Sign in to use this feature.

Years

Between: -

Search Results (483)

Search Parameters:
Keywords = vulnerability curves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2369 KiB  
Article
A Secure Key Exchange and Authentication Scheme for Securing Communications in the Internet of Things Environment
by Ali Peivandizadeh, Haitham Y. Adarbah, Behzad Molavi, Amirhossein Mohajerzadeh and Ali H. Al-Badi
Future Internet 2024, 16(10), 357; https://doi.org/10.3390/fi16100357 - 30 Sep 2024
Abstract
In today’s advanced network and digital age, the Internet of Things network is experiencing a significant growing trend and, due to its wide range of services and network coverage, has been able to take a special place in today’s technology era. Among the [...] Read more.
In today’s advanced network and digital age, the Internet of Things network is experiencing a significant growing trend and, due to its wide range of services and network coverage, has been able to take a special place in today’s technology era. Among the applications that can be mentioned for this network are the field of electronic health, smart residential complexes, and a wide level of connections that have connected the inner-city infrastructure in a complex way to make it smart. The notable and critical issue that exists in this network is the extent of the elements that make up the network and, due to this, the strong and massive data exchanges at the network level. With the increasing deployment of the Internet of Things, a wide range of challenges arise, especially in the discussion of establishing network security. Regarding security concerns, ensuring the confidentiality of the data being exchanged in the network, maintaining the privacy of the network nodes, protecting the identity of the network nodes, and finally implementing the security policies required to deal with a wide range of network cyber threats are of great importance. A fundamental element in the security of IoT networks is the authentication process, wherein nodes are required to validate each other’s identities to ensure the establishment of secure communication channels. Through the enforcement of security prerequisites, in this study, we suggested a security protocol focused on reinforcing security characteristics and safeguarding IoT nodes. By utilizing the security features provided by Elliptic Curve Cryptography (ECC) and employing the Elliptic Curve Diffie–Hellman (ECDH) key-exchange mechanism, we designed a protocol for authenticating nodes and establishing encryption keys for every communication session within the Internet of Things. To substantiate the effectiveness and resilience of our proposed protocol in withstanding attacks and network vulnerabilities, we conducted evaluations utilizing both formal and informal means. Furthermore, our results demonstrate that the protocol is characterized by low computational and communication demands, which makes it especially well-suited for IoT nodes operating under resource constraints. Full article
(This article belongs to the Section Cybersecurity)
Show Figures

Figure 1

28 pages, 6833 KiB  
Article
Multi-Scale Integrated Corrosion-Adjusted Seismic Fragility Framework for Critical Infrastructure Resilience
by Alon Urlainis, Gili Lifshitz Sherzer and Igal M. Shohet
Appl. Sci. 2024, 14(19), 8789; https://doi.org/10.3390/app14198789 - 29 Sep 2024
Abstract
This study presents a novel framework for integrating corrosion effects into critical infrastructure seismic risk assessment, focusing on reinforced concrete (RC) structures. Unlike traditional seismic fragility curves, which often overlook time-dependent degradation such as corrosion, this methodology introduces an approach incorporating corrosion-induced degradation [...] Read more.
This study presents a novel framework for integrating corrosion effects into critical infrastructure seismic risk assessment, focusing on reinforced concrete (RC) structures. Unlike traditional seismic fragility curves, which often overlook time-dependent degradation such as corrosion, this methodology introduces an approach incorporating corrosion-induced degradation into seismic fragility curves. This framework combines time-dependent corrosion simulation with numerical modeling, using the finite–discrete element method (FDEM) to assess the reduction in structural capacity. These results are used to adjust the seismic fragility curves, capturing the increased vulnerability due to corrosion. A key novelty of this work is the development of a comprehensive risk assessment that merges the corrosion-adjusted fragility curves with seismic hazard data to estimate long-term seismic risk, introducing a cumulative risk ratio to quantify the total risk over the structure’s lifecycle. This framework is demonstrated through a case study of a one-story RC moment frame building, evaluating its seismic risk under various corrosion scenarios and locations. The simulation results showed a good fit, with a 3% to 14% difference between the case study and simulations up to 75 years. This fitness highlights the model’s accuracy in predicting structural degradation due to corrosion. Furthermore, the findings reveal a significant increase in seismic risk, particularly in moderate and intensive corrosion environments, by 59% and 100%, respectively. These insights emphasize the critical importance of incorporating corrosion effects into seismic risk assessments, offering a more accurate and effective strategy to enhance infrastructure resilience throughout its lifecycle. Full article
(This article belongs to the Special Issue Earthquake Engineering: Geological Impacts and Disaster Assessment)
Show Figures

