Aller au contenu

« Positon » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Uxore (discuter | contributions)
Durée de vie passée de instable à stable (comme l'électron)
 
(26 versions intermédiaires par 18 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
{{Infobox Particule
{{Infobox Particule
| nom=Positon
| nom = Positon
| légende=Trace laissée par le premier positon détecté, photographié le 2 août 1932 dans une [[chambre à brouillard]].
| légende = Trace laissée par le premier positon détecté, photographié le 2 août 1932 dans une [[chambre à brouillard]].
| famille=Fermion
| famille = Fermion
| classification= [[Antilepton]]
| classification = [[Antilepton]]
| composition= ''élémentaire''
| composition = ''élémentaire''
| masse= 510,998 918 (44) [[Électronvolt#Unité_de_masse|keV/c²]] <br /><small>(9,109 382 6(16)×10<sup>-31</sup> [[Kilogramme|kg]])</small>
| masse = 510,998 918 (44) [[Électronvolt#Unité_de_masse|keV/c²]] <br /><small>(9,109 382 6(16)×10<sup>-31</sup> [[Kilogramme|kg]])</small>
| charge électrique= +1,60217653(14)×10<sup>-19</sup> [[Coulomb (unité)|C]]
| charge électrique = +1,60217653(14)×10<sup>-19</sup> [[Coulomb (unité)|C]]
| spin= ½
| spin = ½
| charge de couleur= 0
| charge de couleur = 0
| durée de vie= instable
| durée de vie = stable (comme l'électron)
}}
}}


En [[physique des particules]], le '''positon'''<ref>{{Académie|positon|édition=9}}.</ref>{{,}}<ref>{{CNRTL|positon|onglet=0|élision=non}}.</ref>{{,}}<ref>{{Ouvrage|langue=Anglais / Français|auteur1=Commission Électrotechnique Internationale (IEC)|titre=International Electrotechnical Vocabulary (IEV)|passage=6 (§ 393-11-08)|lieu=|éditeur=|année=|pages totales=|isbn=|lire en ligne=http://www.iea.lth.se/internt/IEC_Dictionary/Base/393.pdf}}.</ref> ou '''positron'''<ref name="IECPositon">Selon la Commission Électrotechnique Internationale, « positon » est le terme français par défaut ; cependant « positron » (qui est l'appellation anglophone) peut aussi être employé
En [[physique des particules]], le '''positon'''<ref>{{Académie|positon|édition=9}}.</ref>{{,}}<ref>{{CNRTL|positon|onglet=0|élision=non}}.</ref>{{,}}<ref>{{Ouvrage|langue=en/fr|auteur institutionnel=[[Commission électrotechnique internationale]] (IEC)|titre=International Electrotechnical Vocabulary (IEV)|passage=6 (§ 393-11-08)|lire en ligne=http://www.iea.lth.se/internt/IEC_Dictionary/Base/393.pdf}}.</ref> ou '''positron'''<ref name="IECPositon">Selon la [[Commission électrotechnique internationale]], « positon » est le terme français par défaut ; cependant « positron » (qui est l'appellation anglophone) peut aussi être employé,
{{Lien web
{{Lien web
|lang=en
|lang=en
|url=http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-19
|url=http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-19
|titre=IEC IEV ref 113-05-119
|titre=IEC IEV ref 113-05-119
|auteur=(IEC)
|auteur institutionnel=IEC
}}.</ref> (anglicisme), encore appelé '''antiélectron''', est l'[[antiparticule]] associée à l'[[électron]]. Il possède une [[charge électrique]] de +1 charge élémentaire (contre -1 pour l'électron), le même [[spin]] et la même [[masse]] que l'électron. C'est la première antiparticule découverte, ce qui explique qu'elle n'ait pas le nom composite d'« anti-électron ».
}}.</ref> (anglicisme), encore appelé '''antiélectron''' par convention, est l'[[antiparticule]] associée à l'[[électron]]. Trouvée au {{s-|XX}}, elle est la première antiparticule découverte. Le positon possède une [[charge électrique]] de +1 [[charge élémentaire]] (contre {{nb|-1}} pour l'électron), le même [[spin]] et la même [[masse]] que l'électron. Il est noté {{formule|§={{expInd|0|+1}}''e''}} ou {{formule|§=''e''{{exp|+}}}} ou {{formule|§=''β''{{exp|+}}}}{{sfn|Arnaud|2016|loc={{chap.|2}}|p=8}}.


