Sign in to use this feature.

Years

Between: -

Search Results (1,915)

Search Parameters:
Keywords = porous metal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4223 KiB  
Article
One-Step Hydrothermally Synthesized Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 Heterostructure with Enhanced Rate Performance for Hybrid Supercapacitor Applications
by Mingjun Jing, Kaige Long, Rui Liu, Xingyu Wang, Tianjing Wu, Yirong Zhu, Lijie Liu, Sheng Zhang, Yang Zhang and Cheng Liu
Batteries 2024, 10(10), 339; https://doi.org/10.3390/batteries10100339 - 24 Sep 2024
Viewed by 355
Abstract
Transition metal phosphate is the prospective electrode material for supercapacitors (SCs). It has an open frame construction with spacious cavities and wide aisles, resulting in excellent electric storage capacity. However, the inferior rate behavior and cycling stability of transition metal phosphate materials in [...] Read more.
Transition metal phosphate is the prospective electrode material for supercapacitors (SCs). It has an open frame construction with spacious cavities and wide aisles, resulting in excellent electric storage capacity. However, the inferior rate behavior and cycling stability of transition metal phosphate materials in alkaline environments pose significant barriers to their application in SCs. Herein, Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 heterostructured materials synthesized through a one-step hydrothermal process exhibiting remarkable rate capability coupled with exceptional cycling endurance. Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 samples exhibit a micron-scale structure composed of sheet-like compositions and unique pore structure. The multistage pore structure is favorable for promoting the diffusion of protons and ions, enhancing the sample’s electrochemical storage capacity. Upon conducting electrochemical tests, it was observed that Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 composite electrode surpassed both the standalone Ni11(HPO3)8(OH)6 and Co3(HPO4)2(OH)2 electrode, achieving a remarkable specific capacity of 163 mAh g−1 with exceptional stability and efficiency at 1 A g−1. Notably, this electrode also exhibits superior rate performance, maintaining 82.5% and 71% of its original full capacity even at 50 A g−1 and 100 A g−1, respectively. Furthermore, it demonstrates superior stability in cycling, retaining a capacity of 92.7% at 10 A g−1 after 5000 cycles. Moreover, Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 and porous carbon (PC) were assembled into a hybrid supercapacitor (HSC). Electrochemical tests reveal an impressive power density of up to 36 kW kg−1 and an exceptional energy density of up to 47.4 Wh kg−1 for the HSC. Moreover, Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2//PC HSC exhibits robust capacity retention stability of 92.9% after enduring 10,000 cycles at 3 A g−1, demonstrating its remarkable durability. This work imparts viewpoints into the design of transition metal phosphate heterostructured materials. Full article
Show Figures

Figure 1

15 pages, 6123 KiB  
Article
Promoting Electricity Production and Cr (VI) Removal Using a Light–Rutile–Biochar Cathode for Microbial Fuel Cells
by Baoyin Sun, Wenqing Xie, Xiangwen Zhang, Yunzhu Zhou, Zhaolin Yang, Lei Wang, Jiqiang Zhou and Guiping Ren
Catalysts 2024, 14(9), 648; https://doi.org/10.3390/catal14090648 - 22 Sep 2024
Viewed by 831
Abstract
Microbial fuel cell (MFC) technology holds significant promise for the production of clean energy and treatment of pollutants. Nevertheless, challenges such as low power generation efficiency and the high cost of electrode materials have impeded its widespread adoption. The porous microstructure of biochar [...] Read more.
Microbial fuel cell (MFC) technology holds significant promise for the production of clean energy and treatment of pollutants. Nevertheless, challenges such as low power generation efficiency and the high cost of electrode materials have impeded its widespread adoption. The porous microstructure of biochar and the exceptional photocatalytic properties of rutile endow it with promising catalytic potential. In this investigation, we synthesized a novel Rutile–Biochar (Rut-Bio) composite material using biochar as a carrier and natural rutile, and explored its effectiveness as a cathode catalyst to enhance the power generation efficiency of MFCs, as well as its application in remediating heavy metal pollution. Furthermore, the impact of visible light conditions on its performance enhancement was explored. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis validated the successful fabrication of rutile composites loaded with biochar. The maximum current density and power density achieved by the MFCs were 153.9 mA/m2 and 10.44 mW/m2, respectively, representing a substantial increase of 113.5% and 225% compared to the control group. In addition, biochar-supported rutile MFCs showed excellent degradation performance of heavy metal pollutants under light conditions. Within 7 h, the Cr6+ degradation rate reached 95%. In contrast to the blank control group, the removal efficiency of pollutants exhibited increases of 630.8%. The cyclic degradation experiments also showcased the remarkable stability of the system over multiple cycles. This study successfully integrated natural rutile and biochar to fabricate highly efficient cathode photocatalyst composites, which not only enhanced the power generation performance of MFCs but also presented an environmentally sustainable and economically viable method for addressing heavy metal pollution. Full article
Show Figures

