Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (135)

Search Parameters:
Keywords = gasotransmitters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2416 KiB  
Review
Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction
by Fergus M. Payne, Alisha R. Dabb, Joanne C. Harrison and Ivan A. Sammut
Int. J. Mol. Sci. 2024, 25(17), 9247; https://doi.org/10.3390/ijms25179247 - 26 Aug 2024
Viewed by 301
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial “stunning”, arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a [...] Read more.
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial “stunning”, arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 1882 KiB  
Review
The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow
by Giorgia Scarpellino, Valentina Brunetti, Roberto Berra-Romani, Giovambattista De Sarro, Germano Guerra, Teresa Soda and Francesco Moccia
Int. J. Mol. Sci. 2024, 25(16), 9071; https://doi.org/10.3390/ijms25169071 - 21 Aug 2024
Viewed by 428
Abstract
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is [...] Read more.
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons. Full article
(This article belongs to the Special Issue The 25th Anniversary of NO)
Show Figures

Figure 1

20 pages, 3986 KiB  
Review
An Examination of Chemical Tools for Hydrogen Selenide Donation and Detection
by Rynne A. Hankins and John C. Lukesh
Molecules 2024, 29(16), 3863; https://doi.org/10.3390/molecules29163863 - 15 Aug 2024
Viewed by 544
Abstract
Hydrogen selenide (H2Se) is an emerging biomolecule of interest with similar properties to that of other gaseous signaling molecules (i.e., gasotransmitters that include nitric oxide, carbon monoxide, and hydrogen sulfide). H2Se is enzymatically generated in humans where it serves [...] Read more.
Hydrogen selenide (H2Se) is an emerging biomolecule of interest with similar properties to that of other gaseous signaling molecules (i.e., gasotransmitters that include nitric oxide, carbon monoxide, and hydrogen sulfide). H2Se is enzymatically generated in humans where it serves as a key metabolic intermediate in the production of selenoproteins and other selenium-containing biomolecules. However, beyond its participation in biosynthetic pathways, its involvement in cellular signaling or other biological mechanisms remains unclear. To uncover its true biological significance, H2Se-specific chemical tools capable of functioning under physiological conditions are required but lacking in comparison to those that exist for other gasotransmitters. Recently, researchers have begun to fill this unmet need by developing new H2Se-releasing compounds, along with pioneering methods for selenide detection and quantification. In combination, the chemical tools highlighted in this review have the potential to spark groundbreaking explorations into the chemical biology of H2Se, which may lead to its branding as the fourth official gasotransmitter. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry)
Show Figures

Graphical abstract

16 pages, 2511 KiB  
Article
Metabolic and Functional Interactions of H2S and Sucrose in Maize Thermotolerance through Redox Homeodynamics
by Xiao-Er Li, Hong-Dan Zhou and Zhong-Guang Li
Int. J. Mol. Sci. 2024, 25(12), 6598; https://doi.org/10.3390/ijms25126598 - 15 Jun 2024
Cited by 1 | Viewed by 667
Abstract
Hydrogen sulfide (H2S) is a novel gasotransmitter. Sucrose (SUC) is a source of cellular energy and a signaling molecule. Maize is the third most common food crop worldwide. However, the interaction of H2S and SUC in maize thermotolerance is [...] Read more.
Hydrogen sulfide (H2S) is a novel gasotransmitter. Sucrose (SUC) is a source of cellular energy and a signaling molecule. Maize is the third most common food crop worldwide. However, the interaction of H2S and SUC in maize thermotolerance is not widely known. In this study, using maize seedlings as materials, the metabolic and functional interactions of H2S and SUC in maize thermotolerance were investigated. The data show that under heat stress, the survival rate and tissue viability were increased by exogenous SUC, while the malondialdehyde content and electrolyte leakage were reduced by SUC, indicating SUC could increase maize thermotolerance. Also, SUC-promoted thermotolerance was enhanced by H2S, while separately weakened by an inhibitor (propargylglycine) and a scavenger (hypotaurine) of H2S and a SUC-transport inhibitor (N-ethylmaleimide), suggesting the interaction of H2S and SUC in the development of maize thermotolerance. To establish the underlying mechanism of H2S–SUC interaction-promoted thermotolerance, redox parameters in mesocotyls of maize seedlings were measured before and after heat stress. The data indicate that the activity and gene expression of H2S-metabolizing enzymes were up-regulated by SUC, whereas H2S had no significant effect on the activity and gene expression of SUC-metabolizing enzymes. In addition, the activity and gene expression of catalase, glutathione reductase, ascorbate peroxidase, peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and superoxide dismutase were reinforced by H2S, SUC, and their combination under non-heat and heat conditions to varying degrees. Similarly, the content of ascorbic acid, flavone, carotenoid, and polyphenol was increased by H2S, SUC, and their combination, whereas the production of superoxide radicals and the hydrogen peroxide level were impaired by these treatments to different extents. These results imply that the metabolic and functional interactions of H2S and sucrose signaling exist in the formation of maize thermotolerance through redox homeodynamics. This finding lays the theoretical basis for developing climate-resistant maize crops and improving food security. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

