Pieter Jacobs

Pieter Jacobs

Ghent, Flemish Region, Belgium
2K followers 500+ connections

About

Head of Process Sciences lab

Activity

Join now to see all activity

Experience

  • Legend Biotech Graphic

    Legend Biotech

    Ghent, Flemish Region, Belgium

  • -

    Belgium

  • -

    Solothurn, Switzerland

  • -

    Antwerp Area, Belgium

  • -

    Brussels Area, Belgium

  • -

    Brussels Area, Belgium

  • -

    Boston, MA, USA

  • -

    Boston, MA, USA

  • -

    Boston, MA, USA

  • -

    Ghent, Belgium

  • -

    Ghent, Belgium

  • -

    Ghent, Belgium

  • -

    Ghent, Belgium

Education

  • Ghent University

    -

  • -

    Activities and Societies: GBK (Gentse Biologische Kring)

Publications

  • Off-target glycans encountered along the synthetic biology route toward humanized N-glycans in Pichia pastoris

    Biotechnol Bioeng.

    The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel…

    The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5 GlcNAc2 N-glycans, glycan profiling revealed two major species: Man5 GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5 GlcNAc2 modified with a Glcα-1,2-Manβ-1,2-Manβ-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5 GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.

    See publication
  • Modulation of transmembrane pressure in manufacturing scale tangential flow filtration N-1 perfusion seed culture

    Biotechnol Prog.

    Mammalian cells were grown to high density in a 3,000 L culture using perfusion with hollow fibers operated in a tangential flow filtration mode. The high-density culture was used to inoculate the production stage of a biomanufacturing process. At constant permeate flux operation, increased transmembrane pressures (TMPs) were observed on the final day of the manufacturing batches. Small scale studies suggested that the filters were not irreversibly fouled, but rather exposed to membrane…

    Mammalian cells were grown to high density in a 3,000 L culture using perfusion with hollow fibers operated in a tangential flow filtration mode. The high-density culture was used to inoculate the production stage of a biomanufacturing process. At constant permeate flux operation, increased transmembrane pressures (TMPs) were observed on the final day of the manufacturing batches. Small scale studies suggested that the filters were not irreversibly fouled, but rather exposed to membrane concentration polarization that could be relieved by tangential sweeping of the hollow fibers. Studies were undertaken to analyze parameters that influence the hydrodynamic profile within hollow fibers; including filter area, cell density, recirculation flow rate, and permeate flow rate. Results indicated that permeate flow rate had the greatest influence on modulating TMP. Further evaluation showed a significant decrease in TMP when permeate flow was reduced, and this occurred without any negative effect on cell growth or viability. Hence, a 30% reduction of permeate flow rate was implemented at manufacturing scale. A stable operation was achieved as TMP was successfully reduced by 75% while preserving all critical factors for performance in the perfusion bioreactor.

    See publication
  • Congenital Disorder of Fucosylation Type 2c (LADII) Presenting with Short Stature and Developmental Delay with Minimal Adhesion Defect

    Human Molecular Genetics

    Leukocyte adhesion deficiency type-II (LADII) is a hereditary disorder of neutrophil migration caused by mutations in the GDP-fucose transporter gene (SLC35C1). In these patients, inability to generate key fucosylated molecules including sialyl Lewis X leads to leukocytosis and recurrent infections, in addition to short stature and developmental delay. We report two brothers with short stature and developmental delay who are compound heterozygotes for novel mutations in SLC35C1 resulting in…

    Leukocyte adhesion deficiency type-II (LADII) is a hereditary disorder of neutrophil migration caused by mutations in the GDP-fucose transporter gene (SLC35C1). In these patients, inability to generate key fucosylated molecules including sialyl Lewis X leads to leukocytosis and recurrent infections, in addition to short stature and developmental delay. We report two brothers with short stature and developmental delay who are compound heterozygotes for novel mutations in SLC35C1 resulting in partial in vivo defects in fucosylation. Specifically, plasma glycoproteins including IgG demonstrated marked changes in glycoform distribution. While neutrophil rolling on endothelial selectins was partially impeded, residual adhesion proved sufficient to avoid leukocytosis or recurrent infection. These findings demonstrate a surprising degree of immune redundancy in the face of substantial alterations in adhesion molecule expression, while showing that short stature and developmental delay may be the sole presenting signs in this disorder.

    See publication
  • CD44 and HCELL: Preventing hematogenous metastasis at step 1.

