Sign in to use this feature.

Years

Between: -

Search Results (2,038)

Search Parameters:
Keywords = human lung cancer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3213 KiB  
Article
Bojungikki-Tang Augments Pembrolizumab Efficacy in Human PBMC-Injected H460 Tumor-Bearing Mice
by Se Won Na, Jin-Mu Yi, Heerim Yeo, Sang-Min Park, Mibae Jeong, Jaemoo Chun and Mi-Kyung Jeong
Life 2024, 14(10), 1246; https://doi.org/10.3390/life14101246 - 30 Sep 2024
Viewed by 201
Abstract
Bojungikki-Tang (BJIKT) is traditionally used to enhance digestive function and immunity. It has gained attention as a supplement to chemotherapy or targeted therapy owing to its immune-boosting properties. This study aimed to evaluate the synergistic anti-tumor effects of BJIKT in combination with pembrolizumab [...] Read more.
Bojungikki-Tang (BJIKT) is traditionally used to enhance digestive function and immunity. It has gained attention as a supplement to chemotherapy or targeted therapy owing to its immune-boosting properties. This study aimed to evaluate the synergistic anti-tumor effects of BJIKT in combination with pembrolizumab in a preclinical model. MHC I/II double knockout NSG mice were humanized with peripheral blood mononuclear cells (PBMCs) and injected subcutaneously with H460 lung tumor cells to establish a humanized tumor model. Both agents were administered to evaluate their impact on tumor growth and immune cell behavior. Immunohistochemistry showed decreased exhaustion markers in CD8(+) and CD4(+) T cells within the tumor, indicating enhanced T cell activity. Additionally, RNA sequencing, transcriptome analysis, and quantitative PCR analysis were performed on tumor tissues to investigate the molecular mechanisms underlying the observed effects. The results confirmed that BJIKT improved T cell function and tumor necrosis factor signaling while suppressing transforming growth factor-β signaling. This modulation led to cell cycle arrest and apoptosis. These findings demonstrate that BJIKT, when combined with pembrolizumab, produces significant anti-tumor effects by altering immune pathways and enhancing the anti-tumor immune response. This study provides valuable insights into the role of BJIKT in the tumor microenvironment and its potential to improve therapeutic outcomes. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

12 pages, 1579 KiB  
Article
4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity
by Sooho Yeo, Sukkyun Jung, Haneul Kim, Jun-Hyun Ahn and Sung-Joo Hwang
Pharmaceuticals 2024, 17(10), 1296; https://doi.org/10.3390/ph17101296 - 29 Sep 2024
Viewed by 270
Abstract
Background: Cancer is one of the most significant threats to human health. Following surgical excision, chemotherapy is an effective strategy against remaining cancer cells. 4-hexylresorcinol (4-HR) has anti-cancer properties and exhibits hydrophobicity-induced aggregation in the blood that has trouble with targeted tumor delivery [...] Read more.
Background: Cancer is one of the most significant threats to human health. Following surgical excision, chemotherapy is an effective strategy against remaining cancer cells. 4-hexylresorcinol (4-HR) has anti-cancer properties and exhibits hydrophobicity-induced aggregation in the blood that has trouble with targeted tumor delivery and cellular uptake of the drug. The purpose of this study is to encapsulate 4-HR into solid lipid nanoparticles (SLNs) to enhance its anti-cancer effect by avoiding aggregation and facilitating cellular uptake. Methods: 4-HR SLNs were prepared via hot melt homogenization with sonication. SLN characteristics were assessed by analyzing particle size, zeta potential, and drug release. Cytotoxicity, as an indicator of the anti-cancer effect, was evaluated against HeLa (cervical cancer in humans), A549 (lung cancer in humans), and CT-26 (colon carcinoma in mice) cell lines. Results: Particle size ranged from 169.4 to 644.8 nm, and zeta potential ranged from −19.8 to −40.3 mV, which are conducive to cellular uptake. Entrapment efficiency (EE) of 4-HR was found to be 75.0—96.5%. The cytotoxicity of 4-HR-loaded SLNs demonstrated enhanced anti-cancer effects compared to pure 4-HR. The enhancement of anti-cancer effects depended on reduced particle size based on cellular uptake, the EE, and the cell type. Conclusions: These findings imply that 4-HR-loaded SLN is a promising strategy for chemotherapy in cancer treatment. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Figure 1