24 pages, 1073 KiB  
Review
Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health
by Lorenzo Flori, Giada Benedetti, Vincenzo Calderone and Lara Testai
Antioxidants 2024, 13(5), 543; https://doi.org/10.3390/antiox13050543 - 28 Apr 2024
Cited by 1 | Viewed by 1385
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, [...] Read more.
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia–reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

30 pages, 2818 KiB  
Review
Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis
by Aohan Li, Siyuan Wu, Qian Li, Qianqian Wang and Yingqing Chen
Antioxidants 2024, 13(5), 515; https://doi.org/10.3390/antiox13050515 - 25 Apr 2024
Viewed by 921
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into [...] Read more.
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis. Full article
Show Figures

Figure 1

150 KiB  
Abstract
Endogenous–Exogenous Chemicals with Neurotoxic Potential
by Peter S. Spencer
Proceedings 2024, 102(1), 22; https://doi.org/10.3390/proceedings2024102022 - 3 Apr 2024
Viewed by 232
Abstract
Introduction: While certain highly reactive chemicals are neurotoxic at high environmental concentrations, low endogenous concentrations of the same substances are required for normal neurophysiological function [...] Full article
133 KiB  
Abstract
PM2.5-Induced Declined Cardiac Tolerance to Ischemia-Reperfusion Injury Can Be Ameliorated by Hydrogen Sulfide
by Bhavana Sivakumar and Gino Kurian
Proceedings 2024, 102(1), 17; https://doi.org/10.3390/proceedings2024102017 - 3 Apr 2024
Viewed by 304
Abstract
Early studies have documented that PM2.5 can not only induce cardiac tissue toxicity, but can adversely affect the performance of the myocardium and deteriorate its tolerance to withstand ischemia-reperfusion (IR) injury. The primary factor that contributes to the adverse impacts of PM2.5 exposure [...] Read more.
Early studies have documented that PM2.5 can not only induce cardiac tissue toxicity, but can adversely affect the performance of the myocardium and deteriorate its tolerance to withstand ischemia-reperfusion (IR) injury. The primary factor that contributes to the adverse impacts of PM2.5 exposure on the heart is subcellular changes, with particular emphasis on mitochondrial dysfunction, inflammation, oxidative stress, and deterioration of pro-survival signaling pathways. Despite the ongoing efforts to uncover the mechanistic changes induced in the heart by PM2.5 exposure, no studies have presented strategies for mitigating PM2.5-induced cardiotoxicity or enhancing the tolerance of the myocardium to withstand IR injury. Considering the potential of hydrogen sulfide, a gasotransmitter known to protect the heart from pathologies linked to oxidative stress and mitochondrial dysfunction, we explored the efficacy of H2S in attenuating PM2.5-associated increased IR injury. Female Wistar rats were exposed to 250 μg/m3 of PM2.5 for 3 h daily for 21 days, after which the hearts were isolated and mounted on an isolated rat heart apparatus. H2S was administered directly to the PM2.5-exposed hearts, after which the hearts were subjected to 30 min of ischemia and 60 min of reperfusion to induce IR injury. Our results revealed that the ability of the PM2.5-exposed myocardium to withstand IR injury had considerably improved. The pivotal mechanism driving these beneficial changes was the preservation of mitochondrial function (improved bioenergetics, respiration) along with quality control mechanisms. The improvement in mitochondrial function was also reflected in terms of reduced oxidative stress and activation of pro-survival signaling pathways. Based on these findings, we concluded that hydrogen sulfide holds promise as a potential therapeutic agent for enhancing the myocardium’s resilience to additional stressors in the form of IR injury. Full article
41 pages, 2014 KiB  
Review
The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity
by Predrag Sikiric, Alenka Boban Blagaic, Sanja Strbe, Lidija Beketic Oreskovic, Ivana Oreskovic, Suncana Sikiric, Mario Staresinic, Marko Sever, Antonio Kokot, Ivana Jurjevic, Danijel Matek, Luka Coric, Ivan Krezic, Ante Tvrdeic, Kresimir Luetic, Lovorka Batelja Vuletic, Predrag Pavic, Tomislav Mestrovic, Ivica Sjekavica, Anita Skrtic and Sven Seiwerthadd Show full author list remove Hide full author list
Pharmaceuticals 2024, 17(4), 461; https://doi.org/10.3390/ph17040461 - 3 Apr 2024
Cited by 2 | Viewed by 4568
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as [...] Read more.
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

