Sign in to use this feature.

Years

Between: -

Search Results (171)

Search Parameters:
Keywords = genipin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4142 KiB  
Review
Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review
by Sylwia Grabska-Zielińska
Polymers 2024, 16(18), 2679; https://doi.org/10.3390/polym16182679 - 23 Sep 2024
Viewed by 452
Abstract
In biomaterials research, using one or two components to prepare materials is common. However, there is a growing interest in developing materials composed of three components, as these can offer enhanced physicochemical properties compared to those consisting of one or two components. The [...] Read more.
In biomaterials research, using one or two components to prepare materials is common. However, there is a growing interest in developing materials composed of three components, as these can offer enhanced physicochemical properties compared to those consisting of one or two components. The introduction of a third component can significantly improve the mechanical strength, biocompatibility, and functionality of the resulting materials. Cross-linking is often employed to further enhance these properties, with chemical cross-linking agents being the most widely used method. This article provides an overview of the chemical agents utilized in the cross-linking of three-component biomaterials. The literature review focused on cases where the material was composed of three components and a chemical substance was employed as the cross-linking agent. The most commonly used cross-linking agents identified in the literature include glyoxal, glutaraldehyde, dialdehyde starch, dialdehyde chitosan, and the EDC/NHS mixture. Additionally, the review briefly discusses materials cross-linked with the MES/EDC mixture, caffeic acid, tannic acid, and genipin. Through a critical analysis of current research, this work aims to guide the development of more effective and safer biopolymeric materials tailored for biomedical applications, highlighting potential areas for further investigation and optimization. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites IV)
Show Figures

Figure 1

17 pages, 3885 KiB  
Article
Rheological Characterization of Genipin-Based Crosslinking Pigment and O-Carboxymethyl Chitosan–Oxidized Hyaluronic Acid In Situ Formulable Hydrogels
by Ivo Marquis Beserra Junior, Débora de Sousa Lopes, Milena Costa da Silva Barbosa, João Emídio da Silva Neto, Henrique Nunes da Silva, Marcus Vinícius Lia Fook, Rômulo Feitosa Navarro and Suédina Maria de Lima Silva
Polymers 2024, 16(18), 2615; https://doi.org/10.3390/polym16182615 - 15 Sep 2024
Viewed by 545
Abstract
The aim of this study was to develop a material capable of rapidly absorbing bodily fluids and forming a resilient, adhesive, viscoelastic hydrogel in situ to prevent post-surgical adhesions. This material was formulated using O-carboxymethyl chitosan (O-CMCS), oxidized hyaluronic acid (OHA), and a [...] Read more.
The aim of this study was to develop a material capable of rapidly absorbing bodily fluids and forming a resilient, adhesive, viscoelastic hydrogel in situ to prevent post-surgical adhesions. This material was formulated using O-carboxymethyl chitosan (O-CMCS), oxidized hyaluronic acid (OHA), and a crosslinking pigment derived from genipin and glutamic acid (G/GluP). Both crosslinked (O-CMCS/OHA-G/GluP) and non-crosslinked hydrogels (O-CMCS/OHA) were evaluated using a HAAKE™ MARS™ rheometer for their potential as post-surgical barriers. A rheological analysis, including dynamic oscillatory measurements, revealed that the crosslinked hydrogels exhibited significantly higher elastic moduli (G′), indicating superior gel formation and mechanical stability compared to non-crosslinked hydrogels. The G/GluP crosslinker enhanced gel stability by increasing the separation between G′ and G″ and achieving a lower loss tangent (tan δ < 1.0), indicating robustness under dynamic physiological conditions. The rapid hydration and gelation properties of the hydrogels underscore their effectiveness as physical barriers. Furthermore, the O-CMCS/OHA-G/GluP hydrogel demonstrated rapid self-healing and efficient application via spraying or spreading, with tissue adherence and viscoelasticity to facilitate movement between tissues and organs, effectively preventing adhesions. Additionally, the hydrogel proved to be both cost effective and scalable, highlighting its potential for clinical applications aimed at preventing post-surgical adhesions. Full article
(This article belongs to the Special Issue Study in Chitosan and Crosslinked Chitosan Nanoparticles)
Show Figures