Figure 1

17 pages, 4599 KiB  
Article
Seismic Vulnerability Assessment of Historic Centers with Two Fast Methods Based on CARTIS Survey Methodology and Fragility Curves
by Giuliana Cardani and Elsa Garavaglia
Heritage 2024, 7(10), 5356-5372; https://doi.org/10.3390/heritage7100252 - 28 Sep 2024
Abstract
After an earthquake, legislation tends to permit the rapid demolition of damaged buildings, including the built heritage, for safety reasons, as was the case for many small historic centers after the 2016 earthquake in central Italy. A balance should, of course, be struck [...] Read more.
After an earthquake, legislation tends to permit the rapid demolition of damaged buildings, including the built heritage, for safety reasons, as was the case for many small historic centers after the 2016 earthquake in central Italy. A balance should, of course, be struck between safety and preservation. There must be a willingness to engage in continuous interaction with the various bodies involved in post-earthquake management, particularly in the preventive phase of the complex activities regarding the issues of the seismic vulnerability of historic built. The widespread historical built heritage in Italy requires fast and reliable assessment procedures that allow a large-scale evaluation of the vulnerability of historical buildings before a seismic event. To this end, a proposal is presented here for the inverse use of the protocol for the seismic vulnerability survey of historic centers by means of a system called CARTIS form, coordinated since 2015 by the Italian consortium of Seismic and Structural Engineering Laboratories (ReLUIS). This rapid assessment is compared with an equally fast method for constructing fragility curves, based only on the information available in the ReLUIS–CARTIS database, defining the relationship between the probability of reaching a level of loss of structural safety or a vulnerability index as a function of the seismic acceleration PGA and the ground orography. The methodology outlined could be considered to be progress in cultural heritage diagnostics on a large scale, considering cultural heritage to be the diffuse historical residential masonry buildings that form the historic centers. Full article
(This article belongs to the Special Issue Recent Progress in Cultural Heritage Diagnostics)
Show Figures

Figure 1

25 pages, 10835 KiB  
Article
Sustainable Groundwater Management Using Machine Learning-Based DRASTIC Model in Rurbanizing Riverine Region: A Case Study of Kerman Province, Iran
by Mortaza Tavakoli, Zeynab Karimzadeh Motlagh, Mohammad Hossein Sayadi, Ismael M. Ibraheem and Youssef M. Youssef
Water 2024, 16(19), 2748; https://doi.org/10.3390/w16192748 - 27 Sep 2024
Abstract
Groundwater salinization poses a critical threat to sustainable development in arid and semi-arid rurbanizing regions, exemplified by Kerman Province, Iran. This region experiences groundwater ecosystem degradation as a result of the rapid conversion of rural agricultural land to urban areas under chronic drought [...] Read more.
Groundwater salinization poses a critical threat to sustainable development in arid and semi-arid rurbanizing regions, exemplified by Kerman Province, Iran. This region experiences groundwater ecosystem degradation as a result of the rapid conversion of rural agricultural land to urban areas under chronic drought conditions. This study aims to enhance Groundwater Pollution Risk (GwPR) mapping by integrating the DRASTIC index with machine learning (ML) models, including Random Forest (RF), Boosted Regression Trees (BRT), Generalized Linear Model (GLM), Support Vector Machine (SVM), and Multivariate Adaptive Regression Splines (MARS), alongside hydrogeochemical investigations, to promote sustainable water management in Kerman Province. The RF model achieved the highest accuracy with an Area Under the Curve (AUC) of 0.995 in predicting GwPR, outperforming BRT (0.988), SVM (0.977), MARS (0.951), and GLM (0.887). The RF-based map identified new high-vulnerability zones in the northeast and northwest and showed an expanded moderate vulnerability zone, covering 48.46% of the study area. Analysis revealed exceedances of WHO standards for total hardness (TH), sodium, sulfates, chlorides, and electrical conductivity (EC) in these high-vulnerability areas, indicating contamination from mineralized aquifers and unsustainable agricultural practices. The findings underscore the RF model’s effectiveness in groundwater prediction and highlight the need for stricter monitoring and management, including regulating groundwater extraction and improving water use efficiency in riverine aquifers. Full article
Show Figures

