Sign in to use this feature.

Years

Between: -

Search Results (17)

Search Parameters:
Keywords = trabecular metal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2464 KiB  
Article
Biocompatibility Evaluation of an Artificial Metallic Bone with Lattice Structure for Reconstruction of Bone Defect
by Erika Yasuge, Tadashi Kawai, Shinsuke Kawamata, Isao Hoshi, Tadaharu Minamino, Shingo Kurosu and Hiroyuki Yamada
Materials 2024, 17(17), 4286; https://doi.org/10.3390/ma17174286 - 29 Aug 2024
Viewed by 399
Abstract
Mandibular reconstruction for large bone defects is performed with consideration of patients’ specific morphology and sufficient strength. Metal additive manufacturing techniques have been used to develop biomaterials for mandibular reconstruction. Titanium artificial mandibles with a lattice structure have been proposed, and the optimal [...] Read more.
Mandibular reconstruction for large bone defects is performed with consideration of patients’ specific morphology and sufficient strength. Metal additive manufacturing techniques have been used to develop biomaterials for mandibular reconstruction. Titanium artificial mandibles with a lattice structure have been proposed, and the optimal conditions for their strength to withstand mechanical stress around the mandible have been reported. This study investigated the biocompatibility of a titanium artificial bone with a lattice structure fabricated under optimal conditions. The samples were fabricated using metal additive manufacturing. Body diagonals with nodes (BDN) were selected as suitable lattice structures. Dode medium (DM) was selected for comparison. The samples were implanted into rabbit tibial defects and resected with the surrounding bone at two and four weeks. Specimens were evaluated radiographically, histologically, and histomorphometrically. Radiopacity in each lattice structure was observed at two and four weeks. Histological evaluation showed trabecular bone-like tissue inside the BDN compared to the DM at four weeks. No significant differences were noted in the bone volume inside the structures. This study demonstrated the in vivo compatibility of artificial metallic bones with a BDN structure under mechanical stress conditions. Full article
(This article belongs to the Special Issue Advances in Porous Lightweight Materials and Lattice Structures)
Show Figures

Figure 1

14 pages, 2422 KiB  
Article
Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications
by Ahmed Sherif El-Gizawy, Xuewei Ma, Joshua C. Arnone and Ammar A. Melaibari
BioMed 2024, 4(2), 171-184; https://doi.org/10.3390/biomed4020014 - 13 Jun 2024
Viewed by 507
Abstract
Existing implants used with Total Knee Arthroplasty (TKA), Total Hip Arthroplasty (THA), and other joint reconstruction treatments, have displayed premature failures and frequent needs for revision surgery in recent years, particularly with young active patients who represent more than 55% of all joint [...] Read more.
Existing implants used with Total Knee Arthroplasty (TKA), Total Hip Arthroplasty (THA), and other joint reconstruction treatments, have displayed premature failures and frequent needs for revision surgery in recent years, particularly with young active patients who represent more than 55% of all joint reconstruction patients. Bone cement and stress shielding have been identified as the major reasons for premature joint failures. A breakdown of the cement may happen, and revision surgery may be needed because of the aseptic loosening. The significant mismatch of stiffness properties of patient trabecular bones and metallic implant materials in joint reconstruction surgery results in the stress shielding phenomenon. This could lead to significant bone resorption and increased risk of bone fracture and the aseptic loosening of implants. The present project introduces an approach for development of customized cellular structures to match the mechanical properties and architecture of human trabecular bone. The present work aims at fulfilling the objectives of the introduced approach by exploring new designs of customized lattice structures and texture tailored to mimic closely patients’ bone anisotropic properties and that can incorporate an engineered biological press-fit fixation technique. The effects of various lattice design variables on the mechanical performance of the structure are examined through a systematic experimental plan using the statistical design of experiments technique and analysis of variance method. All tested lattice designs were explored under realistic geometrical, biological, and manufacturing constraints. Of the four design factors examined in this study, strut thickness was found to have the highest percent contribution (41%) regarding the structure stiffness, followed by unit cell type, and cell size. Strut shape was found to have the lowest effect with only 11% contribution. The introduced solution offers lattice structure designs that can be adjusted to match bone stiffness distribution and promote bone ingrowth and hence eliminating the phenomenon of stress shielding while incorporating biological press-fit fixation technique. Full article
Show Figures

