Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'2603:6000:B500:686E:A98B:AD3D:1D55:86FB'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmywatchlist', 6 => 'editmywatchlist', 7 => 'viewmyprivateinfo', 8 => 'editmyprivateinfo', 9 => 'editmyoptions', 10 => 'abusefilter-log-detail', 11 => 'urlshortener-create-url', 12 => 'centralauth-merge', 13 => 'abusefilter-view', 14 => 'abusefilter-log', 15 => 'vipsscaler-test' ]
Whether the user is editing from mobile app (user_app)
false
Whether or not a user is editing through the mobile interface (user_mobile)
true
Page ID (page_id)
693342
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Numerical control'
Full page title (page_prefixedtitle)
'Numerical control'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'JJMC89 bot III', 1 => 'MrOllie', 2 => 'Trbbullion', 3 => 'Hey man im josh', 4 => '79.26.12.244', 5 => 'Root1997', 6 => '82.72.66.110', 7 => 'GreenC bot', 8 => '114.79.56.12', 9 => 'JAB61' ]
Page age in seconds (page_age)
575649378
Action (action)
'edit'
Edit summary/reason (summary)
'added content'
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{Short description|Computer control of machine tools, lathes and milling machines, also used on 3D printers}} {{Redirect|CNC}} {{Redirect|Numerics|the field of computer science|Numerical analysis}} [[File:CNC machine.jpg|thumb|A CNC machine that operates on wood]] '''Numerical control''' (also '''computer numerical control''', and commonly called '''CNC''')<ref>{{Cite web|title=What Is A CNC Machine? {{!}} CNC Machines|url=https://cncmachines.com/what-is-a-cnc-machine|access-date=2022-02-04|website=cncmachines.com}}</ref> is the [[automation|automated control]] of [[machining]] tools (such as [[drill]]s, [[lathe]]s, [[Milling (machining)|mills]], [[Grinding machine|grinders]], [[CNC wood router|routers]] and [[3D printer]]s) by means of a [[computer]]. A CNC machine processes a piece of material (metal, plastic, wood, ceramic, or composite) to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation. A CNC machine is a motorized maneuverable tool and often a motorized maneuverable platform, which are both controlled by a computer, according to specific input instructions. Instructions are delivered to a CNC machine in the form of a sequential program of machine control instructions such as [[G-code]] and M-code, and then executed. The program can be written by a person or, far more often, generated by graphical [[computer-aided design]] (CAD) or [[computer-aided manufacturing]] (CAM) software. In the case of 3D printers, the part to be printed is "sliced" before the instructions (or the program) are generated. 3D printers also use G-Code.<ref name=":1">{{Cite web |last=3ERP |date=2022-06-24 |title=What is CNC Milling and How Does it Work: Everything You Need to Know - 3ERP |url=https://www.3erp.com/blog/cnc-milling-everything-you-need-to-know/ |access-date=2022-06-30 |website=Rapid Prototyping & Low Volume Production |language=en-US}}</ref> CNC is a vast improvement over non-computerized machining that must be manually controlled (e.g. using devices such as hand wheels or levers) or mechanically controlled by pre-fabricated pattern guides (see [[Pantograph#Milling_machines|pantograph mill]]). In modern CNC systems, the design of a mechanical part and its manufacturing program are highly automated. The part's mechanical dimensions are defined using CAD software and then translated into manufacturing directives by [[computer-aided manufacturing]] (CAM) software. The resulting directives are transformed (by "[[post processor]]" software) into the specific commands necessary for a particular machine to produce the component and then are loaded into the CNC machine. Since any particular component might require the use of several different tools – [[drill]]s, [[saw]]s, etc. – modern machines often combine multiple tools into a single "cell". In other installations, several different machines are used with an external controller and human or robotic operators that move the component from machine to machine. In either case, the series of steps needed to produce any part is highly automated and produces a part that closely matches the original CAD drawing. ==Description== Motion is controlling multiple axes, normally at least two (X and Y),<ref>[http://www.mmsonline.com/articles/key-cnc-concept-1the-fundamentals-of-cnc Mike Lynch, "Key CNC Concept #1—The Fundamentals Of CNC", ''Modern Machine Shop'', 4 January 1997]. Accessed 11 February 2015</ref> and a tool spindle that moves in the Z (depth). The position of the tool is driven by direct-drive [[stepper motors]] or [[servo motor]]s to provide highly accurate movements, or in older designs, motors through a series of step-down gears. [[Open-loop control]] works as long as the forces are kept small enough and speeds are not too great. On commercial [[metalworking]] machines, closed-loop controls are standard and required to provide the accuracy, speed, and [[repeatability]] demanded. ===Parts description=== As the controller hardware evolved, the mills themselves also evolved. One change has been to enclose the entire mechanism in a large box as a safety measure (with safety glass in the doors to permit the operator to monitor the machine's function), often with additional safety interlocks to ensure the operator is far enough from the working piece for safe operation. Most new CNC systems built today are 100% electronically controlled. CNC-like systems are used for any process that can be described as movements and operations. These include [[laser cutting]], [[welding]], [[friction stir welding]], [[ultrasonic welding]], flame and [[plasma cutting]], [[bending]], spinning, hole-punching, pinning, gluing, fabric cutting, sewing, tape and fiber placement, routing, picking and placing, and sawing. ==History== {{Main article|History of numerical control}} The first NC machines were built in the 1940s and 1950s, based on existing tools that were modified with motors that moved the tool or part to follow points fed into the system on [[punched tape]].<ref name=":1" /> These early [[servomechanism]]s were rapidly augmented with analog and digital computers, creating the modern CNC machine tools that have revolutionized machining processes. ==Examples of CNC machines== {| class="wikitable" |- ! CNC machine !! Description !! Image |- | [[Milling (machining)|Mill]] || Translates programs consisting of specific numbers and letters to move the spindle (or workpiece) to various locations and depths. Can either be a Vertical Milling Center (VMC) or a Horizontal Milling Center, depending on the orientation of the spindle. Many use [[G-code]]. Functions include: face milling, shoulder milling, tapping, drilling and some even offer turning. Today, CNC mills can have 3 to 6 axes. Most CNC mills require placing the workpiece on or in them and must be at least as big as the workpiece, but new 3-axis machines are being produced that are much smaller.|| |- | [[Lathe]] || Cuts workpieces while they are rotated. Makes fast, precision cuts, generally using [[Cutting tool (machining)#Cutting tools with inserts (indexable tools)|indexable]] tools and drills. Effective for complicated programs designed to make parts that would be unfeasible to make on manual lathes. Similar control specifications to CNC mills and can often read [[G-code]]. Generally have two axes (X and Z), but newer models have more axes, allowing for more advanced jobs to be machined.|| |- | [[Plasma cutter]] || Involves cutting a material using a [[plasma torch]]. Commonly used to cut steel and other metals, but can be used on a variety of materials. In this process, gas (such as [[compressed air]]) is blown at high speed out of a nozzle; at the same time, an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to [[Plasma (physics)|plasma]]. The plasma is sufficiently hot to melt the material being cut and moves sufficiently fast to blow molten metal away from the cut.|| [[File:CNC Plasma Cutting.ogv|thumb|CNC plasma cutting]] |- | [[Electric discharge machining]] || (EDM), also known as spark machining, spark eroding, burning, die sinking, or wire erosion, is a manufacturing process in which the desired shape is obtained using electrical discharges (sparks). Material is removed from the workpiece by a series of rapidly recurring [[Electric current|current]] discharges between two electrodes, separated by a [[dielectric fluid]] and subject to an electric [[voltage]]. One of the electrodes is called the tool electrode, or simply the "tool" or "electrode," while the other is called the workpiece electrode, or "workpiece". || [[File:EDMWorkpiece.jpg|thumb|Master at the top, badge die workpiece at bottom, oil jets at left (oil has been drained). Initial flat stamping will be "dapped" to give a curved surface.]] |- | Multi-spindle machine || Type of [[Automatic lathe|screw machine]] used in mass production. Considered to be highly efficient by increasing productivity through automation. Can efficiently cut materials into small pieces while simultaneously utilizing a diversified set of tooling. Multi-spindle machines have multiple spindles on a drum that rotates on a horizontal or vertical axis. The drum contains a drill head which consists of several spindles that are mounted on [[ball bearing]]s and driven by [[gear]]s. There are two types of attachments for these drill heads, fixed or adjustable, depending on whether the center distance of the drilling spindle needs to be varied.<ref>{{Cite news|url=https://www.davenportmachine.com/multi-spindle-machines/|title=Multi Spindle Machines - An In-Depth Overview|work=Davenport Machine|access-date=2017-08-25|language=en-US}}</ref> || |- | Wire EDM || Also known as wire cutting EDM, wire burning EDM, or traveling wire EDM, this process uses [[spark erosion]] to machine or remove material from any electrically conductive material, using a traveling wire electrode. The wire electrode usually consists of [[brass]]- or [[zinc]]-coated brass material. Wire EDM allows for near 90-degree corners and applies very little pressure on the material.<ref>{{Cite news|url=http://parts-badger.com/machining-types/|title=Machining Types - Parts Badger|work=Parts Badger|access-date=2017-07-07|language=en-US}}</ref> Since the wire is eroded in this process, a wire EDM machine feeds fresh wire from a spool while chopping up the used wire and leaving it in a bin for [[recycling]].<ref name=":0">{{Cite web|url=http://todaysmachiningworld.com/magazine/how-it-works-wire-edm/|title=How it Works – Wire EDM {{!}} Today’s Machining World|website=todaysmachiningworld.com|language=en-US|access-date=2017-08-25}}</ref> || |- | Sinker EDM || Also called cavity type EDM or volume EDM, a sinker EDM consists of an electrode and workpiece submerged in oil or another dielectric fluid. The electrode and workpiece are connected to a suitable power supply, which generates an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs in the fluid forming a [[plasma channel]] and small spark jumps. Production dies and molds are often made with sinker EDM. Some materials, such as soft [[Ferrite (magnet)|ferrite]] materials and epoxy-rich bonded magnetic materials are not compatible with sinker EDM as they are not electrically conductive.<ref>{{Cite web|url=http://www.qualityedm.com/sinkeredm.html|title=Sinker EDM - Electrical Discharge Machining|website=www.qualityedm.com|access-date=2017-08-25}}</ref> || |- | [[Water jet cutter]] || Also known as a "waterjet", is a tool capable of slicing into metal or other materials (such as [[granite]]) by using a jet of water at high velocity and pressure, or a mixture of water and an [[abrasive]] substance, such as sand. It is often used during the fabrication or manufacture of parts for machinery and other devices. Waterjet is the preferred method when the materials being cut are sensitive to the high temperatures generated by other methods. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as [[cutting]], shaping, [[carving]], and [[reaming]]. ||[[File:Waterjet cutting machine.jpg|alt=Thibaut Waterjet cutting machine|thumb|[[Water jet cutter|Waterjet]] cutting machine for all materials]] |- | [[Punch Press]] || Used to rapidly punch holes and cut thin materials. Such as sheet metal, plywood, thin bar stock, and tubing. Punch presses are generally used when a CNC Mill would be inefficient or unfeasible. CNC punch presses can come in the C frame, where the sheet material is clamped onto a machining table and a hydraulic ram pushes down on the material, or they can come in a portal frame variant where bar stock/tubing is fed into the machine. |} ==Other CNC tools== Many other tools have CNC variants, including: {{div col begin}} * [[Drill]]s * [[Machine embroidery|Embroidery machines]] * [[Lathe]]s * [[Milling (machining)|Milling machine]] * [[Canned cycle]] * [[CNC wood router|Wood routers]] * [[Sheet metal|Sheet metal works]] ([[Turret punch]]) * [[Tube bending|Tube, pipe and wire bending machines]] * [[Hot-wire foam cutter]]s * [[Plasma cutting|Plasma cutters]] * [[Water jet cutter]]s * [[Laser cutting]] * [[Oxy-fuel welding and cutting|Oxy-fuel]] * [[Surface grinding|Surface grinder]] * [[Cylindrical grinder]]s * [[3D printing]] * [[Induction hardening]] machines * [[Submerged arc welding]] * [[Glass cutter|Glass cutting]] * [[CNC router]] * [[Vinyl cutter]] * [[Leather cutter]] {{Div col end}} ==Tool/machine crashing== In CNC, a "crash" occurs when the machine moves in such a way that is harmful to the machine, tools, or parts being machined, sometimes resulting in bending or breakage of cutting tools, accessory clamps, vises, and fixtures, or causing damage to the machine itself by bending guide rails, breaking drive screws, or causing structural components to crack or deform under strain. A mild crash may not damage the machine or tools but may damage the part being machined so that it must be scrapped. Many CNC tools have no inherent sense of the absolute position of the table or tools when turned on. They must be manually "homed" or "zeroed" to have any reference to work from, and these limits are just for figuring out the location of the part to work with it and are no hard motion limit on the mechanism. It is often possible to drive the machine outside the physical bounds of its drive mechanism, resulting in a collision with itself or damage to the drive mechanism. Many machines implement control parameters limiting axis motion past a certain limit in addition to physical [[limit switch]]es. However, these parameters can often be changed by the operator. Many CNC tools also do not know anything about their working environment. Machines may have load sensing systems on spindle and axis drives, but some do not. They blindly follow the machining code provided and it is up to an operator to detect if a crash is either occurring or about to occur, and for the operator to manually abort the active process. Machines equipped with load sensors can stop axis or spindle movement in response to an overload condition, but this does not prevent a crash from occurring. It may only limit the damage resulting from the crash. Some crashes may not ever overload any axis or spindle drives. If the drive system is weaker than the machine's structural integrity, then the drive system simply pushes against the obstruction, and the drive motors "slip in place". The machine tool may not detect the collision or the slipping, so for example the tool should now be at 210mm on the X-axis, but is, in fact, at 32mm where it hit the obstruction and kept slipping. All of the next tool motions will be off by −178mm on the X-axis, and all future motions are now invalid, which may result in further collisions with clamps, vises, or the machine itself. This is common in open-loop stepper systems but is not possible in closed-loop systems unless mechanical slippage between the motor and drive mechanism has occurred. Instead, in a closed-loop system, the machine will continue to attempt to move against the load until either the drive motor goes into an overload condition or a servo motor fails to get to the desired position. Collision detection and avoidance are possible, through the use of absolute position sensors (optical encoder strips or disks) to verify that motion occurred, or torque sensors or power-draw sensors on the drive system to detect abnormal strain when the machine should just be moving and not cutting, but these are not a common component of most hobby CNC tools. Instead, most hobby CNC tools simply rely on the assumed accuracy of [[stepper motors]] that rotate a specific number of degrees in response to magnetic field changes. It is often assumed the stepper is perfectly accurate and never missteps, so tool position monitoring simply involves counting the number of pulses sent to the stepper over time. An alternate means of stepper position monitoring is usually not available, so crash or slip detection is not possible. Commercial CNC metalworking machines use closed-loop feedback controls for axis movement. In a closed-loop system, the controller monitors the actual position of each axis with an absolute or [[incremental encoder]]. Proper control programming will reduce the possibility of a crash, but it is still up to the operator and programmer to ensure that the machine is operated safely. However, during the 2000s and 2010s, the software for machining simulation has been maturing rapidly, and it is no longer uncommon for the entire machine tool envelope (including all axes, spindles, chucks, turrets, tool holders, tailstocks, fixtures, clamps, and stock) to be modeled accurately with [[3D modeling|3D solid models]], which allows the simulation software to predict fairly accurately whether a cycle will involve a crash. Although such simulation is not new, its accuracy and market penetration are changing considerably because of computing advancements.