    FEBS Letters

    Despite great strides in our knowledge of the genetic and epigenetic changes underlying malignancy, we have limited information on the molecular basis of metastasis. Over 90% of cancer deaths are caused by spread of tumor cells from a primary site to distant organs and tissues, highlighting the pressing need to define the molecular effectors of cancer metastasis. Mounting evidence suggests that circulating tumor cells (CTCs) home to specific tissues by hijacking the normal leukocyte trafficking…

    Despite great strides in our knowledge of the genetic and epigenetic changes underlying malignancy, we have limited information on the molecular basis of metastasis. Over 90% of cancer deaths are caused by spread of tumor cells from a primary site to distant organs and tissues, highlighting the pressing need to define the molecular effectors of cancer metastasis. Mounting evidence suggests that circulating tumor cells (CTCs) home to specific tissues by hijacking the normal leukocyte trafficking mechanisms. Cancer cells characteristically express CD44, and there is increasing evidence that hematopoietic cell E-/L-selectin ligand (HCELL), a sialofucosylated glycoform of CD44, serves as the major selectin ligand on cancer cells, allowing interaction of tumor cells with endothelium, leukocytes, and platelets. Here, we review the structural biology of CD44 and of HCELL, and present current data on the function of these molecules in mediating organ-specific homing/metastasis of CTCs.

    See publication
  • Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate.

    Microbial Cell Factories

    BACKGROUND: Yeast expression systems with altered N-glycosylation are now available to produce glycoproteins with homogenous, defined N-glycans. However, data on the behaviour of these strains in high cell density cultivation are scarce.

    RESULTS: Here, we report on cultivations under controlled specific growth rate of a GlycoSwitch-Man5 Pichia pastoris strain producing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) at high levels (hundreds of milligrams per liter). We…

    BACKGROUND: Yeast expression systems with altered N-glycosylation are now available to produce glycoproteins with homogenous, defined N-glycans. However, data on the behaviour of these strains in high cell density cultivation are scarce.

    RESULTS: Here, we report on cultivations under controlled specific growth rate of a GlycoSwitch-Man5 Pichia pastoris strain producing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) at high levels (hundreds of milligrams per liter). We demonstrate that homogenous Man5GlcNAc2 N-glycosylation of the secreted proteins is achieved at all specific growth rates tested.

    CONCLUSIONS: Together, these data illustrate that the GlycoSwitch-Man5 P. pastoris is a robust production strain for homogenously N-glycosylated proteins.

    See publication
  • The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins.

    Microbial Cell Factories

    The unfolded protein response (UPR) in eukaryotes upregulates factors that restore ER homeostasis upon protein folding stress and in yeast is activated by a non-conventional splicing of the HAC1 mRNA. The spliced HAC1 mRNA encodes an active transcription factor that binds to UPR-responsive elements in the promoter of UPR target genes. Overexpression of the HAC1 gene of S. cerevisiae can reportedly lead to increased production of heterologous proteins. To further such studies in the…

    The unfolded protein response (UPR) in eukaryotes upregulates factors that restore ER homeostasis upon protein folding stress and in yeast is activated by a non-conventional splicing of the HAC1 mRNA. The spliced HAC1 mRNA encodes an active transcription factor that binds to UPR-responsive elements in the promoter of UPR target genes. Overexpression of the HAC1 gene of S. cerevisiae can reportedly lead to increased production of heterologous proteins. To further such studies in the biotechnology favored yeast Pichia pastoris, we cloned and characterized the P. pastoris HAC1 gene and the splice event.

    CONCLUSIONS: Overexpression of P. pastoris Hac1p can be used to increase the production of heterologous proteins but needs to be evaluated on a case by case basis. Inducible Hac1p expression is more effective than constitutive expression. Correct processing and thus homogeneity of proteins that are difficult to express, such as GPCRs, can be increased by co-expression with Hac1p.

    See publication
  • Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology.

    Nature Protocols

    Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate…

    Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate GlycoSwitch vector, small-scale cultivation of a number of transformants, sugar analysis and heterologous protein expression analysis. If desired, the resulting clone can be further engineered by repeating the procedure with the next GlycoSwitch vector. Each engineering step takes approximately 3 weeks. The conversion of any wild-type Pichia strain into a strain that modifies its glycoproteins with Gal(2)GlcNAc(2)Man(3)GlcNAc(2)N-glycans requires the introduction of five GlycoSwitch vectors. Three examples of the full engineering procedure are provided to illustrate the results that can be expected.

    See publication
  • N-glycosylation engineering of biopharmaceutical expression systems.