23 pages, 5626 KiB  
Systematic Review
HPV and Lung Cancer: A Systematic Review
by Telma Sequeira, Rui Pinto, Carlos Cardoso, Catarina Almeida, Rita Aragão, Teresa Almodovar, Manuel Bicho, Maria Clara Bicho and Cristina Bárbara
Cancers 2024, 16(19), 3325; https://doi.org/10.3390/cancers16193325 - 28 Sep 2024
Viewed by 480
Abstract
This systematic review aims to explore the diagnostic criteria, epidemiology, etiology, and prognosis of Human Papillomavirus (HPV) infection in lung cancer. This PRISMA-guided review searched the PubMed® and EmbaseTM databases for “lung cancer AND HPV” on 10 June 2023, filtering human [...] Read more.
This systematic review aims to explore the diagnostic criteria, epidemiology, etiology, and prognosis of Human Papillomavirus (HPV) infection in lung cancer. This PRISMA-guided review searched the PubMed® and EmbaseTM databases for “lung cancer AND HPV” on 10 June 2023, filtering human subject papers. A total of 97 studies encompassing 9098 patients worldwide, revealing varied HPV infection rates in lung cancer, ranging from 0% to 69%, were analyzed. While HPV16/18 was predominant in some regions, its association with lung cancer remained inconclusive due to conflicting findings. Studies from Asia reported lower HPV infection rates compared to Western populations. Some studies suggested a limited role of HPV in lung carcinogenesis, particularly in non-smokers. However, intriguing associations were noted, including HPV’s potential role in lung adenocarcinoma and squamous cell carcinoma. Discrepancies in HPV detection methods and sample sources highlight the need for further research with standardized methodologies to elucidate HPV’s role in lung carcinogenesis and its clinical implications. Overall, this systematic review offers insights into HPV’s role in lung cancer epidemiology and clinical characteristics. Despite inconclusive evidence, intriguing associations between HPV and lung adenocarcinoma and squamous cell carcinoma have emerged. Further research with standardized methodologies and larger cohorts is needed for clarity. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

20 pages, 4405 KiB  
Article
Post-Transcriptional Modifications to miRNAs Undergo Widespread Alterations, Creating a Unique Lung Adenocarcinoma IsomiRome
by David E. Cohn, Vanessa G. P. Souza, Aisling Forder, Nikita Telkar, Greg L. Stewart and Wan L. Lam
Cancers 2024, 16(19), 3322; https://doi.org/10.3390/cancers16193322 - 28 Sep 2024
Viewed by 249
Abstract
Background: MicroRNAs (miRNAs) modulate the expression of oncogenes and tumor suppressor genes, functioning as significant epigenetic regulators in cancer. IsomiRs are miRNA molecules that have undergone small modifications during miRNA processing. These modifications can alter an isomiR’s binding stability with mRNA targets, and [...] Read more.
Background: MicroRNAs (miRNAs) modulate the expression of oncogenes and tumor suppressor genes, functioning as significant epigenetic regulators in cancer. IsomiRs are miRNA molecules that have undergone small modifications during miRNA processing. These modifications can alter an isomiR’s binding stability with mRNA targets, and certain isomiRs have been implicated in the development of specific cancers. Still, the isomiRomes of many tissues, including the lung, have not been characterized; Methods: In this study, we analyzed small RNA sequencing data for three cohorts of lung adenocarcinoma (LUAD) and adult non-malignant lung (ANL) samples. Results: We quantified isomiR expression and found 16 A-to-I edited isomiRs expressed in multiple cohorts, as well as 213 5′ isomiRs, 128 3′ adenylated isomiRs, and 100 3′ uridylated isomiRs. Rates of A-to-I editing at editing hotspots correlated with mRNA expression of the editing enzymes ADAR and ADARB1, which were both observed to be deregulated in LUAD. LUAD samples displayed lower overall rates of A-to-I editing and 3′ adenylation than ANL samples. Support vector machines and random forest models were trained on one cohort to distinguish ANL and stage I/II LUAD samples using reads per million (RPM) and frequency data for different types of isomiRs. Models trained on A-to-I editing rates at editing hotspots displayed high accuracy when tested on the other two cohorts and compared favorably to classifiers trained on miRNA expression alone; Conclusions: We have identified isomiRs in the human lung and found that their expression differs between non-malignant and tumor tissues, suggesting they hold potential as cancer biomarkers. Full article
(This article belongs to the Special Issue RNA in Non-Small-Cell Lung Cancer)
Show Figures