Figure 1

11 pages, 4905 KiB  
Article
Hierarchically Graphitic Carbon Structure Derived from Metal Ions Impregnated Harmful Inedible Seaweed as Energy-Related Material
by Yun-Mi Song, Hui Gyeong Park and Jung-Soo Lee
Materials 2024, 17(18), 4643; https://doi.org/10.3390/ma17184643 - 21 Sep 2024
Viewed by 702
Abstract
This study explored the development of hierarchical graphitic carbon structures (HGCs) from harmful inedible seaweed waste harvested in the summer. Elevated sea temperatures during the summer increase the cellulose content of seaweeds, making them unsuitable for consumption. By utilizing seaweed biomass, this study [...] Read more.
This study explored the development of hierarchical graphitic carbon structures (HGCs) from harmful inedible seaweed waste harvested in the summer. Elevated sea temperatures during the summer increase the cellulose content of seaweeds, making them unsuitable for consumption. By utilizing seaweed biomass, this study addresses critical marine environmental issues and provides a sustainable solution for promising electrode materials for energy storage devices. The fabrication process involved impregnating seaweed with Ni ions, followed by annealing to create a highly crystalline carbon structure. Subsequent etching produced numerous nano-sized pores and a large surface area (806 m2/g), significantly enhancing the number of electrically active sites. The resulting HGCs exhibited a high capacitance and maintained their capacity even after 10,000 cycles in fast-current systems. This innovative approach not only mitigates the environmental burden of seaweed waste but also offers a sustainable method for converting it into efficient energy storage materials. Full article
(This article belongs to the Special Issue Synthesis and Characterization Techniques for Nanomaterials)
Show Figures

Graphical abstract

21 pages, 3366 KiB  
Review
A Review of the Development of Titanium-Based and Magnesium-Based Metallic Glasses in the Field of Biomedical Materials
by Zeyun Cai, Peng Du, Kun Li, Lina Chen and Guoqiang Xie
Materials 2024, 17(18), 4587; https://doi.org/10.3390/ma17184587 - 19 Sep 2024
Viewed by 421
Abstract
This article reviews the research and development focus of metallic glasses in the field of biomedical applications. Metallic glasses exhibit a short-range ordered and long-range disordered glassy structure at the microscopic level, devoid of structural defects such as dislocations and grain boundaries. Therefore, [...] Read more.
This article reviews the research and development focus of metallic glasses in the field of biomedical applications. Metallic glasses exhibit a short-range ordered and long-range disordered glassy structure at the microscopic level, devoid of structural defects such as dislocations and grain boundaries. Therefore, they possess advantages such as high strength, toughness, and corrosion resistance, combining characteristics of both metals and glasses. This novel alloy system has found applications in the field of biomedical materials due to its excellent comprehensive performance. This review discusses the applications of Ti-based bulk metallic glasses in load-bearing implants such as bone plates and screws for long-term implantation. On the other hand, Mg-based metallic glasses, owing to their degradability, are primarily used in degradable bone nails, plates, and vascular stents. However, metallic glasses as biomaterials still face certain challenges. The Young’s modulus value of Ti-based metallic glasses is higher than that of human bones, leading to stress-shielding effects. Meanwhile, Mg-based metallic glasses degrade too quickly, resulting in the premature loss of mechanical properties and the formation of numerous bubbles, which hinder tissue healing. To address these issues, we propose the following development directions: (1) Introducing porous structures into titanium-based metallic glasses is an important research direction for reducing Young’s modulus; (2) To enhance the bioactivity of implant material surfaces, the surface modification of titanium-based metallic glasses is essential. (3) Developing antibacterial coatings and incorporating antibacterial metal elements into the alloys is essential to maintain the long-term effective antibacterial properties of metallic biomaterials. (4) Corrosion resistance must be further improved through the preparation of composite materials, while ensuring biocompatibility and safety, to achieve controllable degradation rates and degradation modes. Full article
(This article belongs to the Special Issue Liquid Metals: From Fundamentals to Applications)
Show Figures