Figure 1

27 pages, 5757 KiB  
Article
Functionalised Sodium–Carboxymethylcellulose–Collagen Bioactive Bilayer as an Acellular Skin Substitute for Future Use in Diabetic Wound Management: The Evaluation of Physicochemical, Cell Viability, and Antibacterial Effects
by Maheswary Thambirajoo, Nur Izzah Md Fadilah, Manira Maarof, Yogeswaran Lokanathan, Mohd Ambri Mohamed, Sarani Zakaria, Ruszymah Bt Hj Idrus and Mh Busra Fauzi
Polymers 2024, 16(16), 2252; https://doi.org/10.3390/polym16162252 - 8 Aug 2024
Viewed by 774
Abstract
The wound healing mechanism is dynamic and well-orchestrated; yet, it is a complicated process. The hallmark of wound healing is to promote wound regeneration in less time without invading skin pathogens at the injury site. This study developed a sodium–carboxymethylcellulose (Na-CMC) bilayer scaffold [...] Read more.
The wound healing mechanism is dynamic and well-orchestrated; yet, it is a complicated process. The hallmark of wound healing is to promote wound regeneration in less time without invading skin pathogens at the injury site. This study developed a sodium–carboxymethylcellulose (Na-CMC) bilayer scaffold that was later integrated with silver nanoparticles/graphene quantum dot nanoparticles (AgNPs/GQDs) as an acellular skin substitute for future use in diabetic wounds. The bilayer scaffold was prepared by layering the Na-CMC gauze onto the ovine tendon collagen type 1 (OTC-1). The bilayer scaffold was post-crosslinked with 0.1% (w/v) genipin (GNP) as a natural crosslinking agent. The physical and chemical characteristics of the bilayer scaffold were evaluated. The results demonstrate that crosslinked (CL) groups exhibited a high-water absorption capacity (>1000%) and an ideal water vapour evaporation rate (2000 g/m2 h) with a lower biodegradation rate and good hydrophilicity, compression, resilience, and porosity than the non-crosslinked (NC) groups. The minimum inhibitory concentration (MIC) of AgNPs/GQDs presented some bactericidal effects against Gram-positive and Gram-negative bacteria. The cytotoxicity tests on bilayer scaffolds demonstrated good cell viability for human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Therefore, the Na-CMC bilayer scaffold could be a potential candidate for future diabetic wound care. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering II)
Show Figures