Figure 1

14 pages, 12752 KiB  
Article
Establishment of Translational Luciferase-Based Cancer Models to Evaluate Antitumoral Therapies
by Martin R. Ramos-Gonzalez, Nagabhishek Sirpu Natesh, Satyanarayana Rachagani, James Amos-Landgraf, Haval Shirwan, Esma S. Yolcu and Jorge G. Gomez-Gutierrez
Int. J. Mol. Sci. 2024, 25(19), 10418; https://doi.org/10.3390/ijms251910418 - 27 Sep 2024
Viewed by 360
Abstract
Luciferase (luc) bioluminescence (BL) is the most used light-emitting protein that has been engineered to be expressed in multiple cancer cell lines, allowing for the detection of tumor nodules in vivo as it can penetrate most tissues. The goal of this study was [...] Read more.
Luciferase (luc) bioluminescence (BL) is the most used light-emitting protein that has been engineered to be expressed in multiple cancer cell lines, allowing for the detection of tumor nodules in vivo as it can penetrate most tissues. The goal of this study was to develop an oncolytic adenovirus (OAd)-resistant human triple-negative breast cancer (TNBC) that could express luciferase. Thus, when combining an OAd with chemotherapies or targeted therapies, we would be able to monitor the ability of these compounds to enhance OAd antitumor efficacy using BL in real time. The TNBC cell line HCC1937 was stably transfected with the plasmid pGL4.50[luc2/CMV/Hygro] (HCC1937/luc2). Once established, HCC1937/luc2 was orthotopically implanted in the 4th mammary gland fat pad of NSG (non-obese diabetic severe combined immunodeficiency disease gamma) female mice. Bioluminescence imaging (BLI) revealed that the HCC1937/luc2 cell line developed orthotopic breast tumor and lung metastasis over time. However, the integration of luc plasmid modified the HCC1937 phenotype, making HCC1937/luc2 more sensitive to OAdmCherry compared to the parental cell line and blunting the interferon (IFN) antiviral response. Testing two additional luc cell lines revealed that this was not a universal response; however, proper controls would need to be evaluated, as the integration of luciferase could affect the cells’ response to different treatments. Full article
(This article belongs to the Special Issue Advances in Luciferase)
Show Figures

Figure 1

57 pages, 2461 KiB  
Review
Microfluidic Applications in Prostate Cancer Research
by Kailie Szewczyk, Linan Jiang, Hunain Khawaja, Cindy K. Miranti and Yitshak Zohar
Micromachines 2024, 15(10), 1195; https://doi.org/10.3390/mi15101195 - 27 Sep 2024
Viewed by 571
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate [...] Read more.
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer. Full article
(This article belongs to the Special Issue Feature Reviews in Micromachines 2024)
Show Figures