Figure 1

24 pages, 11628 KiB  
Article
A Comprehensive Evaluation of Electrochemical Performance of Aluminum Hybrid Nanocomposites Reinforced with Alumina (Al2O3) and Graphene Oxide (GO)
by Muhammad Faizan Khan, Abdul Samad Mohammed and Ihsan-ul-Haq Toor
Metals 2024, 14(9), 1057; https://doi.org/10.3390/met14091057 - 16 Sep 2024
Viewed by 543
Abstract
The electrochemical performance of in-house developed, spark plasma-sintered, Aluminum metal–matrix composites (MMCs) was evaluated using different electrochemical techniques. X-ray diffraction (XRD) and Raman spectra were used to characterize the nanocomposites along with FE-SEM and EDS for morphological, structural, and elemental analysis, respectively. The [...] Read more.
The electrochemical performance of in-house developed, spark plasma-sintered, Aluminum metal–matrix composites (MMCs) was evaluated using different electrochemical techniques. X-ray diffraction (XRD) and Raman spectra were used to characterize the nanocomposites along with FE-SEM and EDS for morphological, structural, and elemental analysis, respectively. The highest charge transfer resistance (Rct), lowest corrosion current density, lowest electrochemical potential noise (EPN), and electrochemical current noise (ECN) were observed for GO-reinforced Al-MMC. The addition of honeycomb-like structure in the Al matrix assisted in blocking the diffusion of Cl or SO4−2. However, poor wettability in between Al matrix and Al2O3 reinforcement resulted in the formation of porous interface regions, leading to a degradation in the corrosion resistance of the composite. Post-corrosion surface analysis by optical profilometer indicated that, unlike its counterparts, the lowest surface roughness (Ra) was provided by GO-reinforced MMC. Full article
Show Figures