15 pages, 1973 KiB  
Review
NO and H2S Contribute to Crop Resilience against Atmospheric Stressors
by Francisco J. Corpas
Int. J. Mol. Sci. 2024, 25(6), 3509; https://doi.org/10.3390/ijms25063509 - 20 Mar 2024
Viewed by 884
Abstract
Atmospheric stressors include a variety of pollutant gases such as CO2, nitrous oxide (NOx), and sulfurous compounds which could have a natural origin or be generated by uncontrolled human activity. Nevertheless, other atmospheric elements including high and low temperatures, ozone (O [...] Read more.
Atmospheric stressors include a variety of pollutant gases such as CO2, nitrous oxide (NOx), and sulfurous compounds which could have a natural origin or be generated by uncontrolled human activity. Nevertheless, other atmospheric elements including high and low temperatures, ozone (O3), UV-B radiation, or acid rain among others can affect, at different levels, a large number of plant species, particularly those of agronomic interest. Paradoxically, both nitric oxide (NO) and hydrogen sulfide (H2S), until recently were considered toxic since they are part of the polluting gases; however, at present, these molecules are part of the mechanism of response to multiple stresses since they exert signaling functions which usually have an associated stimulation of the enzymatic and non-enzymatic antioxidant systems. At present, these gasotransmitters are considered essential components of the defense against a wide range of environmental stresses including atmospheric ones. This review aims to provide an updated vision of the endogenous metabolism of NO and H2S in plant cells and to deepen how the exogenous application of these compounds can contribute to crop resilience, particularly, against atmospheric stressors stimulating antioxidant systems. Full article
Show Figures

Figure 1

16 pages, 8212 KiB  
Article
H2S Protects from Rotenone-Induced Ferroptosis by Stabilizing Fe-S Clusters in Rat Cardiac Cells
by Sara Linjacki, Yuehong Wang, Navjeet Baath, Devin Mantle and Guangdong Yang
Cells 2024, 13(5), 371; https://doi.org/10.3390/cells13050371 - 21 Feb 2024
Viewed by 1254
Abstract
Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac [...] Read more.
Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac cells. Rotenone, a mitochondrial complex I inhibitor, was used for establishing an in vitro model of ischemic cell damage. It was first found that rotenone induced oxidative stress and lipid peroxidation and decreased mitochondrial membrane potential and ATP generation, eventually causing cell death. The supplement of H2S at a physiologically relevant concentration protected from rotenone-induced ferroptotic cell death by reducing oxidative stress and mitochondrial damage, maintaining GPx4 expression and intracellular iron level. Deferiprone, an iron chelator, would also protect from rotenone-induced ferroptosis. Further studies demonstrated that H2S inhibited ABCB8-mediated iron efflux from mitochondria to cytosol and promoted NFS1-mediated Fe-S cluster biogenesis. It is also found that rotenone stimulated iron-dependent H2S generation. These results indicate that H2S would protect cardiac cells from ischemic damage through preserving mitochondrial functions and intracellular Fe-S cluster homeostasis. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