Figure 1

14 pages, 2770 KiB  
Article
Computational and Experimental Characterization of Aligned Collagen across Varied Crosslinking Degrees
by Shengmao Lin, Nashaita Y. Patrawalla, Yingnan Zhai, Pengfei Dong, Vipuil Kishore and Linxia Gu
Micromachines 2024, 15(7), 851; https://doi.org/10.3390/mi15070851 - 29 Jun 2024
Viewed by 3757
Abstract
Collagen-based scaffolds have been widely used in tissue engineering. The alignment of collagen fibers and the degree of crosslinking in engineering tissue scaffolds significantly affect cell activity and scaffold stability. Changes in microarchitecture and crosslinking degree also impact the mechanical properties of collagen [...] Read more.
Collagen-based scaffolds have been widely used in tissue engineering. The alignment of collagen fibers and the degree of crosslinking in engineering tissue scaffolds significantly affect cell activity and scaffold stability. Changes in microarchitecture and crosslinking degree also impact the mechanical properties of collagen scaffolds. A clear understanding of the effects of collagen alignment and crosslinking degrees can help properly control these critical parameters for fabricating collagen scaffolds with desired mechanical properties. In this study, combined uniaxial mechanical testing and finite element method (FEM) were used to quantify the effects of fiber alignment and crosslinking degree on the mechanical properties of collagen threads. We have fabricated electrochemically aligned collagen (ELAC) and compared it with randomly distributed collagen at varying crosslinking degrees, which depend on genipin concentrations of 0.1% or 2% for crosslinking durations of 1, 4, and 24 h. Our results indicate that aligned collagen fibers and higher crosslinking degree contribute to a larger Young’s modulus. Specifically, aligned fiber structure, compared to random collagen, significantly increases Young’s modulus by 112.7% at a 25% crosslinking degree (0.1% (4 h), i.e., 0.1% genipin concentration with a crosslinking duration of 4 h). Moreover, the ELAC Young’s modulus increased by 90.3% as the crosslinking degree doubled by changing the genipin concentration from 0.1% to 2% with the same 4 h crosslinking duration. Furthermore, verified computational models can predict mechanical properties based on specific crosslinking degrees and fiber alignments, which facilitate the controlled fabrication of collagen threads. This combined experimental and computational approach provides a systematic understanding of the interplay among fiber alignment, crosslinking parameters, and mechanical performance of collagen scaffolds. This work will enable the precise fabrication of collagen threads for desired tissue engineering performance, potentially advancing tissue engineering applications. Full article
(This article belongs to the Topic Advances in Filament Engineering for Biomaterials)
Show Figures

Figure 1

16 pages, 4341 KiB  
Article
Effect of Crosslinking Agents on Chitosan Hydrogel Carriers for Drug Loading and Release for Targeted Drug Delivery
by Md Salah Uddin, Suyash Khand and Chao Dong
Gels 2024, 10(7), 421; https://doi.org/10.3390/gels10070421 - 26 Jun 2024
Viewed by 1488
Abstract
Numerous studies report on chitosan hydrogels in different forms, such as films, porous structures, nanoparticles, and microspheres, for biomedical applications; however, this study concentrates on their modifications with different crosslinking agents and observes their effects on drug loading and releasing capacities. Linear chitosan, [...] Read more.
Numerous studies report on chitosan hydrogels in different forms, such as films, porous structures, nanoparticles, and microspheres, for biomedical applications; however, this study concentrates on their modifications with different crosslinking agents and observes their effects on drug loading and releasing capacities. Linear chitosan, along with chitosans crosslinked with two major crosslinkers, i.e., genipin and disulfide, are used to formulate three different hydrogel systems. The crosslinking process is heavily impacted by temperature and pH conditions. Three different drugs, i.e., thymoquinone, gefitinib, and erlotinib, are loaded to the hydrogels in de-ionized water solutions and released in phosphate-buffered solutions; thus, a total of nine combinations are studied and analyzed for their drug loading and releasing capabilities with ultraviolet–visible (UV–Vis) spectroscopy. This study finds that thymoquinone shows the lowest loading efficacy compared to the two other drugs in all three systems. Gefitinib shows stable loading and releasing regardless of crosslinking system, and the genipin-crosslinked system shows stable loading and releasing with all three drug molecules. These experimental results agree well with the findings of our previously published results conducted with molecular dynamics simulations. Full article
Show Figures