Figure 1

16 pages, 6270 KiB  
Article
C/Co3O4/Diatomite Composite for Microwave Absorption
by Yan Liao, Dashuang Wang, Wenrui Zhu, Zhilan Du, Fanbo Gong, Tuo Ping, Jinsong Rao, Yuxin Zhang and Xiaoying Liu
Molecules 2024, 29(18), 4336; https://doi.org/10.3390/molecules29184336 - 12 Sep 2024
Viewed by 339
Abstract
Transition metal oxides have been widely used in microwave-absorbing materials, but how to improve impedance matching is still an urgent problem. Therefore, we introduced urea as a polymer carbon source into a three-dimensional porous structure modified by Co3O4 nanoparticles and [...] Read more.
Transition metal oxides have been widely used in microwave-absorbing materials, but how to improve impedance matching is still an urgent problem. Therefore, we introduced urea as a polymer carbon source into a three-dimensional porous structure modified by Co3O4 nanoparticles and explored the influence of different heat treatment temperatures on the wave absorption properties of the composite. The nanomaterials, when calcined at a temperature of 450 °C, exhibited excellent microwave absorption capabilities. Specifically, at an optimized thickness of 9 mm, they achieved a minimum reflection loss (RLmin) of −97.3 dB, accompanied by an effective absorption bandwidth (EAB) of 9.83 GHz that comprehensively covered both the S and Ku frequency bands. On the other hand, with a thickness of 3 mm, the RLmin was recorded as −17.9 dB, with an EAB of 5.53 GHz. This excellent performance is attributed to the multi-facial polarization and multiple reflections induced by the magnetic loss capability of Co3O4 nanoparticles, the electrical conductivity of C, and the unique three-dimensional structure of diatomite. For the future development of bio-based microwave absorption, this work provides a methodology and strategy. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Green Chemistry, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 5062 KiB  
Article
Preparation of NH2-MIL-101(Fe) Metal Organic Framework and Its Performance in Adsorbing and Removing Tetracycline
by Yiting Luo and Rongkui Su
Int. J. Mol. Sci. 2024, 25(18), 9855; https://doi.org/10.3390/ijms25189855 - 12 Sep 2024
Viewed by 349
Abstract
Tetracycline’s accumulation in the environment poses threats to human health and the ecological balance, necessitating efficient and rapid removal methods. Novel porous metal–organic framework (MOF) materials have garnered significant attention in academia due to their distinctive characteristics. This paper focuses on studying the [...] Read more.
Tetracycline’s accumulation in the environment poses threats to human health and the ecological balance, necessitating efficient and rapid removal methods. Novel porous metal–organic framework (MOF) materials have garnered significant attention in academia due to their distinctive characteristics. This paper focuses on studying the adsorption and removal performance of amino-modified MIL-101(Fe) materials towards tetracycline, along with their adsorption mechanisms. The main research objectives and conclusions are as follows: (1) NH2-MIL-101(Fe) MOF materials were successfully synthesized via the solvothermal method, confirmed through various characterization techniques including XRD, FT-IR, SEM, EDS, XPS, BET, and TGA. (2) NH2-MIL-101(Fe) exhibited a 40% enhancement in tetracycline adsorption performance compared to MIL-101(Fe), primarily through chemical adsorption following pseudo-second-order kinetics. The adsorption process conformed well to Freundlich isotherm models, indicating multilayer and heterogeneous adsorption characteristics. Thermodynamic analysis revealed the adsorption process as a spontaneous endothermic reaction. (3) An increased adsorbent dosage and temperature correspondingly improved NH2-MIL-101(Fe)’s adsorption efficiency, with optimal performance observed under neutral pH conditions. These findings provide new strategies for the effective removal of tetracycline from the environment, thus holding significant implications for environmental protection. Full article
(This article belongs to the Special Issue Molecular Research on Nanosorbent Materials)
Show Figures