== Description ==
== Description ==
Ligne 26 : Ligne 26 :
|format=pdf
|format=pdf
|titre=A Theory of Electrons and Protons
|titre=A Theory of Electrons and Protons
|auteur=P. A. M. Dirac}}.</ref>. Cette tentative d'explication fut abandonnée rapidement, et en 1931, Dirac proposa de considérer l'existence d'une nouvelle particule, un « anti-électron » de même masse que l’électron mais de charge opposée<ref>{{Ouvrage
|auteur1=P. A. M. Dirac}}.</ref>. Cette tentative d'explication fut abandonnée rapidement, et en 1931, Dirac proposa de considérer l'existence d'une nouvelle particule, un « anti-électron » de même masse que l’électron mais de charge opposée<ref>{{Article
|lang=en
|langue=en
|auteur1=P. A. M. Dirac
|titre=Quantised Singularities in the Quantum Field
|titre=Quantised Singularities in the Quantum Field
|année=1931
|auteur=P. A. M. Dirac
|passage=2–3
|passage=2–3
|doi=10.1098/rspa.1931.0130
|journal=Proc. R. Soc. Lond. A
|année=1931
|lire en ligne=http://rspa.royalsocietypublishing.org/content/133/821/60
|lire en ligne=http://rspa.royalsocietypublishing.org/content/133/821/60
|périodique=Proc. R. Soc. Lond. A
|doi=10.1098/rspa.1931.0130
}}.</ref>.
}}.</ref>.


En 1932, [[Carl David Anderson]] annonça les résultats de ses recherches sur les [[Rayon cosmique|rayons cosmiques]] : ses photographies prises dans une [[chambre à brouillard]] montraient quantité d'électrons, ainsi que quelques traces qui semblaient correspondre à des particules proches des électrons, mais à la charge opposée. Des expérimentations en laboratoires permirent ensuite de découvrir ces positons.
En 1932, [[Carl David Anderson]] annonça les résultats de ses recherches sur les [[Rayon cosmique|rayons cosmiques]] : ses photographies prises dans une [[chambre à brouillard]] montraient quantité d'électrons, ainsi que quelques traces qui semblaient correspondre à des particules proches des électrons, mais à la charge opposée. Des expérimentations en laboratoires permirent ensuite de découvrir ces positons.


En 1933, [[Jean Thibaud]] précise les caractéristiques physiques du positon. Il en mesure la charge et il parvient à observer pour la première fois l'annihilation du positon, avec production de photons de haute énergie, en usant de la technique de la [[trochoïde]]<ref>{{Article |langue= |auteur1=Jean Thibaud |titre=L’annihilation des positrons au contact de la matière et la radiation qui en résulte |périodique=C.R. Acad. Sci. Paris, Vol.197 |date=1933 |issn= |lire en ligne=https://gallica.bnf.fr/ark:/12148/bpt6k3149q/f1631.image.r=positron |pages=1629-1632 }}</ref>.
En 1933, [[Jean Thibaud]] précise les caractéristiques physiques du positon. Il en mesure la charge et il parvient à observer pour la première fois l'annihilation du positon, avec production de photons de haute énergie, en usant de la technique de la [[trochoïde]]<ref>{{Article |langue=fr |auteur1=Jean Thibaud |titre=L’annihilation des positrons au contact de la matière et la radiation qui en résulte |périodique=C.R. Acad. Sci. Paris |date=1933 |volume=197 |lire en ligne=https://gallica.bnf.fr/ark:/12148/bpt6k3149q/f1631.image.r=positron |pages=1629-1632}}</ref>.