Figure 1

14 pages, 2443 KiB  
Article
New Findings Regarding the Effects of Selected Blue Food Colorants (Genipin, Patent Blue V, and Brilliant Blue FCF) on the Hemostatic Properties of Blood Components In Vitro
by Beata Olas, Bogdan Kontek, Natalia Sławińska and Jacek Białecki
Nutrients 2024, 16(13), 1985; https://doi.org/10.3390/nu16131985 - 21 Jun 2024
Viewed by 699
Abstract
Natural and synthetic colorants present in food can modulate hemostasis, which includes the coagulation process and blood platelet activation. Some colorants have cardioprotective activity as well. However, the effect of genipin (a natural blue colorant) and synthetic blue colorants (including patent blue V [...] Read more.
Natural and synthetic colorants present in food can modulate hemostasis, which includes the coagulation process and blood platelet activation. Some colorants have cardioprotective activity as well. However, the effect of genipin (a natural blue colorant) and synthetic blue colorants (including patent blue V and brilliant blue FCF) on hemostasis is not clear. In this study, we aimed to investigate the effects of three blue colorants—genipin, patent blue V, and brilliant blue FCF—on selected parameters of hemostasis in vitro. The anti- or pro-coagulant potential was assessed in human plasma by measuring the following coagulation times: thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (APTT). Moreover, we used the Total Thrombus formation Analysis System (T-TAS, PL-chip) to evaluate the anti-platelet potential of the colorants in whole blood. We also measured their effect on the adhesion of washed blood platelets to fibrinogen and collagen. Lastly, the cytotoxicity of the colorants against blood platelets was assessed based on the activity of extracellular lactate dehydrogenase (LDH). We observed that genipin (at all concentrations (1–200 µM)) did not have a significant effect on the coagulation times (PT, APTT, and TT). However, genipin at the highest concentration (200 µM) and patent blue V at the concentrations of 1 and 10 µM significantly prolonged the time of occlusion measured using the T-TAS, which demonstrated their anti-platelet activity. We also observed that genipin decreased the adhesion of platelets to fibrinogen and collagen. Only patent blue V and brilliant blue FCF significantly shortened the APTT (at the concentration of 10 µM) and TT (at concentrations of 1 and 10 µM), demonstrating pro-coagulant activity. These synthetic blue colorants also modulated the process of human blood platelet adhesion, stimulating the adhesion to fibrinogen and inhibiting the adhesion to collagen. The results demonstrate that genipin is not toxic. In addition, because of its ability to reduce blood platelet activation, genipin holds promise as a novel and valuable agent that improves the health of the cardiovascular system and reduces the risk of cardiovascular diseases. However, the mechanism of its anti-platelet activity remains unclear and requires further studies. Its in vivo activity and interaction with various anti-coagulant and anti-thrombotic drugs, including aspirin and its derivatives, should be examined as well. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