Figure 1

22 pages, 12410 KiB  
Article
Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized Polyaniline Bionanocomposites for Water Purification
by Mohd Saquib Tanweer, Zafar Iqbal, Adil Majeed Rather and Masood Alam
Water 2024, 16(18), 2576; https://doi.org/10.3390/w16182576 - 11 Sep 2024
Viewed by 387
Abstract
This study evaluates the preparation of novel ternary functional adsorbents based on polyaniline, zinc oxide nanoparticles, and moringa oleifera gum to produce zinc oxide/Moringa oleifera gum-grafted L-methionine-functionalized polyaniline bionanocomposites (ZM-g-Pani) and employed to sequestrate divalent metal ions (Cd2+, Hg2+ and [...] Read more.
This study evaluates the preparation of novel ternary functional adsorbents based on polyaniline, zinc oxide nanoparticles, and moringa oleifera gum to produce zinc oxide/Moringa oleifera gum-grafted L-methionine-functionalized polyaniline bionanocomposites (ZM-g-Pani) and employed to sequestrate divalent metal ions (Cd2+, Hg2+ and Pb2+) from wastewater samples. The morphological and structural properties of ZM-g-Pani were exploited using FT-IR, FE-SEM/EDS, TEM, and XRD. FT-IR and FE-SEM studies show that the as prepared nanocomposite has an abundant number of reactive groups and a porous structure, thus demonstrating outstanding divalent metal cation removal. FT-IR study confirms that the attachment of L-methionine to polyaniline is facilitated by the C-S linkage. Both TEM and FE-SEM techniques confirmed the clustered granules of ZnO over the surface of polyaniline, which ultimately provided more surface area to adsorb metal ions. The study demonstrated that Cd2+, Hg2+ and Pb2+ ions could undergo physical sorption and chemisorption simultaneously during the adsorption process. The maximum adsorption capacity was 840.33, 497.51, and 497.51 mg/g for Cd2+, Hg2+, and Pb2+, respectively. The impact of co-existing ions, including NO3, PO43−, SO42−, Cl, Na+, Cu2+, and Al3+, showed that there were no notable alterations in the adsorption of the selected metal ions with ZM-g-Pani. ZM-g-Pani showed eight successive regeneration cycles for Cd2+, Hg2+, and Pb2+ with more than 85% removal efficiency. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

22 pages, 7061 KiB  
Article
Preparation of Polymeric Aluminum Chloride-Loaded Porous Carbon and Evaluation of Its Pb2+ Immobilization Mechanisms in Soil
by Huanquan Cheng, Longgui Peng, Bin Zheng, Rong Wang, Jiushuang Huang and Jianye Yang
Agronomy 2024, 14(9), 2072; https://doi.org/10.3390/agronomy14092072 - 10 Sep 2024
Viewed by 399
Abstract
In recent years, the remediation of heavy metal-contaminated soils has attracted great attention worldwide. Previous research on the removal of toxic heavy metals from wastewater effluents through adsorption by typical solid wastes (e.g., fly ash and coal gangue) has mainly focused on the [...] Read more.
In recent years, the remediation of heavy metal-contaminated soils has attracted great attention worldwide. Previous research on the removal of toxic heavy metals from wastewater effluents through adsorption by typical solid wastes (e.g., fly ash and coal gangue) has mainly focused on the control of wastewater pollutants. In this study, a coal gangue (CG) by-product from Hancheng City was used as a raw material to prepare polymeric aluminum chloride-loaded coal gangue-based porous carbon (PAC-CGPC) by hydrothermal synthesis. This material was subsequently employed to assess its performance in mitigating Pb2+ in soils. In addition, the effects of the pore structure of the prepared material on the adsorption rates, adsorption mechanisms, and plant root uptakes of soil Pb2+ were investigated in this study. The raw CG and prepared PAC-CGPC materials exhibited specific surface areas of 1.8997 and 152.7892 m2/g, respectively. The results of adsorption kinetics and isotherms indicate that the adsorption of Pb2+ based on PAC-CGPC mainly follows a pseudo-second-order kinetic model, suggesting that chemisorption may be the dominant process. In addition, the adsorption isotherm results showed that the Freundlich model explained better the adsorption process of Pb2+, suggests that the adsorption sites of lead ions on APC-CGPC are not uniformly distributed and tend to be enriched in APC, and also shows the ion exchange between aluminum and lead ions. The thermodynamic model fitting results demonstrated the occurrence of spontaneous and exothermic PAC-CGPC-based adsorption of Pb2+, involving ion exchange and surface complexation. The effects of the PAC-CGPC addition on soybean plants were further explored through pot experiments. The results revealed substantial decreases in the Pb2+ contents in the soybean organs (roots, stems, and leaves) following the addition of the PAC-CGPC material at a dose of 3% compared with the control and raw CG groups. Furthermore, the addition of the PAC-CGPC material at a dose of 3% effectively reduced the bioavailable Pb2+ content in the soil by 82.11 and enhanced soybean growth by 15.3%. These findings demonstrated the inhibition effect of the PAC-CGPC material on the translocation of Pb2+ in the soybean seedlings. The modified CG adsorbent has highly pore structure and good hydrophilicity, making it prone to migration in unsaturated soils and, consequently, enhancing Pb2+ immobilization. This research provides theoretical support for the development of CG-based materials capable of immobilizing soil pollutants. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

