Sign in to use this feature.

Years

Between: -

Search Results (12,408)

Search Parameters:
Keywords = photonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 968 KiB  
Review
Asymmetry in Atypical Parkinsonian Syndromes—A Review
by Patryk Chunowski, Natalia Madetko-Alster and Piotr Alster
J. Clin. Med. 2024, 13(19), 5798; https://doi.org/10.3390/jcm13195798 (registering DOI) - 28 Sep 2024
Abstract
Background/Objectives: Atypical parkinsonian syndromes (APSs) are a group of neurodegenerative disorders that differ from idiopathic Parkinson’s disease (IPD) in their clinical presentation, underlying pathology, and response to treatment. APSs include conditions such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal syndrome [...] Read more.
Background/Objectives: Atypical parkinsonian syndromes (APSs) are a group of neurodegenerative disorders that differ from idiopathic Parkinson’s disease (IPD) in their clinical presentation, underlying pathology, and response to treatment. APSs include conditions such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and dementia with Lewy bodies (DLB). These disorders are characterized by a combination of parkinsonian features and additional symptoms, such as autonomic dysfunction, supranuclear gaze palsy, and asymmetric motor symptoms. Many hypotheses attempt to explain the causes of neurodegeneration in APSs, including interactions between environmental toxins, tau or α-synuclein pathology, oxidative stress, microglial activation, and vascular factors. While extensive research has been conducted on APSs, there is a limited understanding of the symmetry in these diseases, particularly in MSA. Neuroimaging studies have revealed metabolic, structural, and functional abnormalities that contribute to the asymmetry in APSs. The asymmetry in CBS is possibly caused by a variable reduction in striatal D2 receptor binding, as demonstrated in single-photon emission computed tomography (SPECT) examinations, which may explain the disease’s asymmetric manifestation and poor response to dopaminergic therapy. In PSP, clinical dysfunction correlates with white matter tract degeneration in the superior cerebellar peduncles and corpus callosum. MSA often involves atrophy in the pons, putamen, and cerebellum, with clinical symmetry potentially depending on the symmetry of the atrophy. The aim of this review is to present the study findings on potential symmetry as a tool for determining potential neuropsychological disturbances and properly diagnosing APSs to lessen the misdiagnosis rate. Methods: A comprehensive review of the academic literature was conducted using the medical literature available in PubMed. Appropriate studies were evaluated and examined based on patient characteristics and clinical and imaging examination outcomes in the context of potential asymmetry. Results: Among over 1000 patients whose data were collected, PSP-RS was symmetrical in approximately 84% ± 3% of cases, with S-CBD showing similar results. PSP-P was symmetrical in about 53–55% of cases, while PSP-CBS was symmetrical in fewer than half of the cases. MSA-C was symmetrical in around 40% of cases. It appears that MSA-P exhibits symmetry in about 15–35% of cases. CBS, according to the criteria, is a disease with an asymmetrical clinical presentation in 90–99% of cases. Similar results were obtained via imaging methods, but transcranial sonography produced different results. Conclusions: Determining neurodegeneration symmetry may help identify functional deficits and improve diagnostic accuracy. Patients with significant asymmetry in neurodegeneration may exhibit different neuropsychological symptoms based on their individual brain lateralization, impacting their cognitive functioning and quality of life. Full article
Show Figures

Figure 1

16 pages, 1466 KiB  
Article
Orbital Precession in Janis–Newman–Winicour Spacetime
by Bobur Turimov, Khurshid Karshiboev, Ahmadjon Abdujabbarov, Samik Mitra and Shavkat Karshiboev
Galaxies 2024, 12(5), 58; https://doi.org/10.3390/galaxies12050058 (registering DOI) - 28 Sep 2024
Abstract
We have investigated the Janis–Newman–Winicour spacetime through three fundamental tests of theories of gravity, namely, gravitational lensing, perihelion shift, and redshift due to gravitational force. Focusing initially on the circular motion of a massive particle within the equatorial plane, the analysis disregards external [...] Read more.
We have investigated the Janis–Newman–Winicour spacetime through three fundamental tests of theories of gravity, namely, gravitational lensing, perihelion shift, and redshift due to gravitational force. Focusing initially on the circular motion of a massive particle within the equatorial plane, the analysis disregards external scalar field interactions. The Janis–Newman–Winicour (JNW) spacetime’s unique parameters, mass (M) and the scalar parameter (n), are examined, revealing an intriguing relationship between the innermost stable circular orbit position of the test particle and the scalar field parameter. The study also explores photon motion around a gravitational object in JNW spacetime, revealing the expansion of the photon sphere alongside a diminishing shadow, influenced by the external scalar field. Despite these complexities, gravitational bending of light remains consistent with general relativity predictions. The investigation extends to perihelion precession, where the trajectory of a massive particle in JNW spacetime exhibits eccentricity-dependent shifts, distinguishing it from Schwarzschild spacetime. Finally, oscillatory motion of massive particles in JNW spacetime is explored, providing analytical expressions for epicyclic frequencies using perturbation methods. The study concludes with the application of MCMC analyses to constrain the JNW spacetime parameters based on observational data. Full article
Show Figures

