vigor, and increased mortality, especially for declining montane populations western North America. Detecting the spatial distribution and progression of this damage is challenging due to limited in situ observations in this region. This study represents the first attempt to comprehensively resolve the spatial extent of freeze-induced aspen canopy damage in southern Utah using multispectral remote sensing data. We developed an approach to detect the spatial and temporal dynamics of freeze-damaged aspen stands, focusing on a freeze event from 8–9 June 2020 in southern Utah. By integrating medium- (~250 to 500 m) and high-resolution (~10 m) satellite data, we employed the Normalized Difference Vegetation Index (NDVI) to compare post-freeze conditions with historical norms and pre-freeze conditions. Our analysis revealed NDVI reductions of 0.10 to 0.40 from pre-freeze values and a second flush recovery. We introduced a pixel-based method to evaluate freeze vulnerability, establishing a strong correlation (R values 0.78 to 0.82) between the onset of the first flush (NDVI > 0.50) and the accumulation of 100 growing degree days (GDD). These methods support the potential for retrospective assessments, proactive forest monitoring, and forecasting future risks. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

27 pages, 15562 KiB  
Article
The Combined Effects of the Thermal Environment and Air Quality at Recreation Places on the Physiology and Psychology of People in Urban Parks
by Yuxiang Lan, Jingjing Wang, Yaling Huang, Yuanyang Tang, Zhanhua Liu, Jiahui Zheng, Xiong Yao, Zhipeng Zhu, Jianwen Dong and Ye Chen
Forests 2024, 15(9), 1640; https://doi.org/10.3390/f15091640 - 17 Sep 2024
Abstract
Urban forests, crucial to urban ecosystems, are increasingly threatened by the challenges of urbanization, such as deteriorating thermal environments and declining air quality. Despite their recognized benefits to city dwellers’ quality of life, a systematic understanding of the impact of these environmental factors [...] Read more.
Urban forests, crucial to urban ecosystems, are increasingly threatened by the challenges of urbanization, such as deteriorating thermal environments and declining air quality. Despite their recognized benefits to city dwellers’ quality of life, a systematic understanding of the impact of these environmental factors on public psychophysiological well-being in recreational sites is a notable gap in the literature. The objective of this research was to bridge this gap by examining the effects of the thermal environment and air quality in urban forests on the public’s perception, offering scientific evidence to inform environmental optimization and health management strategies for urban parks, essential for sustainable urban development and public health. Three urban parks in Fuzhou, Fujian Province, namely Fuzhou National Forest Park, Xihu Park, and Jinniushan Sports Park, were selected as research sites. Environmental monitoring and questionnaire surveys were conducted at 24 recreation places from October to December 2020, collecting temperature, humidity, and wind speed; the atmospheric composition includes PM2.5, PM10, negative oxygen ion, and psychophysiological data from the public. Multivariate statistical methods were employed to assess the environmental characteristics of different recreation places types and their impact on public health. The findings reveal that environmental factors explained 1.9% to 11.8% of the variation in physiological and psychological responses, mainly influenced by temperature, wind speed, and negative oxygen ions. Forests and waterfront recreation places significantly outperform canopy and open recreation places in promoting mental invigoration, stress relief, emotional tranquility, and attention restoration. Environmental monitoring results indicate that favorable meteorological conditions and good air quality are crucial for enhancing the service functions of recreation places. Notably, the positive correlation between a negative air ion concentration and psychological well-being provides a novel perspective on understanding the health benefits of urban forests. The thermal environment and air quality of urban recreation places exert a significant influence on the psychophysiological status of the public. Increasing green coverage, improving water body environments, and rationally planning recreation places layout are of great theoretical and practical significance for enhancing the environmental quality and service functions of urban forests. Full article
Show Figures

Figure 1

Back to TopTop