Figure 1

21 pages, 6080 KiB  
Article
Seismic Fragility Analysis of Reinforced Concrete Simply Supported Girder Bridges Resting on Double-Column Piers for High Speed Railway
by Yongzheng Zhou, Ce Gao, Sibo Yang, Wei Guo and Liqiang Jiang
Buildings 2024, 14(10), 3072; https://doi.org/10.3390/buildings14103072 - 26 Sep 2024
Abstract
This study investigates the probabilistic seismic damage characteristics of a five-span RC simply supported girder bridge with double-column piers designed for a high-speed railway (HSR). The objective is to assess the bridge’s fragility by developing a refined nonlinear numerical model using the OpenSEES [...] Read more.
This study investigates the probabilistic seismic damage characteristics of a five-span RC simply supported girder bridge with double-column piers designed for a high-speed railway (HSR). The objective is to assess the bridge’s fragility by developing a refined nonlinear numerical model using the OpenSEES (Version 3.3.0) platform. Incremental dynamic analysis (IDA) was conducted with peak ground accelerations (PGA) ranging from 0.05 g to 0.5 g, and fragility curves for pier columns, tie beams, and bearings were developed. Additionally, a series–parallel relationship and a hierarchically iterated pair copula model were established to evaluate system fragility. The results indicate that as PGA increases, the damage probability of all bridge components rises, with bearings being the most vulnerable, followed by pier columns, and tie beams exhibiting the least damage. The models accurately simulate the correlations between members and system fragility, offering valuable insights into the bridge’s performance under seismic conditions. Full article
(This article belongs to the Special Issue Recent Study on Seismic Performance of Building Structures)
Show Figures

Figure 1

11 pages, 7317 KiB  
Article
Research on Axial Stress and Strain Characteristics of Reinforced-Concrete Curved Pipe Jacking in Power Tunnels
by Yongjun He, Jian Cheng, Zengli Shi, Bin Zhang, Li Chen, Xi Li, Xiaoli Wang and Peng Zhang
Buildings 2024, 14(9), 3030; https://doi.org/10.3390/buildings14093030 - 23 Sep 2024
Abstract
Joint deflection during curved pipe jacking in power tunnels poses a significant risk of structural failure due to the resulting eccentric and diagonal loading on the pipes. This study investigated the axial stress and strain characteristics of reinforced-concrete pipes under varying joint deflection [...] Read more.
Joint deflection during curved pipe jacking in power tunnels poses a significant risk of structural failure due to the resulting eccentric and diagonal loading on the pipes. This study investigated the axial stress and strain characteristics of reinforced-concrete pipes under varying joint deflection angles and jacking forces, using a combined approach of experimental model testing and finite element method (FEM) numerical simulations. The experimental setup replicated curved pipe jacking conditions, allowing for the measurement of strains and deformation under controlled loading. Numerical simulations, validated against experimental data, provided detailed insights into the stress distribution patterns. The results revealed distinct stress states in different pipe sections. The pipe closest to the jacking force (3# pipe) experienced eccentric loading, leading to localized stress concentrations and inelastic strain on the inner wall at the point of eccentricity, indicating vulnerability to compressive failure. The middle pipe section (2# pipe) underwent complex diagonal loading, resulting in the development of inelastic strain on both the inner and outer walls at specific orientations, highlighting a risk of both compressive and shear failure modes. The study also demonstrated that the magnitude of the axial jacking force and the degree of joint deflection significantly influence the stress distribution and the extent of inelastic strain. These findings provide important information for optimizing the design and construction of curved pipe jacking projects in power tunnels. The identified failure mechanisms and the influence of key parameters on pipe behavior can inform strategies to mitigate the risk of structural failure, improve the resilience of pipe systems, and enhance the overall safety and reliability of underground power tunnel infrastructure. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