<ref name="Zelinski_2014-03-14">{{Citation |last= Zelinski |first=Peter |date=2014-03-14 |title=New users are adopting simulation software |journal=[[Modern Machine Shop]] |url=http://www.mmsonline.com/blog/post/new-users-are-adopting-simulation-software |postscript=.}}</ref> ==Numerical precision and equipment backlash== Within the numerical systems of CNC programming, the code generator can assume that the controlled mechanism is always perfectly accurate, or that precision tolerances are identical for all cutting or movement directions. This is not always a true condition of CNC tools. CNC tools with a large amount of mechanical [[backlash (engineering)|backlash]] can still be highly precise if the drive or cutting mechanism is only driven to apply cutting force from one direction, and all driving systems are pressed tightly together in that one cutting direction. However, a CNC device with high backlash and a dull cutting tool can lead to cutter chatter and possible workpiece gouging. The backlash also affects the precision of some operations involving axis movement reversals during cutting, such as the milling of a circle, where axis motion is sinusoidal. However, this can be compensated for if the amount of backlash is precisely known by linear encoders or manual measurement. The high backlash mechanism itself is not necessarily relied on to be repeatedly precise for the cutting process, but some other reference object or precision surface may be used to zero the mechanism, by tightly applying pressure against the reference and setting that as the zero references for all following CNC-encoded motions. This is similar to the manual machine tool method of clamping a [[Micrometer (device)|micrometer]] onto a reference beam and adjusting the [[Vernier scale|Vernier]] dial to zero using that object as the reference.{{citation needed|date=November 2017}} ==Positioning control system== In numerical control systems, the position of the tool is defined by a set of instructions called the [[part program]]. Positioning control is handled using either an open-loop or a closed-loop system. In an open-loop system, communication takes place in one direction only: from the controller to the motor. In a closed-loop system, feedback is provided to the controller so that it can correct for errors in position, velocity, and acceleration, which can arise due to variations in load or temperature. Open-loop systems are generally cheaper but less accurate. Stepper motors can be used in both types of systems, while servo motors can only be used in closed systems. ===Cartesian coordinates=== The G & M code positions are all based on a three-dimensional [[Cartesian coordinate system]]. This system is a typical plane often seen in mathematics when graphing. This system is required to map out the machine tool paths and any other kind of actions that need to happen in a specific coordinate. Absolute coordinates are what are generally used more commonly for machines and represent the (0,0,0) point on the plane. This point is set on the stock material to give a starting point or "home position" before starting the actual machining. ==Coding== ===G-codes=== [[G-code]]s are used to command specific movements of the machine, such as machine moves or drilling functions. The majority of G-Code programs start with a percent (%) symbol on the first line, then followed by an "O" with a numerical name for the program (i.e. "O0001") on the second line, then another percent (%) symbol on the last line of the program. The format for a G-code is the letter G followed by two to three digits; for example G01. G-codes differ slightly between a mill and lathe application, for example: :[G00 Rapid Motion Positioning] :[G01 Linear Interpolation Motion] :[G02 Circular Interpolation Motion-Clockwise] :[G03 Circular Interpolation Motion-Counter Clockwise] :[G04 Dwell (Group 00) Mill] :[G10 Set offsets (Group 00) Mill] :[G12 Circular Pocketing-Clockwise] :[G13 Circular Pocketing-Counter Clockwise] ===M-codes=== [Code Miscellaneous Functions (M-Code)]{{citation needed|date=November 2017}}. M-codes are miscellaneous machine commands that do not command axis motion. The format for an M-code is the letter M followed by two to three digits; for example: :[M02 End of Program] :[M03 Start Spindle - Clockwise] :[M04 Start Spindle - Counter Clockwise] :[M05 Stop Spindle] :[M06 Tool Change] :[M07 Coolant on mist coolant] :[M08 Flood coolant on] :[M09 Coolant off] :[M10 Chuck open] :[M11 Chuck close] :[M13 BOTH M03&M08 Spindle clockwise rotation & flood coolant] :[M14 BOTH M04&M08 Spindle counter clockwise rotation & flood coolant] :[M16 Special tool call] :[M19 Spindle orientate] :[M29 DNC mode ] :[M30 Program reset & rewind] :[M38 Door open] :[M39 Door close] :[M40 Spindle gear at middle] :[M41 Low gear select] :[M42 High gear select] :[M53 Retract Spindle] (raises tool spindle above current position to allow operator to do whatever they would need to do) :[M68 Hydraulic chuck close] :[M69 Hydraulic chuck open] :[M78 Tailstock advancing] :[M79 Tailstock reversing] ===Example=== <syntaxhighlight lang="text"> % O0001 G20 G40 G80 G90 G94 G54(Inch, Cutter Comp. Cancel, Deactivate all canned cycles, moves axes to machine coordinate, feed per min., origin coordinate system) M06 T01 (Tool change to tool 1) G43 H01 (Tool length comp. in a positive direction, length compensation for the tool) M03 S1200 (Spindle turns CW at 1200RPM) G00 X0. Y0. (Rapid Traverse to X=0. Y=0.) G00 Z.5 (Rapid Traverse to z=.5) G00 X1. Y-.75 (Rapid traverse to X1. Y-.75) G01 Z-.1 F10 (Plunge into part at Z-.25 at 10in per min.) G03 X.875 Y-.5 I.1875 J-.75 (CCW arc cut to X.875 Y-.5 with radius origin at I.625 J-.75) G03 X.5 Y-.75 I0.0 J0.0 (CCW arc cut to X.5 Y-.75 with radius origin at I0.0 J0.0) G03 X.75 Y-.9375 I0.0 J0.0(CCW arc cut to X.75 Y-.9375 with radius origin at I0.0 J0.0) G02 X1. Y-1.25 I.75 J-1.25 (CW arc cut to X1. Y-1.25 with radius origin at I.75 J-1.25) G02 X.75 Y-1.5625 I0.0 J0.0 (CW arc cut to X.75 Y-1.5625 with same radius origin as the previous arc) G02 X.5 Y-1.25 I0.0 J0.0 (CW arc cut to X.5 Y-1.25 with same radius origin as the previous arc) G00 Z.5 (Rapid traverse to z.5) M05 (spindle stops) G00 X0.0 Y0.0 (Mill returns to origin) M30 (Program End) % </syntaxhighlight> Having the correct speeds and feeds in the program provides for a more efficient and smoother product run. Incorrect speeds and feeds will cause damage to the tool, machine spindle, and even the product. The quickest and simplest way to find these numbers would be to use a calculator that can be found online. A formula can also be used to calculate the proper speeds and feeds for a material. These values can be found online or in [[Machinery's Handbook]]. ==See also== *[[Automatic Tool Changer]] *[[Binary Cutter Location]] *[[Computer-aided technologies]] **[[Computer-aided engineering]] (CAE) *[[Coordinate-measuring machine]] (CMM) *[[Design for Manufacturability for CNC machining]] *[[Direct numerical control]] (DNC) *[[Electronic Industries Alliance|EIA]] [[RS-274]] *[[Electronic Industries Alliance|EIA]] [[RS-494]] *[[Gerber format]] *[[Home automation]] *[[Maslow CNC]] *[[Multiaxis machining]] *[[Part program]] *[[Robotics]] *[[Wireless DNC]] ==References== {{Reflist}} ==Further reading== * {{Citation | last = Brittain | first = James | year = 1992 | title = Alexanderson: Pioneer in American Electrical Engineering | publisher = Johns Hopkins University Press | isbn = 0-8018-4228-X | postscript =.}} * {{Holland1989}} * {{Noble1984}} * {{Citation | last = Reintjes | first = J. Francis | year = 1991 | title = Numerical Control: Making a New Technology | publisher = Oxford University Press | isbn = 978-0-19-506772-9 | postscript =.}} *{{Citation | last = Weisberg | first = David | title = The Engineering Design Revolution | url = http://www.cadhistory.net/chapters/03_MIT_CAD_Roots_1945_1965.pdf | archiveurl = https://web.archive.org/web/20100707074750/http://www.cadhistory.net/chapters/03_MIT_CAD_Roots_1945_1965.pdf | archivedate = 7 July 2010 | url-status = dead | postscript =.}} * {{Citation | last = Wildes | first = Karl L. | last2 = Lindgren | first2 = Nilo A. | year = 1985 | title = A Century of Electrical Engineering and Computer Science at MIT | publisher = MIT Press | isbn = 0-262-23119-0 | postscript = . | url-access = registration | url = https://archive.org/details/centuryofelectri0000wild }} * Herrin, Golden E. [https://web.archive.org/web/20090427085904/http://www.mmsonline.com/columns/industry-honors-the-inventor-of-nc.aspx "Industry Honors The Inventor Of NC"], ''Modern Machine Shop'', 12 January 1998. * Siegel, Arnold. "Automatic Programming of Numerically Controlled Machine Tools", ''Control Engineering'', Volume 3 Issue 10 (October 1956), pp.&nbsp;65–70. * {{Smid2008}} * Christopher jun Pagarigan (Vini) Edmnton Alberta Canada. CNC Infomatic, ''Automotive Design & Production''. * [https://www.engtechgroup.com/cnc-machines-evolution/ The Evolution of CNC Machines (2018).] Retrieved October 15, 2018, from Engineering Technology Group * Fitzpatrick, Michael (2019), "Machining and CNC Technology". == External links == * {{Commons category-inline|Computer numerical control}} <!--===========================({{No more links}})============================= | DO NOT ADD MORE LINKS TO THIS ARTICLE. WIKIPEDIA IS NOT A COLLECTION OF | | LINKS. If you think that your link might be useful, do not add it here, | | but put it on this article's discussion page first or submit your link | | to the appropriate category at the Open Directory Project (www.dmoz.org)| | and link back to that category using the {{dmoz}} template. | | | | Links that have not been verified WILL BE DELETED. | | See [[Wikipedia:External links]] and [[Wikipedia:Spam]] for details | ===========================({{No more links}})============================= --> {{Metalworking navbox|machopen}} {{Robotics}} {{Authority control}} {{DEFAULTSORT:Numerical Control}} [[Category:Numerical control| ]] [[Category:Articles containing video clips]]'
New page wikitext, after the edit (new_wikitext)
'cnc- consensual non consent. it’s basically rape role play. it’s consensual playing out r4pe scenarios. and let me tell you, it is disgusting. anyone into cnc is absolutely gross. getting turned on my r4pe is disgusting and i am so tired of seeing people defend it. “it’s a trauma response” the majority of people who enjoy it have not been assaulted. let’s stop pretending like the majority have. and even people who have been assaulted and are into cnc are gross. you need to evaluate why. your “kinks” don’t exist in a vacuum. it shouldn’t be considered controversial to say finding rape attractive is disgusting. this generation!! and also, cnc is not empowering or feminist. i am tired of liberals trying to make it seem like being weird is empowering. and before you piss to pants, i’m a marxist feminist. it’s funny to me when liberals say being kink critical is radfem rhetoric. like be fr. anyways, onto the next excuse. “it’s consensual” okay? you’re telling me the fact that it’s consensual is what turns you on? no. the non-consent is what turns you on. therefore you’re still gross. i really hope liberals find the light one day and stop normalizing being disgusting. and if you’re a liberal, you are not a feminist. feminism is a lot more than “yass slay girl boss.” “liberal feminism” is just consensually reiterating the patriarchy. ==Description== Motion is controlling multiple axes, normally at least two (X and Y),<ref>[http://www.mmsonline.com/articles/key-cnc-concept-1the-fundamentals-of-cnc Mike Lynch, "Key CNC Concept #1—The Fundamentals Of CNC", ''Modern Machine Shop'', 4 January 1997]. Accessed 11 February 2015</ref> and a tool spindle that moves in the Z (depth). The position of the tool is driven by direct-drive [[stepper motors]] or [[servo motor]]s to provide highly accurate movements, or in older designs, motors through a series of step-down gears. [[Open-loop control]] works as long as the forces are kept small enough and speeds are not too great. On commercial [[metalworking]] machines, closed-loop controls are standard and required to provide the accuracy, speed, and [[repeatability]] demanded. ===Parts description=== As the controller hardware evolved, the mills themselves also evolved. One change has been to enclose the entire mechanism in a large box as a safety measure (with safety glass in the doors to permit the operator to monitor the machine's function), often with additional safety interlocks to ensure the operator is far enough from the working piece for safe operation. Most new CNC systems built today are 100% electronically controlled. CNC-like systems are used for any process that can be described as movements and operations. These include [[laser cutting]], [[welding]], [[friction stir welding]], [[ultrasonic welding]], flame and [[plasma cutting]], [[bending]], spinning, hole-punching, pinning, gluing, fabric cutting, sewing, tape and fiber placement, routing, picking and placing, and sawing. ==History== {{Main article|History of numerical control}} The first NC machines were built in the 1940s and 1950s, based on existing tools that were modified with motors that moved the tool or part to follow points fed into the system on [[punched tape]].