Figure 1

13 pages, 4739 KiB  
Article
Multi-Frequency Asymmetric Absorption–Transmission Metastructures–Photonic Crystals and Their Application as a Refractive Index Sensor
by Lei Lei, Xiang Li and Haifeng Zhang
Sensors 2024, 24(19), 6281; https://doi.org/10.3390/s24196281 (registering DOI) - 28 Sep 2024
Viewed by 68
Abstract
In this paper, a kind of metastructure–photonic crystal (MPC) with multi-frequency asymmetric absorption–transmission properties is proposed. It is composed of various dielectric layers arranged in a periodically tilting pattern. When electromagnetic waves (EMWs) enter from the opposite direction, MPC shows an obvious asymmetry. [...] Read more.
In this paper, a kind of metastructure–photonic crystal (MPC) with multi-frequency asymmetric absorption–transmission properties is proposed. It is composed of various dielectric layers arranged in a periodically tilting pattern. When electromagnetic waves (EMWs) enter from the opposite direction, MPC shows an obvious asymmetry. EMWs are absorbed at 13.71 GHz, 14.37 GHz, and 17.10 GHz in forward incidence, with maximum absorptions of 0.919, 0.917, and 0.956, respectively. In the case of backward incidence, transmission above 0.877 is achieved. Additionally, the MPC is utilized for refractive index (RI) sensing, allowing for wide RI range detection. The refractive index unit is denoted as RIU. The RI detection range is 1.4~3.0, with the corresponding absorption peak variation range being 17.054~17.194 GHz, and a sensitivity of 86 MHz/RIU. By adjusting the number of MPC cycles and tilt angle, the sensing performance and operating frequency band can be tailored to meet various operational requirements. This MPC-based RI sensor is simple to fabricate and has the potential to be used in the development of high-performance and compact sensing devices. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

15 pages, 6740 KiB  
Article
Modulation Format Recognition Scheme Based on Discriminant Network in Coherent Optical Communication System
by Fangxu Yang, Qinghua Tian, Xiangjun Xin, Yiqun Pan, Fu Wang, José Antonio Lázaro, Josep M. Fàbrega, Sitong Zhou, Yongjun Wang and Qi Zhang
Electronics 2024, 13(19), 3833; https://doi.org/10.3390/electronics13193833 (registering DOI) - 28 Sep 2024
Viewed by 160
Abstract
In this paper, we skillfully utilize the discriminative ability of the discriminator to construct a conditional generative adversarial network, and propose a scheme that uses few symbols to achieve high accuracy recognition of modulation formats under low signal-to-noise ratio conditions in coherent optical [...] Read more.
In this paper, we skillfully utilize the discriminative ability of the discriminator to construct a conditional generative adversarial network, and propose a scheme that uses few symbols to achieve high accuracy recognition of modulation formats under low signal-to-noise ratio conditions in coherent optical communication. In the one thousand kilometres G.654E optical fiber transmission system, transmission experiments are conducted on the PDM-QPSK/-8PSK/-16QAM/-32QAM/-64QAM modulation format at 8G/16G/32G baud rates, and the signal-to-noise ratio parameters are traversed under experimental conditions. As a key technology in the next-generation elastic optical networks, the modulation format recognition scheme proposed in this paper achieves 100% recognition of the above five modulation formats without distinguishing signal transmission rates. The optical signal-to-noise ratio thresholds required to achieve 100% recognition accuracy are 12.4 dB, 14.3 dB, 15.4 dB, 16.2 dB, and 17.3 dB, respectively. Full article
(This article belongs to the Special Issue Advances in Optical Communication and Optical Computing)
Show Figures