13 pages, 20172 KiB  
Article
A Study on Improving the Shape Error of the Lower Mold of Free-Form Concrete Panels Using Magnetic Force
by Jihye Kim, Jongyoung Youn, Minje Jo, Kyeongtae Jeong, Jaesung Lee and Donghoon Lee
Buildings 2024, 14(9), 2979; https://doi.org/10.3390/buildings14092979 - 20 Sep 2024
Abstract
FCPs (free-form concrete panels) can be made using reusable and easily customizable silicone molds tailored to the unique shape of each panel. CNC (Computer Numerical Control)-type rods move vertically to press the silicone plate and shape the lower curved surface. Silicone caps are [...] Read more.
FCPs (free-form concrete panels) can be made using reusable and easily customizable silicone molds tailored to the unique shape of each panel. CNC (Computer Numerical Control)-type rods move vertically to press the silicone plate and shape the lower curved surface. Silicone caps are attached to the ends of the rods to facilitate the formation of smooth curves. However, there is currently no fixing method for the silicone caps and the silicone plate, which makes them vulnerable to the lateral pressure exerted during concrete pouring. Therefore, the current study used magnetic force to improve the lower shape of free-form molds. To this end, a neodymium silicone cap was designed by adding a neodymium magnet to the upper surface of the silicone cap. Moreover, two types of silicone plates were developed for fixing: one type is IS-LSM (Iron Sheet–Silicone Mold), which includes an iron sheet, while the other type is IP-LSM (Iron Powder–Silicone Mold), which is made by mixing iron powder. To verify these two techniques, FCP manufacturing experiments were conducted. The experimental results indicated that IS-LSM had a broader error range than existing techniques, thus rendering it unusable, while IP-LSM yielded significant values. Consequently, a t-test was conducted to validate the data for IP-LSM at 30%, 50%, and 70%, and it was confirmed that the difference in error data was significant at a 95% confidence level. Future research in this area should investigate the addition of iron powder to the silicone plate and a side fixing method for the silicone mold. Such research would help advance the production technology of free-form concrete panels. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3910 KiB  
Article
Daily Temperatures and Child Hospital Admissions in Aotearoa New Zealand: Case Time Series Analysis
by Hakkan Lai, Jeong Eun Lee, Luke J. Harrington, Annabel Ahuriri-Driscoll, Christina Newport, Annette Bolton, Claire Salter, Susan Morton, Alistair Woodward and Simon Hales
Int. J. Environ. Res. Public Health 2024, 21(9), 1236; https://doi.org/10.3390/ijerph21091236 - 19 Sep 2024
Abstract
The influence of global climate change on temperature-related health outcomes among vulnerable populations, particularly young children, is underexplored. Using a case time series design, we analysed 647,000 hospital admissions of children aged under five years old in New Zealand, born between 2000 and [...] Read more.
The influence of global climate change on temperature-related health outcomes among vulnerable populations, particularly young children, is underexplored. Using a case time series design, we analysed 647,000 hospital admissions of children aged under five years old in New Zealand, born between 2000 and 2019. We explored the relationship between daily maximum temperatures and hospital admissions across 2139 statistical areas. We used quasi-Poisson distributed lag non-linear models to account for the delayed effects of temperature over a 0–21-day window. We identified broad ICD code categories associated with heat before combining these for the main analyses. We conducted stratified analyses by ethnicity, sex, and residency, and tested for interactions with long-term temperature, socioeconomic position, and housing tenure. We found J-shaped temperature–response curves with increased risks of hospital admission above 24.1 °C, with greater sensitivity among Māori, Pacific, and Asian compared to European children. Spatial–temporal analysis from 2013–2019 showed rising attributable fractions (AFs) of admissions associated with increasing temperatures, especially in eastern coastal and densely populated areas. Interactive maps were created to allow policymakers to prioritise interventions. Findings emphasize the need for child-specific and location-specific climate change adaptation policies, particularly for socioeconomically disadvantaged groups. Full article
Show Figures