<ref name=":1" /> These early [[servomechanism]]s were rapidly augmented with analog and digital computers, creating the modern CNC machine tools that have revolutionized machining processes. ==Examples of CNC machines== {| class="wikitable" |- ! CNC machine !! Description !! Image |- | [[Milling (machining)|Mill]] || Translates programs consisting of specific numbers and letters to move the spindle (or workpiece) to various locations and depths. Can either be a Vertical Milling Center (VMC) or a Horizontal Milling Center, depending on the orientation of the spindle. Many use [[G-code]]. Functions include: face milling, shoulder milling, tapping, drilling and some even offer turning. Today, CNC mills can have 3 to 6 axes. Most CNC mills require placing the workpiece on or in them and must be at least as big as the workpiece, but new 3-axis machines are being produced that are much smaller.|| |- | [[Lathe]] || Cuts workpieces while they are rotated. Makes fast, precision cuts, generally using [[Cutting tool (machining)#Cutting tools with inserts (indexable tools)|indexable]] tools and drills. Effective for complicated programs designed to make parts that would be unfeasible to make on manual lathes. Similar control specifications to CNC mills and can often read [[G-code]]. Generally have two axes (X and Z), but newer models have more axes, allowing for more advanced jobs to be machined.|| |- | [[Plasma cutter]] || Involves cutting a material using a [[plasma torch]]. Commonly used to cut steel and other metals, but can be used on a variety of materials. In this process, gas (such as [[compressed air]]) is blown at high speed out of a nozzle; at the same time, an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to [[Plasma (physics)|plasma]]. The plasma is sufficiently hot to melt the material being cut and moves sufficiently fast to blow molten metal away from the cut.|| [[File:CNC Plasma Cutting.ogv|thumb|CNC plasma cutting]] |- | [[Electric discharge machining]] || (EDM), also known as spark machining, spark eroding, burning, die sinking, or wire erosion, is a manufacturing process in which the desired shape is obtained using electrical discharges (sparks). Material is removed from the workpiece by a series of rapidly recurring [[Electric current|current]] discharges between two electrodes, separated by a [[dielectric fluid]] and subject to an electric [[voltage]]. One of the electrodes is called the tool electrode, or simply the "tool" or "electrode," while the other is called the workpiece electrode, or "workpiece". || [[File:EDMWorkpiece.jpg|thumb|Master at the top, badge die workpiece at bottom, oil jets at left (oil has been drained). Initial flat stamping will be "dapped" to give a curved surface.]] |- | Multi-spindle machine || Type of [[Automatic lathe|screw machine]] used in mass production. Considered to be highly efficient by increasing productivity through automation. Can efficiently cut materials into small pieces while simultaneously utilizing a diversified set of tooling. Multi-spindle machines have multiple spindles on a drum that rotates on a horizontal or vertical axis. The drum contains a drill head which consists of several spindles that are mounted on [[ball bearing]]s and driven by [[gear]]s. There are two types of attachments for these drill heads, fixed or adjustable, depending on whether the center distance of the drilling spindle needs to be varied.<ref>{{Cite news|url=https://www.davenportmachine.com/multi-spindle-machines/|title=Multi Spindle Machines - An In-Depth Overview|work=Davenport Machine|access-date=2017-08-25|language=en-US}}</ref> || |- | Wire EDM || Also known as wire cutting EDM, wire burning EDM, or traveling wire EDM, this process uses [[spark erosion]] to machine or remove material from any electrically conductive material, using a traveling wire electrode. The wire electrode usually consists of [[brass]]- or [[zinc]]-coated brass material. Wire EDM allows for near 90-degree corners and applies very little pressure on the material.<ref>{{Cite news|url=http://parts-badger.com/machining-types/|title=Machining Types - Parts Badger|work=Parts Badger|access-date=2017-07-07|language=en-US}}</ref> Since the wire is eroded in this process, a wire EDM machine feeds fresh wire from a spool while chopping up the used wire and leaving it in a bin for [[recycling]].<ref name=":0">{{Cite web|url=http://todaysmachiningworld.com/magazine/how-it-works-wire-edm/|title=How it Works – Wire EDM {{!}} Today’s Machining World|website=todaysmachiningworld.com|language=en-US|access-date=2017-08-25}}</ref> || |- | Sinker EDM || Also called cavity type EDM or volume EDM, a sinker EDM consists of an electrode and workpiece submerged in oil or another dielectric fluid. The electrode and workpiece are connected to a suitable power supply, which generates an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs in the fluid forming a [[plasma channel]] and small spark jumps. Production dies and molds are often made with sinker EDM. Some materials, such as soft [[Ferrite (magnet)|ferrite]] materials and epoxy-rich bonded magnetic materials are not compatible with sinker EDM as they are not electrically conductive.<ref>{{Cite web|url=http://www.qualityedm.com/sinkeredm.html|title=Sinker EDM - Electrical Discharge Machining|website=www.qualityedm.com|access-date=2017-08-25}}</ref> || |- | [[Water jet cutter]] || Also known as a "waterjet", is a tool capable of slicing into metal or other materials (such as [[granite]]) by using a jet of water at high velocity and pressure, or a mixture of water and an [[abrasive]] substance, such as sand. It is often used during the fabrication or manufacture of parts for machinery and other devices. Waterjet is the preferred method when the materials being cut are sensitive to the high temperatures generated by other methods. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as [[cutting]], shaping, [[carving]], and [[reaming]]. ||[[File:Waterjet cutting machine.jpg|alt=Thibaut Waterjet cutting machine|thumb|[[Water jet cutter|Waterjet]] cutting machine for all materials]] |- | [[Punch Press]] || Used to rapidly punch holes and cut thin materials. Such as sheet metal, plywood, thin bar stock, and tubing. Punch presses are generally used when a CNC Mill would be inefficient or unfeasible. CNC punch presses can come in the C frame, where the sheet material is clamped onto a machining table and a hydraulic ram pushes down on the material, or they can come in a portal frame variant where bar stock/tubing is fed into the machine. |} ==Other CNC tools== Many other tools have CNC variants, including: {{div col begin}} * [[Drill]]s * [[Machine embroidery|Embroidery machines]] * [[Lathe]]s * [[Milling (machining)|Milling machine]] * [[Canned cycle]] * [[CNC wood router|Wood routers]] * [[Sheet metal|Sheet metal works]] ([[Turret punch]]) * [[Tube bending|Tube, pipe and wire bending machines]] * [[Hot-wire foam cutter]]s * [[Plasma cutting|Plasma cutters]] * [[Water jet cutter]]s * [[Laser cutting]] * [[Oxy-fuel welding and cutting|Oxy-fuel]] * [[Surface grinding|Surface grinder]] * [[Cylindrical grinder]]s * [[3D printing]] * [[Induction hardening]] machines * [[Submerged arc welding]] * [[Glass cutter|Glass cutting]] * [[CNC router]] * [[Vinyl cutter]] * [[Leather cutter]] {{Div col end}} ==Tool/machine crashing== In CNC, a "crash" occurs when the machine moves in such a way that is harmful to the machine, tools, or parts being machined, sometimes resulting in bending or breakage of cutting tools, accessory clamps, vises, and fixtures, or causing damage to the machine itself by bending guide rails, breaking drive screws, or causing structural components to crack or deform under strain. A mild crash may not damage the machine or tools but may damage the part being machined so that it must be scrapped. Many CNC tools have no inherent sense of the absolute position of the table or tools when turned on. They must be manually "homed" or "zeroed" to have any reference to work from, and these limits are just for figuring out the location of the part to work with it and are no hard motion limit on the mechanism. It is often possible to drive the machine outside the physical bounds of its drive mechanism, resulting in a collision with itself or damage to the drive mechanism. Many machines implement control parameters limiting axis motion past a certain limit in addition to physical [[limit switch]]es. However, these parameters can often be changed by the operator. Many CNC tools also do not know anything about their working environment. Machines may have load sensing systems on spindle and axis drives, but some do not. They blindly follow the machining code provided and it is up to an operator to detect if a crash is either occurring or about to occur, and for the operator to manually abort the active process. Machines equipped with load sensors can stop axis or spindle movement in response to an overload condition, but this does not prevent a crash from occurring. It may only limit the damage resulting from the crash. Some crashes may not ever overload any axis or spindle drives. If the drive system is weaker than the machine's structural integrity, then the drive system simply pushes against the obstruction, and the drive motors "slip in place". The machine tool may not detect the collision or the slipping, so for example the tool should now be at 210mm on the X-axis, but is, in fact, at 32mm where it hit the obstruction and kept slipping. All of the next tool motions will be off by −178mm on the X-axis, and all future motions are now invalid, which may result in further collisions with clamps, vises, or the machine itself. This is common in open-loop stepper systems but is not possible in closed-loop systems unless mechanical slippage between the motor and drive mechanism has occurred. Instead, in a closed-loop system, the machine will continue to attempt to move against the load until either the drive motor goes into an overload condition or a servo motor fails to get to the desired position. Collision detection and avoidance are possible, through the use of absolute position sensors (optical encoder strips or disks) to verify that motion occurred, or torque sensors or power-draw sensors on the drive system to detect abnormal strain when the machine should just be moving and not cutting, but these are not a common component of most hobby CNC tools. Instead, most hobby CNC tools simply rely on the assumed accuracy of [[stepper motors]] that rotate a specific number of degrees in response to magnetic field changes. It is often assumed the stepper is perfectly accurate and never missteps, so tool position monitoring simply involves counting the number of pulses sent to the stepper over time. An alternate means of stepper position monitoring is usually not available, so crash or slip detection is not possible. Commercial CNC metalworking machines use closed-loop feedback controls for axis movement. In a closed-loop system, the controller monitors the actual position of each axis with an absolute or [[incremental encoder]]. Proper control programming will reduce the possibility of a crash, but it is still up to the operator and programmer to ensure that the machine is operated safely. However, during the 2000s and 2010s, the software for machining simulation has been maturing rapidly, and it is no longer uncommon for the entire machine tool envelope (including all axes, spindles, chucks, turrets, tool holders, tailstocks, fixtures, clamps, and stock) to be modeled accurately with [[3D modeling|3D solid models]], which allows the simulation software to predict fairly accurately whether a cycle will involve a crash. Although such simulation is not new, its accuracy and market penetration are changing considerably because of computing advancements.<ref name="Zelinski_2014-03-14">{{Citation |last= Zelinski |first=Peter |date=2014-03-14 |title=New users are adopting simulation software |journal=[[Modern Machine Shop]] |url=http://www.mmsonline.com/blog/post/new-users-are-adopting-simulation-software |postscript=.}}</ref> ==Numerical precision and equipment backlash== Within the numerical systems of CNC programming, the code generator can assume that the controlled mechanism is always perfectly accurate, or that precision tolerances are identical for all cutting or movement directions. This is not always a true condition of CNC tools. CNC tools with a large amount of mechanical [[backlash (engineering)|backlash]] can still be highly precise if the drive or cutting mechanism is only driven to apply cutting force from one direction, and all driving systems are pressed tightly together in that one cutting direction. However, a CNC device with high backlash and a dull cutting tool can lead to cutter chatter and possible workpiece gouging. The backlash also affects the precision of some operations involving axis movement reversals during cutting, such as the milling of a circle, where axis motion is sinusoidal. However, this can be compensated for if the amount of backlash is precisely known by linear encoders or manual measurement. The high backlash mechanism itself is not necessarily relied on to be repeatedly precise for the cutting process, but some other reference object or precision surface may be used to zero the mechanism, by tightly applying pressure against the reference and setting that as the zero references for all following CNC-encoded motions. This is similar to the manual machine tool method of clamping a [[Micrometer (device)|micrometer]] onto a reference beam and adjusting the [[Vernier scale|Vernier]] dial to zero using that object as the reference.