Sign in to use this feature.

Years

Between: -

Search Results (488)

Search Parameters:
Keywords = pulse event

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 571 KiB  
Article
The Importance of Orthostatic Increase in Pulse Wave Velocity in the Diagnosis of Early Vascular Aging
by Victor Dorogovtsev, Dmitry Yankevich, Andrey Martyushev-Poklad, Ilya Borisov and Andrey V. Grechko
J. Clin. Med. 2024, 13(19), 5713; https://doi.org/10.3390/jcm13195713 - 25 Sep 2024
Abstract
Background/Objectives: Vascular aging can be assessed by arterial stiffness measured through pulse wave velocity (PWV). Increased PWV predicts arterial hypertension, cardiovascular events and all-cause mortality. Detection of early signs of vascular aging remains an unmet problem. To search for the most sensitive [...] Read more.
Background/Objectives: Vascular aging can be assessed by arterial stiffness measured through pulse wave velocity (PWV). Increased PWV predicts arterial hypertension, cardiovascular events and all-cause mortality. Detection of early signs of vascular aging remains an unmet problem. To search for the most sensitive markers for the early increase in vascular stiffness in a healthy population. Methods: One-hundred and twenty healthy subjects were divided in three equal age groups: <30 years, 30–45 years and >45 years. Head-up tilt test (HUTT) protocol was applied, providing a standardized hydrostatic column height. PWV at the brachial–ankle artery site (baPWV) was measured using a multichannel sphygmomanometer ABI System 100 PWV in three positions: in the baseline horizontal (supine) position—baPWVb; during the head tilt-up with an individual angle of inclination—baPWVt; and when returning to supine. Results: The most sensitive marker of early stiffness increase in a healthy population is the relative orthostatic increase in baPWV, ΔbaPWV/baPWVb, where ΔbaPWV = baPWVt − baPWVb. The significance of differences in this parameter between the young and elderly groups reached p = 0.000075 and p = 0.000006, respectively. Conclusions: The proposed index ΔbaPWV/baPWVb can be considered as a promising sensitive early biomarker of vascular aging and as a potential effective indicator in cardiovascular prevention. A longitudinal cohort study is needed to confirm this assumption. Full article
(This article belongs to the Special Issue Advances in Vascular Aging)
Show Figures

Figure 1

10 pages, 255 KiB  
Article
Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides
by Michaela Kozakova, Carmela Morizzo, Giuseppe Penno, Dante Chiappino and Carlo Palombo
J. Clin. Med. 2024, 13(18), 5654; https://doi.org/10.3390/jcm13185654 - 23 Sep 2024
Abstract
Background/Objectives: This study compares the power of the radiofrequency (RF) signal reflected from the media layer (media power) of the common carotid artery (CCA) and the CCA stiffness between individuals with and without type 2 diabetes mellitus (T2DM). It also evaluates the associations [...] Read more.
Background/Objectives: This study compares the power of the radiofrequency (RF) signal reflected from the media layer (media power) of the common carotid artery (CCA) and the CCA stiffness between individuals with and without type 2 diabetes mellitus (T2DM). It also evaluates the associations of CCA media power with plasma glucose and lipid levels, as well as carotid stiffness. Methods: A total of 540 individuals, 115 with and 425 without T2DM (273 males, mean age = 64 ± 8 years) were studied using RF-based tracking of the right CCA. The following parameters were measured: CCA media thickness, luminal diameter, wall tensile stress (WTS), local pulse wave velocity (PWV), and media power. Results: Compared to the non-diabetic individuals, the T2DM patients had significantly higher CCA media thickness (652 ± 122 vs. 721 ± 138 microns, p < 0.005), luminal diameter (6.12 ± 0.78 vs. 6.86 ± 0.96 mm, p < 0.0005), media power (36.1 ± 4.8 vs. 39.3 ± 4.6, p < 0.0001), and PWV (7.65 ± 1.32 vs. 8.40 ± 1.89 m/s; p < 0.01), but comparable WTS (32.7 ± 10.4 vs. 33.1 ± 10.7 kPa; p = 0.25). In the entire population, CCA media power was independently associated with male sex, pulse pressure, current smoking, and T2DM; when T2DM was not included in the model, triglycerides emerged as an independent determinant of media power. The CCA PWV was independently associated with age, pulse pressure, media power, and T2DM. Conclusions: Our findings suggest the presence of structural changes in the arterial media of T2DM patients, leading to carotid stiffening and remodeling, aiming to preserve WTS. T2DM-related changes in arterial wall composition may be driven by high plasma triglyceride levels, which have previously been associated with both arterial stiffening and the incidence of CV events. Full article
(This article belongs to the Special Issue Advances in Vascular Stiffness: Part II)
25 pages, 5876 KiB  
Article
Effects of Expelled Air during Filling Operations with Blocking Columns in Water Pipelines of Undulating Profiles
by Vicente S. Fuertes-Miquel, Oscar E. Coronado-Hernández and Alfonso Arrieta-Pastrana
Fluids 2024, 9(9), 212; https://doi.org/10.3390/fluids9090212 - 11 Sep 2024
Abstract
Entrapped air pockets can cause failure in water distribution systems if air valves have not been appropriately designed for expelling air during filling manoeuvres performed by water utilities. One-dimensional mathematical models recently developed for studying this phenomenon do not consider the effect of [...] Read more.
Entrapped air pockets can cause failure in water distribution systems if air valves have not been appropriately designed for expelling air during filling manoeuvres performed by water utilities. One-dimensional mathematical models recently developed for studying this phenomenon do not consider the effect of blocking columns inside water pipelines. This research presents the development of a mathematical model for analysing the filling process in a pipeline with an undulating profile with various air valves, including blocking columns during starting-up water installations. The results show how different air pocket pressure peaks can be produced over transient events, which need to be analysed to ensure a successful procedure that guarantees pipeline safety during the pressure surge occurrence. In this study, an experimental set-up is analysed to observe the behaviour of two blocking columns during filling by comparing the air pocket pressure pulses. Full article
(This article belongs to the Special Issue Modelling Flows in Pipes and Channels)
Show Figures