16 pages, 2636 KiB  
Article
Characterization of a Delivery System Based on a Hyaluronic Acid 3D Scaffold and Gelatin Microparticles
by Cristina Martínez-Ramos, Alejandro Rodríguez Ruiz, Manuel Monleón Pradas and Fernando Gisbert Roca
Polymers 2024, 16(12), 1748; https://doi.org/10.3390/polym16121748 - 20 Jun 2024
Viewed by 3597
Abstract
The objective of this study was to develop and characterize a novel hyaluronic acid (HA) 3D scaffold integrated with gelatin microparticles for sustained-delivery applications. To achieve this goal, the delivery microparticles were synthesized and thoroughly characterized, focusing on their crosslinking mechanisms (vanillin and [...] Read more.
The objective of this study was to develop and characterize a novel hyaluronic acid (HA) 3D scaffold integrated with gelatin microparticles for sustained-delivery applications. To achieve this goal, the delivery microparticles were synthesized and thoroughly characterized, focusing on their crosslinking mechanisms (vanillin and genipin), degradation profiles, and release kinetics. Additionally, the cytotoxicity of the system was assessed, and its impact on the cell adhesion and distribution using mouse fibroblasts was examined. The combination of both biomaterials offers a novel platform for the gradual release of various factors encapsulated within the microparticles while simultaneously providing cell protection, support, and controlled factor dispersion due to the HA 3D scaffold matrix. Hence, this system offers a platform for addressing injure repair by continuously releasing specific encapsulated factors for optimal tissue regeneration. Additionally, by leveraging the properties of HA conjugates with small drug molecules, we can enhance the solubility, targeting capabilities, and cellular absorption, as well as prolong the system stability and half-life. As a result, this integrated approach presents a versatile strategy for therapeutic interventions aimed at promoting tissue repair and regeneration. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 4788 KiB  
Review
A Self-Polymerizing Mesh of Nano-Tethers for the Mechanical Constraint of Degraded Intervertebral Discs—A Review of 25 Years of Pre-Clinical and Early Clinical Research
by Thomas Hedman, Adam Rogers and Douglas Beall
Bioengineering 2024, 11(6), 535; https://doi.org/10.3390/bioengineering11060535 - 24 May 2024
Viewed by 863
Abstract
Genipin polymers are self-forming tensile-load-carrying oligomers, derived from the gardenia fruit, that covalently bond to amines on collagen. The potential therapeutic mechanical benefits of a non-discrete in situ forming mesh of genipin oligomers for degraded spinal discs were first conceived in 1998. Over [...] Read more.
Genipin polymers are self-forming tensile-load-carrying oligomers, derived from the gardenia fruit, that covalently bond to amines on collagen. The potential therapeutic mechanical benefits of a non-discrete in situ forming mesh of genipin oligomers for degraded spinal discs were first conceived in 1998. Over more than two decades, numerous studies have demonstrated the immediate mechanical effects of this injectable, intra-annular polymeric mesh including an early demonstration of an effect on clinical outcomes for chronic or recurrent discogenic low back pain. This literature review focused on articles investigating mechanical effects in cadaveric animal and human spinal discs, biochemical mechanism of action studies, articles describing the role of mechanical degradation in the pathogenesis of degenerative disc disease, initial clinical outcomes and articles describing current discogenic low back pain treatment algorithms. On the basis of these results, clinical indications that align with the capabilities of this novel injectable polymer-based treatment strategy are discussed. It is intended that this review of a novel nano-scale material-based solution for mechanical deficiencies in biologically limited tissues may provide a helpful example for other innovations in spinal diseases and similarly challenging musculoskeletal disorders. Full article
Show Figures

Graphical abstract

18 pages, 5887 KiB  
Article
Investigation of Liquid Collagen Ink for Three-Dimensional Printing
by Colten L. Snider, Chris J. Glover, David A. Grant and Sheila A. Grant
Micromachines 2024, 15(4), 490; https://doi.org/10.3390/mi15040490 - 2 Apr 2024
Cited by 1 | Viewed by 1119
Abstract
Three-dimensional printing provides more versatility in the fabrication of scaffold materials for hard and soft tissue replacement, but a critical component is the ink. The ink solution should be biocompatible, stable, and able to maintain scaffold shape, size, and function once printed. This [...] Read more.
Three-dimensional printing provides more versatility in the fabrication of scaffold materials for hard and soft tissue replacement, but a critical component is the ink. The ink solution should be biocompatible, stable, and able to maintain scaffold shape, size, and function once printed. This paper describes the development of a collagen ink that remains in a liquid pre-fibrillized state prior to printing. The liquid stability occurs due to the incorporation of ethylenediaminetetraacetic acid (EDTA) during dialysis of the collagen. Collagen inks were 3D-printed using two different printers. The resulting scaffolds were further processed using two different chemical crosslinkers, 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride)/N-hydroxysuccinimide (EDC/NHS) and genipin; gold nanoparticles were conjugated to the scaffolds. The 3D-printed scaffolds were characterized to determine their extrudability, stability, amount of AuNP conjugated, and overall biocompatibility via cell culture studies using fibroblast cells and stroma cells. The results demonstrated that the liquid collagen ink was amendable to 3D printing and was able to maintain its 3D shape. The scaffolds could be conjugated with gold nanoparticles and demonstrated enhanced biocompatibility. It was concluded that the liquid collagen ink is a good candidate material for the 3D printing of tissue scaffolds. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Biofabrication)
Show Figures