23 pages, 21925 KiB  
Article
Optimising Sodium Borohydride Reduction of Platinum onto Nafion-117 in the Electroless Plating of Ionic Polymer–Metal Composites
by Eyman Manaf, Daniel P. Fitzpatrick, Clement L. Higginbotham and John G. Lyons
Actuators 2024, 13(9), 350; https://doi.org/10.3390/act13090350 - 10 Sep 2024
Viewed by 291
Abstract
The effects of process parameters on the electroless plating of ionic polymer–metal composites (IPMCs) were studied in this work. Specifically, the NaBH4 reduction of platinum onto Nafion-117 was characterised. The effects of the concurrent variation of NaBH4 concentration, stir time and [...] Read more.
The effects of process parameters on the electroless plating of ionic polymer–metal composites (IPMCs) were studied in this work. Specifically, the NaBH4 reduction of platinum onto Nafion-117 was characterised. The effects of the concurrent variation of NaBH4 concentration, stir time and temperature on surface resistance were studied through a full factorial design. The three-factor three-level factorial design resulted in 27 runs. Surface resistance was measured using a four-point probe. A regression model with an R2 value of 97.45% was obtained. Surface resistance was found to decrease with increasing stir time (20 to 60 min) and temperature (20 to 60 °C). These responses were attributed to increased platinisation rates, resulting in more uniform electrode deposition, confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDAX) analysis. Surface resistance decreased, going from 1% to 5% NaBH4 concentration, but increased from 5% to 10% concentration. This behaviour was attributed to surface morphology: increased grain size inducing porous electrodes, in line with findings in the literature. The maximum tip displacement, measured through a computer vision system, as well as the maximum blocking force, measured through an analytical balance setup, were obtained for all 27 samples. The varying results were discussed with regards to surface and cross-sectional SEMs, alongside EDAX analysis. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

20 pages, 7483 KiB  
Article
A One-Dimensional Computational Model to Identify Operating Conditions and Cathode Flow Channel Dimensions for a Proton Exchange Membrane Fuel Cell
by Nikolaj Maack Bielefeld, Rasmus Dockweiler Sørensen, Mikkel Jørgensen, Kristoffer Kure and Torsten Berning
Hydrogen 2024, 5(3), 624-643; https://doi.org/10.3390/hydrogen5030033 - 10 Sep 2024
Viewed by 805
Abstract
A one-dimensional computational model has been developed that can be used to identify operating conditions for the cathode side of a proton exchange membrane fuel cell such that both the inlet and outlet relative humidity is equal to 100%. By balancing the calculated [...] Read more.
A one-dimensional computational model has been developed that can be used to identify operating conditions for the cathode side of a proton exchange membrane fuel cell such that both the inlet and outlet relative humidity is equal to 100%. By balancing the calculated pressure drop along the cathode side flow channel with the change in molar composition, inlet conditions for the cathode side can be identified with the goal of avoiding channel flooding. The channel length, height, width and the land-to-channel width ratio are input parameters for the model so that it might be used to dimension the cathode flow field. The model can be used to calculate the limiting current density, and we are presenting unprecedented high values as a result of the high pressure drop along the flow channels. Such high current densities can ultimately result in a fuel cell power density beyond the typical value of 1.0–2.0 W/cm2 for automotive fuel cells. Full article
Show Figures