14 pages, 1654 KiB  
Article
Fructose Consumption Affects Placental Production of H2S: Impact on Preeclampsia-Related Parameters
by Madelín Pérez-Armas, Elena Fauste, Cristina Donis, Silvia Rodrigo, Lourdes Rodríguez, Juan J. Álvarez-Millán, María I. Panadero, Paola Otero and Carlos Bocos
Nutrients 2024, 16(2), 309; https://doi.org/10.3390/nu16020309 - 20 Jan 2024
Viewed by 1636
Abstract
H2S, a gasotransmitter that can be produced both via the transsulfuration pathway and non-enzymatically, plays a key role in vasodilation and angiogenesis during pregnancy. In fact, the involvement of H2S production on plasma levels of sFLT1, PGF, and other [...] Read more.
H2S, a gasotransmitter that can be produced both via the transsulfuration pathway and non-enzymatically, plays a key role in vasodilation and angiogenesis during pregnancy. In fact, the involvement of H2S production on plasma levels of sFLT1, PGF, and other molecules related to preeclampsia has been demonstrated. Interestingly, we have found that maternal fructose intake (a common component of the Western diet) affects tissular H2S production. However, its consumption is allowed during pregnancy. Thus, (1) to study whether maternal fructose intake affects placental production of H2S in the offspring, when pregnant; and (2) to study if fructose consumption during pregnancy can increase the risk of preeclampsia, pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). Placental gene expression, H2S production, plasma sFLT1, and PGF were determined. Descendants of fructose-fed mothers (FC) presented an increase in H2S production. However, if they consumed fructose during their own gestation (FF), this effect was reversed so that the increase disappeared. Curiously, placental synthesis of H2S was mainly non-enzymatic. Related to this, placental expression of Cys dioxygenase, an enzyme involved in Cys catabolism (a molecule required for non-enzymatic H2S synthesis), was significantly decreased in FC rats. Related to preeclampsia, gene expression of sFLT1 (a molecule with antiangiogenic properties) was augmented in both FF and FC dams, although these differences were not reflected in their plasma levels. Furthermore, placental expression of PGF (a molecule with angiogenic properties) was decreased in both FC and FF dams, becoming significantly diminished in plasma of FC versus control dams. Both fructose consumption and maternal fructose intake induce changes in molecules that contribute to increasing the risk of preeclampsia, and these effects are not always mediated by changes in H2S production. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

28 pages, 2722 KiB  
Review
Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review
by Rana A. Youness, Danira Ashraf Habashy, Nour Khater, Kareem Elsayed, Alyaa Dawoud, Sousanna Hakim, Heba Nafea, Carole Bourquin, Reham M. Abdel-Kader and Mohamed Z. Gad
Non-Coding RNA 2024, 10(1), 7; https://doi.org/10.3390/ncrna10010007 - 18 Jan 2024
Cited by 5 | Viewed by 2358
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a “Maestro” role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted [...] Read more.
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a “Maestro” role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders. Full article
Show Figures

Figure 1

31 pages, 2942 KiB  
Review
Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy
by Agnieszka Łoboda and Józef Dulak
Cells 2024, 13(2), 158; https://doi.org/10.3390/cells13020158 - 15 Jan 2024
Cited by 2 | Viewed by 2485
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a [...] Read more.
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy. Full article
Show Figures

Graphical abstract

14 pages, 6122 KiB  
Article
The Antioxidant Properties of Glucosinolates in Cardiac Cells Are Independent of H2S Signaling
by Félix Harvey, Boluwaji Aromokunola, Sabine Montaut and Guangdong Yang
Int. J. Mol. Sci. 2024, 25(2), 696; https://doi.org/10.3390/ijms25020696 - 5 Jan 2024
Cited by 1 | Viewed by 1592
Abstract
The organic sulfur-containing compounds glucosinolates (GSLs) and the novel gasotransmitter H2S are known to have cardioprotective effects. This study investigated the antioxidant effects and H2S-releasing potential of three GSLs ((3E)-4-(methylsulfanyl)but-3-enyl GSL or glucoraphasatin, 4-hydroxybenzyl GSL or glucosinalbin, [...] Read more.
The organic sulfur-containing compounds glucosinolates (GSLs) and the novel gasotransmitter H2S are known to have cardioprotective effects. This study investigated the antioxidant effects and H2S-releasing potential of three GSLs ((3E)-4-(methylsulfanyl)but-3-enyl GSL or glucoraphasatin, 4-hydroxybenzyl GSL or glucosinalbin, and (RS)-6-(methylsulfinyl)hexyl GSL or glucohesperin) in rat cardiac cells. It was found that all three GSLs had no effect on cardiac cell viability but were able to protect against H2O2-induced oxidative stress and cell death. NaHS, a H2S donor, also protected the cells from H2O2-stimulated oxidative stress and cell death. The GSLs alone or mixed with cysteine, N-acetylcysteine, glutathione, H2O2, iron and pyridoxal-5′-phosphate, or mouse liver lysates did not induce H2S release. The addition of GSLs also did not alter endogenous H2S levels in cardiac cells. H2O2 significantly induced cysteine oxidation in the cystathionine gamma-lyase (CSE) protein and inhibited the H2S production rate. In conclusion, this study found that the three tested GSLs protect cardiomyocytes from oxidative stress and cell death but independently of H2S signaling. Full article
(This article belongs to the Special Issue Advances in Bioactive Glucosinolates and Derivatives)
Show Figures

Figure 1

Back to TopTop