Figure 1

16 pages, 4679 KiB  
Article
Study on the Neuroprotective Effects of Eight Iridoid Components Using Cell Metabolomics
by Bingxian Zhang, Ning Zhou, Zhenkai Zhang, Ruifeng Wang, Long Chen, Xiaoke Zheng and Weisheng Feng
Molecules 2024, 29(7), 1497; https://doi.org/10.3390/molecules29071497 - 27 Mar 2024
Viewed by 1027
Abstract
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid [...] Read more.
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects. Full article
Show Figures

Figure 1

20 pages, 4962 KiB  
Article
Chitosan-Based Hierarchical Scaffolds Crosslinked with Genipin
by Lya Piaia, Simone S. Silva, Emanuel M. Fernandes, Joana M. Gomes, Albina R. Franco, Isabel B. Leonor, Márcio C. Fredel, Gean V. Salmoria, Dachamir Hotza and Rui L. Reis
J. Compos. Sci. 2024, 8(3), 85; https://doi.org/10.3390/jcs8030085 - 24 Feb 2024
Cited by 1 | Viewed by 1829
Abstract
Osteochondral defects present significant challenges for effective tissue regeneration due to the complex composition of bone and cartilage. To address this challenge, this study presents the fabrication of hierarchical scaffolds combining chitosan/β-tricalcium phosphate (β-TCP) to simulate a bone-like layer, interconnected with a silk [...] Read more.
Osteochondral defects present significant challenges for effective tissue regeneration due to the complex composition of bone and cartilage. To address this challenge, this study presents the fabrication of hierarchical scaffolds combining chitosan/β-tricalcium phosphate (β-TCP) to simulate a bone-like layer, interconnected with a silk fibroin layer to mimic cartilage, thus replicating the cartilage-like layer to mimic the native osteochondral tissue architecture. The scaffolds were produced by freeze-drying and then crosslinking with genipin. They have a crosslinking degree of up to 24%, which promotes a structural rearrangement and improved connection between the different layers. Micro-CT analysis demonstrated that the structures have distinct porosity values on their top layer (up to 84%), interface (up to 65%), and bottom layer (up to 77%) and are dependent on the concentration of β-tricalcium phosphate used. Both layers were confirmed to be clearly defined by the distribution of the components throughout the constructs, showing adequate mechanical properties for biomedical use. The scaffolds exhibited lower weight loss (up to 7%, 15 days) after enzymatic degradation due to the combined effects of genipin crosslinking and β-TCP incorporation. In vitro studies showed that the constructs supported ATDC5 chondrocyte-like cells and MC3T3 osteoblast-like cells in duo culture conditions, providing a suitable environment for cell adhesion and proliferation for up to 14 days. Overall, the physicochemical properties and biological results of the developed chitosan/β-tricalcium phosphate/silk fibroin bilayered scaffolds suggest that they may be potential candidates for osteochondral tissue strategies. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2023)
Show Figures