Figure 1

18 pages, 1508 KiB  
Review
Metal–Organic Frameworks as Promising Textile Flame Retardants: Importance and Application Methods
by Emilly Karoline Tonini Silva Volante, Vinícius Bonifácio Volante, Manuel José Lis, Siddanth Saxena, Meritxell Martí, Murilo Pereira Moisés, Marc Pallares, Guilherme Andreoli Gil and Fabricio Maestá Bezerra
Appl. Sci. 2024, 14(17), 8079; https://doi.org/10.3390/app14178079 - 9 Sep 2024
Viewed by 909
Abstract
We present a review of current research on promising flame retardants using specific methods of applying metal–organic frameworks (MOFs) to the highly flammable fibrous surface of cotton fabric. In this review, we initially address the reasons why the search for new flame retardants [...] Read more.
We present a review of current research on promising flame retardants using specific methods of applying metal–organic frameworks (MOFs) to the highly flammable fibrous surface of cotton fabric. In this review, we initially address the reasons why the search for new flame retardants has becomes critically important in textile finishing, the area responsible for adhering new functionalities to substrates. This addition of characteristics is closely linked to the nature of the fibers, so the reason for the improvement in cotton fabric in relation to flame retardancy is discussed. Furthermore, the development of highly porous nanomaterials that can generate composites with specific functions is described, as well as their application and methods of integration into textile surfaces. Finally, the main candidates for flame retardant functionality in cellulosic materials are identified. It is also hoped that this work will facilitate researchers to develop and formulate new methods of applying nanomaterials to textile substrates, with a view to becoming a reference for new research into the development of adhesion of emerging materials to traditional materials. Full article
Show Figures

Figure 1

14 pages, 8624 KiB  
Article
Rational Matching of Metal–Organic Frameworks and Polymers in Mixed Matrix Membranes for Efficient Propylene/Propane Separation
by Zijun Yu, Yuxiu Sun, Zhengqing Zhang, Chenxu Geng and Zhihua Qiao
Polymers 2024, 16(17), 2545; https://doi.org/10.3390/polym16172545 - 9 Sep 2024
Viewed by 457
Abstract
The exploitation of high-performance membranes selective for propylene is important for developing energy-efficient propylene/propane (C3H6/C3H8) separation technologies. Although metal–organic frameworks with a molecular sieving property have been considered promising filler materials in mixed-matrix membranes (MMMs), [...] Read more.
The exploitation of high-performance membranes selective for propylene is important for developing energy-efficient propylene/propane (C3H6/C3H8) separation technologies. Although metal–organic frameworks with a molecular sieving property have been considered promising filler materials in mixed-matrix membranes (MMMs), their use in practical applications has been challenging due to a lack of interface compatibility. Herein, we adopted a surface coordination strategy that involved rationally utilizing carboxyl-functionalized PIM-1 (cPIM) and ZIF-8 to prepare a mixed-matrix membrane for efficient propylene/propane separation. The interfacial coordination between the polymer and the MOF improves their compatibility and eliminates the need for additional modification of the MOF, thereby maximizing the inherent screening performance of the MOF filler. Additionally, the utilization of porous PIM-1 guaranteed the high permeability of the MMMs. The obtained MMMs exhibited excellent separation performance. The 30 wt% ZIF-8/cPIM-1 membrane performed the best, exhibiting a high C3H6 permeability of 1023 Barrer with a moderate C3H6/C3H8 selectivity of 13.97 under 2 bars of pressure. This work presents a method that can feasibly be used for the preparation of defect-free MOF-based MMMs for specific gas separations. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