Figure 1

17 pages, 2106 KiB  
Article
Management of Advanced Peri-Implantitis by Guided Bone Regeneration in Combination with Trabecular Metal Fixtures, Two Months after Removal of the Failed Implants: Two-Year Results of a Single-Cohort Clinical Study
by Stefano Bianconi, Georgios Romanos, Tiziano Testori and Massimo Del Fabbro
J. Clin. Med. 2024, 13(3), 713; https://doi.org/10.3390/jcm13030713 - 25 Jan 2024
Viewed by 1223
Abstract
Background: Implant replacement is among the treatment options for severe peri-implantitis. The aim of this single-cohort study was to evaluate the feasibility of replacing compromised implants affected by advanced peri-implantitis with new implants with a porous trabecular metal (TM) structure. Materials and Methods: [...] Read more.
Background: Implant replacement is among the treatment options for severe peri-implantitis. The aim of this single-cohort study was to evaluate the feasibility of replacing compromised implants affected by advanced peri-implantitis with new implants with a porous trabecular metal (TM) structure. Materials and Methods: Patients with one or more implants in the posterior region showing a defect depth >50% of implant length, measured from the residual crest, were consecutively included. Two months after implant removal, patients received a TM implant combined with a xenograft and a resorbable membrane. The implant stability quotient (ISQ) was measured at placement and re-assessed five months later (at uncovering), then after 6, 12, and 24 months of function. Marginal bone loss was radiographically evaluated. Results: Twenty consecutive cases were included. One patient dropped out due to COVID-19 infection, and nineteen cases were evaluated up to 24 months. At placement, the mean ISQ was 53.08 ± 13.65 (standard deviation), which increased significantly to 69.74 ± 9.01 after five months of healing (p < 0.001) and to 78.00 ± 7.29 after six months of loading (p < 0.001). Thereafter, the ISQ remained stable for up to 24 months (80.55 ± 4.73). All implants successfully osseointegrated and were restored as planned. After two years, the average marginal bone level change was −0.41 ± 0.38 mm (95% confidence interval −0.60, −0.21), which was limited yet significantly different from the baseline (p < 0.05). Conclusions: The treatment of advanced peri-implant defects using TM implants inserted two months after explantation in combination with guided bone regeneration may achieve successful outcomes up to two years follow-up, even in the presence of low primary stability. Full article
(This article belongs to the Special Issue Clinical Research of Novel Therapeutic Approaches in Dentistry)
Show Figures

Figure 1

12 pages, 3595 KiB  
Article
Osseointegration of Tantalum Trabecular Metal in Titanium Dental Implants: Histological and Micro-CT Study
by Modhi Al Deeb, Abdullah AlFarraj Aldosari and Sukumaran Anil
J. Funct. Biomater. 2023, 14(7), 355; https://doi.org/10.3390/jfb14070355 - 6 Jul 2023
Cited by 3 | Viewed by 2808
Abstract
This study aimed to investigate the impact of the Tantalum Trabecular Metal dental implant design on implant stability and the process of osseointegration following its placement in the rabbit femoral condyle. The subjects for the experiment consisted of 10 New Zealand white rabbits. [...] Read more.
This study aimed to investigate the impact of the Tantalum Trabecular Metal dental implant design on implant stability and the process of osseointegration following its placement in the rabbit femoral condyle. The subjects for the experiment consisted of 10 New Zealand white rabbits. Twenty implants, comprising 10 Trabecular Metal (TM) and 10 Traditional Screw Vent (TSV) implants, were placed into the femoral condyles of these rabbits. The implant type was alternated based on a random sequence. Following a healing period of 8 weeks, the implants were retrieved for further analysis using micro-computed tomography (micro-CT), histological studies, and histomorphometry evaluations. The Bone-to-Implant Contact (BIC) ratio and the Bone Volume (BV) percentage in the region of interest were subsequently assessed. The BIC and BV values between TM and TSV implants were compared using the Student t-test. The TM implants exhibited significantly greater BIC and BV scores. In particular, the BIC percentage was recorded as 57.9 ± 6.5 for the TM implants, as opposed to 47.6 ± 8 for the TSV implants. Correspondingly, the BV percentage was 57 ± 7.3 for the TM implants and 46.4 ± 7.4 for the TSV implants. The bone volume percentage measured using micro-CT evaluation was 89.1 ± 8.7 for the TM implants and 79.1 ± 8.6 for the TSV implants. Given the observed results, it is plausible to suggest that the bone growth surrounding the tantalum mesh could have improved the integration of the bone and facilitated its ingrowth into the TM implant. Full article
Show Figures