Figure 1

14 pages, 7910 KiB  
Article
Pulsatile Left Ventricular Assistance in High-Risk Percutaneous Coronary Interventions: Short-Term Outcomes
by Josko Bulum, Marcelo B. Bastos, Ota Hlinomaz, Oren Malkin, Tomasz Pawlowski, Milan Dragula and Robert Gil
J. Clin. Med. 2024, 13(18), 5357; https://doi.org/10.3390/jcm13185357 - 10 Sep 2024
Abstract
Objectives: To document the real-world experience with the use of pneumatic pulsatile mechanical circulatory support (MCS) with the PulseCath iVAC2L during high-risk percutaneous coronary interventions (HR-PCIs). Background: The use of MCS in HR-PCIs may reduce the rate of major adverse cardiovascular events [...] Read more.
Objectives: To document the real-world experience with the use of pneumatic pulsatile mechanical circulatory support (MCS) with the PulseCath iVAC2L during high-risk percutaneous coronary interventions (HR-PCIs). Background: The use of MCS in HR-PCIs may reduce the rate of major adverse cardiovascular events (MACEs) at 90 days. The PulseCath iVAC2L is a short-term pulsatile transaortic left ventricular (LV) assist device that has been in use since 2014. The iVAC2L Registry tracks its safety and efficacy in a variety of hospitals worldwide. Methods: The iVAC2L Registry is a multicenter, observational registry that aggregates clinical data from patients treated with the iVAC2L worldwide. A total of 293 consecutive cases were retrospectively collected and analyzed. Estimated rates of in-hospital clinical endpoints were described. All-cause mortality was used as the primary endpoint and other outcomes of interest were used as secondary endpoints. The rates obtained were reported and contextualized. Results: The in-hospital rate of all-cause mortality was 1.0%, MACE was 3.1%. Severe hypotension occurred in 8.9% of patients. Major bleeding and major vascular complications occurred in 1.0% and 2.1%, respectively. Acute myocardial infarction occurred in 0.7% of patients. Cerebrovascular events occurred in 1.4% of patients. Cardiac arrest occurred in 1.7% of patients. A statistically significant improvement in blood pressure was observed with iVAC2L activation. Conclusions: The results of the present study suggest that the iVAC2L is capable of improving hemodynamics with a low rate of adverse events. However, confirmatory studies are needed to validate these findings. Full article
(This article belongs to the Special Issue Clinical Management of Patients with Heart Failure)
Show Figures