Figure 1

16 pages, 2597 KiB  
Article
Enhanced Photodynamic Therapy Efficacy through Solid Lipid Nanoparticle of Purpurin-18-N-Propylimide Methyl Ester for Cancer Treatment
by Sooho Yeo, Huiqiang Wu, Il Yoon, Hye-Soo Kim, Young Kyu Song and Woo Kyoung Lee
Int. J. Mol. Sci. 2024, 25(19), 10382; https://doi.org/10.3390/ijms251910382 - 26 Sep 2024
Viewed by 239
Abstract
Photodynamic therapy (PDT) is an innovative cancer treatment that utilizes light. When light irradiates, purpurin-18-N-propylimide methyl ester (P18 N PI ME) generates reactive oxygen species that destroy cancer cells. The hydrophobic nature of P18 N PI ME presents challenges regarding its aggregation in [...] Read more.
Photodynamic therapy (PDT) is an innovative cancer treatment that utilizes light. When light irradiates, purpurin-18-N-propylimide methyl ester (P18 N PI ME) generates reactive oxygen species that destroy cancer cells. The hydrophobic nature of P18 N PI ME presents challenges regarding its aggregation in the body, which can affect its effectiveness. This study aimed to enhance the bioavailability and effectiveness of cancer treatment by synthesizing P18 N PI ME and formulating P18 N PI ME-loaded solid lipid nanoparticles (SLNs). The efficacy of PDT was estimated using the 1,3-diphenylisobenzofuran (DPBF) assay and photocytotoxicity tests on the HeLa (human cervical carcinoma) and A549 (human lung carcinoma) cell lines. The P18 N PI ME-loaded SLNs demonstrated particle sizes in the range of 158.59 nm to 248.43 nm and zeta potentials in the range of –15.97 mV to –28.73 mV. These SLNs exhibited sustained release of P18 N PI ME. DPBF analysis revealed enhanced PDT effects with SLNs containing P18 N PI ME compared with standalone P18 N PI MEs. Photocytotoxicity assays indicated toxicity under light irradiation but no toxicity in the dark. Furthermore, the smallest-sized formulation exhibited the most effective photodynamic activity. These findings indicate the potential of P18 N PI ME-loaded SLNs as promising strategies for PDT in cancer therapy. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery Based on Natural Products)
Show Figures

Figure 1

17 pages, 3223 KiB  
Article
Exploring the Role and Pathophysiological Significance of Aldehyde Dehydrogenase 1B1 (ALDH1B1) in Human Lung Adenocarcinoma
by Ilias Tsochantaridis, Dimitris Brisimis, Margaritis Tsifintaris, Anastasia Anastasiadou, Efthymios Lazos, Antreas Ermogenous, Sylia Christou, Nefeli Antonopoulou, Mihalis I. Panayiotidis, Michail I. Koukourakis, Alexandra Giatromanolaki and Aglaia Pappa
Int. J. Mol. Sci. 2024, 25(19), 10301; https://doi.org/10.3390/ijms251910301 - 25 Sep 2024
Viewed by 622
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)+-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as [...] Read more.
Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)+-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as markers for cancer stem cells (CSCs). Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme involved in the detoxification of lipid peroxidation by-products and metabolism of various aldehyde substrates. This study examines the potential role of ALDH1B1 in human lung adenocarcinoma and its association with the CSC phenotype. To this end, we utilized the lung adenocarcinoma cell line A549, engineered to stably express the human ALDH1B1 protein tagged with green fluorescent protein (GFP). Overexpression of ALDH1B1 led to notable changes in cell morphology, proliferation rate and clonogenic efficiency. Furthermore, ALDH1B1-overexpressing A549 cells exhibited enhanced resistance to the chemotherapeutic agents etoposide and cisplatin. Additionally, ALDH1B1 overexpression correlated with increased migratory potential and epithelial–mesenchymal transition (EMT), mediated by the upregulation of transcription factors such as SNAI2, ZEB2 and TWIST1, alongside the downregulation of E-cadherin. Moreover, Spearman’s rank correlation coefficient analysis using data from 507 publicly available lung adenocarcinoma clinical samples revealed a significant correlation between ALDH1B1 and various molecules implicated in CSC-related signaling pathways, including Wnt, Notch, hypoxia, Hedgehog, retinoic acid, Hippo, NF-κΒ, TGF-β, PI3K/PTEN-AKT and glycolysis/gluconeogenesis. These findings provide insights into the role of ALDH1B1 in lung tumor progression and its relation to the lung CSC phenotype, thereby offering potential therapeutic targets in the clinical management of lung adenocarcinoma. Full article
Show Figures