Graphical abstract

16 pages, 7371 KiB  
Article
Sol–Gel Silica Coatings for Corrosion Protection of Aluminum Parts Manufactured by Selective Laser Melting (SLM) Technology
by Luciano Macera, Daniele Pullini, Alberto Boschetto, Luana Bottini, Claudio Mingazzini and Gian Luca Falleti
Coatings 2023, 13(6), 1081; https://doi.org/10.3390/coatings13061081 - 11 Jun 2023
Cited by 2 | Viewed by 3296
Abstract
Metal additive manufacturing is a rapidly growing field based on the fabrication of complex parts with improved performance. The advantages of using this technology include the production of shapes that cannot be produced by traditional machining technologies, the possibility of using trabecular reinforcing [...] Read more.
Metal additive manufacturing is a rapidly growing field based on the fabrication of complex parts with improved performance. The advantages of using this technology include the production of shapes that cannot be produced by traditional machining technologies, the possibility of using trabecular reinforcing structures, and the ability to make parts with topological optimization that allow for increased performance and decreased mass of the parts produced. Metal parts produced by selective laser melting technology exhibit high surface roughness, which limits their direct implementation. Corrosion protection of these surfaces is difficult, especially for galvanic processes. This paper analyzes the possibility of using sol–gel silica (silicon oxide) coatings to effectively protect various surfaces of aluminum alloys produced by selective laser melting technology. Silicon oxide sol–gel protective coatings have demonstrated excellent chemical stability and corrosion resistance, being able to be applied in very thin layers. These properties make them excellent candidates for protecting additive-manufactured metal parts, especially as-built surfaces with a high surface roughness. Nanostructured silica sol–gel protective coatings have demonstrated excellent corrosion resistance and have the potential to replace the highly toxic chromium-based galvanic treatments. Using nanostructured silica sol–gel coatings, aluminum parts can be seamlessly integrated into circular-economy cycles. Full article
Show Figures

Figure 1

23 pages, 9420 KiB  
Article
Design and Additive Manufacturing of Acetabular Implant with Continuously Graded Porosity
by Sumanta Mukherjee, Santanu Dhara and Partha Saha
Bioengineering 2023, 10(6), 675; https://doi.org/10.3390/bioengineering10060675 - 1 Jun 2023
Cited by 6 | Viewed by 1598
Abstract
Porous structured metallic implants are preferable as bone graft substitutes due to their faster tissue integration mediated by bone in-growth and vascularization. The porous scaffolds/implants should also mimic the graded structure of natural bone to ensure a match of mechanical properties. This article [...] Read more.
Porous structured metallic implants are preferable as bone graft substitutes due to their faster tissue integration mediated by bone in-growth and vascularization. The porous scaffolds/implants should also mimic the graded structure of natural bone to ensure a match of mechanical properties. This article presents a method for designing a graded porous structured acetabular implant and identifies suitable parameters for manufacturing the model through additive manufacturing. The design method is based on slice-wise modification to ensure continuity of gradation. Modification of the slices was achieved through the binary image processing route. A geodesic dome-type design was adopted for developing the acetabular cup model from the graded porous structure. The model had a solid shell with the target porosity and pore size gradually changing from 65% and 950 µm, respectively, in the inner side to 75% and 650 µm, respectively, towards the periphery. The required dimensions of the unit structures and the combinations of pore structure and strut diameter necessary to obtain the target porosity and pore size were determined analytically. Suitable process parameters were identified to manufacture the model by Direct Metal Laser Sintering (DMLS) using Ti6Al4V powder after carrying out a detailed experimental study to minimize the variation of surface roughness and warping over different build angles of the strut structures. Dual-contour scanning was implemented to simplify the scan strategy. The minimum diameter of struts that could be manufactured using the selected scanning strategy and scanning parameters was found to be 375 µm. Finally, the model was built and from the micro-CT data, the porosities and pore sizes were found to be closely conforming to the designed values. The stiffness of the structures, as found from compression testing, was also found to match with that of human trabecular bone well. Further, the structure exhibited compliant bending-dominated behaviour under compressive loading. Full article
Show Figures