Figure 1

23 pages, 7024 KiB  
Article
Investigation of High Frequency Irreversible Electroporation for Canine Spontaneous Primary Lung Tumor Ablation
by Alayna N. Hay, Kenneth N. Aycock, Melvin F. Lorenzo, Kailee David, Sheryl Coutermarsh-Ott, Zaid Salameh, Sabrina N. Campelo, Julio P. Arroyo, Brittany Ciepluch, Gregory Daniel, Rafael V. Davalos and Joanne Tuohy
Biomedicines 2024, 12(9), 2038; https://doi.org/10.3390/biomedicines12092038 - 7 Sep 2024
Abstract
In this study, the feasibility of treating canine primary lung tumors with high-frequency irreversible electroporation (H-FIRE) was investigated as a novel lung cancer treatment option. H-FIRE is a minimally invasive tissue ablation modality that delivers bipolar pulsed electric fields to targeted cells, generating [...] Read more.
In this study, the feasibility of treating canine primary lung tumors with high-frequency irreversible electroporation (H-FIRE) was investigated as a novel lung cancer treatment option. H-FIRE is a minimally invasive tissue ablation modality that delivers bipolar pulsed electric fields to targeted cells, generating nanopores in cell membranes and rendering targeted cells nonviable. In the current study, canine patients (n = 5) with primary lung tumors underwent H-FIRE treatment with an applied voltage of 2250 V using a 2-5-2 µs H-FIRE waveform to achieve partial tumor ablation prior to the surgical resection of the primary tumor. Surgically resected tumor samples were evaluated histologically for tumor ablation, and with immunohistochemical (IHC) staining to identify cell death (activated caspase-3) and macrophages (IBA-1, CD206, and iNOS). Changes in immunity and inflammatory gene signatures were also evaluated in tumor samples. H-FIRE ablation was evident by the microscopic observation of discrete foci of acute hemorrhage and necrosis, and in a subset of tumors (n = 2), we observed a greater intensity of cleaved caspase-3 staining in tumor cells within treated tumor regions compared to adjacent untreated tumor tissue. At the study evaluation timepoint of 2 h post H-FIRE, we observed differential gene expression changes in the genes IDO1, IL6, TNF, CD209, and FOXP3 in treated tumor regions relative to paired untreated tumor regions. Additionally, we preliminarily evaluated the technical feasibility of delivering H-FIRE percutaneously under CT guidance to canine lung tumor patients (n = 2). Overall, H-FIRE treatment was well tolerated with no adverse clinical events, and our results suggest H-FIRE potentially altered the tumor immune microenvironment. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