15 pages, 11022 KiB  
Article
Nano-Hydroxyapatite Modified Tobacco Stalk-Based Biochar for Immobilizing Cd(II): Interfacial Adsorption Behavior and Mechanisms
by Tianfu Li, Xiaofei Li, Chaoran Shen, Dian Chen, Fuhua Li, Weicheng Xu, Xiaolian Wu and Yanping Bao
Processes 2024, 12(9), 1924; https://doi.org/10.3390/pr12091924 - 7 Sep 2024
Viewed by 551
Abstract
Biochar, an eco-friendly, porous carbon-rich material, is widely studied for immobilizing heavy metals in contaminated environments. This study prepared tobacco stalks, a typical agricultural waste, into biochar (TSB) modified by hydroxyapatite (HAP) at co-pyrolysis temperatures of 350 °C and 550 °C to explore [...] Read more.
Biochar, an eco-friendly, porous carbon-rich material, is widely studied for immobilizing heavy metals in contaminated environments. This study prepared tobacco stalks, a typical agricultural waste, into biochar (TSB) modified by hydroxyapatite (HAP) at co-pyrolysis temperatures of 350 °C and 550 °C to explore its Cd(II) adsorption behavior and relevant mechanisms. XRD, SEM–EDS, FTIR, and BET analyses revealed that HAP successfully incorporated onto TSB, enriching the surface oxygen-containing functional groups (P–O and carboxyl), and contributing to the enhancement of the specific surface area from 2.52 (TSB350) and 3.63 m2/g (TSB550) to 14.07 (HAP–TSB350) and 18.36 m2/g (HAP–TSB550). The kinetics of Cd(II) adsorption onto TSB and HAP–TSB is well described by the pseudo-second-order model. Isotherm results revealed that the maximum adsorption capacities of Cd(II) on HAP–TSB350 and HAP–TSB550 were approximately 13.17 and 14.50 mg/g, 2.67 and 9.24 times those of TSB350 and TSB550, respectively. The Cd(II) adsorption amounts on TSBs and HAP–TSBs increased significantly with increasing pH, especially in HAP–TSB550. Ionic strength effects and XPS analysis showed that Cd(II) adsorption onto HAP–TSBs occurred mainly via electrostatic interaction, cation exchange with Ca2+, complexation with P–O and –COOH, and surface precipitation. These findings will provide a modification strategy for the reutilization of tobacco agricultural waste in the remediation of heavy metal contaminated areas. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: Volume II)
Show Figures

Figure 1

15 pages, 4910 KiB  
Article
Point-of-Care Testing Kit for the Detection of Hexavalent Chromium by Carbohydrazide-Derived Graphitic Carbon Nitride
by Muniyandi Maruthupandi and Nae Yoon Lee
Chemosensors 2024, 12(9), 180; https://doi.org/10.3390/chemosensors12090180 - 5 Sep 2024
Viewed by 648
Abstract
Hexavalent chromium (Cr(VI)) ions are among the most common hazardous metals that pose a serious risk to human health, causing human carcinogenesis and chronic kidney damage. In this study, a point-of-care testing (POCT) kit is proposed for Cr(VI) ions detection at room temperature. [...] Read more.
Hexavalent chromium (Cr(VI)) ions are among the most common hazardous metals that pose a serious risk to human health, causing human carcinogenesis and chronic kidney damage. In this study, a point-of-care testing (POCT) kit is proposed for Cr(VI) ions detection at room temperature. The kit contains a hydrophobic parafilm, a nylon membrane to resist outflow, and a hydrophilic Whatman filter paper suitable for coating the fluorescent graphitic carbon nitride sheet (g-C3N4). Crystalline, nano-porous, blue-emitting g-C3N4 was produced by pyrolysis utilizing carbohydrazide. The electrostatic interactions between the g-C3N4 and Cr(VI) ions inhibit the fluorescence behavior. The POCT kit can be used for on-site Cr(VI) ion detection dependent upon the blue emission value. The detection limit was attained at 4.64 nM of Cr(VI) ions. This analytical methodology was utilized on real samples from tap, pond, river, and industrial wastewater. This POCT kit can be a useful alternative for on-site detection of Cr(VI) ions. Full article
(This article belongs to the Special Issue Rapid Point-of-Care Testing Technology and Application)
Show Figures

Graphical abstract

Back to TopTop