Graphical abstract

21 pages, 5065 KiB  
Review
Tantalum as Trabecular Metal for Endosseous Implantable Applications
by Filippo Carraro and Andrea Bagno
Biomimetics 2023, 8(1), 49; https://doi.org/10.3390/biomimetics8010049 - 23 Jan 2023
Cited by 4 | Viewed by 2751
Abstract
During the last 20 years, tantalum has known ever wider applications for the production of endosseous implantable devices in the orthopedic and dental fields. Its excellent performances are due to its capacity to stimulate new bone formation, thus improving implant integration and stable [...] Read more.
During the last 20 years, tantalum has known ever wider applications for the production of endosseous implantable devices in the orthopedic and dental fields. Its excellent performances are due to its capacity to stimulate new bone formation, thus improving implant integration and stable fixation. Tantalum’s mechanical features can be mainly adjusted by controlling its porosity thanks to a number of versatile fabrication techniques, which allow obtaining an elastic modulus similar to that of bone tissue, thus limiting the stress-shielding effect. The present paper aims at reviewing the characteristics of tantalum as a solid and porous (trabecular) metal, with specific regard to biocompatibility and bioactivity. Principal fabrication methods and major applications are described. Moreover, the osteogenic features of porous tantalum are presented to testify its regenerative potential. It can be concluded that tantalum, especially as a porous metal, clearly possesses many advantageous characteristics for endosseous applications but it presently lacks the consolidated clinical experience of other metals such as titanium. Full article
Show Figures

Figure 1

14 pages, 8503 KiB  
Article
Design of a Novel Trabecular Acetabular Cup and Selective Laser Melting Fabrication
by Congyu Wang, Baoyu Sun, Yongdi Zhang, Congwei Wang and Guang Yang
Materials 2022, 15(17), 6142; https://doi.org/10.3390/ma15176142 - 4 Sep 2022
Cited by 7 | Viewed by 2558
Abstract
The acetabular cups used in total hip arthroplasty are mostly made of dense metal materials with an elastic moduli much higher than that of human bone. This leads to stress shielding after implantation, which may cause aseptic loosening of the implant. Selective laser [...] Read more.
The acetabular cups used in total hip arthroplasty are mostly made of dense metal materials with an elastic moduli much higher than that of human bone. This leads to stress shielding after implantation, which may cause aseptic loosening of the implant. Selective laser melting (SLM) technology allows us to produce tiny and complex porous structures and to reduce the elastic moduli of dense metals, thereby avoiding stress shielding. In the present study, rhombic dodecahedron porous structures with cell sizes of 1 mm, 1.5 mm, and 2 mm were designed. The strut diameter was changed to ensure that the porosity and pore size would meet the bone ingrowth requirements. Then, porous Ti6Al4V alloy specimens were printed using SLM, and compressive tests were carried out. The results showed that the compressive strength and elastic modulus values of the specimens with a cell size of 1.5 mm were in the range of 78.16–242.94 MPa and 1.74–4.17 GPa, respectively, which are in line with the mechanical properties of human cortical bone. Finite element analysis of a total hip joint model was carried out to simulate gait, and the surface of the trabecular acetabular cup was divided into 10 regions according to the stress distribution, with the stress interval in the range of 37.44–219.24 MPa. According to the compression test results, the gradient structure of Ti6Al4V alloy with different porosity was designed for trabecular coating. The gradient porous structure meets the mechanical requirements and is closer to the natural structure of human bone than the uniformly distributed porous structure. Full article
(This article belongs to the Collection 3D Printing in Medicine and Biomedical Engineering)
Show Figures