15 pages, 279 KiB  
Article
Relationship of Non-Invasive Arterial Stiffness Parameters with 10-Year Atherosclerotic Cardiovascular Disease Risk Score in Post-COVID-19 Patients—The Results of a Cross-Sectional Study
by Danuta Loboda, Beata Sarecka-Hujar, Marta Nowacka-Chmielewska, Izabela Szoltysek-Boldys, Wioleta Zielinska-Danch, Michal Gibinski, Jacek Wilczek, Rafal Gardas, Mateusz Grabowski, Mateusz Lejawa, Andrzej Malecki and Krzysztof S. Golba
Life 2024, 14(9), 1105; https://doi.org/10.3390/life14091105 - 2 Sep 2024
Viewed by 383
Abstract
This study evaluated the relationship of non-invasive arterial stiffness parameters with an individual 10-year risk of fatal and non-fatal atherosclerotic cardiovascular disease (ASCVD) events in the cohort post-coronavirus disease 2019 (COVID-19). The study group included 203 convalescents aged 60.0 (55.0–63.0) and 115 (56.7%) [...] Read more.
This study evaluated the relationship of non-invasive arterial stiffness parameters with an individual 10-year risk of fatal and non-fatal atherosclerotic cardiovascular disease (ASCVD) events in the cohort post-coronavirus disease 2019 (COVID-19). The study group included 203 convalescents aged 60.0 (55.0–63.0) and 115 (56.7%) women. The ASCVD risk was assessed as low to moderate to very high based on medical history (for 62 participants with pre-existing ASCVD/diabetes/chronic kidney disease in the entire cohort) or calculated in percentages using the Systemic Coronary Risk Evaluation 2 (SCORE2) algorithm based on age, sex, smoking status, systolic blood pressure (BP), and non-high-density lipoprotein cholesterol (for 141 healthy participants). The stiffness index (SI) and reflection index (RI) measured by photoplethysmography, as well as pulse pressure (PP), calculated as the difference between systolic and diastolic BP, were markers of arterial stiffness. Stiffness parameters increased significantly with the increase in ASCVD risk in the entire cohort. In 30 (14.8%) patients in the low- to moderate-risk group, the median SI was 8.07 m/s (7.10–8.73), RI 51.40% (39.40–65.60), and PP 45.50 mmHg (40.00–57.00); in 111 (54.7%) patients in the high-risk group, the median SI was 8.70 m/s (7.40–10.03), RI 57.20% (43.65–68.40), and PP 54.00 mmHg (46.00–60.75); and in 62 (30.5%) patients in the very-high-risk group, the median was SI 9.27 m/s (7.57–10.44), RI 59.00% (50.40–72.40), and PP 60.00 mmHg (51.00–67.00). In healthy participants, the SI ≤ 9.0 m/s (sensitivity of 92.31%, area under the curve [AUC] 0.686, p < 0.001) based on the receiver operating characteristics was the most sensitive variable for discriminating low to moderate risk, and PP > 56.0 mmHg (sensitivity of 74.36%, AUC 0.736, p < 0.001) was used for discriminating very high risk. In multivariate logistic regression, younger age, female sex, PP ≤ 50 mmHg, SI ≤ 9.0 m/s, and triglycerides < 150 mg/dL had the best relationship with low to moderate SCORE2 risk. In turn, older age, currently smoking, PP > 56.0 mmHg, RI > 68.6%, and diastolic BP ≥ 90 mmHg were related to very high SCORE2 risk. In conclusion, arterial stiffness is significantly related to ASCVD risk in post-COVID-19 patients and can be helpful as a single risk marker in everyday practice. Cut-off points for arterial stiffness parameters determined based on SCORE2 may help make individual decisions about implementing lifestyle changes or pharmacological treatment of ASCVD risk factors Full article
(This article belongs to the Special Issue Human Health before, during, and after COVID-19)
16 pages, 11263 KiB  
Article
Optimizing Building Rehabilitation through Nondestructive Evaluation of Fire-Damaged Steel-Fiber-Reinforced Concrete
by Anastasios C. Mpalaskas, Violetta K. Kytinou, Adamantis G. Zapris and Theodore E. Matikas
Sensors 2024, 24(17), 5668; https://doi.org/10.3390/s24175668 - 31 Aug 2024
Viewed by 327
Abstract
Fire incidents pose significant threats to the structural integrity of reinforced concrete buildings, often necessitating comprehensive rehabilitation to restore safety and functionality. Effective rehabilitation of fire-damaged structures relies heavily on accurate damage assessment, which can be challenging with traditional invasive methods. This paper [...] Read more.
Fire incidents pose significant threats to the structural integrity of reinforced concrete buildings, often necessitating comprehensive rehabilitation to restore safety and functionality. Effective rehabilitation of fire-damaged structures relies heavily on accurate damage assessment, which can be challenging with traditional invasive methods. This paper explores the impact of severe damage due to fire exposure on the mechanical behavior of steel-fiber-reinforced concrete (SFRC) using nondestructive evaluation (NDE) techniques. After being exposed to direct fire, the SFRC specimens are subjected to fracture testing to assess their mechanical properties. NDE techniques, specifically acoustic emission (AE) and ultrasonic pulse velocity (UPV), are employed to assess fire-induced damage. The primary aim of this study is to reveal that AE parameters—such as amplitude, cumulative hits, and energy—are strongly correlated with mechanical properties and damage of SFRC due to fire. Additionally, AE monitoring is employed to assess structural integrity throughout the loading application. The distribution of AE hits and the changes in specific AE parameters throughout the loading can serve as valuable indicators for differentiating between healthy and thermally damaged concrete. Compared to the well-established relationship between UPV and strength in bending and compression, the sensitivity of AE to fracture events shows its potential for in situ application, providing new characterization capabilities for evaluating the post-fire mechanical performance of SFRC. The test results of this study reveal the ability of the examined NDE methods to establish the optimum rehabilitation procedure to restore the capacity of the fire-damaged SFRC structural members. Full article
Show Figures