Dans le vide, le positon est une particule stable. Mais en traversant la matière, quand un positon de basse énergie entre en collision avec un électron de basse énergie, les deux s'annihilent, c'est-à-dire que leur masse est convertie en [[énergie (physique)|énergie]] sous forme de deux [[photon]]s [[rayon gamma|gamma]].
Dans le vide, le positon est une particule stable. Mais en traversant la matière, quand un positon de basse énergie entre en collision avec un électron de basse énergie, les deux s'annihilent, c'est-à-dire que leur masse est convertie en [[énergie (physique)|énergie]] sous forme de deux [[photon]]s [[rayon gamma|gamma]].
Ligne 45 : Ligne 45 :
Un positon peut être le [[produit de désintégration]] d'un noyau [[Radioactivité|radioactif]]. Il s'agit alors d'une [[Radioactivité β|désintégration β<sup>+</sup>]].
Un positon peut être le [[produit de désintégration]] d'un noyau [[Radioactivité|radioactif]]. Il s'agit alors d'une [[Radioactivité β|désintégration β<sup>+</sup>]].


Un positon peut être créé lors de l'interaction d'un [[photon]] d'énergie supérieure à {{nombre|1.022|MeV}} avec un noyau atomique (2''m''<sub>e</sub>''c''² = 2×0,511&nbsp;MeV, où ''m''<sub>e</sub> est la masse d'un électron, et ''c'' la [[Lumière#Vitesse|vitesse de la lumière]]). Ce processus s'appelle production de paires (voir [[Rayon gamma]]), car deux particules (positon et électron) sont créées par l'énergie du photon.
Un positon peut être créé lors de l'interaction d'un [[photon]] d'énergie supérieure à {{nombre|1.022 MeV}} avec un noyau atomique (2''m''<sub>e</sub>''c''{{2}} = {{dunité|2|0,511|MeV}}, où ''m''<sub>e</sub> est la masse d'un électron et ''c'' la [[Lumière#Vitesse|vitesse de la lumière]]). Ce processus s'appelle production de paires (voir [[Rayon gamma]]), car deux particules (positon et électron) sont créées par l'énergie du photon.
Les premiers positons furent observés par ce processus lorsque des rayons gamma cosmiques s'enfoncent dans l'atmosphère. On a ensuite détecté (en 2009) des positons émis autour d'un avion en présence de [[foudre]] dans un [[orage]]<ref>{{en}}Davide Castelvecchi (2015) http://www.nature.com/news/rogue-antimatter-found-in-thunderclouds-1.17526 ''{{lang|en|Rogue antimatter found in thunderclouds ; Aeroplane detects signature spike in photons that does not fit any known source of antiparticles}}''], {{lang|en|News du Journal Nature}}, publiée 12 mai 2015, consultée 16 mai 2015.</ref>.
Les premiers positons furent observés par ce processus lorsque des rayons gamma cosmiques s'enfoncent dans l'atmosphère. On a ensuite détecté (en 2009) des positons émis autour d'un avion en présence de [[foudre]] dans un [[orage]]<ref>{{en}} Davide Castelvecchi, [http://www.nature.com/news/rogue-antimatter-found-in-thunderclouds-1.17526 ''{{lang|en|Rogue antimatter found in thunderclouds ; Aeroplane detects signature spike in photons that does not fit any known source of antiparticles}}''], ''{{lang|en|Nature}}'', 12 mai 2015 (consulté le 16 mai 2015).</ref>.
{{clr}}
{{clr}}