    Current Molecular Medicine

    N-glycosylation, the enzymatic coupling of oligosaccharides to specific asparagine residues of nascent polypeptide chains, is one of the most widespread post-translational modifications. Following transfer of an N-glycan precursor in the ER, this structure is further modified by a number of glycosidases and glyco-syltransferases in the ER and the Golgi complex. The processing reactions occurring in the ER are highly conserved between lower and higher eukaryotes. In contrast, the reactions that…

    N-glycosylation, the enzymatic coupling of oligosaccharides to specific asparagine residues of nascent polypeptide chains, is one of the most widespread post-translational modifications. Following transfer of an N-glycan precursor in the ER, this structure is further modified by a number of glycosidases and glyco-syltransferases in the ER and the Golgi complex. The processing reactions occurring in the ER are highly conserved between lower and higher eukaryotes. In contrast, the reactions that take place in the Golgi complex are species- and cell type-specific. Due to its non-template driven nature, glycoproteins typically occur as a mixture of glycoforms. Since N-glycans influence circulation half-life, tissue distribution, and biological activity each glycoform has its own pharmacokinetic, pharmacodynamic and efficacy profile. Moreover, modification of glycoproteins with non-human oligosaccharides can result in undesired immunogenicity. Therefore, engineering of the N-glycosylation pathway of most currently used heterologous protein expression systems (bacteria, mammalian cells, insect cells, yeasts and plants) is actively pursued by several academic and industrial laboratories. These research efforts are in the first place directed at humanizing the N-glycosylation pathway and eliminating immunogenic glycotopes. Moreover, one wants to establish new structure-function relationships of different glycoforms, which helps to decreasing the complexity of the N-glycan repertoire towards one defined N-glycan structure. In this review, we discuss the most important recent milestones in the glycoengineering field.

    See publication
  • Fishing for lectins from diverse sequence libraries by yeast surface display - an exploratory study.

    Glycobiology

    The establishment of a robust technology platform for the expression cloning of carbohydrate-binding proteins remains a key challenge in glycomics. Here we explore the utility of using yeast surface display (YSD) technology in the interaction-based lectin cloning from complete cDNA libraries. This should pave the way for more detailed studies of protein-carbohydrate interactions. To evaluate the performance of this system, lectins representing three different subfamilies (galectins, siglecs…

    The establishment of a robust technology platform for the expression cloning of carbohydrate-binding proteins remains a key challenge in glycomics. Here we explore the utility of using yeast surface display (YSD) technology in the interaction-based lectin cloning from complete cDNA libraries. This should pave the way for more detailed studies of protein-carbohydrate interactions. To evaluate the performance of this system, lectins representing three different subfamilies (galectins, siglecs, and C-type lectins) were successfully displayed on the surface of Saccharomyces cerevisiae and Pichia pastoris as a-agglutinin and/or alpha-agglutinin fusions. The predicted carbohydrate-binding activity could be detected for three out of five lectins tested (galectin-1, galectin-3, and siaoadhesin). For galectin-4 and E-selectin, no specific carbohydrate-binding activity could be detected. We also demonstrate that proteins with carbohydrate affinity can be specifically isolated from complex metazoan cDNA libraries through multiple rounds of FACS sorting, employing multivalent, fluorescent-labeled polyacrylamide-based glycoconjugates.

    See publication
  • Pichia surface display: display of proteins on the surface of glycoengineered Pichia pastoris strains.

    Biotechnol Letters

    Expression of proteins on the surface of yeasts has a wide range of applications in biotechnology, such as directed evolution of proteins for increased affinity and thermal stability, screening of antibody libraries, epitope mapping, and use as whole-cell biocatalysts. However, hyperglycosylation can interfere with overall protein accessibility on the surface. Therefore, the less elaborate hyperglycosylation in wild type Pichia pastoris and the availability of glycoengineered strains make this…

    Expression of proteins on the surface of yeasts has a wide range of applications in biotechnology, such as directed evolution of proteins for increased affinity and thermal stability, screening of antibody libraries, epitope mapping, and use as whole-cell biocatalysts. However, hyperglycosylation can interfere with overall protein accessibility on the surface. Therefore, the less elaborate hyperglycosylation in wild type Pichia pastoris and the availability of glycoengineered strains make this yeast an excellent alternative for surface display of glycoproteins. Here, we report the implementation of the well-established a-agglutinin-based yeast surface display technology in P. pastoris. Four heterologous proteins were expressed on the surface of a wild type and a glycoengineered strain. Surface display levels were monitored by Western blot, immunofluorescence microscopy, and FACS analysis. The availability of glycoengineered strains makes P. pastoris an excellent alternative for surface display of glycoproteins and paves the way for new applications.

    See publication

Languages

  • English

    Full professional proficiency

  • Dutch

    Native or bilingual proficiency

  • French

    Limited working proficiency

  • German

    Elementary proficiency

Organizations

  • European Society for Animal Cell Technology

    -

More activity by Pieter

View Pieter’s full profile

  • See who you know in common
  • Get introduced
  • Contact Pieter directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Pieter Jacobs in Belgium

Add new skills with these courses