Figure 1

14 pages, 1090 KiB  
Article
Modulation of High-Intensity Optical Properties in CdS/CdSe/CdS Spherical Quantum Wells by CdSe Layer Thickness
by Wenbin Xiang, Chunzheng Bai, Zhen Zhang, Bing Gu, Xiaoyong Wang and Jiayu Zhang
Nanomaterials 2024, 14(19), 1568; https://doi.org/10.3390/nano14191568 (registering DOI) - 27 Sep 2024
Viewed by 148
Abstract
Spherical quantum wells (SQWs) have proven to be excellent materials for suppressing Auger recombination due to their expanded confinement volume. However, research on the factors and mechanisms of their high-intensity optical properties, such as multiexciton properties and third-order optical nonlinearities, remains incomplete, limiting [...] Read more.
Spherical quantum wells (SQWs) have proven to be excellent materials for suppressing Auger recombination due to their expanded confinement volume. However, research on the factors and mechanisms of their high-intensity optical properties, such as multiexciton properties and third-order optical nonlinearities, remains incomplete, limiting further optimization of these properties. Here, a series of CdS/CdSe (xML)/CdS SQWs with varying CdSe layer thicknesses were prepared. The modulation effects of CdSe shell variations on the PL properties, defect distribution, biexciton binding energy, and third-order optical nonlinearities of the SQWs were investigated, and their impact on the material’s multiexciton properties was further analyzed. Results showed that the typical CdS/CdSe(3ML)/CdS sample exhibited a large volume-normalized two-photon absorption cross-section (18.17×102 GM/nm3) and favorable biexciton characteristics. Optical amplification was observed at 12.4 μJ/cm2 and 1.02 mJ/cm2 under one-photon (400 nm) and two-photon (800 nm) excitation, respectively. Furthermore, different amplified spontaneous emission spectra were observed for the first time under one/two-photon excitation. This phenomenon was attributed to thermal effects overcoming the biexciton binding energy. This study provides valuable insights for further optimizing multiexciton gain characteristics in SQWs and developing optical gain applications. Full article
18 pages, 6298 KiB  
Article
Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication
by Aayushi Soni, Linthish Pulikkool, Ravibabu Mulaveesala, Satish Kumar Dubey and Dalip Singh Mehta
Photonics 2024, 11(10), 914; https://doi.org/10.3390/photonics11100914 - 27 Sep 2024
Viewed by 254
Abstract
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color [...] Read more.
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color temperature (CCT), and CIE 1931 chromaticity coordinates of generic white LED sources are poor. This article presents the development of multi-color phosphors excited by a blue LED to improve light quality and bandwidth. A multi-layer stacking of phosphor layers excited by a blue LED led to the quenching of photoluminescence (PL) and showed limited bandwidth. To solve this problem, a lens-free, electrically powered, broadband white light source is designed by mounting multi-color phosphor LEDs in a co-planar ring-topology. The CRI, CCT, and CIE 1931 chromaticity coordinates of the designed lamp (DL) were found to be 90, 5114 K, and (0.33, 0.33), respectively, which is a good quality lamp for indoor lighting. CRI of DL was found to be 16% better than that of white LED (WL). Assessment of visible light communications (VLC) feasibility using the DL includes time interval error (TIE) of data pattern or jitter analysis, eye diagram, signal-to-noise ratio (SNR), fast Fourier transform (FFT), and power spectral density (PSD). DL transmits binary data stream faster than WL due to a reduction in rise time and total jitter by 31% and 39%, respectively. The autocorrelation function displayed a narrow temporal pulse for DL. The DL is beneficial for providing high-quality illumination indoors while minimizing PL quenching. Additionally, it is suitable for indoor VLC applications. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in LED Technology)
Show Figures