== Production ==
== Production ==
Des positons peuvent être produits lors de [[Émission de positron|désintégrations ''β''{{exp|+}}]]{{sfn|Taillet|Villain|Febvre|2018|loc={{s.v.}}positon|p=586, {{col.|2}}}} (par exemple lors des désintégrations de [[azote 13|<sup>13</sup>N]] ou [[sodium 22|<sup>22</sup>Na]]) ou par [[création de paires]] électron-positon{{sfn|Taillet|Villain|Febvre|2018|loc={{s.v.}}positon|p=586, {{col.|2}}}} conséquemment à une interaction entre un [[photon]] de haute énergie et un [[noyau atomique]]. Il est ensuite possible de ralentir ces positons à l'aide d'un modérateur : un [[monocristal]] de [[cuivre]] ou de [[tungstène]] ou du [[néon]] solide. Le modérateur à néon solide est particulièrement efficace pour les positons issus de <sup>22</sup>Na. Lorsque les positons ont été modérés, ils peuvent être stockés dans un [[piège de Penning]]<ref>{{Ouvrage|prénom1=A. P.|nom1=Mills Jr.|titre=Advances In Atomic, Molecular, and Optical Physics|volume=65|passage=265–290|éditeur=Academic Press|date=2016-01-01|doi=10.1016/bs.aamop.2016.04.003|lire en ligne=http://www.sciencedirect.com/science/article/pii/S1049250X16300076|langue=en|numéro chapitre=5|titre chapitre=Experiments with Dense
Des positons peuvent être produits lors de [[Émission de positron|désintégrations β{{exp|+}}]]{{sfn|Taillet|Villain|Febvre|2018|loc={{s.v.}}positon|p=586, {{col.|2}}}} (par exemple lors des désintégrations de [[azote 13|<sup>13</sup>N]] ou [[sodium 22|<sup>22</sup>Na]]) ou par [[création de paires]] électron-positon{{sfn|Taillet|Villain|Febvre|2018|loc={{s.v.}}positon|p=586, {{col.|2}}}} conséquemment à une interaction entre un [[photon]] de haute énergie et un [[noyau atomique]]. Il est ensuite possible de ralentir ces positons à l'aide d'un modérateur : un [[monocristal]] de [[cuivre]] ou de [[tungstène]] ou du [[néon]] solide. Le modérateur à néon solide est particulièrement efficace pour les positons issus de <sup>22</sup>Na. Lorsque les positons ont été modérés, ils peuvent être stockés dans un [[piège de Penning]]<ref>{{Ouvrage|langue=en|prénom1=A. P.|nom1=Mills {{Jr}}|titre=Advances In Atomic, Molecular, and Optical Physics|volume=65|éditeur=[[Academic Press]]|date=2016-01-01|passage=265–290|doi=10.1016/bs.aamop.2016.04.003|lire en ligne=http://www.sciencedirect.com/science/article/pii/S1049250X16300076|numéro chapitre=5|titre chapitre=Experiments with DenseLow-Energy Positrons andPositronium}}.</ref>.
Low-Energy Positrons and
Positronium}}.</ref>.


== Applications ==
== Applications ==
=== Imagerie médicale ===
{{article détaillé|Tomographie par émission de positons}}Certains accélérateurs de particules peuvent mener des expériences utilisant des positons et des électrons dont les vitesses atteignent des vitesses proches de la vitesse de la lumière. Lorsque ces particules rapides sont maintenues et que les blocs de matériau et d'antimatière sont créés, de nouvelles particules de différentes particules subatomiques sont créées. Les physiciens étudient ces nouvelles particules à partir de leur annihilation, découvrent de nouvelles particules inconnues et étudient ces collisions à haute énergie et comparent leurs résultats à leurs théories informatiques.
{{article détaillé|Tomographie par émission de positons}}
La tomographie par émission de positons est une technique d'[[imagerie médicale]] qui consiste à faire absorber ou injecter au patient un [[médicament radiopharmaceutique]] ou un [[radiotraceur]] dont l'isotope radioactif est un émetteur de [[Radioactivité β|rayonnement β{{exp|+}}]], c'est-à-dire un émetteur de positons. Ces positons s'annihilent aussitôt, dès qu'ils rencontrent les électrons des tissus environnants, en deux [[Rayon gamma|photons gamma]]. La détection de ces photons permet de localiser le lieu de leur émission et la concentration du traceur en chaque point des organes.


== Dans les arts ==
=== Physique des particules ===
{{article détaillé|Collisionneur}}
Un collisionneur électrons-positons est un accélérateur de particules qui accélère simultanément deux faisceaux de particules en sens inverses, l'un d'électrons, l'autre de positons, afin de les faire entrer en collision frontale. Lors de ces collisions de haute énergie, les électrons et les positons s'annihilent (car les uns sont les antiparticules des autres), ce qui libère une énergie capable de créer de "nouvelles" particules.