Figure 1

21 pages, 1820 KiB  
Article
Enhanced Particle Classification in Water Cherenkov Detectors Using Machine Learning: Modeling and Validation with Monte Carlo Simulation Datasets
by Ticiano Jorge Torres Peralta, Maria Graciela Molina, Hernan Asorey, Ivan Sidelnik, Antonio Juan Rubio-Montero, Sergio Dasso, Rafael Mayo-Garcia, Alvaro Taboada, Luis Otiniano and for the LAGO Collaboration
Atmosphere 2024, 15(9), 1039; https://doi.org/10.3390/atmos15091039 - 28 Aug 2024
Viewed by 331
Abstract
The Latin American Giant Observatory (LAGO) is a ground-based extended cosmic rays observatory designed to study transient astrophysical events, the role of the atmosphere on the formation of secondary particles, and space-weather-related phenomena. With the use of a network of Water Cherenkov Detectors [...] Read more.
The Latin American Giant Observatory (LAGO) is a ground-based extended cosmic rays observatory designed to study transient astrophysical events, the role of the atmosphere on the formation of secondary particles, and space-weather-related phenomena. With the use of a network of Water Cherenkov Detectors (WCDs), LAGO measures the secondary particle flux, a consequence of the interaction of astroparticles impinging on the atmosphere of Earth. This flux can be grouped into three distinct basic constituents: electromagnetic, muonic, and hadronic components. When a particle enters a WCD, it generates a measurable signal characterized by unique features correlating to the particle’s type and the detector’s specific response. The resulting charge histograms from these signals provide valuable insights into the flux of primary astroparticles and their key characteristics. However, these data are insufficient to effectively distinguish between the contributions of different secondary particles. In this work, we extend our previous research by using detailed simulations of the expected atmospheric response to the primary flux and the corresponding response of our WCDs to atmospheric radiation. This dataset, which was created through the combination of the outputs of the ARTI and Meiga simulation frameworks, simulated the expected WCD signals produced by the flux of secondary particles during one day at the LAGO site in Bariloche, Argentina, situated at 865 m above sea level. This was achieved by analyzing the real-time magnetospheric and local atmospheric conditions for February and March of 2012, where the resultant atmospheric secondary-particle flux was integrated into a specific Meiga application featuring a comprehensive Geant4 model of the WCD at this LAGO location. The final output was modified for effective integration into our machine-learning pipeline. With an implementation of Ordering Points to Identify the Clustering Structure (OPTICS), a density-based clustering algorithm used to identify patterns in data collected by a single WCD, we have further refined our approach to implement a method that categorizes particle groups using advanced unsupervised machine learning techniques. This allowed for the differentiation among particle types and utilized the detector’s nuanced response to each, thus pinpointing the principal contributors within each group. Our analysis has demonstrated that applying our enhanced methodology can accurately identify the originating particles with a high degree of confidence on a single-pulse basis, highlighting its precision and reliability. These promising results suggest the feasibility of future implementations of machine-leaning-based models throughout LAGO’s distributed detection network and other astroparticle observatories for semi-automated, onboard and real-time data analysis. Full article
Show Figures

Figure 1

13 pages, 955 KiB  
Article
The Intrinsic Correlations between Prompt Emission and X-ray Flares of Gamma-Ray Bursts
by Xing-Ting Zhong, Si-Yuan Zhu, Li-Ming Zhuo, Zeng Zhang and Fu-Wen Zhang
Universe 2024, 10(9), 343; https://doi.org/10.3390/universe10090343 - 27 Aug 2024
Viewed by 302
Abstract
X-ray flare (XRF) is a common phenomenon in the X-ray afterglow of gamma-ray bursts (GRBs). Although it is commonly believed that XRFs may share a common origin with prompt emission, i.e., the “internal” origin, the origin of XRFs is still unknown. In this [...] Read more.
X-ray flare (XRF) is a common phenomenon in the X-ray afterglow of gamma-ray bursts (GRBs). Although it is commonly believed that XRFs may share a common origin with prompt emission, i.e., the “internal” origin, the origin of XRFs is still unknown. In this work, we compile a GRB sample containing 31 GRBs with a single XRF, a well-measured spectrum, and a redshift, and investigate the intrinsic properties and correlations between prompt emission and the XRFs of these events. We find that the distributions of main physical parameters of prompt emission and XRFs are basically log-normal. The median value of the rise time is shorter than the decay time for all flares, with a ratio of about 1:2, which is similar to the fast rise and exponential decay structure of prompt emission pulses. We also find that the prompt emission energy (Eiso) and peak luminosity (Liso) have tight correlations with XRF energy (EX,iso) and peak luminosity (LX,p), EisoEX,iso0.74 (LX,p0.62) and LisoEX,iso0.85 (LX,p0.68). However, the durations of prompt emissions are independent of the temporal properties of XRFs. Furthermore, we also analyze the three-parameter correlations between prompt emissions and XRFs, and find that there are tight correlations among the XRF peak time (Tp,z), LX,p, and Eiso/Liso, LX,pTp,z1.08Eiso0.84 and LX,pTp,z1.09Liso0.71. Interestingly, these results are very similar to the properties of an X-ray plateau in GRBs, which indicates that X-ray flares and plateaus may have the same physical origin, and strongly supports that the two emission components originate from the late-time activity of the central engine. Full article
Show Figures

