Solar eclipse of January 24, 1925

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, January 24, 1925, with a magnitude of 1.0304. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from southwestern and southeastern Quebec in Canada, and the United States, including Toronto, Niagara Falls and the northern part of New York City.

Solar eclipse of January 24, 1925
Map
Type of eclipse
NatureTotal
Gamma0.8661
Magnitude1.0304
Maximum eclipse
Duration152 s (2 min 32 s)
Coordinates40°30′N 49°36′W / 40.5°N 49.6°W / 40.5; -49.6
Max. width of band206 km (128 mi)
Times (UTC)
Greatest eclipse14:54:03
References
Saros120 (56 of 71)
Catalog # (SE5000)9339

Observations

edit
 
The "diamond ring" corona, as seen from New York City on January 24, 1925

It was seen in New York City. It was reported that those north of 96th Street in Manhattan saw a total solar eclipse while those south of 96th Street saw a partial eclipse.[1]

Visual and radio observations were conducted by researchers working with Scientific American.[2]

edit

Eclipses in 1925

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 120

edit

Inex

edit

Triad

edit

Solar eclipses of 1924–1928

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on March 5, 1924 and August 30, 1924 occur in the previous lunar year eclipse set, and the solar eclipses on May 19, 1928 and November 12, 1928 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1924 to 1928
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
115 July 31, 1924
 
Partial
−1.4459 120 January 24, 1925
 
Total
0.8661
125 July 20, 1925
 
Annular
−0.7193 130
 
Totality in Sumatra, Indonesia
January 14, 1926
 
Total
0.1973
135 July 9, 1926
 
Annular
0.0538 140 January 3, 1927
 
Annular
−0.4956
145 June 29, 1927
 
Total
0.8163 150 December 24, 1927
 
Partial
−1.2416
155 June 17, 1928
 
Partial
1.5107

Saros 120

edit

This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 50–71 occur between 1801 and 2195:
50 51 52
 
November 19, 1816
 
November 30, 1834
 
December 11, 1852
53 54 55
 
December 22, 1870
 
January 1, 1889
 
January 14, 1907
56 57 58
 
January 24, 1925
 
February 4, 1943
 
February 15, 1961
59 60 61
 
February 26, 1979
 
March 9, 1997
 
March 20, 2015
62 63 64
 
March 30, 2033
 
April 11, 2051
 
April 21, 2069
65 66 67
 
May 2, 2087
 
May 14, 2105
 
May 25, 2123
68 69 70
 
June 4, 2141
 
June 16, 2159
 
June 26, 2177
71
 
July 7, 2195

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
January 1, 1805
(Saros 109)
 
October 31, 1826
(Saros 111)
 
August 28, 1848
(Saros 113)
 
July 29, 1859
(Saros 114)
 
June 28, 1870
(Saros 115)
 
May 27, 1881
(Saros 116)
 
April 26, 1892
(Saros 117)
 
March 29, 1903
(Saros 118)
 
February 25, 1914
(Saros 119)
 
January 24, 1925
(Saros 120)
 
December 25, 1935
(Saros 121)
 
November 23, 1946
(Saros 122)
 
October 23, 1957
(Saros 123)
 
September 22, 1968
(Saros 124)
 
August 22, 1979
(Saros 125)
 
July 22, 1990
(Saros 126)
 
June 21, 2001
(Saros 127)
 
May 20, 2012
(Saros 128)
 
April 20, 2023
(Saros 129)
 
March 20, 2034
(Saros 130)
 
February 16, 2045
(Saros 131)
 
January 16, 2056
(Saros 132)
 
December 17, 2066
(Saros 133)
 
November 15, 2077
(Saros 134)
 
October 14, 2088
(Saros 135)
 
September 14, 2099
(Saros 136)
 
August 15, 2110
(Saros 137)
 
July 14, 2121
(Saros 138)
 
June 13, 2132
(Saros 139)
 
May 14, 2143
(Saros 140)
 
April 12, 2154
(Saros 141)
 
March 12, 2165
(Saros 142)
 
February 10, 2176
(Saros 143)
 
January 9, 2187
(Saros 144)
 
December 9, 2197
(Saros 145)

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between April 8, 1902 and August 31, 1989
April 7–8 January 24–25 November 12 August 31–September 1 June 19–20
108 110 112 114 116
 
April 8, 1902
 
August 31, 1913
 
June 19, 1917
118 120 122 124 126
 
April 8, 1921
 
January 24, 1925
 
November 12, 1928
 
August 31, 1932
 
June 19, 1936
128 130 132 134 136
 
April 7, 1940
 
January 25, 1944
 
November 12, 1947
 
September 1, 1951
 
June 20, 1955
138 140 142 144 146
 
April 8, 1959
 
January 25, 1963
 
November 12, 1966
 
August 31, 1970
 
June 20, 1974
148 150 152 154
 
April 7, 1978
 
January 25, 1982
 
November 12, 1985
 
August 31, 1989

See also

edit

Notes

edit
  1. ^ Solar Eclipses in History by Ken Poshedly
  2. ^ "The Best Observed Eclipse in History". Scientific American. 132 (3): 155. 1925. Bibcode:1925SciAm.132..155.. doi:10.1038/scientificamerican0325-155. JSTOR 24978840.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 120". eclipse.gsfc.nasa.gov.

References

edit

Further reading

edit
edit