== Dans les arts ==
{{article détaillé|Cerveau positronique}}
{{article détaillé|Cerveau positronique}}


Ligne 68 : Ligne 71 :
=== Bibliographie ===
=== Bibliographie ===
* {{Article | langue=en | prénom={{abréviation discrète|C. D.|Carl David}} | nom=Anderson | lien auteur=Carl David Anderson | titre={{langue|en|texte=The positive electron}} | traduction titre=L'électron positif | périodique=[[Physical Review|Phys. Rev.]] | volume=43 | numéro=6 | jour=15 | mois=mars | année=1933 | pages=491-498 | oclc=4643957027 | doi=10.1103/PhysRev.43.491 | bibcode=1933PhRv...43..491A | lire en ligne=https://journals.aps.org/pr/pdf/10.1103/PhysRev.43.491 | libellé=Anderson 1933}}.
* {{Article | langue=en | prénom={{abréviation discrète|C. D.|Carl David}} | nom=Anderson | lien auteur=Carl David Anderson | titre={{langue|en|texte=The positive electron}} | traduction titre=L'électron positif | périodique=[[Physical Review|Phys. Rev.]] | volume=43 | numéro=6 | jour=15 | mois=mars | année=1933 | pages=491-498 | oclc=4643957027 | doi=10.1103/PhysRev.43.491 | bibcode=1933PhRv...43..491A | lire en ligne=https://journals.aps.org/pr/pdf/10.1103/PhysRev.43.491 | libellé=Anderson 1933}}.
* {{Article | langue=en | prénom={{abréviation discrète|P. A. M.|Paul Adrien Maurice}} | nom=Dirac | lien auteur=Paul Dirac | titre={{langue|en|texte=Quantised singularities in the electromagnetic field}} | traduction titre= Singularités quantifiées dans le champ électromagnétique | périodique=[[Proceedings of the Royal Society|Proc. R. Soc. Lond. A]] | volume=133 | numéro=821 | jour=1 | mois={{date-|septembre|compact=oui}} | année=1931 | pages=60-72 | oclc=4661931744 | doi=10.1098/rspa.1931.0130 | bibcode=1931RSPSA.133...60D | résumé=https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1931.0130#d1232429e1 | lire en ligne=https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1931.0130 | libellé=Dirac 1931}}.
* {{Ouvrage | langue=fr | prénom={{abréviation discrète|P.|Paul}} | nom=Arnaud | champ libre={{abréviation discrète|rév.|révision scientifique}} par {{nobr|{{abréviation discrète|F.|Françoise}} Rouquérol}}, {{nobr|{{abréviation discrète|G.|Gilberte}} Chambaud}}, {{nobr|{{abréviation discrète|R.|Roland}} Lissillour}} et {{nobr|{{abréviation discrète|A.|Abdou}} Boucekkine}}, avec la {{abréviation discrète|collab.|collaboration}} de {{nobr|{{abréviation discrète|R.|Renaud}} Bouchet}}, {{nobr|{{abréviation discrète|F.|Florence}} Boulc'h}} et {{nobr|{{abréviation discrète|V.|Virginie}} Hornebecq}} | titre=Les cours de Paul Arnaud | sous-titre=exercices résolus de chimie générale | lieu=Malakoff | éditeur=[[Éditions Dunod|Dunod]] | collection=Sciences {{abréviation discrète|Sup.|Supérieur}} | mois=août | année=2016 | numéro d'édition=4 | pages totales={{unité|1|{{abréviation discrète|vol.|volume(s)}}}}, {{XVI}}-367 | format={{abréviation discrète|ill.|illustration(s)}}, {{dunité|17|24|cm}} | isbn10=2-10-075415-7 | isbn1=978-2-10-075415-1 | ean=9782100754151 | oclc=957671917 | bnf=45100663w | sudoc=194916278 | présentation en ligne=https://www.dunod.com/sciences-techniques/cours-paul-arnaud-exercices-resolus-chimie-generale-0 | lire en ligne={{Google Livres|id=KhvRDAAAQBAJ}} | consulté le=7 janvier 2020 | libellé=Arnaud 2016}}.