Figure 1

22 pages, 1647 KiB  
Article
Nicotine’s Effects on Schizophrenia-like Symptoms in a Mice Model: Time Matters
by Ana Carolina Dutra-Tavares, Luciana Araújo Couto, Thainá P. Souza, Anais Bandeira-Martins, Juliana Oliveira Silva, Claudio C. Filgueiras, Anderson Ribeiro-Carvalho, Alex C. Manhães and Yael Abreu-Villaça
Brain Sci. 2024, 14(9), 855; https://doi.org/10.3390/brainsci14090855 - 25 Aug 2024
Viewed by 426
Abstract
Tobacco consumption in schizophrenia (SCHZ) patients is highly prevalent. Data support the occurrence of sequential events during comorbidity establishment, and both smoking first, SCHZ second and SCHZ first, smoking second sequences have been proposed. To investigate whether these two possibilities lead to distinct [...] Read more.
Tobacco consumption in schizophrenia (SCHZ) patients is highly prevalent. Data support the occurrence of sequential events during comorbidity establishment, and both smoking first, SCHZ second and SCHZ first, smoking second sequences have been proposed. To investigate whether these two possibilities lead to distinct outcomes of comorbidity, we used a phencyclidine-induced SCHZ model and nicotine exposure as a surrogate of smoking. C57Bl/6 mice were submitted to a protocol that either began with 4 days of phencyclidine exposure or 4 days of nicotine exposure. This period was followed by 5 days of combined phencyclidine + nicotine exposure. Locomotor sensitization and pre-pulse inhibition (PPI) were assessed due to their well-known associations with SCHZ as opposed to rearing, an unrelated behavior. Nicotine priming potentiated phencyclidine-evoked sensitization. However, nicotine exposure after SCHZ modeling did not interfere with phencyclidine’s effects. In the PPI test, nicotine after SCHZ modeling worsened the phencyclidine-evoked deficiency in males. In contrast, nicotine priming had no effects. Regarding rearing, nicotine priming failed to interfere with phencyclidine-mediated inhibition. Similarly, phencyclidine priming did not modify nicotine-mediated inhibition. The present results indicate that the sequence, either SCHZ-first or nicotine-first, differentially impacts comorbidity outcomes, a finding that is relevant for the identification of mechanisms of nicotine interference in the neurobiology of SCHZ. Full article
Show Figures

Graphical abstract

13 pages, 1539 KiB  
Article
The Response of Denitrification to Increasing Water Temperature and Nitrate Availability: The Case of a Large Lowland River (Po River, Northern Italy) under a Climate Change Scenario
by Maria Pia Gervasio, Giuseppe Castaldelli and Elisa Soana
Environments 2024, 11(8), 179; https://doi.org/10.3390/environments11080179 - 20 Aug 2024
Viewed by 295
Abstract
Water warming and nutrient pulses following extreme rainfall events, both consequences of climate change, may have a profound impact on the biogeochemical dynamics of large temperate rivers, such as the Po River (Northern Italy), affecting denitrification capacity and the delivery of N loads [...] Read more.
Water warming and nutrient pulses following extreme rainfall events, both consequences of climate change, may have a profound impact on the biogeochemical dynamics of large temperate rivers, such as the Po River (Northern Italy), affecting denitrification capacity and the delivery of N loads to terminal water bodies. Manipulative experiments on denitrification kinetics were carried out using dark laboratory incubations of intact sediment cores collected from the lower Po River. Denitrification was measured along temperature and NO3 concentration gradients using 15N additions, in summer and autumn, the two seasons when climate change-induced warming has been shown to be higher. The combination of increased temperatures and pulsed NO3-enhanced denitrification, suggesting that electron acceptor availability limits the process. The direct link between climate change-induced effects and the positive response of denitrification may have implications for the improvement of water quality in the coastal zone, as it may help to partially buffer N export, especially in summer, when the risk of eutrophication is higher. Further research is needed to investigate the quality and quantity of sediment organic matter as important drivers regulating river denitrification. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