Figure 1

16 pages, 7588 KiB  
Article
Three-Dimensional-Bioprinted Non-Small Cell Lung Cancer Models in a Mouse Phantom for Radiotherapy Research
by Yikun Mei, Elena Lakotsenina, Marie Wegner, Timon Hehne, Dieter Krause, Dani Hakimeh, Dongwei Wu, Elisabeth Schültke, Franziska Hausmann, Jens Kurreck and Beatrice Tolksdorf
Int. J. Mol. Sci. 2024, 25(19), 10268; https://doi.org/10.3390/ijms251910268 - 24 Sep 2024
Viewed by 455
Abstract
Lung cancer continues to have one of the highest morbidity and mortality rates of any cancer. Although radiochemotherapy, in combination with immunotherapy, has significantly improved overall survival, new treatment options are urgently needed. However, preclinical radiotherapy testing is often performed in animal models, [...] Read more.
Lung cancer continues to have one of the highest morbidity and mortality rates of any cancer. Although radiochemotherapy, in combination with immunotherapy, has significantly improved overall survival, new treatment options are urgently needed. However, preclinical radiotherapy testing is often performed in animal models, which has several drawbacks, including species-specific differences and ethical concerns. To replace animal models, this study used a micro-extrusion bioprinting approach to generate a three-dimensional (3D) human lung cancer model consisting of lung tumor cells embedded in human primary lung fibroblasts for radiotherapy research. The models were placed in a mouse phantom, i.e., a 3D-printed mouse model made of materials that mimic the X-ray radiation attenuation rates found in mice. In radiotherapy experiments, the model demonstrated a selective cytotoxic effect of X-rays on tumor cells, consistent with findings in 2D cells. Furthermore, the analysis of metabolic activity, cell death, apoptosis, and DNA damage-induced γH2AX foci formation revealed different results in the 3D model inside the phantom compared to those observed in irradiated models without phantom and 2D cells. The proposed setup of the bioprinted 3D lung model inside the mouse phantom provides a physiologically relevant model system to study radiation effects. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

13 pages, 994 KiB  
Review
Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention
by Aleymi M. Perez, Nicole I. Haberland, Mariya Miteva and Tongyu C. Wikramanayake
Curr. Oncol. 2024, 31(9), 5709-5721; https://doi.org/10.3390/curroncol31090423 - 23 Sep 2024
Viewed by 776
Abstract
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the [...] Read more.
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the cell cycle and induction of proapoptotic activity. However, docetaxel also impacts rapidly proliferating normal cells in the scalp hair follicles (HFs), rendering the HFs vulnerable to docetaxel-induced cell death and leading to chemotherapy-induced alopecia (CIA). In severe cases, docetaxel causes persistent or permanent CIA (pCIA) when hair does not grow back completely six months after chemotherapy cessation. Hair loss has severe negative impacts on patients’ quality of life and may even compromise their compliance with treatment. This review discusses the notable prevalence of docetaxel-induced CIA and pCIA, as well as their prevention and management. At this moment, scalp cooling is the standard of care to prevent CIA. Treatment options to promote hair regrowth include but are not limited to minoxidil, photobiomodulation (PBMT), and platelet-rich plasma (PRP). In addition, a handful of current clinical trials are exploring additional agents to treat or prevent CIA. Research models of CIA, particularly ex vivo human scalp HF organ culture and in vivo mouse models with human scalp xenografts, will help expedite the translation of bench findings of CIA prevention and/or amelioration to the clinic. Full article
(This article belongs to the Topic Life of Cancer Survivor)
Show Figures

Figure 1

20 pages, 1518 KiB  
Review
Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections
by Amitabha Ray, Thomas F. Moore, Dayalu S. L. Naik and Daniel M. Borsch
Medicina 2024, 60(9), 1515; https://doi.org/10.3390/medicina60091515 - 18 Sep 2024
Viewed by 449
Abstract
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations [...] Read more.
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic inflammation. If this detrimental condition persists, a sequence of pathological events can occur, such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several other diseases—both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon are the two most common malignancies occurring worldwide (except for female breast cancer). Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E. coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to play an important role in the dissemination of cancer cells from the primary colonic site. Currently, seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers). Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages (viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being evaluated for this purpose. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