* {{Ouvrage | langue=fr | prénom={{abréviation discrète|J.-C.|Jean-Claude}} | nom=Boudenot | préface=de [[Claude Cohen-Tannoudji|{{nobr|{{abréviation discrète|C.|Claude}} Cohen-Tannoudji}}]] | titre=Comment Einstein a changé le monde | lieu=Les Ulis | éditeur=[[EDP Sciences|EDP Scie.]], hors {{coll.}} | mois={{date-|janvier|compact=oui}} | année=2005 | numéro d'édition=1 | pages totales={{unité|1|{{abréviation discrète|vol.|volume(s)}}}}, 187 | format={{abréviation discrète|ill.|illustration(s)}}, {{dunité|16|24|cm}} | isbn=2-86883-763-8 | ean=9782868837639 | oclc=61762452 | bnf=39916636g | sudoc=08469596X | présentation en ligne=https://laboutique.edpsciences.fr/produit/289/9782759802241 | lire en ligne={{Google Livres|id=9ShCF-9yloEC}} | consulté le=7 janvier 2020 | libellé=Boudenot 2005}}.
* {{Ouvrage | langue=fr | prénom={{abréviation discrète|J.-C.|Jean-Claude}} | nom=Boudenot | préface=de [[Claude Cohen-Tannoudji|{{nobr|{{abréviation discrète|C.|Claude}} Cohen-Tannoudji}}]] | titre=Comment Einstein a changé le monde | lieu=Les Ulis | éditeur=[[EDP Sciences|EDP Scie.]], hors {{coll.}} | mois={{date-|janvier|compact=oui}} | année=2005 | numéro d'édition=1 | pages totales={{unité|1|{{abréviation discrète|vol.|volume(s)}}}}, 187 | format={{abréviation discrète|ill.|illustration(s)}}, {{dunité|16|24|cm}} | isbn=2-86883-763-8 | ean=9782868837639 | oclc=61762452 | bnf=39916636g | sudoc=08469596X | présentation en ligne=https://laboutique.edpsciences.fr/produit/289/9782759802241 | lire en ligne={{Google Livres|id=9ShCF-9yloEC}} | consulté le=7 janvier 2020 | libellé=Boudenot 2005}}.
* {{Ouvrage | langue=fr | prénom1={{abréviation discrète|R.|Richard}} | nom1=Taillet | prénom2={{abréviation discrète|L.|Loïc}} | nom2=Villain | prénom3={{abréviation discrète|P.|Pascal}} | nom3=Febvre | titre=Dictionnaire de physique | lieu=Louvain-la-Neuve | éditeur=[[Groupe De Boeck|De Boeck {{abréviation discrète|Sup.|Supérieur}}]], hors {{coll.}} | mois={{date-|janvier|compact=oui}} | année=2018 | numéro d'édition=4 | année première édition={{date-|mai 2008}} | pages totales={{unité|1|{{abréviation discrète|vol.|volume(s)}}}}, {{X}}-956 | format={{abréviation discrète|ill.|illustration(s)}} et {{abréviation discrète|fig.|figure(s)}}, {{dunité|17|24|cm}} | isbn10=2-8073-0744-2 | isbn1=978-2-8073-0744-5 | ean=9782807307445 | oclc=1022951339 | bnf= | sudoc=224228161 | présentation en ligne=https://www.deboecksuperieur.com/ouvrage/9782807307445-dictionnaire-de-physique | lire en ligne={{Google Livres|id=pjlFDwAAQBAJ}} | consulté le=7 janvier 2020 | partie={{s.v.}}positon | passage=586, {{col.|2}} | libellé=Taillet, Villain et Febvre 2018}}.
* {{Ouvrage | langue=fr | prénom1={{abréviation discrète|R.|Richard}} | nom1=Taillet | prénom2={{abréviation discrète|L.|Loïc}} | nom2=Villain | prénom3={{abréviation discrète|P.|Pascal}} | nom3=Febvre | titre=Dictionnaire de physique | lieu=Louvain-la-Neuve | éditeur=[[Groupe De Boeck|De Boeck {{abréviation discrète|Sup.|Supérieur}}]], hors {{coll.}} | mois={{date-|janvier|compact=oui}} | année=2018 | numéro d'édition=4 | année première édition={{date-|mai 2008}} | pages totales={{unité|1|{{abréviation discrète|vol.|volume(s)}}}}, {{X}}-956 | format={{abréviation discrète|ill.|illustration(s)}} et {{abréviation discrète|fig.|figure(s)}}, {{dunité|17|24|cm}} | isbn10=2-8073-0744-2 | isbn1=978-2-8073-0744-5 | ean=9782807307445 | oclc=1022951339 | sudoc=224228161 | présentation en ligne=https://www.deboecksuperieur.com/ouvrage/9782807307445-dictionnaire-de-physique | lire en ligne={{Google Livres|id=pjlFDwAAQBAJ}} | consulté le=7 janvier 2020 | partie={{s.v.}}positon | passage=586, {{col.|2}} | libellé=Taillet, Villain et Febvre 2018}}.