14 pages, 4318 KiB  
Article
CFD Methodology to Capture the Combustion Behavior of a Conventional Diesel Engine Retrofitted to Operate in Gasoline Compression Ignition Mode
by Davide Viscione, Vittorio Ravaglioli, Valerio Mariani, Giacomo Silvagni and Gian Marco Bianchi
Energies 2024, 17(16), 4061; https://doi.org/10.3390/en17164061 - 16 Aug 2024
Viewed by 369
Abstract
The need for a cleaner and more efficient transportation sector emphasizes the development of new technologies aimed at the integrated reduction of pollutant emissions and increases in efficiency. Among these, promising technologies such as low-temperature combustion (LTC) systems operate in the field of [...] Read more.
The need for a cleaner and more efficient transportation sector emphasizes the development of new technologies aimed at the integrated reduction of pollutant emissions and increases in efficiency. Among these, promising technologies such as low-temperature combustion (LTC) systems operate in the field of the combustion physics, combining the attributes of both spark-ignited (SI) and compression-ignited (CI) engines. In particular, in a gasoline compression ignition (GCI) engine, gasoline is injected in closely spaced multiple pulses near the top dead center (TDC), creating a highly stratified charge which locally auto-ignites based on the thermodynamic conditions. In this work, a sectorial mesh of the combustion chamber was built. Initial and boundary conditions were set according to a one-dimensional model of the engine from a GT-suite platform. Then, a dedicated Matlab R2023b code was used to capture the effect of the pressure wave propagation on the shape of the fuel mass rate in closely spaced multiple injection events. Finally, a 3D-CFD code was validated comparing pressure trace, rate of heat release (RoHR) and emissions with experimental data provided by the test bench. The results highlight the robustness of the tabulated combustion model, which is able to capture the auto-ignition delay with a considerably low amount of computational time compared to common detailed kinetic solvers. Full article
(This article belongs to the Special Issue Advances in Ignition Technology for Combustion Engines)
Show Figures

Figure 1

12 pages, 1111 KiB  
Article
Effect of FluoRoquinolones on Aortic Growth, aortic stIffness and wave refLEctionS (FRAGILES study)
by Vasiliki Gardikioti, Christos Georgakopoulos, Eirini Solomou, Emilia Lazarou, Konstantinos Fasoulakis, Dimitrios Terentes-Printzios, Konstantinos Tsioufis, Dimitrios Iliopoulos and Charalambos Vlachopoulos
Life 2024, 14(8), 992; https://doi.org/10.3390/life14080992 - 9 Aug 2024
Viewed by 444
Abstract
Background: The widespread use of fluoroquinolones has been associated with the formation, dissection, and rupture of aortic aneurysms. Arterial biomarkers are established predictors of cardiovascular events. The present study was designed to investigate the effect of quinolones on arterial stiffness and aortic [...] Read more.
Background: The widespread use of fluoroquinolones has been associated with the formation, dissection, and rupture of aortic aneurysms. Arterial biomarkers are established predictors of cardiovascular events. The present study was designed to investigate the effect of quinolones on arterial stiffness and aortic size for the first time. Methods: We studied 28 subjects receiving short-term (<15 days) antibiotic therapy involving quinolones and 27 age- and sex-matched subjects receiving an alternative to quinolone antibiotics. The follow-up period was approximately 2 months. The study’s primary endpoint was the carotid–femoral pulse wave velocity (cfPWV) difference between the two groups 2 months after therapy initiation. Secondary endpoints were the augmentation index corrected for heart rate (AIx@75) and sonographically assessed aortic diameters 2 months after the initial treatment. Results: Subjects had similar values of arterial biomarkers, blood pressure measurements, and aortic diameters at baseline. At follow-up, no significant change was observed between the two groups regarding the hemodynamic parameters and arterial biomarkers (p > 0.05 for all), i.e., cfPWV (7.9 ± 2.6 m/s for the control group vs. 8.1 ± 2.4 m/s for the fluoroquinolones group; p = 0.79), AIx@75 (22.6 ± 9.0% for the control group vs. 26.6 ± 8.1% for the fluoroquinolones group; p = 0.09), and aortic diameters. Conclusions: To our knowledge, FRAGILES is the first study to provide insights into the possible effects of fluoroquinolones on arterial biomarkers, showing that, at least in the short term, treatment with fluoroquinolones does not affect aortic function and diameter. Full article
Show Figures