Figure 1

16 pages, 5704 KiB  
Article
Design and Manufacture of 30-Degree Projection Lens for Augmented Reality Waveguide
by Wen-Shing Sun, Ying-Shun Hsu, Chuen-Lin Tien, Wen-Kai Lin, Yi-Lun Su, Jun-Yi Yu, Shao-Kui Zhou, Yuan-Yan Liang, Wan-Pin Tsai, Chi Sun, Tsung-Xian Lee, Wei-Chia Su, Shiuan-Huei Lin and Ching-Cherng Sun
Micromachines 2024, 15(10), 1198; https://doi.org/10.3390/mi15101198 - 27 Sep 2024
Viewed by 165
Abstract
A projection lens with a 30-degree field of view is developed for use in augmented reality (AR) glasses, including a waveguide combiner designed for a 0.35-inch LCoS panel. The entrance pupil diameter of the lens is 14 mm and the lens has an [...] Read more.
A projection lens with a 30-degree field of view is developed for use in augmented reality (AR) glasses, including a waveguide combiner designed for a 0.35-inch LCoS panel. The entrance pupil diameter of the lens is 14 mm and the lens has an effective focal length of 16.443 mm; an F-number of 1.175. This paper has four key issues: optical projection lens design, lens manufacturing and assembly tolerance analysis, projection lens resolution testing, and AR glasses system resolution testing of panel images projected by the projection lens. After lens manufacture, the lens was tested, achieving a central field image quality of 57 cycles/mm, an angular resolution of 33 pixels per degree (PPD), a 0.7 field image quality of 40.3 cycles/mm, and an angular resolution of 23 pixels per degree (PPD). Imaging performance testing based on a diffraction-type waveguide shows a resolution of 57 cycles/mm in the center area and an angular resolution of 33 PPD. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

14 pages, 6320 KiB  
Article
Radiosynthesis and Preclinical Evaluation of [99mTc]Tc-Tigecycline Radiopharmaceutical to Diagnose Bacterial Infections
by Syeda Marab Saleem, Tania Jabbar, Muhammad Babar Imran, Asma Noureen, Tauqir A. Sherazi, Muhammad Shahzad Afzal, Hafiza Zahra Rab Nawaz, Mohamed Fawzy Ramadan, Abdullah M. Alkahtani, Meshari A. Alsuwat, Hassan Ali Almubarak, Maha Abdullah Momenah and Syed Ali Raza Naqvi
Pharmaceuticals 2024, 17(10), 1283; https://doi.org/10.3390/ph17101283 - 27 Sep 2024
Viewed by 180
Abstract
Background/Objectives: As a primary source of mortality and disability, bacterial infections continue to develop a severe threat to humanity. Nuclear medicine imaging (NMI) is known for its promising potential to diagnose deep-seated bacterial infections. This work aims to develop a new technetium-99m ( [...] Read more.
Background/Objectives: As a primary source of mortality and disability, bacterial infections continue to develop a severe threat to humanity. Nuclear medicine imaging (NMI) is known for its promising potential to diagnose deep-seated bacterial infections. This work aims to develop a new technetium-99m (99mTc) labeled tigecycline radiopharmaceutical as an infection imaging agent. Methods: Reduced 99mTc was used to make a coordinate complex with tigecycline at pH 7.7–7.9 at room temperature. Instantaneous thin-layer chromatography impregnated with silica gel (ITLC-SG) and ray detector equipped high-performance liquid chromatography (ray-HPLC) was performed to access the radiolabeling yield and radiochemical purity (RCP). Results: More than 91% labeling efficiency was achieved after 25 min of mild shaking of the reaction mixture. The radiolabeled complex was found intact up to 4 h in saline. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection-induced rats were used to record the biodistribution of the radiopharmaceutical and its target specificity; 2 h’ post-injection biodistribution revealed a 2.39 ± 0.29 target/non-target (T/NT) ratio in the E. coli infection-induced animal model, while a 2.9 ± 0.31 T/NT value was recorded in the S. aureus bacterial infection-induced animal model. [99mTc]Tc-tigecycline scintigraphy was performed in healthy rabbits using a single photon emission computed tomography (SPECT) camera. Scintigrams showed normal kidney perfusion and excretion into the bladder. Conclusion: In conclusion, the newly developed [99mTc]Tc-tigecycline radiopharmaceutical could be considered to diagnose broad-spectrum bacterial infections. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