=== Articles connexes ===
=== Articles connexes ===
Ligne 80 : Ligne 85 :


=== Liens externes ===
=== Liens externes ===
* {{Article | langue=fr | prénom={{abréviation discrète|I.|Ilarion}} | nom=Pavel | titre=La prédiction de l'antimatière par Dirac | périodique=Bibnum | jour=1 | mois=juin | année=2011 | pages={{nb p.|28}} | lire en ligne=http://journals.openedition.org/bibnum/809 | libellé=Pavel 2011}}.
* La prédiction de l'antimatière, article de 1930 de Dirac en ligne et commenté sur [http://www.bibnum.education.fr/physique/physique-nucl%C3%A9aire/la-pr%C3%A9diction-de-l%E2%80%99antimati%C3%A8re-par-dirac BibNum].
* {{Autorité | BNE=XX530431 | BNF=11980392t | GND=4175441-4 | LCCN=sh85105392 | NDL=00574256}}


{{Palette|Tableau particules}}
{{Palette|Tableau particules}}

{{Portail|physique}}
{{Portail|physique}}


[[Catégorie:Positron|*]]
[[Catégorie:Positon|*]]

Dernière version du 26 mars 2023 à 12:30

Positon
Trace laissée par le premier positon détecté, photographié le 2 août 1932 dans une chambre à brouillard.
Propriétés générales
Classification
Composition
élémentaire
Famille
Fermion
Propriétés physiques
Masse
510,998 918 (44) keV/c²
(9,109 382 6(16)×10-31 kg)
Charge électrique
+1,60217653(14)×10-19 C
Charge de couleur
0
Spin
½
Durée de vie
stable (comme l'électron)

En physique des particules, le positon[1],[2],[3] ou positron[4] (anglicisme), encore appelé antiélectron par convention, est l'antiparticule associée à l'électron. Trouvée au XXe siècle, elle est la première antiparticule découverte. Le positon possède une charge électrique de +1 charge élémentaire (contre −1 pour l'électron), le même spin et la même masse que l'électron. Il est noté 0
+1
e
ou e+ ou β+[5].

Description

[modifier | modifier le code]

La théorisation de cette particule fut provoquée par l'écriture par Paul Dirac, en 1928, d'une équation relativiste décrivant l'électron. Cette équation, appelée maintenant équation de Dirac, admet des résultats dont une part correspond à l'électron, alors qu'une autre, inverse, ne semblait pas, à l'époque, avoir de sens immédiat. En 1929, Dirac proposa la possibilité que cette part soit la description des protons, qui seraient donc les particules inverses des électrons[6]. Cette tentative d'explication fut abandonnée rapidement, et en 1931, Dirac proposa de considérer l'existence d'une nouvelle particule, un « anti-électron » de même masse que l’électron mais de charge opposée[7].

En 1932, Carl David Anderson annonça les résultats de ses recherches sur les rayons cosmiques : ses photographies prises dans une chambre à brouillard montraient quantité d'électrons, ainsi que quelques traces qui semblaient correspondre à des particules proches des électrons, mais à la charge opposée. Des expérimentations en laboratoires permirent ensuite de découvrir ces positons.

En 1933, Jean Thibaud précise les caractéristiques physiques du positon. Il en mesure la charge et il parvient à observer pour la première fois l'annihilation du positon, avec production de photons de haute énergie, en usant de la technique de la trochoïde[8].

Dans le vide, le positon est une particule stable. Mais en traversant la matière, quand un positon de basse énergie entre en collision avec un électron de basse énergie, les deux s'annihilent, c'est-à-dire que leur masse est convertie en énergie sous forme de deux photons gamma.

Un positon peut être le produit de désintégration d'un noyau radioactif. Il s'agit alors d'une désintégration β+.