16 pages, 3519 KiB  
Article
From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C60-Berberine Nanocomplex on Cancer Cells
by Aleksandar Radivoievych, Sophia Schnepel, Svitlana Prylutska, Uwe Ritter, Oliver Zolk, Marcus Frohme and Anna Grebinyk
Cancers 2024, 16(18), 3184; https://doi.org/10.3390/cancers16183184 - 18 Sep 2024
Viewed by 411
Abstract
Objectives: The primary objective of this research targeted the biochemical effects of SDT on human cervix carcinoma (HeLa) and mouse Lewis lung carcinoma (LLC) cells grown in 2D monolayer and 3D spheroid cell culture. Methods: HeLa and LLC monolayers and spheroids were treated [...] Read more.
Objectives: The primary objective of this research targeted the biochemical effects of SDT on human cervix carcinoma (HeLa) and mouse Lewis lung carcinoma (LLC) cells grown in 2D monolayer and 3D spheroid cell culture. Methods: HeLa and LLC monolayers and spheroids were treated with a 20 µM C60-Ber for 24 h, followed by irradiation with 1 MHz, 1 W/cm2 US. To evaluate the efficacy of the proposed treatment on cancer cells, assessments of cell viability, caspase 3/7 activity, ATP levels, and ROS levels were conducted. Results: Our results revealed that US irradiation alone had negligible effects on LLC and HeLa cancer cells. However, both monolayers and spheroids irradiated with US in the presence of the C60-Ber exhibited a significant decrease in viability (32% and 37%) and ATP levels (42% and 64%), along with a notable increase in ROS levels (398% and 396%) and caspase 3/7 activity (437% and 246%), for HeLa monolayers and spheroids, respectively. Similar tendencies were observed with LLC cells. In addition, the anticancer effects of C60-Ber surpassed those of C60, Ber, or their mixture (C60 + Ber) in both cell lines. Conclusions: The detected intensified ROS generation and ATP level drop point to mitochondria dysfunction, while increased caspase 3/7 activity points on the apoptotic pathway induction. The combination of 1 W/cm2 US with C60-Ber showcased a promising platform for synergistic sonodynamic chemotherapy for cancer treatment. Full article
(This article belongs to the Special Issue Old Drugs in a New Package: Future of Cancer Nanomedicine)
Show Figures

Figure 1

24 pages, 3749 KiB  
Article
Protein Structure Inspired Discovery of a Novel Inducer of Anoikis in Human Melanoma
by Fangfang Qiao, Thomas Andrew Binkowski, Irene Broughan, Weining Chen, Amarnath Natarajan, Gary E. Schiltz, Karl A. Scheidt, Wayne F. Anderson and Raymond Bergan
Cancers 2024, 16(18), 3177; https://doi.org/10.3390/cancers16183177 - 17 Sep 2024
Viewed by 808
Abstract
Drug discovery historically starts with an established function, either that of compounds or proteins. This can hamper discovery of novel therapeutics. As structure determines function, we hypothesized that unique 3D protein structures constitute primary data that can inform novel discovery. Using a computationally [...] Read more.
Drug discovery historically starts with an established function, either that of compounds or proteins. This can hamper discovery of novel therapeutics. As structure determines function, we hypothesized that unique 3D protein structures constitute primary data that can inform novel discovery. Using a computationally intensive physics-based analytical platform operating at supercomputing speeds, we probed a high-resolution protein X-ray crystallographic library developed by us. For each of the eight identified novel 3D structures, we analyzed binding of sixty million compounds. Top-ranking compounds were acquired and screened for efficacy against breast, prostate, colon, or lung cancer, and for toxicity on normal human bone marrow stem cells, both using eight-day colony formation assays. Effective and non-toxic compounds segregated to two pockets. One compound, Dxr2-017, exhibited selective anti-melanoma activity in the NCI-60 cell line screen. In eight-day assays, Dxr2-017 had an IC50 of 12 nM against melanoma cells, while concentrations over 2100-fold higher had minimal stem cell toxicity. Dxr2-017 induced anoikis, a unique form of programmed cell death in need of targeted therapeutics. Our findings demonstrate proof-of-concept that protein structures represent high-value primary data to support the discovery of novel acting therapeutics. This approach is widely applicable. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