Figure 1

9 pages, 1206 KiB  
Article
Acetabular Revision Surgery with Tantalum Trabecular Metal Acetabular Cup for Failed Acetabular Cage Reconstruction with Bone Allografts: A Retrospective Study with Mid- to Long-Term Follow-Up
by Chen-Heng Hsu, Chih-Chien Hu, Chih-Hsiang Chang, Yu-Han Chang, Hsin-Nung Shih and Chun-Chieh Chen
J. Clin. Med. 2022, 11(12), 3428; https://doi.org/10.3390/jcm11123428 - 15 Jun 2022
Cited by 3 | Viewed by 1710
Abstract
Background: Acetabular cage reconstruction with bone allografts is among the successful strategies to deal with massive acetabular bone loss. However, the nonbiological fixation nature of cages can compromise long-term success. Tantalum trabecular metal acetabular cups (TM cups) have been used in acetabular [...] Read more.
Background: Acetabular cage reconstruction with bone allografts is among the successful strategies to deal with massive acetabular bone loss. However, the nonbiological fixation nature of cages can compromise long-term success. Tantalum trabecular metal acetabular cups (TM cups) have been used in acetabular revision surgery because of their increased initial stability and good bone ingrowth features. This study was performed to determine whether the bone stock of the acetabulum is enough to support a hemispheric TM cup after failed cage reconstruction with bone allografts. Methods: We retrospectively reviewed patients who received acetabular revision surgery with TM cups after failed cage reconstruction with bone allografts from 2006 to 2017. There were 12 patients (5 males and 7 females) included in this study, with a mean age of 61.5 years (38 to 81) at the time of re-revision surgery. The mean follow-up after re-revision surgery was 8.6 years (2.6 to 13.3). The endpoint was defined as the aseptic loosening of the TM cup and reoperation for any causes. The change in bone stock of the acetabulum between index revision and re-revision was assessed according to the Gross classification for acetabular bone loss. Results: One patient died after eight years of follow-up of a cause not related to hip surgery. Two patients received two-stage revision arthroplasty due to PJI after 3.2 and 9.4 years of follow-up, respectively. The bone stock of the acetabulum was significantly improved between index revision and re-revision surgery (p < 0.0001). The Kaplan–Meier survivorship was 100% with aseptic loosening as the endpoint and 90% and 75% at five- and ten-year follow-up, respectively, with reoperation for any reason as the endpoint. Even cage reconstruction with bone allografts will fail eventually, and the bone stock of the acetabulum will improve after union and incorporation between host bone and allografts. The restored bone stocks will facilitate further revision surgery with hemispheric TM cups. The biological fixation between host bone and tantalum trabecular metal can provide longstanding stability of the TM cup. Conclusions: The results of our study offer a viable option for patients with failed cage reconstruction with bone allografts. Full article
Show Figures

Figure 1

13 pages, 6033 KiB  
Article
Total Knee Replacement with an Uncemented Porous Tantalum Tibia Component: A Failure Analysis
by Samo K. Fokter, Nenad Gubeljak, Esther Punzón-Quijorna, Primož Pelicon, Mitja Kelemen, Primož Vavpetič, Jožef Predan, Luka Ferlič and Igor Novak
Materials 2022, 15(7), 2575; https://doi.org/10.3390/ma15072575 - 31 Mar 2022
Cited by 12 | Viewed by 2718
Abstract
Porous tantalum has been extensively used in orthopaedic surgery, including uncemented total knee arthroplasty (TKA). Favourable results were reported with earlier monobloc tibial components and the design evolved to modular implants. We aimed to analyse possible causes for extensive medial tibia bone loss, [...] Read more.
Porous tantalum has been extensively used in orthopaedic surgery, including uncemented total knee arthroplasty (TKA). Favourable results were reported with earlier monobloc tibial components and the design evolved to modular implants. We aimed to analyse possible causes for extensive medial tibia bone loss, resulting in modular porous tantalum tibia baseplate fracture after primary TKA. Retrieved tissue samples were scanned with 3 MeV focused proton beam for Proton-Induced X-ray Emission (micro-PIXE) elemental analysis. Fractographic and microstructural analysis were performed by stereomicroscopy. A full 3D finite-element model was made for numerical analysis of stress–strain conditions of the tibial baseplate. Histological examination of tissue underneath the broken part of the tibial baseplate revealed dark-stained metal debris, which was confirmed by micro-PIXE to consist of tantalum and titanium. Fractographic analysis and tensile testing showed that the failure of the tibial baseplate fulfilled the criteria of a typical fatigue fracture. Microstructural analysis of the contact surface revealed signs of bone ingrowth in 22.5% of the surface only and was even less pronounced in the medial half of the tibial baseplate. Further studies are needed to confirm the responsibility of metal debris for an increased bone absorption leading to catastrophic tibial tray failure. Full article
(This article belongs to the Special Issue New Implant Materials)
Show Figures