12 pages, 4178 KiB  
Article
Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection
by Chia-Ling Sung, Tzung-Ta Kao and Yu-Cheng Lin
Nanomaterials 2024, 14(19), 1562; https://doi.org/10.3390/nano14191562 - 27 Sep 2024
Viewed by 163
Abstract
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) [...] Read more.
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) create an effective SERS substrate, with additional hotspots at branch junctures enhancing LSPR. We achieve differential LSPR effects by varying the distribution and spacing of branches and the overall morphology. Adjustments to electrodeposition parameters, such as current and plating solution protective agents on an anodized aluminum oxide (AAO) base, allow for precise control over LSPR intensities. By pre-depositing AgNPs, the electron transmission paths during electrodeposition are modified, which leads to optimized dendritic morphology and enhanced LSPR effects. Parameter optimization produces elongated rods with main and secondary branches, covered with uniformly sized, densely packed, non-overlapping spherical AgNPs. This configuration enhances the LSPR effect by generating additional hotspots beyond the branch tips. Fine-tuning the electrodeposition parameters improved the AgNPs’ morphology, achieving uniform particle distribution and optimal spacing. Compared to non-SERS substrates, our structure amplified the Raman signal for lactic acid detection by five orders of magnitude. This method can effectively tailor SERS substrates for specific analytes and laser-based detection. Full article
(This article belongs to the Special Issue Nanomaterial-Based SERS Sensing and Detection Technology)
Show Figures

Figure 1

12 pages, 7954 KiB  
Article
A Novel Two Variables PID Control Algorithm in Precision Clock Disciplining System
by Xinyu Miao, Changjun Hu and Yaojun Qiao
Electronics 2024, 13(19), 3820; https://doi.org/10.3390/electronics13193820 - 27 Sep 2024
Viewed by 177
Abstract
Proportion Integration Differentiation (PID) is a common clock disciplining algorithm. In satellite clock source equipment and in Internet of Things (IoT) sensor nodes it is usually required that both time and frequency signals have high accuracy. Because the traditional PID clock disciplining method [...] Read more.
Proportion Integration Differentiation (PID) is a common clock disciplining algorithm. In satellite clock source equipment and in Internet of Things (IoT) sensor nodes it is usually required that both time and frequency signals have high accuracy. Because the traditional PID clock disciplining method used in the equipment only performs PID calculation and feedback control on single variable, such as frequency, the time accuracy error of the clock source is large and even has inherent deviation. By using the integral relationship between frequency and time, a new two variables PID control algorithm for high-precision clock disciplining is proposed in this paper. Time is taken as the constraint variable to make the time deviation converge. It can guarantee a high accuracy of time and high long-term stability of frequency. At the same time, frequency is taken as the feedback variable to make frequency obtain fast convergence. It can ensure high short-term stability of the frequency and the continuity of time. So, it can make the time and frequency of the disciplined clock have high accuracy and stability at the same time. In order to verify the effectiveness of the proposed algorithm, it is simulated based on the GNSS disciplined clock model. The GNSS time after Kalman filtering is used as the time reference to discipline the local clock. The simulation results show that the time deviation range of a local clock after convergence is −0.38 ns∼0.31 ns, the frequency accuracy is better than 1×1015 averaging over one day, and the long-term time stability (TDEV) for a day is about 7 ps when using the two variables PID algorithm. Compared with the single variable PID algorithm, the time accuracy of the two variables PID algorithm is improved by about one order of magnitude and the long-term time stability (TDEV) is improved by about two orders of magnitude. The research results indicate that the two variables PID control algorithm has great application potential for the development of clock source equipment and other bivariate disciplining scenarios. Full article
(This article belongs to the Special Issue Precise Timing and Security in Internet of Things)
Show Figures