Figure 1

16 pages, 1860 KiB  
Article
CHAM-CLAS: A Certificateless Aggregate Signature Scheme with Chameleon Hashing-Based Identity Authentication for VANETs
by Ahmad Kabil, Heba Aslan, Marianne A. Azer and Mohamed Rasslan
Cryptography 2024, 8(3), 43; https://doi.org/10.3390/cryptography8030043 - 17 Sep 2024
Abstract
Vehicular ad hoc networks (VANETs), which are the backbone of intelligent transportation systems (ITSs), facilitate critical data exchanges between vehicles. This necessitates secure transmission, which requires guarantees of message availability, integrity, source authenticity, and user privacy. Moreover, the traceability of network participants is [...] Read more.
Vehicular ad hoc networks (VANETs), which are the backbone of intelligent transportation systems (ITSs), facilitate critical data exchanges between vehicles. This necessitates secure transmission, which requires guarantees of message availability, integrity, source authenticity, and user privacy. Moreover, the traceability of network participants is essential as it deters malicious actors and allows lawful authorities to identify message senders for accountability. This introduces a challenge: balancing privacy with traceability. Conditional privacy-preserving authentication (CPPA) schemes are designed to mitigate this conflict. CPPA schemes utilize cryptographic protocols, including certificate-based schemes, group signatures, identity-based schemes, and certificateless schemes. Due to the critical time constraints in VANETs, efficient batch verification techniques are crucial. Combining certificateless schemes with batch verification leads to certificateless aggregate signature (CLAS) schemes. In this paper, cryptanalysis of Xiong’s CLAS scheme revealed its vulnerabilities to partial key replacement and identity replacement attacks, alongside mathematical errors in the batch verification process. Our proposed CLAS scheme remedies these issues by incorporating an identity authentication module that leverages chameleon hashing within elliptic curve cryptography (CHAM-CLAS). The signature and verification modules are also redesigned to address the identified vulnerabilities in Xiong’s scheme. Additionally, we implemented the small exponents test within the batch verification module to achieve Type III security. While this enhances security, it introduces a slight performance trade-off. Our scheme has been subjected to formal security and performance analyses to ensure robustness. Full article
Show Figures