Figure 1

9 pages, 1172 KiB  
Article
Clinical Results in Posterior-Stabilized Total Knee Arthroplasty with Cementless Tibial Component in Porous Tantalum: Comparison between Monoblock and Two Pegs vs. Modular and Three Pegs
by Giuseppe Solarino, Arianna Carlet, Lorenzo Moretti, Maria Paola Miolla, Guglielmo Ottaviani and Biagio Moretti
Prosthesis 2022, 4(2), 160-168; https://doi.org/10.3390/prosthesis4020016 - 29 Mar 2022
Cited by 3 | Viewed by 2362
Abstract
Nowadays, total knee arthroplasty (TKA) is widely considered to be the gold standard for treatment of end-stage knee osteoarthritis. Although the optimal mode of fixation in TKA continues to be an important area of investigation, cementless fixation offers the possibility to gain biologic [...] Read more.
Nowadays, total knee arthroplasty (TKA) is widely considered to be the gold standard for treatment of end-stage knee osteoarthritis. Although the optimal mode of fixation in TKA continues to be an important area of investigation, cementless fixation offers the possibility to gain biologic fixation, preserve bone stock and mineral density, and potentially improve survivorship. The purpose of this retrospective study was to evaluate the clinical results of a posterior-stabilized total knee arthroplasty with cementless tibial component in porous tantalum, comparing two groups: Group A (30 patients), TKA with a monoblock component and two pegs, and Group B (22 patients), with a modular component and three pegs. Knee Society Score (KSS) and the Knee Injury and Osteoarthritis Outcome Score (KOOS) were submitted to the patients, and radiographs were collected at the last follow-up. The mean follow-up was 26.32 (20–40) months. Significant differences were not detected between the postoperative KSS values in the two groups (p = 0.44). Evaluating KOOS outcomes, we found in Group A that the rating system showed a statistically significant improvement from a preoperative average rating of 51.4 (SD ± 15) to an average of 72.66 (SD ± 19) at final follow-up (p < 0.05). In Group B, the KOOS rating system showed a statistically significant improvement from a preoperative average rating of 48.3 (SD ± 18) to an average of 79.54 (SD ± 17) postoperatively (p < 0.05). Comparing KOOS final outcomes between groups, we found no statistically significant difference at the mean final follow-up (p = 0.20), with the exception of the sport-related section (p < 0.05). Radiological evaluation at the final follow-up did not show any sign of polyethylene wear, radiolucency, septic or aseptic loosening, or change in alignment in either group. The current study demonstrates an excellent survivorship of cementless tibial components in porous tantalum and the possibility of osseous integration, without significant differences between the two groups under investigation. Full article
Show Figures