28 pages, 787 KiB  
Review
A Review of the Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Nonhematologic Malignancies
by Defne Cigdem Koc, Ion Bogdan Mănescu, Măriuca Mănescu and Minodora Dobreanu
Diagnostics 2024, 14(18), 2057; https://doi.org/10.3390/diagnostics14182057 - 16 Sep 2024
Viewed by 485
Abstract
Biomarkers are crucial in cancer diagnostics, prognosis, and surveillance. Extensive research has been dedicated to identifying biomarkers that are broadly applicable across multiple cancer types and can be easily obtained from routine investigations such as blood cell counts. One such biomarker, the neutrophil-to-lymphocyte [...] Read more.
Biomarkers are crucial in cancer diagnostics, prognosis, and surveillance. Extensive research has been dedicated to identifying biomarkers that are broadly applicable across multiple cancer types and can be easily obtained from routine investigations such as blood cell counts. One such biomarker, the neutrophil-to-lymphocyte ratio (NLR), has been established as a prognostic marker in cancer. However, due to the dynamic nature of cancer diagnosis and treatment, periodic updates are necessary to keep abreast of the vast amount of published data. In this review, we searched the PubMed database and analyzed and synthesized recent literature (2018–February 2024) on the role of NLR in predicting clinical outcomes in nonhematologic malignancies. The search was conducted using the PubMed database. We included a total of 88 studies, encompassing 28,050 human subjects, and categorized the findings into four major groups: gastrointestinal cancer, cancers of the urinary tract and reproductive system, lung cancer, and breast cancer. Our analysis confirms that NLR is a reliable prognostic indicator in cancer, and we discuss the specific characteristics, limitations, and exceptions associated with its use. The review concludes with a concise Q&A section, presenting the most relevant take-home messages in response to five key practical questions on this topic. Full article
(This article belongs to the Special Issue Exploring the Role of Diagnostic Biochemistry)
Show Figures

Figure 1

30 pages, 3287 KiB  
Article
GABA(A) Receptor Activation Drives GABARAP–Nix Mediated Autophagy to Radiation-Sensitize Primary and Brain-Metastatic Lung Adenocarcinoma Tumors
by Debanjan Bhattacharya, Riccardo Barrile, Donatien Kamdem Toukam, Vaibhavkumar S. Gawali, Laura Kallay, Taukir Ahmed, Hawley Brown, Sepideh Rezvanian, Aniruddha Karve, Pankaj B. Desai, Mario Medvedovic, Kyle Wang, Dan Ionascu, Nusrat Harun, Subrahmanya Vallabhapurapu, Chenran Wang, Xiaoyang Qi, Andrew M. Baschnagel, Joshua A. Kritzer, James M. Cook, Daniel A. Pomeranz Krummel and Soma Senguptaadd Show full author list remove Hide full author list
Cancers 2024, 16(18), 3167; https://doi.org/10.3390/cancers16183167 - 15 Sep 2024
Viewed by 1174
Abstract
In non-small cell lung cancer (NSCLC) treatment, radiotherapy responses are not durable and toxicity limits therapy. We find that AM-101, a synthetic benzodiazepine activator of GABA(A) receptor, impairs the viability and clonogenicity of both primary and brain-metastatic NSCLC cells. Employing a human-relevant ex [...] Read more.
In non-small cell lung cancer (NSCLC) treatment, radiotherapy responses are not durable and toxicity limits therapy. We find that AM-101, a synthetic benzodiazepine activator of GABA(A) receptor, impairs the viability and clonogenicity of both primary and brain-metastatic NSCLC cells. Employing a human-relevant ex vivo ‘chip’, AM-101 is as efficacious as docetaxel, a chemotherapeutic used with radiotherapy for advanced-stage NSCLC. In vivo, AM-101 potentiates radiation, including conferring a significant survival benefit to mice bearing NSCLC intracranial tumors generated using a patient-derived metastatic line. GABA(A) receptor activation stimulates a selective-autophagic response via the multimerization of GABA(A) receptor-associated protein, GABARAP, the stabilization of mitochondrial receptor Nix, and the utilization of ubiquitin-binding protein p62. A high-affinity peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP–Nix multimerization axis that triggers autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity. Full article
(This article belongs to the Special Issue The Emerging Role of Ion Channels in Cancer Treatment)
Show Figures

Figure 1

Back to TopTop