Graphical abstract

13 pages, 3215 KiB  
Article
Effect of Pruning Treatment on Growth Characteristics and Metabolites in Eucommia ulmoides Oliver (E. ulmoides)
by Jing Yang, Shengnan Xie, Dandan Du, Hongling Wei, Wenling Zhou, Ying Zhang, Zhonghua Tang, Dewen Li and Ying Liu
Forests 2023, 14(12), 2439; https://doi.org/10.3390/f14122439 - 14 Dec 2023
Viewed by 1062
Abstract
The effect of pruning treatments on growth, photosynthesis characteristics, and metabolites were was studied in Eucommia ulmoides Oliver (E. ulmoides). The experiment was carried out from March–August 2019. Three treatments were used: non-pruned trees (CK), a height of 20 cm above [...] Read more.
The effect of pruning treatments on growth, photosynthesis characteristics, and metabolites were was studied in Eucommia ulmoides Oliver (E. ulmoides). The experiment was carried out from March–August 2019. Three treatments were used: non-pruned trees (CK), a height of 20 cm above the top edge of the flowerpot (T1), and a height of 10 cm above the top edge of the flowerpot (T2). The results showed that the branches branch number, leaves leaf number, and stem diameter increased significantly (p < 0.05) in pruning treatments compared with CK. Similarly, the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum photosynthetic efficiency (Fv/Fm), and non-photochemical quenching coefficient (NPQ) increased significantly in pruning treatments (p < 0.05). Interestingly, the contents of Chl a, Chl b, Chl, Car, and the rate between the Chl a content and the Chl b content increased significantly (p < 0.05) in T2, respectively. These verified that it was a better way to enhance the plants growth of E. ulmoides for pruning treatments. The GC-MS analysis showed that 36 different primary metabolites were identified, including 11 sugars, 13 acids, 5 alcohols, and 7 other compounds, the relative content of their metabolites were was higher in the T2 treatment than that in the T1 treatment, which was mainly concentrated in four main enrichment pathways (Galactose metabolism; Citrate cycle; Glyoxylate and dicarboxylate metabolism; and starch and sucrose metabolism) via KEGG analysis. Meanwhile, correlation analysis showed there were was a positive correlation between the accumulation of D-Galactose, D-Mannose, Succinic acid, and photosynthetic pigment content, and the rate of photosynthesis in T2 treatment (p < 0.05). The pruning height above the top edge of the flowerpot changed the accumulation of primary metabolites and promoted plant regeneration ability in E. ulmoides. Finally, the yield of main secondary metabolites from leaves (Genipin, Geniposide, Geniposidic acid, and Pinoresinol diglucoside) were was increased in pruning treatments by UPLC analysis. It provided a reference for the directional ecological cultivation of E. ulmoides. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

19 pages, 4712 KiB  
Article
Poly(Vinyl Alcohol)/Bovine Serum Albumin Hybrid Hydrogels with Tunable Mechanical Properties
by Maria Bercea, Ioana-Alexandra Plugariu, Maria Valentina Dinu, Irina Mihaela Pelin, Alexandra Lupu, Adrian Bele and Vasile Robert Gradinaru
Polymers 2023, 15(23), 4611; https://doi.org/10.3390/polym15234611 - 4 Dec 2023
Cited by 4 | Viewed by 1686
Abstract
In this study, a new strategy was adopted for obtaining polymer/protein hybrid hydrogels with shape stability and tunable mechanical or rheological characteristics by using non-toxic procedures. A chemical network was created using a poly(vinyl alcohol)(PVA)/bovine serum albumin (BSA) mixture in aqueous solution in [...] Read more.
In this study, a new strategy was adopted for obtaining polymer/protein hybrid hydrogels with shape stability and tunable mechanical or rheological characteristics by using non-toxic procedures. A chemical network was created using a poly(vinyl alcohol)(PVA)/bovine serum albumin (BSA) mixture in aqueous solution in the presence of genipin and reduced glutathione (GSH). Then, a second physical network was formed through PVA after applying freezing/thawing cycles. In addition, the protein macromolecules formed intermolecular disulfide bridges in the presence of GSH. In these conditions, multiple crosslinked networks were obtained, determining the strengthening and stiffening into relatively tough porous hydrogels with tunable viscoelasticity and a self-healing ability. A SEM analysis evidenced the formation of networks with interconnected pores of sizes between 20 μm and 50 μm. The mechanical or rheological investigations showed that the hydrogels’ strength and response in different conditions of deformation were influenced by the composition and crosslinking procedure. Thus, the dynamics of the hybrid hydrogels can be adjusted to mimic the viscoelastic properties of the native tissues. The dynamic water vapor-sorption ability, swelling behavior in an aqueous environment, and bioadhesive properties were also investigated and are discussed in this paper. The hybrid hydrogels with tunable viscoelasticity can be designed on request, and they are promising candidates for tissue engineering, bioinks, and wound dressing applications. Full article
Show Figures