Figure 1

67 pages, 7794 KiB  
Review
Radiation Detectors and Sensors in Medical Imaging
by Christos Michail, Panagiotis Liaparinos, Nektarios Kalyvas, Ioannis Kandarakis, George Fountos and Ioannis Valais
Sensors 2024, 24(19), 6251; https://doi.org/10.3390/s24196251 - 26 Sep 2024
Viewed by 296
Abstract
Medical imaging instrumentation design and construction is based on radiation sources and radiation detectors/sensors. This review focuses on the detectors and sensors of medical imaging systems. These systems are subdivided into various categories depending on their structure, the type of radiation they capture, [...] Read more.
Medical imaging instrumentation design and construction is based on radiation sources and radiation detectors/sensors. This review focuses on the detectors and sensors of medical imaging systems. These systems are subdivided into various categories depending on their structure, the type of radiation they capture, how the radiation is measured, how the images are formed, and the medical goals they serve. Related to medical goals, detectors fall into two major areas: (i) anatomical imaging, which mainly concerns the techniques of diagnostic radiology, and (ii) functional-molecular imaging, which mainly concerns nuclear medicine. An important parameter in the evaluation of the detectors is the combination of the quality of the diagnostic result they offer and the burden of the patient with radiation dose. The latter has to be minimized; thus, the input signal (radiation photon flux) must be kept at low levels. For this reason, the detective quantum efficiency (DQE), expressing signal-to-noise ratio transfer through an imaging system, is of primary importance. In diagnostic radiology, image quality is better than in nuclear medicine; however, in most cases, the dose is higher. On the other hand, nuclear medicine focuses on the detection of functional findings and not on the accurate spatial determination of anatomical data. Detectors are integrated into projection or tomographic imaging systems and are based on the use of scintillators with optical sensors, photoconductors, or semiconductors. Analysis and modeling of such systems can be performed employing theoretical models developed in the framework of cascaded linear systems analysis (LCSA), as well as within the signal detection theory (SDT) and information theory. Full article
(This article belongs to the Special Issue Multiple Sensor Signal and Image Processing for Clinical Application)
15 pages, 1500 KiB  
Review
Singlet Oxygen in Photodynamic Therapy
by Shengdong Cui, Xingran Guo, Sen Wang, Zhe Wei, Deliang Huang, Xianzeng Zhang, Timothy C. Zhu and Zheng Huang
Pharmaceuticals 2024, 17(10), 1274; https://doi.org/10.3390/ph17101274 - 26 Sep 2024
Viewed by 277
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that depends on the interaction of light, photosensitizers, and oxygen. The photon absorption and energy transfer process can lead to the Type II photochemical reaction of the photosensitizer and the production of singlet oxygen (1 [...] Read more.
Photodynamic therapy (PDT) is a therapeutic modality that depends on the interaction of light, photosensitizers, and oxygen. The photon absorption and energy transfer process can lead to the Type II photochemical reaction of the photosensitizer and the production of singlet oxygen (1O2), which strongly oxidizes and reacts with biomolecules, ultimately causing oxidative damage to the target cells. Therefore, 1O2 is regarded as the key photocytotoxic species accountable for the initial photodynamic reactions for Type II photosensitizers. This article will provide a comprehensive review of 1O2 properties, 1O2 production, and 1O2 detection in the PDT process. The available 1O2 data of regulatory-approved photosensitizing drugs will also be discussed. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2023)
Show Figures