{{citation needed|date=November 2017}} ==Positioning control system== In numerical control systems, the position of the tool is defined by a set of instructions called the [[part program]]. Positioning control is handled using either an open-loop or a closed-loop system. In an open-loop system, communication takes place in one direction only: from the controller to the motor. In a closed-loop system, feedback is provided to the controller so that it can correct for errors in position, velocity, and acceleration, which can arise due to variations in load or temperature. Open-loop systems are generally cheaper but less accurate. Stepper motors can be used in both types of systems, while servo motors can only be used in closed systems. ===Cartesian coordinates=== The G & M code positions are all based on a three-dimensional [[Cartesian coordinate system]]. This system is a typical plane often seen in mathematics when graphing. This system is required to map out the machine tool paths and any other kind of actions that need to happen in a specific coordinate. Absolute coordinates are what are generally used more commonly for machines and represent the (0,0,0) point on the plane. This point is set on the stock material to give a starting point or "home position" before starting the actual machining. ==Coding== ===G-codes=== [[G-code]]s are used to command specific movements of the machine, such as machine moves or drilling functions. The majority of G-Code programs start with a percent (%) symbol on the first line, then followed by an "O" with a numerical name for the program (i.e. "O0001") on the second line, then another percent (%) symbol on the last line of the program. The format for a G-code is the letter G followed by two to three digits; for example G01. G-codes differ slightly between a mill and lathe application, for example: :[G00 Rapid Motion Positioning] :[G01 Linear Interpolation Motion] :[G02 Circular Interpolation Motion-Clockwise] :[G03 Circular Interpolation Motion-Counter Clockwise] :[G04 Dwell (Group 00) Mill] :[G10 Set offsets (Group 00) Mill] :[G12 Circular Pocketing-Clockwise] :[G13 Circular Pocketing-Counter Clockwise] ===M-codes=== [Code Miscellaneous Functions (M-Code)]{{citation needed|date=November 2017}}. M-codes are miscellaneous machine commands that do not command axis motion. The format for an M-code is the letter M followed by two to three digits; for example: :[M02 End of Program] :[M03 Start Spindle - Clockwise] :[M04 Start Spindle - Counter Clockwise] :[M05 Stop Spindle] :[M06 Tool Change] :[M07 Coolant on mist coolant] :[M08 Flood coolant on] :[M09 Coolant off] :[M10 Chuck open] :[M11 Chuck close] :[M13 BOTH M03&M08 Spindle clockwise rotation & flood coolant] :[M14 BOTH M04&M08 Spindle counter clockwise rotation & flood coolant] :[M16 Special tool call] :[M19 Spindle orientate] :[M29 DNC mode ] :[M30 Program reset & rewind] :[M38 Door open] :[M39 Door close] :[M40 Spindle gear at middle] :[M41 Low gear select] :[M42 High gear select] :[M53 Retract Spindle] (raises tool spindle above current position to allow operator to do whatever they would need to do) :[M68 Hydraulic chuck close] :[M69 Hydraulic chuck open] :[M78 Tailstock advancing] :[M79 Tailstock reversing] ===Example=== <syntaxhighlight lang="text"> % O0001 G20 G40 G80 G90 G94 G54(Inch, Cutter Comp. Cancel, Deactivate all canned cycles, moves axes to machine coordinate, feed per min., origin coordinate system) M06 T01 (Tool change to tool 1) G43 H01 (Tool length comp. in a positive direction, length compensation for the tool) M03 S1200 (Spindle turns CW at 1200RPM) G00 X0. Y0. (Rapid Traverse to X=0. Y=0.) G00 Z.5 (Rapid Traverse to z=.5) G00 X1. Y-.75 (Rapid traverse to X1. Y-.75) G01 Z-.1 F10 (Plunge into part at Z-.25 at 10in per min.) G03 X.875 Y-.5 I.1875 J-.75 (CCW arc cut to X.875 Y-.5 with radius origin at I.625 J-.75) G03 X.5 Y-.75 I0.0 J0.0 (CCW arc cut to X.5 Y-.75 with radius origin at I0.0 J0.0) G03 X.75 Y-.9375 I0.0 J0.0(CCW arc cut to X.75 Y-.9375 with radius origin at I0.0 J0.0) G02 X1. Y-1.25 I.75 J-1.25 (CW arc cut to X1. Y-1.25 with radius origin at I.75 J-1.25) G02 X.75 Y-1.5625 I0.0 J0.0 (CW arc cut to X.75 Y-1.5625 with same radius origin as the previous arc) G02 X.5 Y-1.25 I0.0 J0.0 (CW arc cut to X.5 Y-1.25 with same radius origin as the previous arc) G00 Z.5 (Rapid traverse to z.5) M05 (spindle stops) G00 X0.0 Y0.0 (Mill returns to origin) M30 (Program End) % </syntaxhighlight> Having the correct speeds and feeds in the program provides for a more efficient and smoother product run. Incorrect speeds and feeds will cause damage to the tool, machine spindle, and even the product. The quickest and simplest way to find these numbers would be to use a calculator that can be found online. A formula can also be used to calculate the proper speeds and feeds for a material. These values can be found online or in [[Machinery's Handbook]]. ==See also== *[[Automatic Tool Changer]] *[[Binary Cutter Location]] *[[Computer-aided technologies]] **[[Computer-aided engineering]] (CAE) *[[Coordinate-measuring machine]] (CMM) *[[Design for Manufacturability for CNC machining]] *[[Direct numerical control]] (DNC) *[[Electronic Industries Alliance|EIA]] [[RS-274]] *[[Electronic Industries Alliance|EIA]] [[RS-494]] *[[Gerber format]] *[[Home automation]] *[[Maslow CNC]] *[[Multiaxis machining]] *[[Part program]] *[[Robotics]] *[[Wireless DNC]] ==References== {{Reflist}} ==Further reading== * {{Citation | last = Brittain | first = James | year = 1992 | title = Alexanderson: Pioneer in American Electrical Engineering | publisher = Johns Hopkins University Press | isbn = 0-8018-4228-X | postscript =.}} * {{Holland1989}} * {{Noble1984}} * {{Citation | last = Reintjes | first = J. Francis | year = 1991 | title = Numerical Control: Making a New Technology | publisher = Oxford University Press | isbn = 978-0-19-506772-9 | postscript =.}} *{{Citation | last = Weisberg | first = David | title = The Engineering Design Revolution | url = http://www.cadhistory.net/chapters/03_MIT_CAD_Roots_1945_1965.pdf | archiveurl = https://web.archive.org/web/20100707074750/http://www.cadhistory.net/chapters/03_MIT_CAD_Roots_1945_1965.pdf | archivedate = 7 July 2010 | url-status = dead | postscript =.}} * {{Citation | last = Wildes | first = Karl L. | last2 = Lindgren | first2 = Nilo A. | year = 1985 | title = A Century of Electrical Engineering and Computer Science at MIT | publisher = MIT Press | isbn = 0-262-23119-0 | postscript = . | url-access = registration | url = https://archive.org/details/centuryofelectri0000wild }} * Herrin, Golden E. [https://web.archive.org/web/20090427085904/http://www.mmsonline.com/columns/industry-honors-the-inventor-of-nc.aspx "Industry Honors The Inventor Of NC"], ''Modern Machine Shop'', 12 January 1998. * Siegel, Arnold. "Automatic Programming of Numerically Controlled Machine Tools", ''Control Engineering'', Volume 3 Issue 10 (October 1956), pp.&nbsp;65–70. * {{Smid2008}} * Christopher jun Pagarigan (Vini) Edmnton Alberta Canada. CNC Infomatic, ''Automotive Design & Production''. * [https://www.engtechgroup.com/cnc-machines-evolution/ The Evolution of CNC Machines (2018).] Retrieved October 15, 2018, from Engineering Technology Group * Fitzpatrick, Michael (2019), "Machining and CNC Technology". == External links == * {{Commons category-inline|Computer numerical control}} <!--===========================({{No more links}})============================= | DO NOT ADD MORE LINKS TO THIS ARTICLE. WIKIPEDIA IS NOT A COLLECTION OF | | LINKS. If you think that your link might be useful, do not add it here, | | but put it on this article's discussion page first or submit your link | | to the appropriate category at the Open Directory Project (www.dmoz.org)| | and link back to that category using the {{dmoz}} template. | | | | Links that have not been verified WILL BE DELETED. | | See [[Wikipedia:External links]] and [[Wikipedia:Spam]] for details | ===========================({{No more links}})============================= --> {{Metalworking navbox|machopen}} {{Robotics}} {{Authority control}} {{DEFAULTSORT:Numerical Control}} [[Category:Numerical control| ]] [[Category:Articles containing video clips]]'
Unified diff of changes made by edit (edit_diff)
'@@ -1,14 +1,7 @@ -{{Short description|Computer control of machine tools, lathes and milling machines, also used on 3D printers}} -{{Redirect|CNC}} -{{Redirect|Numerics|the field of computer science|Numerical analysis}} -[[File:CNC machine.jpg|thumb|A CNC machine that operates on wood]] - -'''Numerical control''' (also '''computer numerical control''', and commonly called '''CNC''')<ref>{{Cite web|title=What Is A CNC Machine? {{!}} CNC Machines|url=https://cncmachines.com/what-is-a-cnc-machine|access-date=2022-02-04|website=cncmachines.com}}</ref> is the [[automation|automated control]] of [[machining]] tools (such as [[drill]]s, [[lathe]]s, [[Milling (machining)|mills]], [[Grinding machine|grinders]], [[CNC wood router|routers]] and [[3D printer]]s) by means of a [[computer]]. A CNC machine processes a piece of material (metal, plastic, wood, ceramic, or composite) to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation. - -A CNC machine is a motorized maneuverable tool and often a motorized maneuverable platform, which are both controlled by a computer, according to specific input instructions. Instructions are delivered to a CNC machine in the form of a sequential program of machine control instructions such as [[G-code]] and M-code, and then executed. The program can be written by a person or, far more often, generated by graphical [[computer-aided design]] (CAD) or [[computer-aided manufacturing]] (CAM) software. In the case of 3D printers, the part to be printed is "sliced" before the instructions (or the program) are generated. 3D printers also use G-Code.<ref name=":1">{{Cite web |last=3ERP |date=2022-06-24 |title=What is CNC Milling and How Does it Work: Everything You Need to Know - 3ERP |url=https://www.3erp.com/blog/cnc-milling-everything-you-need-to-know/ |access-date=2022-06-30 |website=Rapid Prototyping & Low Volume Production |language=en-US}}</ref> - -CNC is a vast improvement over non-computerized machining that must be manually controlled (e.g. using devices such as hand wheels or levers) or mechanically controlled by pre-fabricated pattern guides (see [[Pantograph#Milling_machines|pantograph mill]]). In modern CNC systems, the design of a mechanical part and its manufacturing program are highly automated. The part's mechanical dimensions are defined using CAD software and then translated into manufacturing directives by [[computer-aided manufacturing]] (CAM) software. The resulting directives are transformed (by "[[post processor]]" software) into the specific commands necessary for a particular machine to produce the component and then are loaded into the CNC machine. - -Since any particular component might require the use of several different tools – [[drill]]s, [[saw]]s, etc. – modern machines often combine multiple tools into a single "cell". In other installations, several different machines are used with an external controller and human or robotic operators that move the component from machine to machine. In either case, the series of steps needed to produce any part is highly automated and produces a part that closely matches the original CAD drawing. +cnc- consensual non consent. it’s basically rape role play. it’s consensual playing out r4pe scenarios. and let me tell you, it is disgusting. anyone into cnc is absolutely gross. getting turned on my r4pe is disgusting and i am so tired of seeing people defend it. +“it’s a trauma response” +the majority of people who enjoy it have not been assaulted. let’s stop pretending like the majority have. and even people who have been assaulted and are into cnc are gross. you need to evaluate why. your “kinks” don’t exist in a vacuum. it shouldn’t be considered controversial to say finding rape attractive is disgusting. this generation!! and also, cnc is not empowering or feminist. i am tired of liberals trying to make it seem like being weird is empowering. and before you piss to pants, i’m a marxist feminist. it’s funny to me when liberals say being kink critical is radfem rhetoric. like be fr. +anyways, onto the next excuse. +“it’s consensual” okay? you’re telling me the fact that it’s consensual is what turns you on? no. the non-consent is what turns you on. therefore you’re still gross. i really hope liberals find the light one day and stop normalizing being disgusting. and if you’re a liberal, you are not a feminist. feminism is a lot more than “yass slay girl boss.” “liberal feminism” is just consensually reiterating the patriarchy. ==Description== '
New page size (new_size)
25655
Old page size (old_size)
27452
Size change in edit (edit_delta)
-1797
Lines added in edit (added_lines)
[ 0 => 'cnc- consensual non consent. it’s basically rape role play. it’s consensual playing out r4pe scenarios. and let me tell you, it is disgusting. anyone into cnc is absolutely gross. getting turned on my r4pe is disgusting and i am so tired of seeing people defend it. ', 1 => '“it’s a trauma response” ', 2 => 'the majority of people who enjoy it have not been assaulted. let’s stop pretending like the majority have. and even people who have been assaulted and are into cnc are gross. you need to evaluate why. your “kinks” don’t exist in a vacuum. it shouldn’t be considered controversial to say finding rape attractive is disgusting. this generation!! and also, cnc is not empowering or feminist. i am tired of liberals trying to make it seem like being weird is empowering. and before you piss to pants, i’m a marxist feminist. it’s funny to me when liberals say being kink critical is radfem rhetoric. like be fr.', 3 => 'anyways, onto the next excuse.', 4 => '“it’s consensual” okay? you’re telling me the fact that it’s consensual is what turns you on? no. the non-consent is what turns you on. therefore you’re still gross. i really hope liberals find the light one day and stop normalizing being disgusting. and if you’re a liberal, you are not a feminist. feminism is a lot more than “yass slay girl boss.” “liberal feminism” is just consensually reiterating the patriarchy.' ]
Lines removed in edit (removed_lines)
[ 0 => '{{Short description|Computer control of machine tools, lathes and milling machines, also used on 3D printers}}', 1 => '{{Redirect|CNC}}', 2 => '{{Redirect|Numerics|the field of computer science|Numerical analysis}}', 3 => '[[File:CNC machine.jpg|thumb|A CNC machine that operates on wood]]', 4 => '', 5 => ''''Numerical control''' (also '''computer numerical control''', and commonly called '''CNC''')<ref>{{Cite web|title=What Is A CNC Machine? {{!}} CNC Machines|url=https://cncmachines.com/what-is-a-cnc-machine|access-date=2022-02-04|website=cncmachines.com}}</ref> is the [[automation|automated control]] of [[machining]] tools (such as [[drill]]s, [[lathe]]s, [[Milling (machining)|mills]], [[Grinding machine|grinders]], [[CNC wood router|routers]] and [[3D printer]]s) by means of a [[computer]]. A CNC machine processes a piece of material (metal, plastic, wood, ceramic, or composite) to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation.', 6 => '', 7 => 'A CNC machine is a motorized maneuverable tool and often a motorized maneuverable platform, which are both controlled by a computer, according to specific input instructions. Instructions are delivered to a CNC machine in the form of a sequential program of machine control instructions such as [[G-code]] and M-code, and then executed. The program can be written by a person or, far more often, generated by graphical [[computer-aided design]] (CAD) or [[computer-aided manufacturing]] (CAM) software. In the case of 3D printers, the part to be printed is "sliced" before the instructions (or the program) are generated. 3D printers also use G-Code.<ref name=":1">{{Cite web |last=3ERP |date=2022-06-24 |title=What is CNC Milling and How Does it Work: Everything You Need to Know - 3ERP |url=https://www.3erp.com/blog/cnc-milling-everything-you-need-to-know/ |access-date=2022-06-30 |website=Rapid Prototyping & Low Volume Production |language=en-US}}</ref>', 8 => '', 9 => 'CNC is a vast improvement over non-computerized machining that must be manually controlled (e.g. using devices such as hand wheels or levers) or mechanically controlled by pre-fabricated pattern guides (see [[Pantograph#Milling_machines|pantograph mill]]). In modern CNC systems, the design of a mechanical part and its manufacturing program are highly automated. The part's mechanical dimensions are defined using CAD software and then translated into manufacturing directives by [[computer-aided manufacturing]] (CAM) software. The resulting directives are transformed (by "[[post processor]]" software) into the specific commands necessary for a particular machine to produce the component and then are loaded into the CNC machine.', 10 => '', 11 => 'Since any particular component might require the use of several different tools – [[drill]]s, [[saw]]s, etc. – modern machines often combine multiple tools into a single "cell". In other installations, several different machines are used with an external controller and human or robotic operators that move the component from machine to machine. In either case, the series of steps needed to produce any part is highly automated and produces a part that closely matches the original CAD drawing.' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-parser-output"><p>cnc- consensual non consent. it’s basically rape role play. it’s consensual playing out r4pe scenarios. and let me tell you, it is disgusting. anyone into cnc is absolutely gross. getting turned on my r4pe is disgusting and i am so tired of seeing people defend it. “it’s a trauma response” the majority of people who enjoy it have not been assaulted. let’s stop pretending like the majority have. and even people who have been assaulted and are into cnc are gross. you need to evaluate why. your “kinks” don’t exist in a vacuum. it shouldn’t be considered controversial to say finding rape attractive is disgusting. this generation!! and also, cnc is not empowering or feminist. i am tired of liberals trying to make it seem like being weird is empowering. and before you piss to pants, i’m a marxist feminist. it’s funny to me when liberals say being kink critical is radfem rhetoric. like be fr. anyways, onto the next excuse. “it’s consensual” okay? you’re telling me the fact that it’s consensual is what turns you on? no. the non-consent is what turns you on. therefore you’re still gross. i really hope liberals find the light one day and stop normalizing being disgusting. and if you’re a liberal, you are not a feminist. feminism is a lot more than “yass slay girl boss.” “liberal feminism” is just consensually reiterating the patriarchy. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Description"><span class="tocnumber">1</span> <span class="toctext">Description</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Parts_description"><span class="tocnumber">1.1</span> <span class="toctext">Parts description</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-3"><a href="#History"><span class="tocnumber">2</span> <span class="toctext">History</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Examples_of_CNC_machines"><span class="tocnumber">3</span> <span class="toctext">Examples of CNC machines</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#Other_CNC_tools"><span class="tocnumber">4</span> <span class="toctext">Other CNC tools</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Tool/machine_crashing"><span class="tocnumber">5</span> <span class="toctext">Tool/machine crashing</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Numerical_precision_and_equipment_backlash"><span class="tocnumber">6</span> <span class="toctext">Numerical precision and equipment backlash</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#Positioning_control_system"><span class="tocnumber">7</span> <span class="toctext">Positioning control system</span></a> <ul> <li class="toclevel-2 tocsection-9"><a href="#Cartesian_coordinates"><span class="tocnumber">7.1</span> <span class="toctext">Cartesian coordinates</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-10"><a href="#Coding"><span class="tocnumber">8</span> <span class="toctext">Coding</span></a> <ul> <li class="toclevel-2 tocsection-11"><a href="#G-codes"><span class="tocnumber">8.1</span> <span class="toctext">G-codes</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#M-codes"><span class="tocnumber">8.2</span> <span class="toctext">M-codes</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Example"><span class="tocnumber">8.3</span> <span class="toctext">Example</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-14"><a href="#See_also"><span class="tocnumber">9</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#References"><span class="tocnumber">10</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-16"><a href="#Further_reading"><span class="tocnumber">11</span> <span class="toctext">Further reading</span></a></li> <li class="toclevel-1 tocsection-17"><a href="#External_links"><span class="tocnumber">12</span> <span class="toctext">External links</span></a></li> </ul> </div> <h2><span class="mw-headline" id="Description">Description</span></h2> <p>Motion is controlling multiple axes, normally at least two (X and Y),<sup id="cite_ref-1" class="reference"><a href="#cite_note-1">&#91;1&#93;</a></sup> and a tool spindle that moves in the Z (depth). The position of the tool is driven by direct-drive <a href="/wiki/Stepper_motors" class="mw-redirect" title="Stepper motors">stepper motors</a> or <a href="/wiki/Servo_motor" class="mw-redirect" title="Servo motor">servo motors</a> to provide highly accurate movements, or in older designs, motors through a series of step-down gears. <a href="/wiki/Open-loop_control" class="mw-redirect" title="Open-loop control">Open-loop control</a> works as long as the forces are kept small enough and speeds are not too great. On commercial <a href="/wiki/Metalworking" title="Metalworking">metalworking</a> machines, closed-loop controls are standard and required to provide the accuracy, speed, and <a href="/wiki/Repeatability" title="Repeatability">repeatability</a> demanded. </p> <h3><span class="mw-headline" id="Parts_description">Parts description</span></h3> <p>As the controller hardware evolved, the mills themselves also evolved. One change has been to enclose the entire mechanism in a large box as a safety measure (with safety glass in the doors to permit the operator to monitor the machine's function), often with additional safety interlocks to ensure the operator is far enough from the working piece for safe operation. Most new CNC systems built today are 100% electronically controlled. </p><p>CNC-like systems are used for any process that can be described as movements and operations. These include <a href="/wiki/Laser_cutting" title="Laser cutting">laser cutting</a>, <a href="/wiki/Welding" title="Welding">welding</a>, <a href="/wiki/Friction_stir_welding" title="Friction stir welding">friction stir welding</a>, <a href="/wiki/Ultrasonic_welding" title="Ultrasonic welding">ultrasonic welding</a>, flame and <a href="/wiki/Plasma_cutting" title="Plasma cutting">plasma cutting</a>, <a href="/wiki/Bending" title="Bending">bending</a>, spinning, hole-punching, pinning, gluing, fabric cutting, sewing, tape and fiber placement, routing, picking and placing, and sawing. </p> <h2><span class="mw-headline" id="History">History</span></h2> <style data-mw-deduplicate="TemplateStyles:r1033289096">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/History_of_numerical_control" title="History of numerical control">History of numerical control</a></div> <p>The first NC machines were built in the 1940s and 1950s, based on existing tools that were modified with motors that moved the tool or part to follow points fed into the system on <a href="/wiki/Punched_tape" title="Punched tape">punched tape</a>.<sup id="cite_ref-:1_2-0" class="reference"><a href="#cite_note-:1-2">&#91;2&#93;</a></sup> These early <a href="/wiki/Servomechanism" title="Servomechanism">servomechanisms</a> were rapidly augmented with analog and digital computers, creating the modern CNC machine tools that have revolutionized machining processes. </p> <h2><span class="mw-headline" id="Examples_of_CNC_machines">Examples of CNC machines</span></h2> <table class="wikitable"> <tbody><tr> <th>CNC machine</th> <th>Description</th> <th>Image </th></tr> <tr> <td><a href="/wiki/Milling_(machining)" title="Milling (machining)">Mill</a></td> <td>Translates programs consisting of specific numbers and letters to move the spindle (or workpiece) to various locations and depths. Can either be a Vertical Milling Center (VMC) or a Horizontal Milling Center, depending on the orientation of the spindle. Many use <a href="/wiki/G-code" title="G-code">G-code</a>. Functions include: face milling, shoulder milling, tapping, drilling and some even offer turning. Today, CNC mills can have 3 to 6 axes. Most CNC mills require placing the workpiece on or in them and must be at least as big as the workpiece, but new 3-axis machines are being produced that are much smaller.</td> <td> </td></tr> <tr> <td><a href="/wiki/Lathe" title="Lathe">Lathe</a></td> <td>Cuts workpieces while they are rotated. Makes fast, precision cuts, generally using <a href="/wiki/Cutting_tool_(machining)#Cutting_tools_with_inserts_(indexable_tools)" title="Cutting tool (machining)">indexable</a> tools and drills. Effective for complicated programs designed to make parts that would be unfeasible to make on manual lathes. Similar control specifications to CNC mills and can often read <a href="/wiki/G-code" title="G-code">G-code</a>. Generally have two axes (X and Z), but newer models have more axes, allowing for more advanced jobs to be machined.</td> <td> </td></tr> <tr> <td><a href="/wiki/Plasma_cutter" class="mw-redirect" title="Plasma cutter">Plasma cutter</a></td> <td>Involves cutting a material using a <a href="/wiki/Plasma_torch" title="Plasma torch">plasma torch</a>. Commonly used to cut steel and other metals, but can be used on a variety of materials. In this process, gas (such as <a href="/wiki/Compressed_air" title="Compressed air">compressed air</a>) is blown at high speed out of a nozzle; at the same time, an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasma</a>. The plasma is sufficiently hot to melt the material being cut and moves sufficiently fast to blow molten metal away from the cut.</td> <td><div class="thumb tright"><div class="thumbinner" style="width:222px;"><video id="mwe_player_1" poster="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/CNC_Plasma_Cutting.ogv/220px--CNC_Plasma_Cutting.ogv.jpg" controls="" preload="none" class="thumbimage" width="220" height="127" data-durationhint="34" data-mwtitle="CNC_Plasma_Cutting.ogv" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/d/d7/CNC_Plasma_Cutting.ogv" type="video/ogg; codecs=&quot;theora, vorbis&quot;" data-title="Original Ogg file, 528 × 304 (1.01 Mbps)" data-shorttitle="Ogg source" data-width="528" data-height="304" data-bandwidth="1005338" data-framerate="20" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/d/d7/CNC_Plasma_Cutting.ogv/CNC_Plasma_Cutting.ogv.120p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-title="Lowest bandwidth VP9 (120P)" data-shorttitle="VP9 120P" data-transcodekey="120p.vp9.webm" data-width="208" data-height="120" data-bandwidth="188584" data-framerate="20" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/d/d7/CNC_Plasma_Cutting.ogv/CNC_Plasma_Cutting.ogv.160p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-title="Low bandwidth WebM (160P)" data-shorttitle="WebM 160P" data-transcodekey="160p.webm" data-width="278" data-height="160" data-bandwidth="201296" data-framerate="20" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/d/d7/CNC_Plasma_Cutting.ogv/CNC_Plasma_Cutting.ogv.180p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-title="Low bandwidth VP9 (180P)" data-shorttitle="VP9 180P" data-transcodekey="180p.vp9.webm" data-width="312" data-height="180" data-bandwidth="254864" data-framerate="20" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/d/d7/CNC_Plasma_Cutting.ogv/CNC_Plasma_Cutting.ogv.240p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-title="Small WebM (240P)" data-shorttitle="WebM 240P" data-transcodekey="240p.webm" data-width="416" data-height="240" data-bandwidth="316168" data-framerate="20" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/d/d7/CNC_Plasma_Cutting.ogv/CNC_Plasma_Cutting.ogv.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-title="Small VP9 (240P)" data-shorttitle="VP9 240P" data-transcodekey="240p.vp9.webm" data-width="416" data-height="240" data-bandwidth="348176" data-framerate="20" /></video> <div class="thumbcaption"><div class="magnify"><a href="/wiki/File:CNC_Plasma_Cutting.ogv" class="internal" title="Enlarge"></a></div>CNC plasma cutting</div></div></div> </td></tr> <tr> <td><a href="/wiki/Electric_discharge_machining" class="mw-redirect" title="Electric discharge machining">Electric discharge machining</a></td> <td>(EDM), also known as spark machining, spark eroding, burning, die sinking, or wire erosion, is a manufacturing process in which the desired shape is obtained using electrical discharges (sparks). Material is removed from the workpiece by a series of rapidly recurring <a href="/wiki/Electric_current" title="Electric current">current</a> discharges between two electrodes, separated by a <a href="/wiki/Dielectric_fluid" class="mw-redirect" title="Dielectric fluid">dielectric fluid</a> and subject to an electric <a href="/wiki/Voltage" title="Voltage">voltage</a>. One of the electrodes is called the tool electrode, or simply the "tool" or "electrode," while the other is called the workpiece electrode, or "workpiece".</td> <td><div class="thumb tright"><div class="thumbinner" style="width:222px;"><a href="/wiki/File:EDMWorkpiece.jpg" class="image"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/EDMWorkpiece.jpg/220px-EDMWorkpiece.jpg" decoding="async" width="220" height="266" class="thumbimage" data-file-width="1224" data-file-height="1480" /></a> <div class="thumbcaption"><div class="magnify"><a href="/wiki/File:EDMWorkpiece.jpg" class="internal" title="Enlarge"></a></div>Master at the top, badge die workpiece at bottom, oil jets at left (oil has been drained). Initial flat stamping will be "dapped" to give a curved surface.</div></div></div> </td></tr> <tr> <td>Multi-spindle machine</td> <td>Type of <a href="/wiki/Automatic_lathe" title="Automatic lathe">screw machine</a> used in mass production. Considered to be highly efficient by increasing productivity through automation. Can efficiently cut materials into small pieces while simultaneously utilizing a diversified set of tooling. Multi-spindle machines have multiple spindles on a drum that rotates on a horizontal or vertical axis. The drum contains a drill head which consists of several spindles that are mounted on <a href="/wiki/Ball_bearing" title="Ball bearing">ball bearings</a> and driven by <a href="/wiki/Gear" title="Gear">gears</a>. There are two types of attachments for these drill heads, fixed or adjustable, depending on whether the center distance of the drilling spindle needs to be varied.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3">&#91;3&#93;</a></sup></td> <td> </td></tr> <tr> <td>Wire EDM</td> <td>Also known as wire cutting EDM, wire burning EDM, or traveling wire EDM, this process uses <a href="/wiki/Spark_erosion" class="mw-redirect" title="Spark erosion">spark erosion</a> to machine or remove material from any electrically conductive material, using a traveling wire electrode. The wire electrode usually consists of <a href="/wiki/Brass" title="Brass">brass</a>- or <a href="/wiki/Zinc" title="Zinc">zinc</a>-coated brass material. Wire EDM allows for near 90-degree corners and applies very little pressure on the material.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4">&#91;4&#93;</a></sup> Since the wire is eroded in this process, a wire EDM machine feeds fresh wire from a spool while chopping up the used wire and leaving it in a bin for <a href="/wiki/Recycling" title="Recycling">recycling</a>.<sup id="cite_ref-:0_5-0" class="reference"><a href="#cite_note-:0-5">&#91;5&#93;</a></sup></td> <td> </td></tr> <tr> <td>Sinker EDM</td> <td>Also called cavity type EDM or volume EDM, a sinker EDM consists of an electrode and workpiece submerged in oil or another dielectric fluid. The electrode and workpiece are connected to a suitable power supply, which generates an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs in the fluid forming a <a href="/wiki/Plasma_channel" title="Plasma channel">plasma channel</a> and small spark jumps. Production dies and molds are often made with sinker EDM. Some materials, such as soft <a href="/wiki/Ferrite_(magnet)" title="Ferrite (magnet)">ferrite</a> materials and epoxy-rich bonded magnetic materials are not compatible with sinker EDM as they are not electrically conductive.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6">&#91;6&#93;</a></sup></td> <td> </td></tr> <tr> <td><a href="/wiki/Water_jet_cutter" title="Water jet cutter">Water jet cutter</a></td> <td>Also known as a "waterjet", is a tool capable of slicing into metal or other materials (such as <a href="/wiki/Granite" title="Granite">granite</a>) by using a jet of water at high velocity and pressure, or a mixture of water and an <a href="/wiki/Abrasive" title="Abrasive">abrasive</a> substance, such as sand. It is often used during the fabrication or manufacture of parts for machinery and other devices. Waterjet is the preferred method when the materials being cut are sensitive to the high temperatures generated by other methods. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as <a href="/wiki/Cutting" title="Cutting">cutting</a>, shaping, <a href="/wiki/Carving" title="Carving">carving</a>, and <a href="/wiki/Reaming" class="mw-redirect" title="Reaming">reaming</a>.</td> <td><div class="thumb tright"><div class="thumbinner" style="width:222px;"><a href="/wiki/File:Waterjet_cutting_machine.jpg" class="image"><img alt="Thibaut Waterjet cutting machine" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Waterjet_cutting_machine.jpg/220px-Waterjet_cutting_machine.jpg" decoding="async" width="220" height="147" class="thumbimage" data-file-width="5760" data-file-height="3840" /></a> <div class="thumbcaption"><div class="magnify"><a href="/wiki/File:Waterjet_cutting_machine.jpg" class="internal" title="Enlarge"></a></div><a href="/wiki/Water_jet_cutter" title="Water jet cutter">Waterjet</a> cutting machine for all materials</div></div></div> </td></tr> <tr> <td><a href="/wiki/Punch_Press" class="mw-redirect" title="Punch Press">Punch Press</a></td> <td>Used to rapidly punch holes and cut thin materials. Such as sheet metal, plywood, thin bar stock, and tubing. Punch presses are generally used when a CNC Mill would be inefficient or unfeasible. CNC punch presses can come in the C frame, where the sheet material is clamped onto a machining table and a hydraulic ram pushes down on the material, or they can come in a portal frame variant where bar stock/tubing is fed into the machine. </td></tr></tbody></table> <h2><span class="mw-headline" id="Other_CNC_tools">Other CNC tools</span></h2> <p>Many other tools have CNC variants, including: </p> <style data-mw-deduplicate="TemplateStyles:r998391716">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Drill" title="Drill">Drills</a></li> <li><a href="/wiki/Machine_embroidery" title="Machine embroidery">Embroidery machines</a></li> <li><a href="/wiki/Lathe" title="Lathe">Lathes</a></li> <li><a href="/wiki/Milling_(machining)" title="Milling (machining)">Milling machine</a></li> <li><a href="/wiki/Canned_cycle" title="Canned cycle">Canned cycle</a></li> <li><a href="/wiki/CNC_wood_router" title="CNC wood router">Wood routers</a></li> <li><a href="/wiki/Sheet_metal" title="Sheet metal">Sheet metal works</a> (<a href="/wiki/Turret_punch" title="Turret punch">Turret punch</a>)</li> <li><a href="/wiki/Tube_bending" title="Tube bending">Tube, pipe and wire bending machines</a></li> <li><a href="/w/index.php?title=Hot-wire_foam_cutter&amp;action=edit&amp;redlink=1" class="new" title="Hot-wire foam cutter (page does not exist)">Hot-wire foam cutters</a></li> <li><a href="/wiki/Plasma_cutting" title="Plasma cutting">Plasma cutters</a></li> <li><a href="/wiki/Water_jet_cutter" title="Water jet cutter">Water jet cutters</a></li> <li><a href="/wiki/Laser_cutting" title="Laser cutting">Laser cutting</a></li> <li><a href="/wiki/Oxy-fuel_welding_and_cutting" title="Oxy-fuel welding and cutting">Oxy-fuel</a></li> <li><a href="/wiki/Surface_grinding" title="Surface grinding">Surface grinder</a></li> <li><a href="/wiki/Cylindrical_grinder" title="Cylindrical grinder">Cylindrical grinders</a></li> <li><a href="/wiki/3D_printing" title="3D printing">3D printing</a></li> <li><a href="/wiki/Induction_hardening" title="Induction hardening">Induction hardening</a> machines</li> <li><a href="/wiki/Submerged_arc_welding" title="Submerged arc welding">Submerged arc welding</a></li> <li><a href="/wiki/Glass_cutter" title="Glass cutter">Glass cutting</a></li> <li><a href="/wiki/CNC_router" title="CNC router">CNC router</a></li> <li><a href="/wiki/Vinyl_cutter" title="Vinyl cutter">Vinyl cutter</a></li> <li><a href="/w/index.php?title=Leather_cutter&amp;action=edit&amp;redlink=1" class="new" title="Leather cutter (page does not exist)">Leather cutter</a></li></ul> </div> <h2><span id="Tool.2Fmachine_crashing"></span><span class="mw-headline" id="Tool/machine_crashing">Tool/machine crashing</span></h2> <p>In CNC, a "crash" occurs when the machine moves in such a way that is harmful to the machine, tools, or parts being machined, sometimes resulting in bending or breakage of cutting tools, accessory clamps, vises, and fixtures, or causing damage to the machine itself by bending guide rails, breaking drive screws, or causing structural components to crack or deform under strain. A mild crash may not damage the machine or tools but may damage the part being machined so that it must be scrapped. Many CNC tools have no inherent sense of the absolute position of the table or tools when turned on. They must be manually "homed" or "zeroed" to have any reference to work from, and these limits are just for figuring out the location of the part to work with it and are no hard motion limit on the mechanism. It is often possible to drive the machine outside the physical bounds of its drive mechanism, resulting in a collision with itself or damage to the drive mechanism. Many machines implement control parameters limiting axis motion past a certain limit in addition to physical <a href="/wiki/Limit_switch" title="Limit switch">limit switches</a>. However, these parameters can often be changed by the operator. </p><p>Many CNC tools also do not know anything about their working environment. Machines may have load sensing systems on spindle and axis drives, but some do not. They blindly follow the machining code provided and it is up to an operator to detect if a crash is either occurring or about to occur, and for the operator to manually abort the active process. Machines equipped with load sensors can stop axis or spindle movement in response to an overload condition, but this does not prevent a crash from occurring. It may only limit the damage resulting from the crash. Some crashes may not ever overload any axis or spindle drives. </p><p>If the drive system is weaker than the machine's structural integrity, then the drive system simply pushes against the obstruction, and the drive motors "slip in place". The machine tool may not detect the collision or the slipping, so for example the tool should now be at 210mm on the X-axis, but is, in fact, at 32mm where it hit the obstruction and kept slipping. All of the next tool motions will be off by −178mm on the X-axis, and all future motions are now invalid, which may result in further collisions with clamps, vises, or the machine itself. This is common in open-loop stepper systems but is not possible in closed-loop systems unless mechanical slippage between the motor and drive mechanism has occurred. Instead, in a closed-loop system, the machine will continue to attempt to move against the load until either the drive motor goes into an overload condition or a servo motor fails to get to the desired position. </p><p>Collision detection and avoidance are possible, through the use of absolute position sensors (optical encoder strips or disks) to verify that motion occurred, or torque sensors or power-draw sensors on the drive system to detect abnormal strain when the machine should just be moving and not cutting, but these are not a common component of most hobby CNC tools. Instead, most hobby CNC tools simply rely on the assumed accuracy of <a href="/wiki/Stepper_motors" class="mw-redirect" title="Stepper motors">stepper motors</a> that rotate a specific number of degrees in response to magnetic field changes. It is often assumed the stepper is perfectly accurate and never missteps, so tool position monitoring simply involves counting the number of pulses sent to the stepper over time. An alternate means of stepper position monitoring is usually not available, so crash or slip detection is not possible. </p><p>Commercial CNC metalworking machines use closed-loop feedback controls for axis movement. In a closed-loop system, the controller monitors the actual position of each axis with an absolute or <a href="/wiki/Incremental_encoder" title="Incremental encoder">incremental encoder</a>. Proper control programming will reduce the possibility of a crash, but it is still up to the operator and programmer to ensure that the machine is operated safely. However, during the 2000s and 2010s, the software for machining simulation has been maturing rapidly, and it is no longer uncommon for the entire machine tool envelope (including all axes, spindles, chucks, turrets, tool holders, tailstocks, fixtures, clamps, and stock) to be modeled accurately with <a href="/wiki/3D_modeling" title="3D modeling">3D solid models</a>, which allows the simulation software to predict fairly accurately whether a cycle will involve a crash. Although such simulation is not new, its accuracy and market penetration are changing considerably because of computing advancements.<sup id="cite_ref-Zelinski_2014-03-14_7-0" class="reference"><a href="#cite_note-Zelinski_2014-03-14-7">&#91;7&#93;</a></sup> </p> <h2><span class="mw-headline" id="Numerical_precision_and_equipment_backlash">Numerical precision and equipment backlash</span></h2> <p>Within the numerical systems of CNC programming, the code generator can assume that the controlled mechanism is always perfectly accurate, or that precision tolerances are identical for all cutting or movement directions. This is not always a true condition of CNC tools. CNC tools with a large amount of mechanical <a href="/wiki/Backlash_(engineering)" title="Backlash (engineering)">backlash</a> can still be highly precise if the drive or cutting mechanism is only driven to apply cutting force from one direction, and all driving systems are pressed tightly together in that one cutting direction. However, a CNC device with high backlash and a dull cutting tool can lead to cutter chatter and possible workpiece gouging. The backlash also affects the precision of some operations involving axis movement reversals during cutting, such as the milling of a circle, where axis motion is sinusoidal. However, this can be compensated for if the amount of backlash is precisely known by linear encoders or manual measurement. </p><p>The high backlash mechanism itself is not necessarily relied on to be repeatedly precise for the cutting process, but some other reference object or precision surface may be used to zero the mechanism, by tightly applying pressure against the reference and setting that as the zero references for all following CNC-encoded motions. This is similar to the manual machine tool method of clamping a <a href="/wiki/Micrometer_(device)" title="Micrometer (device)">micrometer</a> onto a reference beam and adjusting the <a href="/wiki/Vernier_scale" title="Vernier scale">Vernier</a> dial to zero using that object as the reference.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2017)">citation needed</span></a></i>&#93;</sup> </p> <h2><span class="mw-headline" id="Positioning_control_system">Positioning control system</span></h2> <p>In numerical control systems, the position of the tool is defined by a set of instructions called the <a href="/wiki/Part_program" title="Part program">part program</a>. Positioning control is handled using either an open-loop or a closed-loop system. In an open-loop system, communication takes place in one direction only: from the controller to the motor. In a closed-loop system, feedback is provided to the controller so that it can correct for errors in position, velocity, and acceleration, which can arise due to variations in load or temperature. Open-loop systems are generally cheaper but less accurate. Stepper motors can be used in both types of systems, while servo motors can only be used in closed systems. </p> <h3><span class="mw-headline" id="Cartesian_coordinates">Cartesian coordinates</span></h3> <p>The G &amp; M code positions are all based on a three-dimensional <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a>. This system is a typical plane often seen in mathematics when graphing. This system is required to map out the machine tool paths and any other kind of actions that need to happen in a specific coordinate. Absolute coordinates are what are generally used more commonly for machines and represent the (0,0,0) point on the plane. This point is set on the stock material to give a starting point or "home position" before starting the actual machining. </p> <h2><span class="mw-headline" id="Coding">Coding</span></h2> <h3><span class="mw-headline" id="G-codes">G-codes</span></h3> <p><a href="/wiki/G-code" title="G-code">G-codes</a> are used to command specific movements of the machine, such as machine moves or drilling functions. The majority of G-Code programs start with a percent (%) symbol on the first line, then followed by an "O" with a numerical name for the program (i.e. "O0001") on the second line, then another percent (%) symbol on the last line of the program. The format for a G-code is the letter G followed by two to three digits; for example G01. G-codes differ slightly between a mill and lathe application, for example: </p> <dl><dd>[G00 Rapid Motion Positioning]</dd> <dd>[G01 Linear Interpolation Motion]</dd> <dd>[G02 Circular Interpolation Motion-Clockwise]</dd> <dd>[G03 Circular Interpolation Motion-Counter Clockwise]</dd> <dd>[G04 Dwell (Group 00) Mill]</dd> <dd>[G10 Set offsets (Group 00) Mill]</dd> <dd>[G12 Circular Pocketing-Clockwise]</dd> <dd>[G13 Circular Pocketing-Counter Clockwise]</dd></dl> <h3><span class="mw-headline" id="M-codes">M-codes</span></h3> <p>[Code Miscellaneous Functions (M-Code)]<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2017)">citation needed</span></a></i>&#93;</sup>. M-codes are miscellaneous machine commands that do not command axis motion. The format for an M-code is the letter M followed by two to three digits; for example: </p> <dl><dd>[M02 End of Program]</dd> <dd>[M03 Start Spindle - Clockwise]</dd> <dd>[M04 Start Spindle - Counter Clockwise]</dd> <dd>[M05 Stop Spindle]</dd> <dd>[M06 Tool Change]</dd> <dd>[M07 Coolant on mist coolant]</dd> <dd>[M08 Flood coolant on]</dd> <dd>[M09 Coolant off]</dd> <dd>[M10 Chuck open]</dd> <dd>[M11 Chuck close]</dd> <dd>[M13 BOTH M03&amp;M08 Spindle clockwise rotation &amp; flood coolant]</dd> <dd>[M14 BOTH M04&amp;M08 Spindle counter clockwise rotation &amp; flood coolant]</dd> <dd>[M16 Special tool call]</dd> <dd>[M19 Spindle orientate]</dd> <dd>[M29 DNC mode ]</dd> <dd>[M30 Program reset &amp; rewind]</dd> <dd>[M38 Door open]</dd> <dd>[M39 Door close]</dd> <dd>[M40 Spindle gear at middle]</dd> <dd>[M41 Low gear select]</dd> <dd>[M42 High gear select]</dd> <dd>[M53 Retract Spindle] (raises tool spindle above current position to allow operator to do whatever they would need to do)</dd> <dd>[M68 Hydraulic chuck close]</dd> <dd>[M69 Hydraulic chuck open]</dd> <dd>[M78 Tailstock advancing]</dd> <dd>[M79 Tailstock reversing]</dd></dl> <h3><span class="mw-headline" id="Example">Example</span></h3> <div class="mw-highlight mw-highlight-lang-text mw-content-ltr" dir="ltr"><pre><span></span>% O0001 G20 G40 G80 G90 G94 G54(Inch, Cutter Comp. Cancel, Deactivate all canned cycles, moves axes to machine coordinate, feed per min., origin coordinate system) M06 T01 (Tool change to tool 1) G43 H01 (Tool length comp. in a positive direction, length compensation for the tool) M03 S1200 (Spindle turns CW at 1200RPM) G00 X0. Y0. (Rapid Traverse to X=0. Y=0.) G00 Z.5 (Rapid Traverse to z=.5) G00 X1. Y-.75 (Rapid traverse to X1. Y-.75) G01 Z-.1 F10 (Plunge into part at Z-.25 at 10in per min.) G03 X.875 Y-.5 I.1875 J-.75 (CCW arc cut to X.875 Y-.5 with radius origin at I.625 J-.75) G03 X.5 Y-.75 I0.0 J0.0 (CCW arc cut to X.5 Y-.75 with radius origin at I0.0 J0.0) G03 X.75 Y-.9375 I0.0 