Figure 1

16 pages, 926 KiB  
Article
Adaptive Detection in Real-Time Gait Analysis through the Dynamic Gait Event Identifier
by Yifan Liu, Xing Liu, Qianhui Zhu, Yuan Chen, Yifei Yang, Haoyu Xie, Yichen Wang and Xingjun Wang
Bioengineering 2024, 11(8), 806; https://doi.org/10.3390/bioengineering11080806 - 8 Aug 2024
Viewed by 643
Abstract
The Dynamic Gait Event Identifier (DGEI) introduces a pioneering approach for real-time gait event detection that seamlessly aligns with the needs of embedded system design and optimization. DGEI creates a new standard for gait analysis by combining software and hardware co-design with real-time [...] Read more.
The Dynamic Gait Event Identifier (DGEI) introduces a pioneering approach for real-time gait event detection that seamlessly aligns with the needs of embedded system design and optimization. DGEI creates a new standard for gait analysis by combining software and hardware co-design with real-time data analysis, using a combination of first-order difference functions and sliding window techniques. The method is specifically designed to accurately separate and analyze key gait events such as heel strike (HS), toe-off (TO), walking start (WS), and walking pause (WP) from a continuous stream of inertial measurement unit (IMU) signals. The core innovation of DGEI is the application of its dynamic feature extraction strategies, including first-order differential integration with positive/negative windows, weighted sleep time analysis, and adaptive thresholding, which together improve its accuracy in gait segmentation. The experimental results show that the accuracy rate of HS event detection is 97.82%, and the accuracy rate of TO event detection is 99.03%, which is suitable for embedded systems. Validation on a comprehensive dataset of 1550 gait instances shows that DGEI achieves near-perfect alignment with human annotations, with a difference of less than one frame in pulse onset times in 99.2% of the cases. Full article
Show Figures

Graphical abstract

12 pages, 498 KiB  
Article
The Evaluation Value of Non-Invasive Indices of Arterial Stiffness in the Early Stage of Coronary Artery Disease: Preliminary Results from an Exploratory Study
by Fei Wang, Hui Zhang, Kotaro Uchida, Takuya Sugawara, Shintaro Minegishi, Hiroshi Doi, Rie Nakashima-Sasaki, Lin Chen and Tomoaki Ishigami
J. Vasc. Dis. 2024, 3(3), 278-289; https://doi.org/10.3390/jvd3030022 - 8 Aug 2024
Viewed by 295
Abstract
Background: Recently, the arterial velocity pulse index (AVI) and arterial pressure volume index (API) have been used to evaluate arterial stiffness and endothelial function. As arterial stiffness and endothelial injury are risk factors for coronary artery disease (CAD), these two indexes are therefore [...] Read more.
Background: Recently, the arterial velocity pulse index (AVI) and arterial pressure volume index (API) have been used to evaluate arterial stiffness and endothelial function. As arterial stiffness and endothelial injury are risk factors for coronary artery disease (CAD), these two indexes are therefore expected to predict and evaluate the future risk of CAD and cardiovascular events before clinical manifestations. Methods: A total of 90 consecutive patients with coronary angiography (CAG) were enrolled. After excluding normal patients and acute coronary syndrome patients, forty-seven patients with CAD and thirty-two patients with coronary atherosclerosis, and baseline characteristics data were collected. A multifunctional blood pressure monitoring device, AVE-1500 (Shisei Datum, Tokyo, Japan), was used to measure the AVI and API before CAG, and immediately and 2 h, 24 h, and 48 h after CAG and (or) PCI in all the selected participants. Results: After adjusting for various variables using stepwise multiple linear regression analyses, we found that the AVI in the CAD subjects was significantly higher than that in the coronary atherosclerosis subjects before CAG (p = 0.02), immediately after CAG/PCI (p = 0.01), and 48 h after CAG/PCI (p = 0.01), whereas the AVI decreased 24–48 h rather than immediately after CAG/PCI in the CAD group. Moreover, we also found that the API clearly changed in both groups during the periprocedural period of CAG (p = 0.01). Conclusions: In accordance with the results, we propose that the API and AVI may be useful for predicting the early stage of CAD and may be promising as indicators to assess the effect of early revascularization. Full article
(This article belongs to the Section Peripheral Vascular Diseases)
Show Figures

Figure 1

Back to TopTop