Figure 1

15 pages, 4056 KiB  
Article
A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin
by Yeshun Zhang, Susu Wang, Yurong Li, Xiang Li, Zhanyan Du, Siyu Liu, Yushuo Song, Yanyan Li and Guozheng Zhang
Gels 2023, 9(12), 948; https://doi.org/10.3390/gels9120948 - 3 Dec 2023
Cited by 1 | Viewed by 1400
Abstract
The application of sericin hydrogels is limited mainly due to their poor mechanical strength, tendency to be brittle and inconvenient sterilization. To address these challenges, a sericin hydrogel exhibiting outstanding physical and chemical properties along with cytocompatibility was prepared through crosslinking genipin with [...] Read more.
The application of sericin hydrogels is limited mainly due to their poor mechanical strength, tendency to be brittle and inconvenient sterilization. To address these challenges, a sericin hydrogel exhibiting outstanding physical and chemical properties along with cytocompatibility was prepared through crosslinking genipin with degraded sericin extracted from fibroin deficient silkworm cocoons by the high temperature and pressure method. Our reported sericin hydrogels possess good elasticity, injectability, and robust behaviors. The 8% sericin hydrogel can smoothly pass through a 16 G needle. While the 12% sericin hydrogel remains intact until its compression ratio reaches 70%, accompanied by a compression strength of 674 kPa. 12% sericin hydrogel produce a maximum stretch of 740%, with breaking strength and tensile modulus of 375 kPa and 477 kPa respectively. Besides that, the hydrogel system demonstrated remarkable cell-adhesive capabilities, effectively promoting cell attachment and, proliferation. Moreover, the swelling and degradation behaviors of the hydrogels are pH responsiveness. Sericin hydrogel releases drugs in a sustained manner. Furthermore, this study addresses the challenge of sterilizing sericin hydrogels (sterilization will inevitably lead to the destruction of their structures). In addition, it challenges the prior notion that sericin extracted under high temperature and pressure is difficult to directly cross-linked into a stable hydrogel. This developed hydrogel system in this study holds promise to be a new multifunctional platform expanding the application area scope of sericin. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application)
Show Figures

Figure 1

15 pages, 2599 KiB  
Article
Improved Physiochemical Properties of Chitosan@PCL Nerve Conduits by Natural Molecule Crosslinking
by Marta Bianchini, Ciro Zinno, Silvestro Micera and Eugenio Redolfi Riva
Biomolecules 2023, 13(12), 1712; https://doi.org/10.3390/biom13121712 - 27 Nov 2023
Cited by 2 | Viewed by 1300
Abstract
Nerve conduits may represent a valuable alternative to autograft for the regeneration of long-gap damages. However, no NCs have currently reached market approval for the regeneration of limiting gap lesions, which still represents the very bottleneck of this technology. In recent years, a [...] Read more.
Nerve conduits may represent a valuable alternative to autograft for the regeneration of long-gap damages. However, no NCs have currently reached market approval for the regeneration of limiting gap lesions, which still represents the very bottleneck of this technology. In recent years, a strong effort has been made to envision an engineered graft to tackle this issue. In our recent work, we presented a novel design of porous/3D-printed chitosan/poly-ε-caprolactone conduits, coupling freeze drying and additive manufacturing technologies to yield conduits with good structural properties. In this work, we studied genipin crosslinking as strategy to improve the physiochemical properties of our conduit. Genipin is a natural molecule with very low toxicity that has been used to crosslink chitosan porous matrix by binding the primary amino group of chitosan chains. Our characterization evidenced a stabilizing effect of genipin crosslinking towards the chitosan matrix, with reported modified porosity and ameliorated mechanical properties. Given the reported results, this method has the potential to improve the performance of our conduits for the regeneration of long-gap nerve injuries. Full article
(This article belongs to the Special Issue Biomolecules and Biomaterials for Tissue Engineering)
Show Figures

Figure 1

Back to TopTop