Un positon peut être créé lors de l'interaction d'un photon d'énergie supérieure à 1,022 MeV avec un noyau atomique (2mec2 = 2 × 0,511 MeV, où me est la masse d'un électron et c la vitesse de la lumière). Ce processus s'appelle production de paires (voir Rayon gamma), car deux particules (positon et électron) sont créées par l'énergie du photon. Les premiers positons furent observés par ce processus lorsque des rayons gamma cosmiques s'enfoncent dans l'atmosphère. On a ensuite détecté (en 2009) des positons émis autour d'un avion en présence de foudre dans un orage[9].

Des positons peuvent être produits lors de désintégrations β+[10] (par exemple lors des désintégrations de 13N ou 22Na) ou par création de paires électron-positon[10] conséquemment à une interaction entre un photon de haute énergie et un noyau atomique. Il est ensuite possible de ralentir ces positons à l'aide d'un modérateur : un monocristal de cuivre ou de tungstène ou du néon solide. Le modérateur à néon solide est particulièrement efficace pour les positons issus de 22Na. Lorsque les positons ont été modérés, ils peuvent être stockés dans un piège de Penning[11].

Applications

[modifier | modifier le code]

Imagerie médicale

[modifier | modifier le code]

La tomographie par émission de positons est une technique d'imagerie médicale qui consiste à faire absorber ou injecter au patient un médicament radiopharmaceutique ou un radiotraceur dont l'isotope radioactif est un émetteur de rayonnement β+, c'est-à-dire un émetteur de positons. Ces positons s'annihilent aussitôt, dès qu'ils rencontrent les électrons des tissus environnants, en deux photons gamma. La détection de ces photons permet de localiser le lieu de leur émission et la concentration du traceur en chaque point des organes.

Physique des particules

[modifier | modifier le code]

Un collisionneur électrons-positons est un accélérateur de particules qui accélère simultanément deux faisceaux de particules en sens inverses, l'un d'électrons, l'autre de positons, afin de les faire entrer en collision frontale. Lors de ces collisions de haute énergie, les électrons et les positons s'annihilent (car les uns sont les antiparticules des autres), ce qui libère une énergie capable de créer de "nouvelles" particules.

Dans les arts

[modifier | modifier le code]

Notes et références

[modifier | modifier le code]
  1. « Positon », dans le Dictionnaire de l'Académie française, sur Centre national de ressources textuelles et lexicales.
  2. Informations lexicographiques et étymologiques de « positon » dans le Trésor de la langue française informatisé, sur le site du Centre national de ressources textuelles et lexicales.
  3. (en + fr) Commission électrotechnique internationale (IEC), International Electrotechnical Vocabulary (IEV) (lire en ligne), p. 6 (§ 393-11-08).
  4. Selon la Commission électrotechnique internationale, « positon » est le terme français par défaut ; cependant « positron » (qui est l'appellation anglophone) peut aussi être employé, (en) IEC, « IEC IEV ref 113-05-119 ».
  5. Arnaud 2016, chap. 2, p. 8.
  6. (en) P. A. M. Dirac, « A Theory of Electrons and Protons » [PDF].
  7. (en) P. A. M. Dirac, « Quantised Singularities in the Quantum Field », Proc. R. Soc. Lond. A,‎ , p. 2–3 (DOI 10.1098/rspa.1931.0130, lire en ligne).
  8. Jean Thibaud, « L’annihilation des positrons au contact de la matière et la radiation qui en résulte », C.R. Acad. Sci. Paris, vol. 197,‎ , p. 1629-1632 (lire en ligne)
  9. (en) Davide Castelvecchi, Rogue antimatter found in thunderclouds ; Aeroplane detects signature spike in photons that does not fit any known source of antiparticles, Nature, 12 mai 2015 (consulté le 16 mai 2015).
  10. a et b Taillet, Villain et Febvre 2018, s.v.positon, p. 586, col. 2.
  11. (en) A. P. Mills Jr., Advances In Atomic, Molecular, and Optical Physics, vol. 65, Academic Press, (DOI 10.1016/bs.aamop.2016.04.003, lire en ligne), chap. 5 (« Experiments with DenseLow-Energy Positrons andPositronium »), p. 265–290.

Bibliographie

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]