J0.0(CCW arc cut to X.75 Y-.9375 with radius origin at I0.0 J0.0) G02 X1. Y-1.25 I.75 J-1.25 (CW arc cut to X1. Y-1.25 with radius origin at I.75 J-1.25) G02 X.75 Y-1.5625 I0.0 J0.0 (CW arc cut to X.75 Y-1.5625 with same radius origin as the previous arc) G02 X.5 Y-1.25 I0.0 J0.0 (CW arc cut to X.5 Y-1.25 with same radius origin as the previous arc) G00 Z.5 (Rapid traverse to z.5) M05 (spindle stops) G00 X0.0 Y0.0 (Mill returns to origin) M30 (Program End) % </pre></div> <p>Having the correct speeds and feeds in the program provides for a more efficient and smoother product run. Incorrect speeds and feeds will cause damage to the tool, machine spindle, and even the product. The quickest and simplest way to find these numbers would be to use a calculator that can be found online. A formula can also be used to calculate the proper speeds and feeds for a material. These values can be found online or in <a href="/wiki/Machinery%27s_Handbook" title="Machinery&#39;s Handbook">Machinery's Handbook</a>. </p> <h2><span class="mw-headline" id="See_also">See also</span></h2> <ul><li><a href="/wiki/Automatic_Tool_Changer" class="mw-redirect" title="Automatic Tool Changer">Automatic Tool Changer</a></li> <li><a href="/wiki/Binary_Cutter_Location" class="mw-redirect" title="Binary Cutter Location">Binary Cutter Location</a></li> <li><a href="/wiki/Computer-aided_technologies" title="Computer-aided technologies">Computer-aided technologies</a> <ul><li><a href="/wiki/Computer-aided_engineering" title="Computer-aided engineering">Computer-aided engineering</a> (CAE)</li></ul></li> <li><a href="/wiki/Coordinate-measuring_machine" title="Coordinate-measuring machine">Coordinate-measuring machine</a> (CMM)</li> <li><a href="/wiki/Design_for_Manufacturability_for_CNC_machining" class="mw-redirect" title="Design for Manufacturability for CNC machining">Design for Manufacturability for CNC machining</a></li> <li><a href="/wiki/Direct_numerical_control" title="Direct numerical control">Direct numerical control</a> (DNC)</li> <li><a href="/wiki/Electronic_Industries_Alliance" title="Electronic Industries Alliance">EIA</a> <a href="/wiki/RS-274" class="mw-redirect" title="RS-274">RS-274</a></li> <li><a href="/wiki/Electronic_Industries_Alliance" title="Electronic Industries Alliance">EIA</a> <a href="/w/index.php?title=RS-494&amp;action=edit&amp;redlink=1" class="new" title="RS-494 (page does not exist)">RS-494</a></li> <li><a href="/wiki/Gerber_format" title="Gerber format">Gerber format</a></li> <li><a href="/wiki/Home_automation" title="Home automation">Home automation</a></li> <li><a href="/wiki/Maslow_CNC" title="Maslow CNC">Maslow CNC</a></li> <li><a href="/wiki/Multiaxis_machining" title="Multiaxis machining">Multiaxis machining</a></li> <li><a href="/wiki/Part_program" title="Part program">Part program</a></li> <li><a href="/wiki/Robotics" title="Robotics">Robotics</a></li> <li><a href="/wiki/Wireless_DNC" title="Wireless DNC">Wireless DNC</a></li></ul> <h2><span class="mw-headline" id="References">References</span></h2> <style data-mw-deduplicate="TemplateStyles:r1011085734">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.mmsonline.com/articles/key-cnc-concept-1the-fundamentals-of-cnc">Mike Lynch, "Key CNC Concept #1—The Fundamentals Of CNC", <i>Modern Machine Shop</i>, 4 January 1997</a>. Accessed 11 February 2015</span> </li> <li id="cite_note-:1-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-:1_2-0">^</a></b></span> <span class="error mw-ext-cite-error" lang="en" dir="ltr">Cite error: The named reference <code>:1</code> was invoked but never defined (see the <a href="/wiki/Help:Cite_errors/Cite_error_references_no_text" title="Help:Cite errors/Cite error references no text">help page</a>).</span></li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1067248974">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.davenportmachine.com/multi-spindle-machines/">"Multi Spindle Machines - An In-Depth Overview"</a>. <i>Davenport Machine</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Davenport+Machine&amp;rft.atitle=Multi+Spindle+Machines+-+An+In-Depth+Overview&amp;rft_id=https%3A%2F%2Fwww.davenportmachine.com%2Fmulti-spindle-machines%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://parts-badger.com/machining-types/">"Machining Types - Parts Badger"</a>. <i>Parts Badger</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-07-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Parts+Badger&amp;rft.atitle=Machining+Types+-+Parts+Badger&amp;rft_id=http%3A%2F%2Fparts-badger.com%2Fmachining-types%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></span> </li> <li id="cite_note-:0-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://todaysmachiningworld.com/magazine/how-it-works-wire-edm/">"How it Works – Wire EDM | Today's Machining World"</a>. <i>todaysmachiningworld.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=todaysmachiningworld.com&amp;rft.atitle=How+it+Works+%E2%80%93+Wire+EDM+%7C+Today%E2%80%99s+Machining+World&amp;rft_id=http%3A%2F%2Ftodaysmachiningworld.com%2Fmagazine%2Fhow-it-works-wire-edm%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.qualityedm.com/sinkeredm.html">"Sinker EDM - Electrical Discharge Machining"</a>. <i>www.qualityedm.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.qualityedm.com&amp;rft.atitle=Sinker+EDM+-+Electrical+Discharge+Machining&amp;rft_id=http%3A%2F%2Fwww.qualityedm.com%2Fsinkeredm.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></span> </li> <li id="cite_note-Zelinski_2014-03-14-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zelinski_2014-03-14_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFZelinski2014" class="citation cs2">Zelinski, Peter (2014-03-14), <a rel="nofollow" class="external text" href="http://www.mmsonline.com/blog/post/new-users-are-adopting-simulation-software">"New users are adopting simulation software"</a>, <i><a href="/wiki/Modern_Machine_Shop" title="Modern Machine Shop">Modern Machine Shop</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Modern+Machine+Shop&amp;rft.atitle=New+users+are+adopting+simulation+software&amp;rft.date=2014-03-14&amp;rft.aulast=Zelinski&amp;rft.aufirst=Peter&amp;rft_id=http%3A%2F%2Fwww.mmsonline.com%2Fblog%2Fpost%2Fnew-users-are-adopting-simulation-software&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></span> </li> </ol></div></div> <h2><span class="mw-headline" id="Further_reading">Further reading</span></h2> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFBrittain1992" class="citation cs2">Brittain, James (1992), <i>Alexanderson: Pioneer in American Electrical Engineering</i>, Johns Hopkins University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8018-4228-X" title="Special:BookSources/0-8018-4228-X"><bdi>0-8018-4228-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Alexanderson%3A+Pioneer+in+American+Electrical+Engineering&amp;rft.pub=Johns+Hopkins+University+Press&amp;rft.date=1992&amp;rft.isbn=0-8018-4228-X&amp;rft.aulast=Brittain&amp;rft.aufirst=James&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFHolland1989" class="citation cs2"><a href="/wiki/Max_Holland" title="Max Holland">Holland, Max</a> (1989), <i>When the Machine Stopped: A Cautionary Tale from Industrial America</i>, Boston: Harvard Business School Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-87584-208-0" title="Special:BookSources/978-0-87584-208-0"><bdi>978-0-87584-208-0</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/246343673">246343673</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=When+the+Machine+Stopped%3A+A+Cautionary+Tale+from+Industrial+America&amp;rft.place=Boston&amp;rft.pub=Harvard+Business+School+Press&amp;rft.date=1989&amp;rft_id=info%3Aoclcnum%2F246343673&amp;rft.isbn=978-0-87584-208-0&amp;rft.aulast=Holland&amp;rft.aufirst=Max&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFNoble1984" class="citation cs2"><a href="/wiki/David_F._Noble" title="David F. Noble">Noble, David F.</a> (1984), <i>Forces of Production: A Social History of Industrial Automation</i>, New York, New York, USA: Knopf, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-394-51262-4" title="Special:BookSources/978-0-394-51262-4"><bdi>978-0-394-51262-4</bdi></a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="//lccn.loc.gov/83048867">83048867</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Forces+of+Production%3A+A+Social+History+of+Industrial+Automation&amp;rft.place=New+York%2C+New+York%2C+USA&amp;rft.pub=Knopf&amp;rft.date=1984&amp;rft_id=info%3Alccn%2F83048867&amp;rft.isbn=978-0-394-51262-4&amp;rft.aulast=Noble&amp;rft.aufirst=David+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFReintjes1991" class="citation cs2">Reintjes, J. Francis (1991), <i>Numerical Control: Making a New Technology</i>, Oxford University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-506772-9" title="Special:BookSources/978-0-19-506772-9"><bdi>978-0-19-506772-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Control%3A+Making+a+New+Technology&amp;rft.pub=Oxford+University+Press&amp;rft.date=1991&amp;rft.isbn=978-0-19-506772-9&amp;rft.aulast=Reintjes&amp;rft.aufirst=J.+Francis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFWeisberg" class="citation cs2">Weisberg, David, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100707074750/http://www.cadhistory.net/chapters/03_MIT_CAD_Roots_1945_1965.pdf"><i>The Engineering Design Revolution</i></a> <span class="cs1-format">(PDF)</span>, archived from <a rel="nofollow" class="external text" href="http://www.cadhistory.net/chapters/03_MIT_CAD_Roots_1945_1965.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 7 July 2010.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Engineering+Design+Revolution&amp;rft.aulast=Weisberg&amp;rft.aufirst=David&amp;rft_id=http%3A%2F%2Fwww.cadhistory.net%2Fchapters%2F03_MIT_CAD_Roots_1945_1965.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFWildesLindgren1985" class="citation cs2">Wildes, Karl L.; Lindgren, Nilo A. (1985), <span class="cs1-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/centuryofelectri0000wild"><i>A Century of Electrical Engineering and Computer Science at MIT</i></a></span>, MIT Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-262-23119-0" title="Special:BookSources/0-262-23119-0"><bdi>0-262-23119-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Century+of+Electrical+Engineering+and+Computer+Science+at+MIT&amp;rft.pub=MIT+Press&amp;rft.date=1985&amp;rft.isbn=0-262-23119-0&amp;rft.aulast=Wildes&amp;rft.aufirst=Karl+L.&amp;rft.au=Lindgren%2C+Nilo+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcenturyofelectri0000wild&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></li> <li>Herrin, Golden E. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090427085904/http://www.mmsonline.com/columns/industry-honors-the-inventor-of-nc.aspx">"Industry Honors The Inventor Of NC"</a>, <i>Modern Machine Shop</i>, 12 January 1998.</li> <li>Siegel, Arnold. "Automatic Programming of Numerically Controlled Machine Tools", <i>Control Engineering</i>, Volume 3 Issue 10 (October 1956), pp.&#160;65–70.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1067248974"/><cite id="CITEREFSmid2008" class="citation cs2">Smid, Peter (2008), <i>CNC Programming Handbook</i> (3rd&#160;ed.), New York: Industrial Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780831133474" title="Special:BookSources/9780831133474"><bdi>9780831133474</bdi></a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="//lccn.loc.gov/2007045901">2007045901</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=CNC+Programming+Handbook&amp;rft.place=New+York&amp;rft.edition=3rd&amp;rft.pub=Industrial+Press&amp;rft.date=2008&amp;rft_id=info%3Alccn%2F2007045901&amp;rft.isbn=9780831133474&amp;rft.aulast=Smid&amp;rft.aufirst=Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANumerical+control" class="Z3988"></span></li> <li>Christopher jun Pagarigan (Vini) Edmnton Alberta Canada. CNC Infomatic, <i>Automotive Design &amp; Production</i>.</li> <li><a rel="nofollow" class="external text" href="https://www.engtechgroup.com/cnc-machines-evolution/">The Evolution of CNC Machines (2018).</a> Retrieved October 15, 2018, from Engineering Technology Group</li> <li>Fitzpatrick, Michael (2019), "Machining and CNC Technology".</li></ul> <h2><span class="mw-headline" id="External_links">External links</span></h2> <ul><li><a href="/wiki/File:Commons-logo.svg" class="image"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="noviewer" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Computer_numerical_control" class="extiw" title="commons:Category:Computer numerical control">Computer numerical control</a> at Wikimedia Commons</li></ul> <div class="navbox-styles nomobile"><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Metalworking" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><style data-mw-deduplicate="TemplateStyles:r1063604349">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Metalworking_navbox" title="Template:Metalworking navbox"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Metalworking_navbox" title="Template talk:Metalworking navbox"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Template:Metalworking_navbox&amp;action=edit"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Metalworking" style="font-size:114%;margin:0 4em"><a href="/wiki/Metalworking" title="Metalworking">Metalworking</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1063604349"/><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Metalworking_navbox/mach" title="Template:Metalworking navbox/mach"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Metalworking_navbox/mach" title="Template talk:Metalworking navbox/mach"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Template:Metalworking_navbox/mach&amp;action=edit"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Machining_and_computing" style="font-size:114%;margin:0 4em"><a href="/wiki/Category:Machining" title="Category:Machining">Machining</a> and computing</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Computer-aided_engineering" title="Category:Computer-aided engineering">Computer-aided<br />engineering</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/2.5D_(machining)" title="2.5D (machining)">2.5D</a></li> <li><a href="/wiki/Computer-aided_design" title="Computer-aided design">CAD</a></li> <li><a href="/wiki/Computer-aided_manufacturing" title="Computer-aided manufacturing">CAM</a></li> <li><a href="/wiki/G-code" title="G-code">G-code</a></li> <li><a class="mw-selflink selflink">Numerical control (NC and CNC)</a></li> <li><a href="/wiki/Stewart_platform" title="Stewart platform">Stewart platform</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Hole_making" title="Category:Hole making">Drilling</a> and<br /><a href="/wiki/Category:Threading_(manufacturing)" title="Category:Threading (manufacturing)">threading</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Die_head" title="Die head">Die head</a></li> <li><a href="/wiki/Drill" title="Drill">Drill</a></li> <li><a href="/wiki/Drill_bit" title="Drill bit">Drill bit</a></li> <li><a href="/wiki/Drill_bit_shank" title="Drill bit shank">Drill bit shank</a></li> <li><a href="/wiki/Drill_bit_sizes" title="Drill bit sizes">Drill bit sizes</a></li> <li><a href="/wiki/Drilling" title="Drilling">Drilling</a></li> <li><a href="/wiki/List_of_drill_and_tap_sizes" title="List of drill and tap sizes">List of drill and tap sizes</a></li> <li><a href="/wiki/Tap_and_die" title="Tap and die">Tap and die</a></li> <li><a href="/wiki/Tap_wrench" title="Tap wrench">Tap wrench</a></li> <li><a href="/wiki/Threading_(manufacturing)" title="Threading (manufacturing)">Threading</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Grinding_and_lapping" title="Category:Grinding and lapping">Grinding and<br />lapping</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abrasive" title="Abrasive">Abrasive</a></li> <li><a href="/wiki/Abrasive_machining" title="Abrasive machining">Abrasive machining</a></li> <li><a href="/wiki/Angle_grinder" title="Angle grinder">Angle grinder</a></li> <li><a href="/wiki/Bench_grinder" title="Bench grinder">Bench grinder</a></li> <li><a href="/wiki/Coated_abrasive" title="Coated abrasive">Coated abrasive</a></li> <li><a href="/wiki/Cylindrical_grinder" title="Cylindrical grinder">Cylindrical grinder</a></li> <li><a href="/wiki/Sharpening_stone#Diamond_plate" title="Sharpening stone">Diamond plate</a></li> <li><a href="/wiki/Flick_grinder" title="Flick grinder">Flick grinder</a></li> <li><a href="/wiki/Grinding_(abrasive_cutting)" title="Grinding (abrasive cutting)">Grinding</a></li> <li><a href="/wiki/Grinding_dresser" title="Grinding dresser">Grinding dresser</a></li> <li><a href="/wiki/Grinding_machine" title="Grinding machine">Grinding machine</a></li> <li><a href="/wiki/Grinding_wheel" title="Grinding wheel">Grinding wheel</a></li> <li><a href="/wiki/Jig_grinder" title="Jig grinder">Jig grinder</a></li> <li><a href="/wiki/Lapping" title="Lapping">Lapping</a></li> <li><a href="/wiki/Sandpaper" title="Sandpaper">Sanding</a></li> <li><a href="/wiki/Sharpening_stone" title="Sharpening stone">Sharpening stone</a></li> <li><a href="/wiki/Spark_testing" title="Spark testing">Spark testing</a></li> <li><a href="/wiki/Surface_grinding" title="Surface grinding">Surface grinder</a></li> <li><a href="/wiki/Tool_and_cutter_grinder" title="Tool and cutter grinder">Tool and cutter grinder</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Machining" title="Category:Machining">Machining</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boring_(manufacturing)" title="Boring (manufacturing)">Boring</a></li> <li><a href="/wiki/Broaching_(metalworking)" title="Broaching (metalworking)">Broaching</a></li> <li><a href="/wiki/Electrical_discharge_machining" title="Electrical discharge machining">Electrical discharge machining</a></li> <li><a href="/wiki/Electrochemical_machining" title="Electrochemical machining">Electrochemical machining</a></li> <li><a href="/wiki/Electron-beam_machining" title="Electron-beam machining">Electron-beam machining</a></li> <li><a href="/wiki/End_mill" title="End mill">End mill</a></li> <li><a href="/wiki/Engraving" title="Engraving">Engraving</a></li> <li><a href="/wiki/Facing_(machining)" title="Facing (machining)">Facing</a></li> <li><a href="/wiki/Hobbing" title="Hobbing">Hobbing</a></li> <li><a href="/wiki/Jig_borer" title="Jig borer">Jig borer</a></li> <li><a href="/wiki/Machine_tool" title="Machine tool">Machine tool</a></li> <li><a href="/wiki/Machining" title="Machining">Machining</a></li> <li><a href="/wiki/Metal_lathe" title="Metal lathe">Metal lathe</a></li> <li><a href="/wiki/Milling_(machining)" title="Milling (machining)">Milling</a></li> <li><a href="/wiki/Milling_cutter" title="Milling cutter">Milling cutter</a></li> <li><a href="/wiki/Pantograph" title="Pantograph">Pantograph</a></li> <li><a href="/wiki/Photochemical_machining" title="Photochemical machining">Photochemical machining</a></li> <li><a href="/wiki/Planer_(metalworking)" title="Planer (metalworking)">Planer</a></li> <li><a href="/wiki/Reamer" title="Reamer">Reamer</a></li> <li><a href="/wiki/Rotary_transfer_machine" title="Rotary transfer machine">Rotary transfer machine</a></li> <li><a href="/wiki/Shaper" title="Shaper">Shaper</a></li> <li><a href="/wiki/Skiving_(metalworking)" title="Skiving (metalworking)">Skiving</a></li> <li><a href="/wiki/Turning" title="Turning">Turning</a></li> <li><a href="/wiki/Ultrasonic_machining" title="Ultrasonic machining">Ultrasonic machining</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Machine_tools" title="Category:Machine tools">Machine tools</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Angle_plate" title="Angle plate">Angle plate</a></li> <li><a href="/wiki/Chuck_(engineering)" title="Chuck (engineering)">Chuck</a></li> <li><a href="/wiki/Collet" title="Collet">Collet</a></li> <li><a href="/wiki/Fixture_(tool)" title="Fixture (tool)">Fixture</a></li> <li><a href="/wiki/Indexing_head" title="Indexing head">Indexing head</a></li> <li><a href="/wiki/Jig_(tool)" title="Jig (tool)">Jig</a></li> <li><a href="/wiki/Lathe_center" title="Lathe center">Lathe center</a></li> <li><a href="/wiki/Machine_taper" title="Machine taper">Machine taper</a></li> <li><a href="/wiki/Magnetic_switchable_device" title="Magnetic switchable device">Magnetic switchable device</a></li> <li><a href="/wiki/Mandrel" title="Mandrel">Mandrel</a></li> <li><a href="/wiki/Rotary_table" title="Rotary table">Rotary table</a></li> <li><a href="/wiki/Wiggler_(tool)" title="Wiggler (tool)">Wiggler</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Terminology</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cutting_fluid" title="Cutting fluid">Cutting fluid</a></li> <li><a href="/wiki/Machining_vibrations" title="Machining vibrations">Machining vibrations</a></li> <li><a href="/wiki/Speeds_and_feeds" title="Speeds and feeds">Speeds and feeds</a></li> <li><a href="/wiki/Swarf" title="Swarf">Swarf</a></li> <li><a href="/wiki/Engineering_tolerance" title="Engineering tolerance">Tolerance</a></li> <li><a href="/wiki/Tool_and_die_maker" title="Tool and die maker">Tool and die making</a></li> <li><a href="/wiki/Tramp_oil" class="mw-redirect" title="Tramp oil">Tramp oil</a></li> <li><a href="/wiki/Workpiece" title="Workpiece">Workpiece</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Casting" title="Casting">Casting</a></li> <li><a href="/wiki/Metal_fabrication" title="Metal fabrication">Fabrication</a></li> <li><a href="/wiki/Forming_processes" title="Forming processes">Forming</a></li> <li><a href="/wiki/Jewellery" title="Jewellery">Jewellery</a></li> <li><a href="/wiki/Machining" title="Machining">Machining</a></li> <li><a href="/wiki/Metallurgy" title="Metallurgy">Metallurgy</a></li> <li><a href="/wiki/Metalsmith" title="Metalsmith">Smithing</a></li> <li><a href="/wiki/Outline_of_metalworking" title="Outline of metalworking">Tools and terminology</a></li> <li><a href="/wiki/Welding" title="Welding">Welding</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles nomobile"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1061467846"/></div><div role="navigation" class="navbox" aria-labelledby="Robotics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1063604349"/><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Robotics" title="Template:Robotics"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Robotics" title="Template talk:Robotics"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Template:Robotics&amp;action=edit"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Robotics" style="font-size:114%;margin:0 4em"><a href="/wiki/Robotics" title="Robotics">Robotics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main articles</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Outline_of_robotics" title="Outline of robotics">Outline</a></li> <li><a href="/wiki/Glossary_of_robotics" title="Glossary of robotics">Glossary</a></li> <li><a href="/wiki/Index_of_robotics_articles" title="Index of robotics articles">Indexc</a></li> <li><a href="/wiki/History_of_robots" title="History of robots">History</a></li> <li><a href="/wiki/Geography_of_robotics" title="Geography of robotics">Geography</a></li> <li><a href="/wiki/Robot_Hall_of_Fame" title="Robot Hall of Fame">Hall of Fame</a></li> <li><a href="/wiki/Robot_ethics" title="Robot ethics">Ethics</a></li> <li><a href="/wiki/Laws_of_robotics" title="Laws of robotics">Laws</a></li> <li><a href="/wiki/Robot_competition" title="Robot competition">Competitions</a></li> <li><a href="/wiki/Competitions_and_prizes_in_artificial_intelligence" title="Competitions and prizes in artificial intelligence">AI competitions</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><a href="/wiki/File:Shadow_Hand_Bulb_large.jpg" class="image"><img alt="Shadow Hand Bulb large.jpg" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Shadow_Hand_Bulb_large.jpg/100px-Shadow_Hand_Bulb_large.jpg" decoding="async" width="100" height="150" data-file-width="2560" data-file-height="3840" /></a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Robot" title="Robot">Types</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aerobot" title="Aerobot">Aerobot</a></li> <li><a href="/wiki/Anthropomorphic" class="mw-redirect" title="Anthropomorphic">Anthropomorphic</a> <ul><li><a href="/wiki/Humanoid_robot" title="Humanoid robot">Humanoid</a></li> <li><a href="/wiki/Android_(robot)" title="Android (robot)">Android</a></li> <li><a href="/wiki/Cyborg" title="Cyborg">Cyborg</a></li></ul></li> <li><a href="/wiki/Claytronics" title="Claytronics">Claytronics</a></li> <li><a href="/wiki/Companion_robot" title="Companion robot">Companion</a></li> <li><a href="/wiki/Animatronics" title="Animatronics">Animatronic</a> <ul><li><a href="/wiki/Audio-Animatronics" title="Audio-Animatronics">Audio-Animatronics</a></li></ul></li> <li><a href="/wiki/Industrial_robot" title="Industrial robot">Industrial</a></li> <li><a href="/wiki/Articulated_robot" title="Articulated robot">Articulated</a> <ul><li><a href="/wiki/Robotic_arm" title="Robotic arm">arm</a></li></ul></li> <li><a href="/wiki/Domestic_robot" title="Domestic robot">Domestic</a></li> <li><a href="/wiki/Educational_robotics" title="Educational robotics">Educational</a></li> <li><a href="/wiki/Entertainment_robot" title="Entertainment robot">Entertainment</a></li> <li><a href="/wiki/Juggling_robot" title="Juggling robot">Juggling</a></li> <li><a href="/wiki/Military_robot" title="Military robot">Military</a></li> <li><a href="/wiki/Medical_robot" title="Medical robot">Medical</a></li> <li><a href="/wiki/Service_robot" title="Service robot">Service</a></li> <li><a href="/wiki/Disability_robot" title="Disability robot">Disability</a></li> <li><a href="/wiki/Agricultural_robot" title="Agricultural robot">Agricultural</a></li> <li><a href="/wiki/Automated_restaurant" title="Automated restaurant">Food service</a></li> <li><a href="/wiki/Automated_retail" title="Automated retail">Retail</a></li> <li><a href="/wiki/BEAM_robotics" title="BEAM robotics">BEAM robotics</a></li> <li><a href="/wiki/Soft_robotics" title="Soft robotics">Soft robotics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classifications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biorobotics" title="Biorobotics">Biorobotics</a></li> <li><a href="/wiki/Unmanned_vehicle" class="mw-redirect" title="Unmanned vehicle">Unmanned vehicle</a> <ul><li><a href="/wiki/Unmanned_aerial_vehicle" title="Unmanned aerial vehicle">aerial</a></li> <li><a href="/wiki/Unmanned_ground_vehicle" title="Unmanned ground vehicle">ground</a></li></ul></li> <li><a href="/wiki/Mobile_robot" title="Mobile robot">Mobile robot</a></li> <li><a href="/wiki/Microbotics" title="Microbotics">Microbotics</a></li> <li><a href="/wiki/Nanorobotics" title="Nanorobotics">Nanorobotics</a></li> <li><a href="/wiki/Necrobotics" title="Necrobotics">Necrobotics</a></li> <li><a href="/wiki/Robotic_spacecraft" title="Robotic spacecraft">Robotic spacecraft</a> <ul><li><a href="/wiki/Space_probe" title="Space probe">Space probe</a></li></ul></li> <li><a href="/wiki/Swarm_robotics" title="Swarm robotics">Swarm</a></li> <li><a href="/wiki/Telerobotics" title="Telerobotics">Telerobotics</a></li> <li><a href="/wiki/Autonomous_underwater_vehicle" title="Autonomous underwater vehicle">Underwater</a> <ul><li><a href="/wiki/Remotely_operated_underwater_vehicle" title="Remotely operated underwater vehicle">remotely-operated</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Robot_locomotion" title="Robot locomotion">Locomotion</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Continuous_track" title="Continuous track">Tracks</a></li> <li><a href="/wiki/Legged_robot" title="Legged robot">Walking</a> <ul><li><a href="/wiki/Hexapod_(robotics)" title="Hexapod (robotics)">Hexapod</a></li></ul></li> <li><a href="/wiki/Climber_(BEAM)" class="mw-redirect" title="Climber (BEAM)">Climbing</a></li> <li><a href="/wiki/Electric_unicycle" title="Electric unicycle">Electric unicycle</a></li> <li><a href="/wiki/Robot_navigation" title="Robot navigation">Robot navigation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Research</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Evolutionary_robotics" title="Evolutionary robotics">Evolutionary</a></li> <li><a href="/wiki/Robot_kit" title="Robot kit">Kits</a></li> <li><a href="/wiki/Robotics_simulator" title="Robotics simulator">Simulator</a></li> <li><a href="/wiki/Robotics_suite" title="Robotics suite">Suite</a></li> <li><a href="/wiki/Open-source_robotics" title="Open-source robotics">Open-source</a></li> <li><a href="/wiki/Robot_software" title="Robot software">Software</a></li> <li><a href="/wiki/Adaptable_robotics" title="Adaptable robotics">Adaptable</a></li> <li><a href="/wiki/Developmental_robotics" title="Developmental robotics">Developmental</a></li> <li><a href="/wiki/Robotic_paradigm" title="Robotic paradigm">Paradigms</a></li> <li><a href="/wiki/Ubiquitous_robot" title="Ubiquitous robot">Ubiquitous</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Critique_of_work" title="Critique of work">Critique of work</a></li> <li><a href="/wiki/Powered_exoskeleton" title="Powered exoskeleton">Powered exoskeleton</a></li> <li><a href="/wiki/Technological_unemployment" title="Technological unemployment">Technological unemployment</a></li> <li><a href="/wiki/Terrainability" title="Terrainability">Terrainability</a></li> <li><a href="/wiki/List_of_fictional_robots_and_androids" title="List of fictional robots and androids">Fictional robots</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" title="Category" width="16" height="16" class="noviewer" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /> <b><a href="/wiki/Category:Robotics" title="Category:Robotics">Category</a></b></li> <li><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Global_thinking.svg/10px-Global_thinking.svg.png" decoding="async" title="Outline" width="10" height="16" class="noviewer" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Global_thinking.svg/15px-Global_thinking.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Global_thinking.svg/21px-Global_thinking.svg.png 2x" data-file-width="130" data-file-height="200" /> <b><a href="/wiki/Outline_of_robotics" title="Outline of robotics">Outline</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles nomobile"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1061467846"/></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control:_National_libraries_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q190247#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Authority_control:_National_libraries_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q190247#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control: National libraries</a> <a href="https://www.wikidata.org/wiki/Q190247#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" style="vertical-align: text-top" class="noprint" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119323839">France</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119323839">(data)</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007541044405171">Israel</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85079354">United States</a></span></li></ul> </div></td></tr></tbody></table></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1661634473'