Figure 1

19 pages, 4301 KiB  
Article
The Necessity of Updating IDF Curves for the Sharjah Emirate, UAE: A Comparative Analysis of 2020 IDF Values in Light of Recent Urban Flooding (April 2024)
by Khalid B. Almheiri, Rabee Rustum, Grant Wright and Adebayo J. Adeloye
Water 2024, 16(18), 2621; https://doi.org/10.3390/w16182621 - 15 Sep 2024
Abstract
In the arid Arabian Peninsula, particularly within the United Arab Emirates (UAE), the perception of rainfall has shifted from a natural blessing to a significant challenge for infrastructure and community resilience. The unprecedented storm on 17 April 2024, exposed critical vulnerabilities in the [...] Read more.
In the arid Arabian Peninsula, particularly within the United Arab Emirates (UAE), the perception of rainfall has shifted from a natural blessing to a significant challenge for infrastructure and community resilience. The unprecedented storm on 17 April 2024, exposed critical vulnerabilities in the UAE’s urban infrastructure and flood management practices, revealing substantial gaps in handling accumulated precipitation. This study addresses the necessity of updating the Intensity–Duration–Frequency (IDF) curves for the Sharjah Emirate by utilizing recent precipitation data from 2021 to April 2024, alongside previously published 2020 data. By recalibrating the IDF curves based on data from three meteorological stations, this study reveals a substantial increase in rainfall intensities across all durations and return periods. Rainfall intensities increased by an average of 36.76% in Sharjah, 26.52% in Al Dhaid, and 17.55% in Mleiha. These increases indicate a trend towards more severe and frequent rainfall events, emphasizing the urgent need to revise hydrological models and infrastructure designs to enhance flood resilience. This study contributes valuable insights for policymakers, urban planners, and disaster management authorities in the UAE and similar regions worldwide. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes)
Show Figures

Figure 1

18 pages, 10223 KiB  
Article
Flood Modeling of the June 2023 Flooding of Léogâne City by the Overflow of the Rouyonne River in Haiti
by Rotchild Louis, Yves Zech, Adermus Joseph, Nyankona Gonomy and Sandra Soares-Frazao
Water 2024, 16(18), 2594; https://doi.org/10.3390/w16182594 - 13 Sep 2024
Abstract
Evaluating flood risk though numerical simulations in areas where hydrometric and bathymetric data are scarcely available is a challenge. This is, however, of paramount importance, particularly in urban areas, where huge losses of human life and extensive damage can occur. This paper focuses [...] Read more.
Evaluating flood risk though numerical simulations in areas where hydrometric and bathymetric data are scarcely available is a challenge. This is, however, of paramount importance, particularly in urban areas, where huge losses of human life and extensive damage can occur. This paper focuses on the 2–3 June 2023 event at Léogâne in Haiti, where the Rouyonne River partly flooded the city. Water depths in the river have been recorded since April 2022, and a few discharges were measured manually, but these were not sufficient to produce a reliable rating curve. Using a uniform-flow assumption combined with the Bayesian rating curve (BaRatin) method, it was possible to extrapolate the existing data to higher discharges. From there, a rainfall–runoff relation was developed for the site using a distributed hydrological model, which allowed the discharge of the June 2023 event to be determined, which was estimated as twice the maximum conveying capacity of the river in the measurement section. Bathymetric data were obtained using drone-based photogrammetry, and two-dimensional simulations were carried out to represent the flooded area and the associated water depths. By comparing the water depths of 21 measured high-water marks with the simulation results, we obtained a Kling–Gupta Efficiency (KGE) and Nash–Sutcliffe Efficiency (NSE) values of 0.890 and 0.882, respectively. This allows us to conclude that even when only scarce official data are available, it is possible to use field data acquired by low-cost methodologies to build a model that is sufficiently accurate and that can be used by flood managers and decision makers to assess flood risk and vulnerability in Haiti. Full article
Show Figures