Figure 1

17 pages, 5554 KiB  
Article
Understanding the Role of Surface Modification of Randomized Trabecular Titanium Structures in Bone Tissue Regeneration: An Experimental Study
by Elena Canciani, Vincenza Ragone, Carlo Alberto Biffi, Fabrizio Valenza, Riccardo D’Ambrosi, Matteo Olimpo, Aurora Cristofalo, Emanuela Galliera and Claudia Dellavia
Medicina 2022, 58(2), 315; https://doi.org/10.3390/medicina58020315 - 18 Feb 2022
Cited by 4 | Viewed by 2106
Abstract
Background and Objectives: Three-dimensional (3D) metallic trabecular structures made by additive manufacturing (AM) technologies promote new bone formation and osteointegration. Surface modifications by chemical treatments can improve the osteoconductive properties of metallic structures. An in vivo study in sheep was conducted to assess [...] Read more.
Background and Objectives: Three-dimensional (3D) metallic trabecular structures made by additive manufacturing (AM) technologies promote new bone formation and osteointegration. Surface modifications by chemical treatments can improve the osteoconductive properties of metallic structures. An in vivo study in sheep was conducted to assess the bone response to randomized trabecular titanium structures that underwent a surface modification by chemical treatment compared to the bone response to the untreated specimens. Material and Methods: Sixteen specimens with a randomized trabecular titanium structure were implanted in the spongious bone of the distal femur and proximal tibia and the cortical bone of the tibial diaphysis of two sheep. Of them, eight implants had undergone a chemical treatment (treated) and were compared to eight implants with the same structure but native surfaces (native). The sheep were sacrificed at 6 weeks. Surface features of the lattice structures (native and treated) were analyzed using a 3D non-contact profilometer. Compression tests of 18 lattice cubes were performed to investigate the mechanical properties of the two structures. Excellent biocompatibility for the trabecular structures was demonstrated in vitro using a cell mouse fibroblast culture. Histomorphometric analysis was performed to evaluate bone implant contact and bone ingrowth. Results: A compression test of lattice cubic specimens revealed a comparable maximum compressive strength value between the two tested groups (5099 N for native surfaces; 5558 N for treated surfaces; p > 0.05). Compared to native surfaces, a homogenous formation of micropores was observed on the surface of most trabeculae that increased the surface roughness of the treated specimens (4.3 versus 3.2 µm). The cellular viability of cells seeded on three-dimensional structure surfaces increased over time compared to that on plastic surfaces. The histomorphometric data revealed a similar behavior and response in spongious and cortical bone formation. The percentage of the implant surface in direct contact with the regenerated bone matrix (BIC) was not significantly different between the two groups either in the spongious bone (BIC: 27% for treated specimens versus 30% for native samples) or in the cortical bone (BIC: 75% for treated specimens versus 77% for native samples). Conclusions: The results of this study reveal rapid osseointegration and excellent biocompatibility for the trabecular structure regardless of surface treatment using AM technologies. The application of implant surfaces can be optimized to achieve a strong press-fit and stability, overcoming the demand for additional chemical surface treatments. Full article
(This article belongs to the Special Issue Osseointegration and Dental Implants: An Update)
Show Figures

Figure 1

13 pages, 9551 KiB  
Article
SEM-EDX Analysis of Metal Particles Deposition from Surgical Burs after Implant Guided Surgery Procedures
by Giovanni Falisi, Giordano Foffo, Marco Severino, Carlo Di Paolo, Serena Bianchi, Sara Bernardi, Davide Pietropaoli, Sofia Rastelli, Roberto Gatto and Gianluca Botticelli
Coatings 2022, 12(2), 240; https://doi.org/10.3390/coatings12020240 - 12 Feb 2022
Cited by 9 | Viewed by 3040
Abstract
The preparation of the implant site in guided surgery procedure takes place without irrigation, which could lead to increased friction of the drills with the formation and release of debris or metal particles. The presence of metal particles in the peri-implant tissue could [...] Read more.
The preparation of the implant site in guided surgery procedure takes place without irrigation, which could lead to increased friction of the drills with the formation and release of debris or metal particles. The presence of metal particles in the peri-implant tissue could represent a trigger for macrophage activity, bone resorption processes, and consequent implant loss. According to the guided surgical protocol, the study aimed to evaluate the presence of metal particles deposited during implant site preparation. Twenty-five adult porcine ribs from the same adult individual were chosen due to their trabecular bone structure, similar to facial bones. The samples were all 8 cm (length) × 3 cm (depth) × 2 cm (width) and were further subdivided to obtain 50 elements of 4 cm × 3 cm × 2 cm. Plexiglass was used to create structures such as surgical guides so that their function could be mimicked, and the guided implant site preparation sequence could be performed with them. The drill kit used in this study is a guided surgery drill kit characterized by high wear resistance, high yield strength, and good corrosion resistance. This same kit was used 50 times in this way to prepare 50 different implant sites and evaluated at different edges and number of preparation (T0-neutral edge, T1-1 full preparation, T2-10, T3-20, T4-30, T5-40, and T6-50) by SEM-EDX to assess the presence of any metal deposition. The presence of metal residues in the implant site increased according to the cycles of use of the drills. We have observed that in the first three groups, there is no presence of metals. This is evident in groups T3 and T4. Finally, the presence of metal residues becomes significant in the study’s last two groups of samples. The study highlighted how the lack of irrigation in the work site leads the deposition of metal particles and in addition to a reduction in the efficiency of the drills, resulting in less precise cutting, altering the shape of the prepared site, and, lastly, reducing the primary stability of the implants. Full article
(This article belongs to the Collection Advanced Surface Coating of Nanoparticles)
Show Figures