Figure 1

13 pages, 9197 KiB  
Article
Terahertz Refractive Index and Temperature Dual-Parameter Sensor Based on Surface Plasmon Resonance in Two-Channel Photonic Crystal Fiber
by Doudou Wang, Wenchuan Guo, Yizu Zou, Tian Ma, Weifeng Wang and Guoxiang Chen
Sensors 2024, 24(19), 6225; https://doi.org/10.3390/s24196225 - 26 Sep 2024
Viewed by 227
Abstract
A terahertz photonic crystal fiber with two sensing channels was designed. Graphene coated on the micro-grooves in the cladding was used as plasma material to introduce tunability. The dispersion relation, mode coupling, and sensing characteristics of the fiber were studied using the finite [...] Read more.
A terahertz photonic crystal fiber with two sensing channels was designed. Graphene coated on the micro-grooves in the cladding was used as plasma material to introduce tunability. The dispersion relation, mode coupling, and sensing characteristics of the fiber were studied using the finite element method. Ultrahigh sensitivity of 2.014 THz/RIU and 0.734 GHz/°C were obtained for analytes with refractive index in the range of 1.33 to 1.4 and environment temperature in the range of 10–60 °C, respectively. Refractive index resolution can reach the order of 10−5. The dual parameter simultaneous detection, dynamic tunable characteristics, and working in the low-frequency range of terahertz enable the designed photonic crystal fiber to have application prospects in the field of biosensing. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 5856 KiB  
Article
Alleviating Effects of Methyl Jasmonate on Pepper (Capsicum annuum L.) Seedlings under Low-Temperature Combined with Low-Light Stress
by Kaiguo Pu, Nenghui Li, Yanqiang Gao, Miao Zhang, Tiantian Wang, Jianming Xie and Jing Li
Plants 2024, 13(19), 2694; https://doi.org/10.3390/plants13192694 - 26 Sep 2024
Viewed by 290
Abstract
Low temperature combined with low light (LL) is an important factor limiting pepper quality and yield. ‘Hang Jiao No. 2′ were used as experimental materials, and different concentrations of MeJA (T1 (0 μM), T2 (100 μM), T3 (150 μM), T4 (200 μM), T5 [...] Read more.
Low temperature combined with low light (LL) is an important factor limiting pepper quality and yield. ‘Hang Jiao No. 2′ were used as experimental materials, and different concentrations of MeJA (T1 (0 μM), T2 (100 μM), T3 (150 μM), T4 (200 μM), T5 (250 μM) and T6 (300 μM)) were sprayed under LL stress to explore the positive effect of exogenous methyl jasmonate (MeJA) on peppers under LL stress. The photosynthetic properties, osmoregulatory substance, reactive oxygen species, antioxidant enzyme activities, and related gene expressions of the peppers were measured. Our results demonstrated that 200 μM MeJA treatment significantly increased chlorophyll content, light quantum flux per active RC electron transfer (Eto/RC), maximum captured photonic flux per active RC (TRo/RC), energy flux for electron transfer in the excitation cross section (Eto/CSm), energy flux captured by absorption in the excitation cross section (TRo/CSm), soluble protein, and soluble sugar content. Moreover, it significantly improved the maximum photochemical efficiency of PSII (Fv/Fm) and performance index based on absorbed light energy (PI (abs)) by 56.77% and 67.00%, respectively, and significantly decreased malondialdehyde (MDA) content and relative conductivity by 30.55% and 28.17%, respectively. Additionally, antioxidant enzyme activities were elevated, and the expression of the related genes was activated in pepper seedlings under stress, leading to a significant reduction in reactive oxygen species content. In conclusion, our findings confirmed that 200 μM MeJA could reduce the injury of LL to pepper leaves to the photosynthetic organs of pepper leaves, protect the integrity of the cell membrane, and further improve the tolerance of pepper seedlings to LL. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 8278 KiB  
Article
Lidar-Observed Diel Vertical Variations of Inland Chlorophyll a Concentration
by Hongkai Zhao, Yudi Zhou, Qiuling Gu, Yicai Han, Hongda Wu, Peituo Xu, Lei Lin, Weige Lv, Lan Wu, Lingyun Wu, Chengchong Jiang, Yang Chen, Mingzhu Yuan, Wenbo Sun, Chong Liu and Dong Liu
Remote Sens. 2024, 16(19), 3579; https://doi.org/10.3390/rs16193579 - 26 Sep 2024
Viewed by 268
Abstract
The diel vertical variations of chlorophyll a (Chl-a) concentration are thought of primarily as an external manifestation of regulating phytoplankton’s biomass, which is essential for dynamically estimating the biogeochemical cycle in inland waters. However, information on these variations is limited due [...] Read more.
The diel vertical variations of chlorophyll a (Chl-a) concentration are thought of primarily as an external manifestation of regulating phytoplankton’s biomass, which is essential for dynamically estimating the biogeochemical cycle in inland waters. However, information on these variations is limited due to insufficient measurements. Undersampled observations lead to delayed responses in phytoplankton assessment, impacting accurate evaluations of carbon export and water quality in dynamic inland waters. Here, we report the first lidar-observed diel vertical variations of inland Chl-a concentration. Strong agreement with r2 of 0.83 and a root mean square relative difference (RMSRD) of 9.0% between the lidar-retrieved and in situ measured Chl-a concentration verified the feasibility of the Mie–fluorescence–Raman lidar (MFRL). An experiment conducted at a fixed observatory demonstrated the lidar-observed diel Chl-a concentration variations. The results showed that diel variations of Chl-a and the formation of subsurface phytoplankton layers were driven by light availability and variations in water temperature. Furthermore, the facilitation from solar radiation-regulated water temperature on the phytoplankton growth rate was revealed by the high correlation between water temperature and Chl-a concentration anomalies. Lidar technology is expected to provide new insights into continuous three-dimension observations and be of great importance in dynamic inland water ecosystems. Full article
Show Figures

Figure 1

Back to TopTop