Figure 1

18 pages, 8249 KiB  
Article
Astodrimer Sodium Nasal Spray versus Placebo in Non-Hospitalised Patients with COVID-19: A Randomised, Double-Blinded, Placebo-Controlled Trial
by Stephen Winchester, Alex Castellarnau, Kashif Jabbar, Meera Nadir, Kapila Ranasinghe, Xavier Masramon, George R. Kinghorn, Isaac John and Jeremy R. A. Paull
Pharmaceutics 2024, 16(9), 1173; https://doi.org/10.3390/pharmaceutics16091173 - 6 Sep 2024
Abstract
Background/Objectives: Dendrimer-based astodrimer sodium nasal spray was assessed for its ability to reduce SARS-CoV-2 load in outpatients with COVID-19, which remains a severe illness for vulnerable groups. Methods: This was a randomised, double-blind, placebo-controlled clinical investigation evaluating the efficacy of astodrimer nasal spray [...] Read more.
Background/Objectives: Dendrimer-based astodrimer sodium nasal spray was assessed for its ability to reduce SARS-CoV-2 load in outpatients with COVID-19, which remains a severe illness for vulnerable groups. Methods: This was a randomised, double-blind, placebo-controlled clinical investigation evaluating the efficacy of astodrimer nasal spray in reducing SARS-CoV-2 viral burden in the nasopharynx of outpatients with COVID-19. Non-hospitalised adults with SARS-CoV-2 infection were randomised 1:1 to astodrimer or placebo four times daily from Day 1 to Day 7. Nasopharyngeal swabs for SARS-CoV-2 load determination were self-obtained daily from Day 1 to Day 8. The primary endpoint was an area under the curve of SARS-CoV-2 RNA copies/mL through Day 8 (vAUCd1–8). The primary analysis population was the modified intent-to-treat population (mITT: all randomised participants exposed to the study treatment who had at least one post-baseline viral load determination). Safety analyses included all randomised participants exposed to the study treatment. Study registration: ISRCTN70449927; Results: 231 participants were recruited between 9 January and 20 September 2023. The safety population comprised 109 and 113 participants randomised to astodrimer and placebo, respectively, with 96 and 101 participants in the mITT. Astodrimer sodium nasal spray reduced the SARS-CoV-2 burden (vAUCd1–8) vs. placebo in non-hospitalised COVID-19 patients aged 16 years and over (−1.2 log10 copies/mL × Day). The reduction in SARS-CoV-2 load was statistically significant in those aged 45 years and older (−3.7, p = 0.017) and the effect increased in older age groups, including in those aged 65 years and older (−7.3, p = 0.005). Astodrimer sodium nasal spray increased the rate of viral clearance and helped alleviate some COVID-19 symptoms, especially loss of sense of smell. Overall, 31 participants (14%) had ≥1 adverse event (AE). Four AEs were deemed possibly related to treatment. Most AEs were of mild severity and occurred at similar rates in both treatment arms. Conclusions: Astodrimer nasal spray reduces viral burden and accelerates viral clearance, especially in older populations, and is well tolerated. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

5 pages, 1743 KiB  
Proceeding Paper
Evaluating Pipe Burst Flooding Impacts in Urban Environments Using a Hazard-Vulnerability-Risk Approach
by Diego A. Paez and Hailiang Shen
Eng. Proc. 2024, 69(1), 80; https://doi.org/10.3390/engproc2024069080 - 6 Sep 2024
Abstract
In this paper, a hazard-vulnerability-risk approach is implemented to assess the impacts of water main break flooding events in an urban setting. The hazard component is evaluated through a combination of estimated burst likelihoods for each water distribution pipe and a two-dimensional flooding [...] Read more.
In this paper, a hazard-vulnerability-risk approach is implemented to assess the impacts of water main break flooding events in an urban setting. The hazard component is evaluated through a combination of estimated burst likelihoods for each water distribution pipe and a two-dimensional flooding model for the city’s overland area. Vulnerability is assessed using the damage curves available in the literature for overland flooding. The output of risk is computed in the form of expected annual losses. The application of the proposed approach and the implemented simulation tools are illustrated through a real-life case study at an undisclosed location. Full article
Show Figures