Figure 1

9 pages, 817 KiB  
Article
Prospective Pilot Study of Immediately Provisionalized Restorations of Trabecular Metal-Enhanced Titanium Dental Implants: A 5-Year Follow-Up Report
by Peter van der Schoor, Markus Schlee and Hai-Bo Wen
Appl. Sci. 2022, 12(3), 942; https://doi.org/10.3390/app12030942 - 18 Jan 2022
Cited by 4 | Viewed by 1671
Abstract
Porous tantalum trabecular metal biomaterial has a similar structure to trabecular bone, and was recently added to titanium dental implants as a surface enhancement. The purpose of this prospective pilot study was to describe 5-year survival results and crestal bone level changes around [...] Read more.
Porous tantalum trabecular metal biomaterial has a similar structure to trabecular bone, and was recently added to titanium dental implants as a surface enhancement. The purpose of this prospective pilot study was to describe 5-year survival results and crestal bone level changes around immediately-provisionalized Trabecular Metal Dental Implants. Eligible patients were adults in need of ≥1 implants in the posterior jaw. A non-occluding single acrylic provisional crown was in place for up to 14 days before final restoration. Clinical evaluations with radiographs were conducted at each follow-up visit (1 month, 3 months, 6 months, and 1 to 5 years). The primary endpoint was implant survival, characterized using the Kaplan-Meier method. The secondary endpoint was changes in crestal bone level, evaluated using a paired t-test to compare mean crestal bone levels between the baseline, 6-month, and annual follow-up values. In total, 30 patients (37 implants) were treated. Mean patient age was 45.5 years, and 63% were female. There was one implant failure; cumulative survival at 5 years was 97.2%. After the initial bone loss of 0.40 mm in the first 6 months, there were no statistically significant changes in crestal bone level over time up to 5 years of follow-up. Full article
(This article belongs to the Special Issue Dental Materials: Latest Advances and Prospects)
Show Figures

Figure 1

12 pages, 6603 KiB  
Article
Refractory Metal Coated Alumina Foams as Support Material for Stem Cell and Fibroblasts Cultivation
by Georg Hasemann, Ulf Betke, Manja Krüger, Heike Walles and Michael Scheffler
Materials 2021, 14(11), 2813; https://doi.org/10.3390/ma14112813 - 25 May 2021
Cited by 1 | Viewed by 2004
Abstract
Ceramics are widely used as implant materials; however, they are brittle and may emit particles when used in these applications. To overcome this disadvantage, alumina foams, which represent a 3D cellular structure comparable to that of human trabecular bone structures, were sputter coated [...] Read more.
Ceramics are widely used as implant materials; however, they are brittle and may emit particles when used in these applications. To overcome this disadvantage, alumina foams, which represent a 3D cellular structure comparable to that of human trabecular bone structures, were sputter coated with platinum, tantalum or titanium and modified with fibronectin or collagen type I, components of the extracellular matrix (ECM). To proof the cell material interaction, the unmodified and modified materials were cultured with (a) mesenchymal stem cells being a perfect indicator for biocompatibility and releasing important cytokines of the stem cell niche and (b) with fibroblasts characterized as mediators of inflammation and therefore an important cellular component of the foreign body reaction and inflammation after implantation. To optimize and compare the influence of metal surfaces on cellular behavior, planar glass substrates have been used. Identified biocompatible metal surface of platinum, titanium and tantalum were sputtered on ceramic foams modified with the above-mentioned ECM components to investigate cellular behavior in a 3D environment. The cellular alumina support was characterized with respect to its cellular/porous structure and niche accessibility and coating thickness of the refractory metals; the average cell size was 2.3 mm, the average size of the cell windows was 1.8 mm, and the total foam porosity was 91.4%. The Pt, Ti and Ta coatings were completely dense covering the entire alumina foam surface. The metals titanium and tantalum were colonized very well by the stem cells without a coating of ECM components, whereas the fibroblasts preferred components of the ECM on the alumina foam surface. Full article
(This article belongs to the Special Issue Advances in Functional Cellular Structures and Composites)
Show Figures

Figure 1

Back to TopTop