Figure 1

29 pages, 16789 KiB  
Article
Derivation of Coastal Erosion Susceptibility and Socio-Economic Vulnerability Models for Sustainable Coastal Management in Senegal
by Cheikh Omar Tidjani Cissé, Ivan Marić, Fran Domazetović, Katarina Glavačević and Rafael Almar
Sustainability 2024, 16(17), 7422; https://doi.org/10.3390/su16177422 - 28 Aug 2024
Viewed by 361
Abstract
Coastal erosion has posed significant challenges to sustainability and socio-economic stability along Senegal’s coastline, leading to substantial infrastructure losses. Using GIS multi-criteria decision analysis (MCDA), two sub-indices were derived for Senegal’s coastal departments: the physical susceptibility (PSI) and the social-economic vulnerability (SVI) to [...] Read more.
Coastal erosion has posed significant challenges to sustainability and socio-economic stability along Senegal’s coastline, leading to substantial infrastructure losses. Using GIS multi-criteria decision analysis (MCDA), two sub-indices were derived for Senegal’s coastal departments: the physical susceptibility (PSI) and the social-economic vulnerability (SVI) to coastal erosion. The integrated coastal erosion vulnerability (ICER) model was derived by their aggregation. A total of 26 criteria were used, 18 for PSI and 8 for SVI. The criteria weighting coefficients of the sub-indices were determined using the analytic hierarchy process (AHP). Validation of the model accuracy was performed using receiver operating characteristic (ROC) curves that were calculated based on a created coastal erosion cadaster and true positive (TP) sites and manually acquired true negative (TN) sites. The accuracy assessment confirmed the consistency of the physical susceptibility model (PSI) and proved that existing coastal erosion sites are within (5) very high susceptibility areas. Through the generated ICER, the coastal departments were divided into areas of (1) very low, (2) low, (3) medium, (4) high and (5) very high vulnerability to coastal erosion. Very high (5) and high (4) classes cover around 31% of the coastal departments, mostly encompassing a narrow coastal strip and low river valleys and mouths. The presented coastal susceptibility and vulnerability maps, with a spatial resolution of 30 m, identified problematic areas in Senegal’s coastal departments and can help decision-makers in the construction of effective coastal zone management and sustainable development. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

22 pages, 3321 KiB  
Article
Characterization and Agronomic Evaluation of 25 Accessions of Chenopodium quinoa in the Peruvian Coastal Desert
by José Alania-Choque, Leander Gamiel Vásquez-Espinoza, Alberto Anculle-Arenas, José Luis Bustamente-Muñoz, Eric N. Jellen, Raymundo O. Gutiérrez-Rosales and Mayela Elizabeth Mayta-Anco
Agronomy 2024, 14(9), 1908; https://doi.org/10.3390/agronomy14091908 - 26 Aug 2024
Viewed by 362
Abstract
Quinoa is a healthy food that possesses high levels of protein that is enriched for dietary essential amino acids. The crop is highly diverse and well-adapted to changing climatic conditions. In spite of being vulnerable to pests and diseases, the development of new [...] Read more.
Quinoa is a healthy food that possesses high levels of protein that is enriched for dietary essential amino acids. The crop is highly diverse and well-adapted to changing climatic conditions. In spite of being vulnerable to pests and diseases, the development of new resistant varieties is possible. Taking advantage of this genetic variability is crucial for breeding programs, especially to adapt quinoa to the shifting needs of producers. In this study, 25 Peruvian accessions and two commercial varieties were characterized and agronomically evaluated in the Peruvian Pacific desert. Specific methodologies and descriptors of existing crops were used, analyzing a total of 24 quantitative and 23 qualitative variables with 15 repetitions per accession. The data were processed using descriptive statistics and a multivariate analysis. The results showed a high variability in morphological characteristics, with an area under the disease progress curve (AUDPC) of the presence of mildew between 529 and 1725, highlighting ACC06 with a lower severity of mildew. The percentage of saponins varied between 0.04 and 0.21 percent, with ACC06 being the one with the lowest percentage. Regarding the crop yield, it ranged between 0.35 and 8.80 t ha−1, highlighting the high-yielding accessions ACC55 and ACC14. These results were promising for the improvement of quinoa yield in the production conditions of the Peruvian Pacific desert. Full article
Show Figures

Figure 1

Back to TopTop